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Introduction

Let X and Y be compact Hausdorίf spaces, Φ(x, y) be a universally
measurable1} function on Xx Y which is bounded from below, g(x) be any
function on X and f(y) be a universally measurable function which is
bounded from above. We denote by Jί the set of all non-negative Radon
measures satisfying the inequality

(x, y)dμ(y)^g(x) on X .

In the case that Jί is not empty, the quantity

M = SUp] \ fdμ μ €Ξ Jί \

was considered by Ohtsuka [4] in connection with a generalization of a theo-
rem in the theory of linear programming. In this paper, we consider the
family Jί κ of measures in Jί supported by a compact subset K of Y and
consider a similar quantity

M(K) = sup j {fdμ μ e Jίκ\

in the case that Jίκ is not empty. This quantity has a potential theoretic
meaning. In fact, Fuglede Q2] considered it in case Φ^>0, g—1 and / = 1
and denoted it by capiC We shall call it Fuglede's capacity in §11.

For any set A C F, we define in § 1 an inner quantity M{(A) and an outer
quantity Me(A) from M(K) in the same way as the inner capacity cap*A and
the outer capacity cap*̂ 4 were defined from cap K in [2] . Ohtsuka orally
raised the question as to when M{(A) is equal to Me(A). We shall give an
answer to this question in the present paper.

Kishi Q3] examined this problem in the case that X= Y, Φ(x, y) = Φ(y, x)
>0 for all x, ye X, Φ is lower semicontinuous and g=f=l. His main result

1) A function on a compact set is universally measurable if it is measurable with respect to all

Radon measures.
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is that if Φ satisfies the continuity principle2^ then M{(A) = Me(A) for every
analytic set.

Fuglede Q2] investigated this problem in case C>0, g=l and / = 1 , and
obtained a result which is similar to Kishi's. However, it is impossible, in
his case, to retain the continuity principle as its original form, because XΦ Y
in general, so that he used conditions (A) and (B) (see § 6 and § 8) instead of
the continuity principle. Fuglede proved cap*^ = cap*̂ 4 for every analytic
set under conditions (A) and (B).

In §2 we shall give the equality M{(K) = Me(K) for compact sets K under
more general setting than Kishi's or Fuglede's. On account of an interest-
ing result of Ohtsuka stated in §3, we can develop our theory from §5 to
§ 10. There, we consider another quantities ϊi(A) and Tβ(A\ and follow the
reasoning in pΓ|. We shall give in § 10 the equality M{(A) = Me(A) for every
analytic set by applying a useful theorem of Choquet Ql]. This contains
the results which are mentioned above. In § 4 we shall study the properties
of Mj(A) and Me(A) as set functions for later application and in §11 we shall
compare our M{(A) and Me(A) with Fuglede's capacity.

We always assume that Φ and g are non-negative from § 4 to § 11 and
that / is upper semicontinuous from §5 to §10. In case gS^O, we remark
that Jί'K is not empty for any Kφφ and that M(K\ M{(A) and Me(A) are
non-negative. Then we define M(φ) = Q for the empty set φ.

The author wishes to express his deepest appreciation to Professor
Ohtsuka and Dr. Maeda, who gave him encouragement and many valuable
suggestions.

§ 1. Definitions

Let X and Y be compact Hausdorff spaces, Φ(x, γ)> — °° be a lower
semicontinuous function on Xx Y, g(x) (f(y) resp.) be a function on X (Y
resp.) which is bounded from below (above resp.) and K be a compact subset
of Y. A measure μ will be always a non-negative Radon measure and Sμ
will be the support of μ. For a measure /ion Y (v on X resp.) a potential

Φ(χ,μ) (Φ(y9 γ) resp.) is defined by \Φ(χ, y)dμ(y) (\Φ(χ9 y)dv(χ) resp.). We

shall consider two classes of measures

= {μ; SμCK and Φ(x, μ)<; g(x) on X}

and

(v, γ)>f(γ) on K} .

2) Continuity principle: If a potential \Φ(x,γ)dμ(γ) of a positive Radon measure μ is finite

and continuous as a function on the support of μ, then it is continuous in X.
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In case / and g are universally measurable, we define

M(K) = supj^fdμ; μ€Λκ} if JtκΦΦ ,

and

M'(K) = mfl[gdv;ι>€Λί'κ\ if Jί'κφφ ,

where the empty set is denoted by φ. For simplicity, we put

M(K) =00 if Jt'κ = φ .

But we do not define M(K) for Jίκ = φ except for the special case in §4. By
definition, it is easily seen that M(K)<LM;(K) if Jΐκφφ. For any set ACY,
we define

Mi(Λ) = sup{Λί(ίΓ); K is compact and i^C A}

and

= inf {Mi(G); G is open and

§ 2. Equality Mt(K) = Me(K)

First we observe that M(K\ M^A) and Me(A) are increasing set func-
tions, M(K) = Mi(K) for every compact set K and Mi(A)<Me(A). M{(K) is-
not necessarily equal to Me(K). This is shown by

EXAMPLE 1. Let X— Y be the interval { | Λ ; | ^ 2 } in the real line, K =

i\ j l ^ l } , Φ = 0, g=l and f(γ)=0 if | y | ^ l and = | y | - l if 1 < | y\<2.
Then MfCiC) = 0 and M{(G) = oo for any open set GZ)K. Hence Me(K) =

We shall define conditions (Hi) and (H2) as follows :
(Hi) There is a point xo£X such that Φ(χ^ y)>0 for all yG Y and g(xo)<

(H2) f(γ)>0forall γe Y.
Under condition (Hλ), if JίYΦφ^ then the set of total masses {μ(Y)\ μ,6 -#y}
is bounded. Whence M{(A) and Me(A) are not equal to + oo for any set A.
As for condition (H2\ we have

LEMMA 1.3) Assume condition (H2). If Jέ'KΦΦ a>nd M(K) is finite, then
the set of total masses {μ(K); μ<E Jtκ} is bounded.

3) cf. [4], Lemma 1.
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PROOF. If we deny this, then there is a sequence {μn} in Jt'κ such that
μn(K)>n. We put μ'n = μn/μn(K\ and choose a vaguely convergent subse-
quence of {μ'n}. We shall denote it again by {μ'n} and let μ'o be the limit.
It holds that Sμ'0CK, μ'0(K) = l and

Φ(χ, /^)<;iim Φ(x, μf

n) = li

Therefore Φ(x9 μ'0)<^0 if g(x) is finite. Take μ such that SμCK, Φ(x9μ)<^

g(x) on X and \fdμ is finite. Then for any positive number ί, we have Φ(x,

μ + tμ'o)^g(x) o n ^ a n d hence μ-\-tμr

QζJtκ. Thus M(K)^>\fdμJrt\fdμ'o.

Since [fdμ'Q> 0 by condition (ϋΓ2), we have Af(ίΓ) = oo. This is a contradic-

tition.

REMARK. Consider a class of measures

and 0(#, / ^ ) ^ ^(Λ;) on

and a set function ^-(^^supM/dμ; /xG JtA\ if ^AΦΦ- It is evident that

for any compact set iΓ with JίKΦΦ and easy to see that, if JίA

is not empty, then we have

); K is compact and

The equality Mi(K) = Mβ(K) for compact sets K is given by

THEOREM 1. Let f be upper semicontίnuous4) and g be any function
bounded from below such that J?κφφ. If we assume either condition (Hi) or
condition (H2\ then we have Mi(K)=Me(K).

PROOF. We may suppose Me(K)> —00. In case — 00<Me(K)<oo, there
is an open set Go such that G0^)K and — CXD<M(G 0 )< 0 0 . Let Do be the set
of all open sets G satisfying KCGCG0. Do is directed by C We assume
M((K)<Me(K\ and take a number a in between. For every GeD0 there is a

measure μG of JίG such that \fdμG>ct. The set {μG;GζD0} is a net and

vaguely bounded. In fact, we have on account of condition (Hi) or (H2)

sup{μG(Y); GeDo}<,suip{μ(Y); μe^GQ}<°° (see Lemma 1).

Hence a subnet {μω; ω^Df

Q} converges vaguely to some measure μQ. We

4) At the beginning of our paper we assumed that f is bounded from above. If f is upper

semicontinuous and does not take the value + oo, then f is bounded from above.
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observe that Sμ0 is contained in K because Γ\ G=K and that Φ(x, μo)^
Geϋo

on X. Therefore μ0 e Jί'κ> Since / is upper semicontinuous,

This contradicts the assumption M{(K)<a. Thus Mi(K)^>Me(K). Next, we
shall prove that Me(K)= oo implies Mi(K)=oo. Since Me(K)=oo does not
occur under condition (#0, our hypothesis is limited to condition (H2). Let
D be the set of all open sets containing K. D is directed in the same way as
above. Let n be an arbitrarily fixed positive integer and a be an upper
bound of / on Y. For any Ge.D, there is a measure μ^ of JtG such that

[fdμ^yn. Then μcgXY)>n/a. We put λ^ = μ^}/V(

G

w)(Y\ and choose a

vaguely convergent subnet {λ^ ω ζ D'} and let μ'n be the limit. Then we
have SμήCK, μ'n(K) = l and

), 0) on X .

We choose a vaguely convergent subsequence of {μf

n}. We shall denote it
again by {μr

n} and let μf

Q be the limit. It follows that μ'0(K) = l, Sμ'0CK and

im Φ(x, μf

n) ^ lim[α(max(^ (Λ;), 0))/τι] on X ,

and hence Φ(χ, μf

0)^0 if g{x) is finite. Take any measure μ of ^fϋ: Then

μ + ίμo belongs to ^ ^ for any positive number t. Since \fdμΌ>0 by condi-

tion Cff2) and M(K)^[fdμ + t{fdμ'o, we conclude Mi(K) = M(K)= 00.

Theorem 1 is not always true if we omit the condition that / is upper
semicontinuous. To see this, we give

EXAMPLE 2. Let X, 7, K and g be the same as in Example 1. Take Φ — l
and f(y) = l if I j l ^ l and =2 if 1 < | j | ^ 2 . Then M{(K) = 1 and M{(G) = 2
for any open set G } K. Thus Me(K) = 2> 1 -

§ 3. Duality Theorem

If X and F are discrete spaces, then it is known as duality theorem that
) = MXK). In the general case as ours, Yoshida [_5~] gave an example

such that M(K)ΦM'(K) even if Φ, g and / are non-negative and continuous.
Ohtsuka [ 4 ] proved

THEOREM 2. Let f be an upper semicontinuous function and g be a lower
semicontinuous function with JtΈΦΦ If we assume M(K)> —00 and either
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condition (Hi) or condition (H2\ then we have M(K)=M;(K).
Consequently, we need not consider M/

i(A) = swp{MXK); K is compact
and KCA} and M/χA) = inί{Mf

i(G); G is open and GZ)A} in this case.
Fuglede [_2~] proved the above theorem in case g = l and / = 1 .

§ 4. Properties of Mt(A) and M£A) as set functions

We assume hereafter that Φ and g are non-negative. On account of this
assumption, Jίκ is not empty for any compact set Kφφ. It is evident that
M(K\ Mj(A) and Me(A) are non-negative. We define M(φ)= 0 for the empty
set φ. We shall study some properties of M{(A) and Me(A) as set functions.
We remark that, in case Φ^>0, g=l and / = 1 , we have M(K)=csφ K, Mi(A) =

and Me(A) = c&ip*A with the notations of Fuglede

LEMMA 2. Let f be universally measurable, and Kx and K2 be compact
sets. Then we have

PROOF. We may assume that M(Kλ\jK2) is positive. Let a be a positive
number with M(K1\jK2)>a. There is a measure μ of JtκlKjκ2 such that

\fdμ>a. Writing F={ye Sμ\ /(y)>0}? we see that F is a universally meas-
urable set and μ(F)>0. Let μj be the restriction of μ to FΓ\Kj(j=l,2).
Then Φ(x, μj)<^Φ(χ, μ)^g(χ) on X because Φ^>0. Since SμjCKj, μj belongs
to Jίκr Therefore

a < ̂ fdμ ^ \pfdμ ^ ^fdμi + \)fdμ2 ^ M(K{) + M(K2) .

By the arbitrariness of α, we obtain the inequality.

LEMMA 3. Let f be universally measurable and Bλ and B2 be universally
measurable sets. Then we have

PROOF. We may suppose that Mi(Bι\jB2) is positive. For any positive
number a smaller than M{(BιVJB2\ there is a compact set K such that KC

Bι\jB2 and M(K)>a. We can find a measure μ of Jίκ suchshat \fdμ>a.

Write F={γ€ Sμ;f(γ)>0}. Given ε>0, there are compact sets Kλ and K2

having the following properties:

K2CKΓ\FΓ\B2, [ fdμ<[ fdμ + ^-
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and

( fdμ<[ fdμJ+-4r -
JKΓ\FΓ\B2

J )K2

J 2

Denoting the restriction of μ to Kj by μy(j = l, 2), we see
and

a<\fdμ<\ fdμ<\ fdμ+\ fdμ

2) + ε

By the arbitrariness of a and ε, we obtain the desired inequality.
From Lemma 3, we easily deduce

THEOREM 3. Assume that f is universally measurable.
(a) For any sequence {Bn} of universally measurable sets and for any set A,

we have M{(\J'(BnnA))<ii£Mi(BnnA).
n=\ n=l

(13) For any sequence {An} of sets, we have Me(\J An)<^^Me(An).

COROLLARY. Me(A -N) = Mβ(A) if Me(N) = 0.

If we omit the condition 0^>O, then it is not always valid that Me(Ax\j
A2)<*Mβ(Aι) + Me(A2). In fact, we can construct

EXAMPLE 3. Let X={xux2}9 Y={yuy2}, Kί={y1}i K2={γ2}> g(xi) =
g(x2) = l, /(yi)=/(y 2 ) = l, Φ(χu yϊ) = Φ(x2> ji) = l, Φ(xu J i ) = - 1 and Φ(x2, y2)
-1/4. Then M(K1) = M(K2) = 1 and M(Kι\jK2) = llβ. In fact, let ε̂  be the
unit point measure at y and μ = aeyi

Jrbεy2 with α, όΞ>0. Then Φ(x, μ)<ίg(χ)
on X means that —α + ό ^ l and α + δ/4<Jl. We see M{Kχ) = sup{α}= 1,

= l and M(Kι\jK2) = sup {a+ b} = 3/5 + 8/5 = 11/5.

LEMMA 4.5) Let f be universally measurable. Then we have Mi(Aι\jA2)<,
) + Me(A2) for arbitrary sets Aλ and A2.

PROOF. We may suppose that Mi(Aι\jA2) is positive. For any positive
number a smaller than Mi(Aλ\jA2), we can find a compact set KCAx\jA2

with M(K)>a. We may assume that Me(A2) is finite. In this case, given
ε>0, there is an open set G such that G^)A2 and Mi(G)<Me(A2) + e. Write
F = K—G. Then F is compact and contained in Aλ and K = F\j(KΓ\G). By
Lemma 3, it holds that

5) cf. [2], footnote 3.
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By the arbitrariness of a and ε, we obtain the desired inequality.

DEFINITION. We shall say that a property holds n.e.6) (q.e. resp.) on A if
the Mrvalue (Me-value resp.) of the exceptional set in A is zero.

§5.

We shall define two more classes of measures

(v? y)^f(y) n.e. on A}

and

Γe

A = {v; SvCXand Φ(v, y)^f(y) q.e. on A} .

Fuglede Q2] considered these classes in case # = 1 and / = 1. From now on,
we assume that g is universally measurable. We set

if Γ\φφ

and

UA) =00 if ΓA = φ .

For ΓAi we define ϊe(A) similarly. In case ϊi(A)=ϊe(A), we shall simply write
ΐ(A) for the common value.

In what follows, except in §11, we assume that f is upper semicon-
tinuous. First we have

THEOREM 4. Assume either condition (Hi) or condition (H2). Then it is
valid that ϊi(A) = re(A) for any Kσ-set.

PROOF. Let A be a Kσ-set. It suffices to show that if Φ(v, y)^>f(y) n.e.
on A, then 0(v, y)^>f(y) q.e. on A. Write N={yeA; Φ(v, y)<f(y)}. Since
A is a ̂ σ-set and / is upper semicontinuous, we see by the relation

N=\J{yeA;Φ(v, y)<(l-^

that TV is also a i£σ-set, i.e. N can be expressed as \J Kn with compact sets
n = l

{Kn}. By Theorem 1, we have

6) "n.e." ("q.e." resp.) is an abbreviation of "nearly everywhere" ("quasi-everywhere" resp.).
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0 <: Me(Kn) = Mi(Kn) <; Mι(N) = 0 for each n .

It follows from Theorem 3 (/?) that 0^Me(N)<,'ΣMe(Kn) = 0.

THEOREM 5. Let g be a lower semicontinuous function. If we assume
either condition (Hi) or condition (H2\ then it holds that M(K) — ϊ(K) for every
compact set K.

PROOF. Since Jί'κ CΓι

κ, it follows from Theorem 2 that 0<,r(K)<,MχK)
= M(K). It suffices to show the converse inequality in case M(K)>0. Let μ

be a measure of Jίκ with \fdμ>0 and v be any measure of Γι

κ. Write

and

F = {γeK;f(γ)>0} .

Then NCF, M{(N) = 0 and μ(F)>0. It is valid that μ(N) = 0. In fact, for
any compact set HCN, the restriction of μ to H belongs to JtH and we have
^H={0}, because f(γ)>0 for all γ£H Thus μ(H) = 0. Since N is a Borel
set, we conclude μ(N) = 0. Consequently

5 \ Φ(v, Ύ)dμ(γ)<^ \Φ\V) Ύjdμyy)
J(K-N)ίλF J

Thus M(K)<,r(K).

COROLLARY. M{(A) <L ΐi(A).

We remark that M(K) is not necessarily equal to ϊ(K) without condition
(#0 or (H2). Yoshida [5] gave an example such that M;(K)=r(K)>M(K).

THEOREM 6. If we assume either condition (Hi) or condition (H2\ then it
holds that Me(A)<,γe(A).

PROOF. It suffices to show that Φ(ι>, γ)~Ξ>f(γ) q.e. on A implies Me(A)<;

gdv. Let N= {γeA; Φ(y, y)</(γ)}. Then Me(N) = 0. Assume condition

(Hi) and let vt = v-\-tεXQ with a positive number t. Writing Gt = {γe Y; Φ(vu

j)>/(y)}, Gt is open and contains A — N. By the Corollary of Theorem 5,
we see



66 Maretsugu YAMASAKI

Letting £->0, on account of the Corollary of Theorem 3, we obtain Mβ(Λ)=

Me(A — N)<;\gdv. In case condition (H2) is assumed, we consider Gs={yζ

Y; Φ(v, y)>sf(y)} with 0 < s < l instead of Gt. Then Gs is open and contains
A — N. The rest of the proof is carried out in the same way as above.

§ 6. Relation between Tt(A) asid M^A)

In this section, we shall discuss when Mi(A) is equal to Tj(A). We define
condition (A) as follows:
(A) For any compact set KCY with Mf(K)>0, there is a nonzero measure

μ supported by K such that Φ(x, μ) is finite and continuous in X.
Fuglede [_2~\ defined this condition in case g = l and / = 1 . In the special
case that X— Y, g—1 and / = 1 , it is well-known that condition {A) is verified
for any kernel which satisfies the continuity principle. Even if X= Y and
Φ(x, γ) = Φ(γ, x) for all x, γe X, our condition (A) is different from Fuglede's.
In fact we give

EXAMPLE 4. Let X = Y be the interval { | x | <̂  1} in the real line, K =
{* = 0}, / = 1 , g(x) = l/\x\ and Φ(x, j) = l/( | x \ + \ y\). Then we see M{(K) =
1. But condition (A) is not satisfied. On the other hand, it is easily seen
that Fuglede's condition (A) is fulfilled.

Like in the classical case, we have

LEMMA 5.7) Let {vn} be a sequence of measures on X which converges
vaguely to ι>0. Then, under condition (A), we have

(^, y)<,Φ(yθ9 y) n.e. on Y .

PROOF. Write N={y€ Y; lim φ(yn, y)>0(vo, y)} and suppose Mi(N)>0.

Then there is a compact set KCN with M*(X)>0. By condition {A), we can
find a nonzero measure μ supported by K such that Φ(x, μ) is finite and con-
tinuous in X. It follows from Fatou's lemma that

\Φ(yθ9 y)dμ(y) < \lπnΦ(vn, y)dμ{y)^\im\Φ{vn, y)dμ(y)

= lim^0(#, μ)dvn(x) = \φ(x, t

This is a contradiction. Hence M{(N)= 0.

7) cf. [2],Lemme2.1.
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THEOREM 7. Suppose that g is a positive and lower semicontinuous func-
tion and that condition (A) is satisfied. If ΐi(K) is finite, then there exists a
measure v0 such that

ϊi(K) = \ gdvo and v0 e Γι

κ .

(This measure v0 is called the optimal measure for ϊi(K).)

PROOF. Let t be a positive number larger than ϊi(K). We can find a

sequence {vn} CΓι

κ such that \gdvn tends to ϊi(K). Since s = inί{g(x); xeX}

>0, we see svn(X)<;\gdvn<t for large n. We can find a subsequence {vHj}

which converges vaguely to some measure yo By Lemma 5, Φ(v0, y)22/(y)
n.e. on K and hence v0 € Γι

κ. It follows that

UK) = lim(gd\>n.> \gdv, ^ U K ) .

We can not omit either condition (A) or the condition g > 0 in this
theorem. In fact, an example in []5] shows that it happens that there is no
measure in Γ{

κ which attains Ti(K) if we allow g(χ)= 0. In this example, Φ
is finite and continuous. Therefore condition (A) is valid and M'(K) = ϊi(K).
Fuglede [_2~] gave an example such that g>0 but condition {A) is not valid
and there is no optimal measure in Γ{

κ for Ti(K).

THEOREM 8. Assume that g is positive and lower semicontinuous and that
condition (A) is satisfied. If we assume either condition (Hi) or condition (H2),
then ϊi(A) — Mi(A). In case Mt(A) is finite, there is a measure v0 of Γ\ such

that ϊi(A)=\gdp0.

PROOF. It is enough to show that Mi(A)^>ϊi(A) in case M{(A) is finite.
The set D of all compact sets contained in A is directed by C For any

, there exists a measure vκ such that

\ gdvκ = ϊ(K) =

and

Φ(yκ-i γ)^f(γ) n.e. on K

because of Theorems 5 and 7. Since s = mΐ{g(x); ^ I } > 0 , {vκ(X)l KeD}
is bounded. We can find a subnet {vω; ω^D'} which converges vaguely to
some v0. Let N={γeA; Φ(v0, γ)<f(γ)} and suppose that M{(N)> 0. Then
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there is a compact set K0CN with M;(K0)>0. By condition (A\ there exists

a nonzero measure μ0 supported by Ko such that Φ(x, μ0) is finite and contin-

uous in X. Consequently \0(vo, y)dμo(y)<\fdμo. Write i\fo={yGίΓ; 0(VJΓ,

γ)<f(y)} and F = { y £ F ; / ( j ) > 0 } . Then NKCF, Nκ is a Borel measurable
set and Mi(Nκ) = 0. We see by the same reasoning as in the proof of Theo-
rem 5 that

μo(Nκ) = 0 and \fdμ0 <: \Φ(ι>κ, y)dμo(y) .

We have

\fdμo<L lim \Φ(yω9 γ)dμo(y) = lim \Φ(χ, μo)dvω(x)
J ω<=D'J ω<=D'J

= \Φ(x,μo)dι>o(x)<[fdμo .

This is absurd. Thus M,(7V) = 0. Namely Φ(y^ γ)^>f(y) n.e. on A. Therefore
^ and

Jlf, (^) ^ lim f g ώ ω ^ [ gdvo ^ r,

This completes the proof.

§ 7. Relation between r£A) and

In this section, we shall discuss when γi(G) = ϊe(G) for every open set G. If
we assume either condition (Hi) or condition (H2) and that any open set in Y
is a jR>set, then the equality is guaranteed by Theorem 4. On the other
hand, even if we do not assume these, by following the method of Fuglede

], we can obtain the equality under some different conditions.

DEFINITION. A real-valued function h on Y is called qvxisi-continuous if,
for any ε>0, there is an open set Gε such that Mi(G6)<ε and the restriction
of h to Y— Gε is finite and continuous.

We define condition (B) as follows:
(B) 0(v, y) is qvasi-continuous on Y for every measure v on X.
Fuglede [ 2 ] defined condition (B) in case g=l and / = 1 . First we shall
prove

LEMMA 6.8) Let A be any set. If we assume that, for any ε >0, there is a
set B€ such that Mi(B€) = Me(B€), Me(A — B€)<ε and Me(B€ — A)<e, then it is

8) cf. [2],Lemme4.3.
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valid that M{(A) = Me(A).

PROOF. On account of Theorem 3 and Lemma 4, we have

Me(A) <; Me(B€) + Me(A -B£)< M{(B£) + e

and

Therefore Me(A)<Mi(A)Jr2e. By the arbitrariness of ε, we have Me(A)<L
M{(A). Thus Mi(A) = Me(A).

LEMMA 7. Assume condition (B) and that f is quasi-continuous and let G
be an open set. If Φ(v, y)^>f(γ) n.e. on G, then we have Φ(y, y)^>f(γ) q.e. on G.

PROOF. It is enough to show that the Me-value of N={γ£G; Φ(v, y)<
f(y)} is zero. Given ε > 0 , by condition (B) and the quasi-continuity of /,
there is an open set G6 such that Mj(G€) < ε and both Φ(v, y) and / are finite
and continuous as functions on Y—Gε. Write

N6 = {ye Y-Gδ; Φ(y9 γ)<f(γ)} and B£ = (N6\JG€)Γ\G .

Then NCB€CN\JG€ and N€ΌG€ is open, because Y-(N€\jG€)={γe Y-G6;
Φ(y, γ)^>f(γ)} is closed. It follows that Bε is open, Me(N-B6)=Me(φ) = 0 and
Me(B£-N)<,M(G£)<ε. Evidently Mi(Bε) = Me(B£). By Lemma 6, we obtain

Now we can easily prove

THEOREM 9. // one of the following conditions (α) and (b) is satisfied,
then ri(G) = re(G)for every open set G:
(a) Either condition (Hi) or condition (H2) is satisfied and any open set in Y

is a Kσset.
(b) Condition (B) is satisfied and f is quasi-continuous.

§ 8. Summary from § 5 to § 7

We shall sum up our results.

THEOREM 10. We have the relation

Mi(A) = r{(A)^re(A) = Me(A)

under the following hypotheses:
( 1 ) Condition (A).
( 2 ) Either condition (Hi) or condition (H2).
( 3 ) g is positive and lower semicontinuous.
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( 4 ) Either (4-1) any open set in Y is a Kσ-set or (4-2) condition (B) and
f is quasi-continuous.

PROOF. By means of Theorems 6? 8 and 9, we have

Me(A)^ϊe(A)^ϊe(G) = ϊi(G) = MIC)

for any open set GO A. Thus Me(A)=re(A).

§ 9. Convergence theorem

We shall give

THEOREM 11.9) Assume conditions (A) and (B) and either condition (Hi)
or condition (H2). If {vn} is a sequence of measures on X which converges
vaguely to v0, then we have

\\mΦ(vm y)<,Φ(v^ y) q.e. on Y .

PROOF. Write hn(γ) = inί{Φ(vh γ); k^>n}. Then hn(y) increases to lim

Φ(vn, y). Given ε>0, for each n (/ι = l, 2,...), we can find, by condition (B),
an open set Gψ> such that Mi(G(iι'))<2~nε and the restriction of Φ(pn, y) to Y—

G^ is finite and continuous. If we set G£= \JGc

£

n\ then Gε is open, Mi(G€)<ε

and the restriction of Φ(yn<> y) to Y—Gε is finite and continuous for each n.
For a positive number ί, we put

EH(t)={γe Y; hn(y)-Φ(vQ, y)>t}

and

En(ε,t)={ye Y-G€; hn(y)-Φ(v0, y)^

Since the restriction of hn(y) — Φ(vo, y) to Y—Gε is upper semicontinuous, En(e,
t) is a compact set. We recall M {En(ε, t)) = Me(En(ε, t)) by Theorem 1. If
Mi(En(e, t)) were positive, by means of condition (A), we could find a unit
measure μ such that SμCEn(ε, t) and Φ(x, μ) is finite and continuous in X. It
would follow that

dμ-<\)Φ(v(h y)dμ(y)

φ(yk9 y)dμ(y)-[φ(v0, y)dμ(y)

9) cf. [2],Theoreme 7.3.
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, μ)dvk(x)-\φ(x,

and the right side tends to 0 as k-^oo. This is a contradiction. Consequent-

ly

Me(En(ε, t)) = M,(X(ε, t)) = 0 .

It is valid that

= M,<Gε)<ε .

Thus Me(En(t)) = 0. By the relation

N = {ye Y; lim Φ(vn, y)- = 0 \JEn(l/k)
n = \ k = l

and by Theorem 3 we see Me(N) = 0. This completes the proof.

THEOREM 12. Assume conditions (A) and (B) and either condition (Hi) or
condition (H2). Further assume that g is positive and lower semicontinuous
and either that f is quasi-continuous or that any open set in Y is a Kσ-set. If
Me(A) is finite, then there exists a measure v0 such that

I.e. on A and Mβ(Λ) =

PROOF. We can find a sequence {Gn} of open sets such that lim Mi(Gn) =

Me(A), Mi(Gn) is finite and Gn^)Gn+ι^)A. On account of Theorem 8, we can
find a measure vn on X such that Φ{yn, y)^>f(γ) n.e. on Gn^)A and Mi(Gn) =

\gdvn. It is valid that Φ(vn, γ)^>f(γ) q.e. on Gn (see Lemma 7 and the proof

of Theorem 4). Since s = inf {#(#); χeX}>0, the total masses vn(X) are
bounded. The rest of the proof is carried out in the same way as that of
Theorem 7. We have only to note that we use Theorem 11 instead of Lem-
ma 5.

THEOREM 13. Let {An} be an increasing sequence of arbitrary sets and

A=\J An. Then, under the same assumptions as in Theorem 12, we have
n=ί

MIA) = lim Me{An) .

PROOF. Since MJyAn)<,Me(An+^MlA), it holds that lim Me(An)<,Me(A).
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It is enough to show the converse inequality in the case that liiii Me(An) is

finite. For each n, by Theorem 12, we can find a measure vn such that

Me(An) = \gdvn and Φ(yny y)^f(y) q.e. on An .

Since s = inf{g ( » ; xeX}>0 and svn(X)<, \gdvn<,lim Me(An) <oo, the total
J n-*°°

masses vw(X) are bounded. We choose a subsequence of {vn} which converges
vaguely to a measure v0. We shall denote it again by {vn}. By means of
Theorem 11, we deduce φ(v0, yX>/( j) q.e. on A and hence vo<aΓe

A. Since g is
lower semicontinuous, we have by Theorem 10

MIA) = re(A) ^ [gdvQ ^ \\m\gdvn ^ l i m Me(An) .
J w-*°° *̂  n->°°

§ 10. Equality Mi(A) = Me(A) for analytic sets

Because of Theorems 1 and 13 we can apply Choquet's theorem.10)

Thus we have

THEOREM 14.n ) Under the same assumptions as in Theorem 12, it is valid
that Mi(A) = Me(A) for every analytic set.

Fuglede proved this theorem in case g = l and / = 1 .

§ 11. Comparison with Fuglede9s capacity

We shall mention the relation between Mi(A) (Me(A) resp.) and cap*^4
(cap*A resp.). In this section, we assume that / is a universally measurable
function. First, we remark that there is no general relation between them.
In fact, M(K) = 0< oo = cap K in Example 1 and M(K) = 1 > 0 = cap K in Ex-
ample 4.

However we obtain

THEOREM 15. Assume that g is bounded from above and let a (β resp.) be
a positive upper bound of g (f resp.). Then we have

and

PROOF. It is enough to show M(K) <I α/2(cap K). By the relation

^a on X} =

10) [l],Theoreme30.1.
11) cf. [2],Thέoreme 7.8.
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we have

( r \

K) .

THEOREM 16. Let s = inf{g(x); x e X} and t = inί{f(γ); γe Y} be posi-
tive. Then we have

st(c&])*A)<^Mi(A) and st(c&])*A)<^Me(A) .

PROOF. It is sufficient to prove sί(cap K)<>M(K). For any measure β
such that SμCK and Φ(x, μ)<,l on X, we have Φ(χ, sμ)<Ls<, g(χ) on X and
hence

Thus we have M(K)^>st(c3np K).

THEOREM 17. Let s = inΐ{g(x); x e X} > 0 and / > 0. Then Mi A) = 0
implies

PROOF. For any measure such that SμCA and Φ(x, μ)<Ll on X, we have

Φ(x, sμ)<,s<; g(x) on X

and hence

Since / > 0, M£A) = 0 implies μ = 0. Thus cap^^ = 0.
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