Generalized Capacity and Duality Theorem in Linear Programming

Makoto Оhtsuka
(Received March 15, 1966)

Introduction

Recently certain results in the theory of games and linear programming have been applied to potential theory. We mention M. Nakai [2], B. Fuglede [1] and M. Ohtsuka [4]. Our paper is along this line.

More precisely, the minimax theorem in the theory of games was applied to the theory of capacity in [4]. For a compact Hausdorff space K and an extended real-valued lower semicontinuous function Φ on $K \times K$ which is bounded below, the author established

$$
\begin{equation*}
\inf _{\mu \in \mathscr{Z}} \sup _{x \in S_{\mu}} \int \mathscr{P}(x, y) d \mu(y)=\inf _{\nu \in \notin \notin} \sup _{y \in S_{\nu}} \int \mathscr{D}(x, y) d \nu(x) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sup _{\mu \in \mathbb{Z}} \inf _{x \in S_{\mu}} \int \mathscr{D}(x, y) d \mu(y)=\sup _{\nu \in \mathbb{Z}} \inf _{y \in S_{\nu}} \int D(x, y) d \nu(x), \tag{2}
\end{equation*}
$$

where \mathscr{U} is the class of unit measures ${ }^{1)}$ in K. See [3] for a simple proof of (1) in the case where K is discrete. We extend these results in the present paper. In § 1 we consider a lower semicontinuous kernel, and generalize (1) by making use of a duality theorem in linear programming obtained in [5]. Next we are concerned with an upper semicontinuous kernel. A generalization of (2) is obtained there.

Let Φ be a function (called kernel) on $K \times K$ which is bounded above or below, and let g and f be upper or lower semicontinuous functions on K which are bounded above or below. We denote by $\mathscr{N}\left(\mathscr{N}^{+}\right.$resp.) the class of measures (non-zero measures resp.) μ satisfying $\int \phi(x, y) d \mu(y) \leqq g(x)$ on S_{μ}, and by $\check{\mathscr{N}}\left(\check{\mathscr{N}}^{+}\right.$resp.) the class of measures (non-zero measures resp.) ν satisfying $\int \mathscr{D}(x, y) d \nu(x) \leqq f(y)$ on S_{ν}. We set

$$
N=\sup _{\mu \in \mathscr{N}} \int f d \mu, N^{+}=\sup _{\mu \in \mathscr{N}^{+}} \int f d \mu, \check{N}=\sup _{\nu \in \check{\mathscr{N}}} \int g d \nu, \check{N}^{+}=\sup _{\nu \in \check{\mathcal{N}}^{+}} \int g d \nu
$$

[^0]in case each class is not empty. Each of these quantities may be regarded as a kind of capacity of K. We note that $0 \in \mathscr{N} \cap \check{\mathcal{N}}$ and hence both N and \check{N} are non-negative, but that \mathscr{N}^{+}and $\check{\mathcal{N}}^{+}$may be empty. Our interest lies in the equalities $N=\check{N}$ and $N^{+}=\check{N}^{+}$. If we want to specify the basic space K explicitly, we denote these classes and quantities by $\mathscr{N}(K), \mathscr{N}^{+}(K)$, etc. and $N(K), N^{+}(K)$, etc.

The primal problem in linear programming is to maximize $\int f d \mu$ with respect to μ belonging to $\mathscr{M}=\mathscr{M}(K)=\left\{\mu ; \int \Phi(x, y) d \mu(y) \leqq g^{\prime}(x)\right.$ on $\left.K\right\}$. If this class is not empty, $\sup \int f d \mu$ will be denoted by M or $M(K)$. As the dual problem we consider $\mathscr{M}^{\prime}=\mathscr{M}^{\prime}(K)=\left\{\nu ; \int \mathscr{(}(x, y) d \nu(x) \geqq f(y)\right.$ on $\left.K\right\}$ and $M^{\prime}=M^{\prime}(K)=$ $\inf \int g d \nu$ for $\nu \in \mathscr{M}^{\prime}$ in case $\mathscr{M}^{\prime} \neq \varnothing$. For a lower semicontinuous kernel the author showed that $\mathscr{M} \neq \varnothing$ and $-\infty<M<\infty$ imply $\mathscr{M}^{\prime} \neq \varnothing$ and $M=M^{\prime}$ under some conditions in [5]. This duality theorem will play an important role in what follows.

§ 1. Lower semicontinuous kernel

Our first main theorem is
Theorem 1. Let Φ be a lower semicontinuous function on $K \times K$ which is bounded below, and g and f be upper semicontinuous functions on K which are bounded above. Assume one of the following conditions:
(i) inf $g>0$ and $\inf f>0$ on K,
(ii) $\inf \Phi>0$ on $K \times K,{ }^{2)}$
(iii) $\sup g<0$ and $\sup f<0$ on K, ${ }^{2)}$
(iv) $\sup \Phi<0$ on $K \times K$.

If $\mathscr{N}^{+} \neq \varnothing$ and $N^{+} \neq 0, \pm \infty$, then $\check{\mathcal{N}}^{+} \neq \varnothing$ and $N^{+}=\check{N}^{+}$.
We begin our proof with
Lemma 1. Let $\left\{\mu_{n}\right\}$ be a sequence of measures which converges vaguely to a non-zero measure μ_{0}. If $\int \mathscr{P}(x, y) d \mu_{n}(y) \leqq g(x)$ on $S_{\mu_{n}}$ for each n, then $\int \Phi(x, y) d \mu_{0}(y) \leqq g(x)$ on $S_{\mu_{0}}$.

Proof. Let x_{0} be any point of $S_{\mu_{0}}$, and A be the directed set of neighborhoods of x_{0}. For every couple (U, n) of $U \in A$ and n, we select any point $x(U, n)$ in $U \cap S_{\mu_{n^{\prime}}}$ where n^{\prime} is the smallest integer satisfying $n^{\prime} \geqq n$ and $U \cap$

[^1]$S_{\mu_{n^{\prime}}} \neq \varnothing$. We regard the set of all couples $W=(U, n)$ as a directed set in a natural manner and denote it by E. Let $\lambda_{W}=\varepsilon_{x(U, n)} \times \mu_{n^{\prime}}$ correspond to $W=$ (U, n), where ε_{x} represents the unit point measure at x in general. Thus $\left\{\lambda_{W} ; W \in E\right\}$ is a net, and converges vaguely to $\varepsilon_{x_{0}} \times \mu_{0}$. We have
\[

$$
\begin{aligned}
& \int \mathscr{D}\left(x_{0}, y\right) d \mu_{0}(y)=\int \Phi d\left(\varepsilon_{x_{0}} \times \mu_{0}\right) \leqq \frac{\lim }{E} \int \Phi d \lambda_{W} \\
& \quad=\frac{\lim _{E}}{} \int \mathscr{D}(x(U, n), y) d \mu_{n^{\prime}}(y) \leqq \frac{\lim _{E}}{} g(x(U, n)) \leqq g\left(x_{0}\right) .
\end{aligned}
$$
\]

On account of the arbitrary character of $x_{0} \in S_{\mu_{0}}$, we obtain the desired conclusion.

We shall prove one more lemma.
Lemma 2. Assume $\mathscr{M}^{\prime} \neq \varnothing$ and $M^{\prime} \neq 0,-\infty$, and assume one of conditions (i)-(iv). Suppose there exists a measure μ_{0} satisfying $S_{\mu_{0}}=K, \int \mathscr{D}(x, y) d \mu_{0}(y) \leqq$ $g(x)$ on K and $\int f d \mu_{0}=M^{\prime}$. Then there is a non-zero measure ν_{0} which satisfies $\int \Phi(x, y) d \nu_{0}(x) \leqq f(y)$ on K and $\int g d \nu_{0} \geqq M^{\prime}$.

Proof. We note that $M^{\prime}<\infty$ if $\mathscr{M}^{\prime} \neq \varnothing$. We choose $\left\{\nu_{n}\right\}$ such that $\int \mathscr{D}(x$, $y) d \nu_{n}(x) \geqq f(y)$ on K and $\int g d \nu_{n} \leqq M^{\prime}+1 / n$. We have

$$
\begin{equation*}
M^{\prime}+1 / n \geqq \int g d \nu_{n} \geqq \iint \Phi d \mu_{0} d \nu_{n}=\iint \Phi d \nu_{n} d \mu_{0} \geqq \int f d \mu_{0}=M^{\prime} \tag{3}
\end{equation*}
$$

If inf $g>0$, then $(\inf g) \nu_{n}(K) \leqq M^{\prime}+1 / n$ and it is inferred that $\nu_{n}(K)$ is bounded. Assuming (ii), we see that $0<\int \phi d \mu_{0} \leqq g$ on K. Let $M_{f}=\sup f$ on K. If $M_{f} \leqq 0$, then $\nu \equiv 0$ is optimal for the dual problem on K and hence $M^{\prime}=0$, contrary to our assumption. Hence $M_{f}>0$. For n with $\inf _{y \in K} \int \mathscr{D}(x, y) d \nu_{n}(x)>$ M_{f}, we consider $\nu_{n}^{\prime}=\nu_{n} M_{f} / \inf \int \mathscr{D} d \nu_{n}$. Otherwise we set $\nu_{n}^{\prime}=\nu_{n}$. For each n it holds that $\nu_{n}^{\prime} \leqq \nu_{n}$ and $\int \Phi d \nu_{n}^{\prime} \geqq f$ on K. It holds also that $\int g d \nu_{n}^{\prime} \leqq \int g d \nu_{n} \leqq$ $M^{\prime}+1 / n$. We observe that $\nu_{n}^{\prime}(K)$ is bounded because

$$
\left(\inf _{K \times K}(\mathbb{D}) \nu_{n}^{\prime}(K) \leqq \inf _{K} \int \Phi d \nu_{n}^{\prime} \leqq M_{f}<\infty .\right.
$$

Under (iii) we see easily that $\nu_{n}(K)$ is bounded. If $\nu_{n}(K)$ is unbounded under
(iv), $f(x) \equiv-\infty$ on K and hence $M^{\prime}=\int f d \mu_{0}=-\infty$ against our assumption. Hence we may suppose that $\nu_{n}(K)$ is bounded under any one of (i)-(iv).

We choose a vaguely convergent subsequence of $\left\{\nu_{n}\right\}$. Without any confusion we may denote it by $\left\{\nu_{n}\right\}$ again. Let ν_{0} be the vague limit. Suppose that there exists y_{0} such that $\int \Phi\left(x, y_{0}\right) d \nu_{0}(x)>f\left(y_{0}\right)$. Given $\delta>0$, we choose n_{0} and a neighborhood U of y_{0} such that

$$
\int \Phi(x, y) d \nu_{n}(x)+\delta>\int \Phi\left(x, y_{0}\right) d \nu_{0}(x)
$$

for every $n \geqq n_{0}$ and at every $y \in U$. This is possible because $\nu_{n} \times \varepsilon_{y}$ converges vaguely to $\nu_{0} \times \varepsilon_{y_{0}}$ as $n \rightarrow \infty$ and $y \rightarrow y_{0}$. If $f\left(y_{0}\right)>-\infty$, then we may assume that $f\left(y_{0}\right)+\delta>f(y)$ on U. We note that $\mu_{0}(U)>0$ because $y_{0} \in K=S_{\mu_{0}}$, and have that

$$
\begin{aligned}
\int_{U} \int_{U} \Phi d \nu_{n} d \mu_{0}+\delta \mu_{0}(U) \geqq \mu_{0}(U) \int \Phi\left(x, y_{0}\right) d \nu_{0}(x) & >\mu_{0}(U) f\left(y_{0}\right) \\
& \geqq \int_{U} f d \mu_{0}-\delta \mu_{0}(U)
\end{aligned}
$$

If n is large, we have by (3)

$$
0 \leqq \int_{U} \int_{U} d \nu_{n} d \mu_{0}-\int_{U} f d \mu_{0} \leqq \iint \Phi d \nu_{n} d \mu_{0}-\int f d \mu_{0} \leqq 1 / n<\delta \mu_{0}(U)
$$

It follows that

$$
0<\left(\int \Phi d \nu_{0}-f\left(y_{0}\right)\right) \mu_{0}(U) \leqq 3 \delta \mu_{0}(U)
$$

which is impossible if δ is small. Next, if $f\left(y_{0}\right)=-\infty$, then we may assume that $-1 / \delta>f(y)$ in U. By (3) we have

$$
\begin{aligned}
-\infty<\mu_{0}(U) \int \Phi d \nu_{0} \leqq \int_{U} \int \Phi d \nu_{n} d \mu_{0}+\delta \mu_{0}(U) \leqq & \int_{U} f d \mu_{0}+2 \delta \mu_{0}(U) \\
& <-\frac{\mu_{0}(U)}{\delta}+2 \delta \mu_{0}(U)
\end{aligned}
$$

for large n. This is impossible. Consequently, $\int \Phi(x, y) d \nu_{0}(x) \leqq f(y)$ everywhere on K. Furthermore

$$
M^{\prime}=\lim _{n \rightarrow \infty} \int g d \nu_{n} \leqq \int g d \nu_{0}
$$

Finally we shall show $\nu_{0} \neq 0$. Since $\int \Phi d \mu_{0} \leqq g$ on K and Φ is bounded below on K, g is bounded on K. Therefore if $\nu_{n} \rightarrow \nu_{0} \equiv 0$, then $M^{\prime}=\lim _{n} \int g d \nu_{n}=$ 0 , contrary to our assumption.

Now we give
Proof of Theorem 1. We divide the proof into three steps.
I. As the first step we shall establish $N^{+} \leqq \check{N}^{+}$. We choose $\left\{\mu_{n}\right\}$ in \mathcal{N}^{+} such that each $\int f d \mu_{n}$ is finite and tends to N^{+}as $n \rightarrow \infty$. Naturally $\int f d \mu_{n} \leqq$ $N^{+}\left(S_{\mu_{n}}\right) \leqq N^{+}$, whence $\lim _{n \rightarrow \infty} N^{+}\left(S_{\mu_{n}}\right)=N^{+}$. By our assumption, $N^{+} \neq 0$ and accordingly $N^{+}\left(S_{\mu_{n}}\right)$ may be assumed to be non-zero for all n. Let us show that we may assume further that f is bounded on $S_{\mu_{n}}$. We need not consider the case subject to (i). If f is unbounded on $S_{\mu_{n}}$, then we can find a large number $p>0$ such that $\int_{F} f d \mu_{n}$ is close to $\int f d \mu_{n}$ and $\mu_{n}\left(S_{\mu_{n}}-F\right)$ is small, where $F=\left\{x \in S_{\mu_{n}} ; f(x) \geqq-p\right\}$ is a closed set. Under (ii) the restriction $\left.\mu_{n}\right|_{F}$ of μ_{n} to F belongs to \mathscr{N}^{+}and $\int f d\left(\left.\mu_{n}\right|_{F}\right)=\int_{F} f d \mu_{n}$. Under (iii) or (iv) we may replace μ_{n} by $\left.a \mu_{n}\right|_{F}$, where a is a number greater than but close to 1 . Hence we assume from the beginning that f is bounded on $S_{\mu_{n}}$ for each n.

For each n, we choose $\left\{\mu_{n}^{(k)}\right\}, k=1,2, \ldots$, in $\mathscr{N}^{+}\left(S_{\mu_{n}}\right)$ such that $\int f d \mu_{n}^{(k)} \rightarrow$ $N^{+}\left(S_{\mu_{n}}\right)$ as $k \rightarrow \infty$. As agreed before, $\mathscr{N}^{+}\left(S_{\mu_{n}}\right)$ and $N^{+}\left(S_{\mu_{n}}\right)$ mean the class \mathscr{N}^{+} and the value N^{+}respectively when $S_{\mu_{n}}$ is regarded as the basic space. If $\inf f>0$ or $\Phi>0$ or $f<0, \mu_{n}^{(1)}(K), \mu_{n}^{(2)}(K), \ldots$, are bounded. Let us see that we may assume the boundedness under (iv). First we note that $f \leqq 0$ on $S_{\mu_{n}}$ because, otherwise, there exists $x_{0} \in S_{\mu_{n}}$ with $f\left(x_{0}\right)>0$ and $\mu_{n}+p \varepsilon_{x_{0}}$ belongs to $\mathscr{N}^{+}\left(S_{\mu_{n}}\right)$ for any $p>0$, so that

$$
N^{+} \geqq N^{+}\left(S_{\mu_{n}}\right) \geqq \int f d\left(\mu_{n}+p \varepsilon_{x_{0}}\right)=\int f d \mu_{n}+p f\left(x_{0}\right) \rightarrow \infty \quad \text { as } p \rightarrow \infty
$$

against our assumption. Therefore $N^{+}\left(S_{\mu_{n}}\right) \leqq 0$. If $\mu_{n}^{(k)}(K) \rightarrow \infty$ as $k \rightarrow \infty$, there is k_{0} such that $\mu_{n}^{(k)}(K)>\left(-\inf _{\mu_{\mu_{n}}} g\right)^{+} /\left(-\sup _{K \times K} \Phi\right)+1$ for every $k \geqq k_{0}$. We denote the value on the right hand side by b. Then $b \int \Phi d \mu_{n}^{(k)} / \mu_{n}^{(k)}(K) \leqq g$ on $S_{\mu_{n}^{(k)}}$ and, since $f \leqq 0$ on $S_{\mu_{n}}, \int f d \mu_{n}^{(k)} \leqq b \int f d \mu_{n}^{(k)} / \mu_{n}^{(k)}(K) \leqq N^{+}\left(S_{\mu_{n}}\right)$ for $k=k_{0}$, $k_{0}+1, \ldots$. Therefore we may assume from the beginning that $\mu_{n}^{(1)}(K), \mu_{n}^{(2)}(K)$, \ldots are bounded under any one of (i)-(iv).

We extract a vaguely convergent subsequence of $\left\{\mu_{n}^{(k)}\right\}$. We denote it again by $\left\{\mu_{n}^{(k)}\right\}$ and let λ_{n} be the limit. We have

$$
\begin{equation*}
N^{+}\left(S_{\mu_{n}}\right)=\lim _{k \rightarrow \infty} \int f d \mu_{n}^{(k)} \leqq \int f d \lambda_{n} \tag{4}
\end{equation*}
$$

on account of the upper semicontinuity of f. We shall show that $\lambda_{n} \not \equiv 0$ for all n. We have seen above that we may assume f to be bounded on $S_{\mu_{n}}$. If $\mu_{n}^{(k)} \rightarrow \lambda_{n} \equiv 0$, then $N^{+}\left(S_{\mu_{n}}\right)=\lim _{k \rightarrow \infty} \int f d \mu_{n}^{(k)}=0$. This contradicts the assumption $N^{+}\left(S_{\mu_{n}}\right) \neq 0$ made at the beginning of our proof. Therefore $\lambda_{n} \neq 0$ for all n. Consequently $\lambda_{n} \in \mathscr{N}^{+}\left(S_{\mu_{i z}}\right)$ by Lemma 1 and hence $\int f d \lambda_{n}=N^{+}\left(S_{\mu_{n}}\right)$ on account of (4). We obtain $N^{+}\left(S_{\mu_{n}}\right)=N^{+}\left(S_{\lambda_{n}}\right)$ easily.

We shall verify that $N^{+}\left(S_{\lambda_{n}}\right)=M\left(S_{\lambda_{n}}\right)$. Since $\lambda_{n} \in \mathscr{M}\left(S_{\lambda_{n}}\right), N^{+}\left(S_{\lambda_{n}}\right) \leqq$ $M\left(S_{\lambda_{n}}\right)$. Let μ be any non-zero measure of $\mathscr{M}\left(S_{\lambda_{\mu}}\right)$. Then $\mu \in \mathscr{N}^{+}\left(S_{\lambda_{n}}\right)$ and hence $\int f d \mu \leqq N^{+}\left(S_{\lambda_{n}}\right)$. Under (i), $N^{+}\left(S_{\lambda_{n}}\right) \geqq 0$ and hence $M\left(S_{\lambda_{z_{n}}}\right) \leqq N^{+}\left(S_{\lambda_{n}}\right)$. Thus $M\left(S_{\lambda_{n}}\right)=N^{+}\left(S_{\lambda_{n}}\right)$ under (i). If there exists a point $x_{0} \in S_{\lambda_{n}}$ with $f\left(x_{0}\right)<0$ under (ii), then there is a neighborhood U of x_{0} on which f is negative. The restriction of λ_{n} to $S_{\lambda_{n}}-U$ belongs to $\mathscr{N}^{+}\left(S_{\lambda_{n}}\right)$ and gives a greater value for the integral of f. This contradicts $\int f d \lambda_{n}=N^{+}\left(S_{\lambda_{n}}\right)$. Therefore $f \geqq 0$ on $S_{\lambda_{n}}$, whence $N^{+}\left(S_{\lambda_{n}}\right) \geqq 0$. It is thus inferred that $M\left(S_{\lambda_{n}}\right)=N^{+}\left(S_{\lambda_{n}}\right)$ is true under (ii) too. The same equality is true under (iii) because $0 \notin \mathscr{M}\left(S_{\lambda_{n}}\right)$. If (iv) is assumed and $0 \in \mathscr{M}\left(S_{\lambda_{n}}\right)$, any measure $\mu \neq 0$ belongs to $\mathscr{N}^{+}\left(S_{\lambda_{n}}\right)$ and $N^{+}\left(S_{\lambda_{n}}\right) \geqq 0$ is concluded. The equality follows in this case too.

By a duality theorem (Theorem 4 in [5]) $\mathscr{M}^{\prime}\left(S_{\lambda_{n}}\right)=\left\{\nu ; \int \mathscr{D}(x, y) d \nu(x) \geqq\right.$ $f(y)$ on $\left.S_{\lambda_{n}}\right\}$ is not empty and $M^{\prime}\left(S_{\lambda_{n}}\right)$ is equal to $M\left(S_{\lambda_{n}}\right)=N^{+}\left(S_{\lambda_{n}}\right)$. We apply Lemma 2 and find a non-zero measure π_{n} with $S_{\pi_{n}} \subset S_{\lambda_{n}}$ such that $\int \mathbb{D}(x, y)$ $d \pi_{n}(x) \leqq f(y)$ on $S_{\pi_{n}}$ and $\int g d \pi_{n} \geqq M^{\prime}\left(S_{\lambda_{n}}\right)$. It belongs to $\check{\mathscr{N}}^{+}$and it follows that

$$
N^{+}\left(S_{\lambda_{n}}\right)=M^{\prime}\left(S_{\lambda_{n}}\right) \leqq \int g d \pi_{n} \leqq \check{N}^{+}
$$

Since $N^{+}\left(S_{\lambda_{n}}\right)=N^{+}\left(S_{\mu_{n}}\right)$ as already obtained and $N^{+}=\lim _{n \rightarrow \infty} N^{+}\left(S_{\mu_{n}}\right)$, the inequality $N^{+} \leqq \check{N}^{+}$follows.
II. As the second step we shall prove (1). ${ }^{3)}$ Let us denote both sides of (1) by L and \check{L}. By adding a positive constant to Φ if necessary, we may assume in this step that Φ is positive on $K \times K$. First, we consider the case where L is finite. Take $\mu \in \mathscr{U}$ for which $V(\mu)=\sup _{x \in S_{\mu}} \int \mathscr{D}(x, y) d \mu(y)$ is finite.

[^2]For $\mu^{\prime}=\mu / V(\mu)$ it holds that $V\left(\mu^{\prime}\right)=\sup _{x \in S_{\mu}} \int D(x, y) d \mu^{\prime}(y)=1$ and $\mu^{\prime}(K)=1 / V(\mu)$. The class $\tilde{\mathscr{N}}^{+}=\left\{\mu \neq 0 ; \int \mathscr{D}(x, y) d \mu(y) \leqq 1\right.$ on $\left.S_{\mu}\right\}$ is not empty and it is seen that $\tilde{N}^{+}=\sup \left\{\mu(K) ; \mu \in \tilde{\mathscr{N}}^{+}\right\}$equals $1 / L$. By our first step, $\check{\tilde{N}}^{+}=\{\nu \neq 0$; $\int \Phi(x, y) d \nu(x) \leqq 1$ on $\left.S_{\nu}\right\}$ is not empty and $\tilde{N}^{+} \leqq \check{\tilde{N}}^{+}=\sup \left\{\nu(K) ; \nu \in \tilde{\tilde{N}}^{+}\right\}$. It follows also that \check{L} is finite and $\check{\tilde{N}}^{+}=1 / \check{L}$. Since $\check{\tilde{N}}^{+} \neq \varnothing$ and $0<\check{\tilde{N}}^{+}<\infty$, $\check{\tilde{N}^{+}} \leqq \widetilde{N}^{+}$holds for the same reason as at the first step. Thus $\widetilde{N}^{+}=\check{N}^{+}$and hence $L=\check{L}$ is concluded in case L is finite. We obtain the same conclusion if we start from the assumption $\check{L}<\infty$. The only remaining case is that $L=\check{L}=\infty$.
III. As the last step we shall show $\check{N}^{+} \leqq N^{+}$. If $\check{N}^{+} \neq 0, \pm \infty$, we start from $\check{\mathcal{N}}^{+}$and \check{N}^{+}and obtain $\check{N}^{+} \leqq N^{+}$as in the first step. Since $N^{+} \leqq \check{N}^{+}$, $\check{N}^{+} \neq-\infty$ is assured. First we shall see that $\check{N}^{+} \neq 0, \infty$ under any one of (i)-(iii). Under (ii), both N^{+}and \check{N}^{+}are finite and $0<N^{+}$implies $0<\check{N}^{+}$ because $N^{+} \leqq \check{N}^{+}$. We have $\check{N}^{+}=\sup _{\nu \in \tilde{V}^{+}} \int g d \nu<0$ under (iii), because (inf $\left.\Phi\right) \nu(K)$ $\leqq \sup f<0$ and $\nu(K)$ has a positive lower bound.

Next we assume (i). The assumption $0<N^{+}$yields $0<\tilde{N}^{+}$because $N^{+} \leqq$ \check{N}^{+}. We shall show that $\check{N}^{+}=\infty$ implies $N^{+}=\infty$, whence $N^{+}<\infty$ implies $\check{N}^{+}<\infty$. ${ }^{4)}$ We choose $\left\{\nu_{n}\right\}$ in $\check{\mathcal{N}}^{+}$such that $\int g d \nu_{n}$ tends to ∞. Since g is bounded above, $\nu_{n}(K)$ tends to infinity. Using Lemma 1, we infer from $\int \Phi d \nu_{n}$ $\leqq f$ that $\int \Phi d \nu_{0}^{\prime} \leqq 0$ on $S_{\nu_{0}^{\prime}}$, where ν_{0}^{\prime} is the vague limit in \mathscr{U} of some subsequence of $\left\{\nu_{n} / \nu_{n}(K)\right\} . \quad B y(1)$, we have

$$
\inf _{\mu \in \mathscr{U}} \sup _{x \in S \mu} \int \Phi(x, y) d \mu(y)=L=\check{L} \leqq \sup _{y \in S \nu_{0}^{\prime}} \int \Phi(x, y) d \nu_{0}^{\prime}(x) \leqq 0
$$

Using Lemma 1 again, we observe that there is $\mu_{0}^{\prime} \in \mathscr{U}$ which satisfies $\int \Phi(x$, $y) d \mu_{0}^{\prime}(y) \leqq L \leqq 0$ on $S_{\mu_{0}^{\prime}}$. Hence $k \mu_{0}^{\prime} \in \mathcal{N}^{+}$for any $k>0$ and hence $N^{+} \geqq$ $k \int f d \nu_{0}^{\prime} \rightarrow \infty$ as $k \rightarrow \infty$ under (i). Thus $N^{+}=\infty$.

Finally, under the assumption of (iv), we can observe easily that the assumption $N^{+}<\infty$ implies $N^{+}<0$; see the proof of $N^{+}\left(S_{\mu_{n}}\right) \leqq 0$ in the first step. We choose $\left\{\nu_{n}\right\}$ in $\check{\mathcal{N}}^{+}$such that $\int g d \nu_{n}$ is finite for each n and $\int g d \nu_{n} \rightarrow \check{N}^{+}$as $n \rightarrow \infty$. As in the first step, we may assume that g is bounded on each $S_{\nu_{n}}$. Evidently $\int g d \cdot \cdot_{n} \leqq \check{N}^{+}\left(S_{\nu_{n}}\right) \rightarrow \check{N}^{+}$as $n \rightarrow \infty$. We shall show that condition (iii)

[^3]is fulfilled on $S_{\nu_{n}}$ for each n. Since $\int \Phi d \nu_{n} \leqq f$ on $S_{\nu_{n}}, f$ is bounded on $S_{\nu_{n}}$. If there is $x_{0} \in S_{\nu_{n}}$ with $g\left(x_{0}\right) \geqq 0$, then $\varepsilon_{x_{0}} / p$ belongs to \mathscr{N}^{+}with any $p>0$ and hence
$$
0>N^{+} \geqq \int f d \varepsilon_{x_{0}} / p=f\left(x_{0}\right) / p \rightarrow 0 \quad \text { as } p \rightarrow \infty
$$

This is impossible. Therefore $g<0$ on $S_{\nu_{n}}$. Next, if there is $y_{0} \in S_{\nu_{n}}$ with $f\left(y_{0}\right) \geqq 0$, then the measure $p \varepsilon_{y_{0}}$ belongs to \mathscr{N}^{+}for large p and

$$
0>N^{+} \geqq p \int f d \varepsilon_{y_{0}}=p f\left(y_{0}\right) \geqq 0
$$

This is absurd. Now (iii) being valid, we have $\check{N}^{+}\left(S_{\nu_{n}}\right) \leqq N^{+}\left(S_{\nu_{n}}\right) \leqq N^{+}$for every n. Hence

$$
N^{+}=\lim _{n \rightarrow \infty} \check{N}^{+}\left(S_{\nu_{n}}\right) \leqq N^{+}
$$

Remark 1. It does not happen that $N^{+}=0$ under either one of (i) and (iii). If $\Phi \equiv 1, g \equiv 1$ and $f \equiv-1$, then $N^{+}=0$ and $\check{\mathscr{N}}^{+}$is empty. Hence the condition $N^{+} \neq 0$ is necessary besides (ii). If $\Phi \equiv-1, g \equiv 1$ and $f \equiv 0$, then $N^{+}=0$ and $\check{N}^{+}=\infty$. Hence the condition $N^{+} \neq 0$ is necessary in addition to (iv).

Remark 2. We would check the case $N^{+}=-\infty$. Under (i), $N^{+}>0$ if $\mathscr{N}^{+} \neq \varnothing$. If $\Phi \equiv 1, g \equiv 1$ and $f \equiv-\infty$, then $N^{+}=-\infty$ and $\check{\mathcal{N}}^{+}=\varnothing$. Hence $N^{+}>-\infty$ is to be assumed in addition to (ii). If $\Phi \equiv-1, g \equiv-1$ and $f \equiv$ $-\infty$, then $N^{+}=-\infty$ and $\check{\mathcal{N}}^{+}=\varnothing$. Hence $N^{+}>-\infty$ is necessary in addition to (iii) and (iv) too.

Remark 3. Next we want to treat the case $N^{+}=\infty$. This does not happen under any one of (ii) and (iii). If $\Phi \equiv-1, g \equiv 0$ and $f \equiv 1$, then $N^{+}=\infty$ but $\check{N}^{+}=0$. Hence the condition $N^{+}<\infty$ is to be assumed in addition to (iv). As remarked at footnote 4), $N^{+}=\infty$ implies $\check{\mathcal{N}}^{+} \neq \varnothing$ and $\check{N}^{+}=\infty$ under (i).

Let us next examine whether $N^{+}=N$ or not. We note that $N=0$ if \mathcal{N}^{+} $=\varnothing$, that $N^{+}=N$ if $\mathcal{N}^{+} \neq \varnothing$ and $N^{+} \geqq 0$ and that $N^{+}<N=0$ if $\mathcal{N}^{+} \neq \varnothing$ and $N^{+}<0$. If $\mathscr{N}^{+} \neq \varnothing$ under (i), then $0<N^{+}$and hence $N^{+}=N$. Under (ii), it is easily seen that $N^{+} \geqq 0$ unless $N^{+}=-\infty$. Accordingly, $N^{+}=N$ unless $N^{+}=$ $-\infty$. If we assume (iii), then $N^{+} \leqq 0$ and hence $N=0$. Under (iv) we have $N^{+} \leqq 0=N$ unless $N^{+}=N=\infty$, as shown in the proof of Theorem 1 .

Next we shall see relation between N and \check{N}.
Theorem 2. Under the assumptions of Theorem 1 we have $N=\check{N}$ except for the case where $N=0$ and $\check{N}=\infty$ or the case where $\check{N}=0$ and $N=\infty$, which can really arise only under (iv).

Proof. It will suffice to verify $N \leqq \check{N}$. As remarked in the first paragraph in $\S 1$, both N and \check{N} are non-negative. First we assume (i). If $\mathcal{N}^{+}=$ \varnothing, then $N=0 \leqq \check{N}$. If $\mathscr{N}^{+} \neq \varnothing$, then $\check{\mathscr{N}}^{+} \neq \varnothing$ and $N^{+}=\check{N}^{+}$by Theorem 1 and footnote 4). Hence $0<N=N^{+}=\check{N}^{+}=\check{N}$. Next we assume (ii). As stated in Remark 3 of Theorem $1, N^{+}<\infty$. If $N^{+} \leqq 0$, then $N=0 \leqq \check{N}$. If $N^{+}>0$, then $N=N^{+}=\check{N}^{+}=\check{N}$ by Theorem 1. Under (iii) we have $N=\check{N}=0$. Finally assume $0<N^{+}<\infty$ under (iv). Then by Theorem $1, N=N^{+}=\check{N}^{+}=\check{N}$. This is the same if $0<\check{N}^{+}<\infty$. Thus the exceptions for $N=\check{N}$ arise only when $N=$ $N^{+}=0$ and $\check{N}=\check{N}^{+}=\infty$ or when $N=\infty$ and $\check{N}=0$. These exceptional cases really arise as the example in Remark 3 of Theorem 1 shows.

§ 2. Upper semicontinuous kernel

In this section we are interested in upper semicontinuous kernels which are bounded above.

Lemma 3. Let $D=\{\kappa\}$ be a directed set, $\left\{\Psi_{k}\right\}$ be a net of upper semicontinuous functions on $K \times K$ decreasing to Φ which is bounded above, and $\left\{g_{k}\right\}$ be a net of lower semicontinuous functions increasing to g which is bounded below. Then for any non-zero μ satisfying $\int \mathscr{D}(x, y) d \mu(y) \leqq g(x)$ on S_{μ},

$$
\frac{\lim }{D} \inf _{x \in S_{\mu}}\left\{g_{k}(x)-\int F_{k}(x, y) d \mu(y)\right\}
$$

is non-negative.
Proof. Suppose, to the contrary, that there are a directed subset $D^{\prime} \subset D$ and a constant $a>0$ such that, for every $\kappa \in D^{\prime}$, there exists $x_{\kappa} \in S_{\mu}$ satisfying

$$
g_{\kappa}\left(x_{\kappa}\right)-\int \Psi_{\kappa}\left(x_{\kappa}, y\right) d \mu(y)<-a
$$

We may assume that x_{κ} converges to a point $x_{0} \in S_{\mu}$ along D^{\prime}. Fix $\kappa_{0} \in D^{\prime}$ for a moment. We have

$$
\begin{aligned}
g_{\kappa_{0}}\left(x_{0}\right)-\int \Psi_{\kappa_{0}}\left(x_{0}, y\right) d \mu(y) & \leqq \frac{\lim _{D^{\prime}}}{}\left\{g_{\kappa_{0}}\left(x_{\kappa}\right)-\int \Psi_{\kappa_{0}}\left(x_{\kappa}, y\right) d \mu(y)\right\} \\
& \leqq \frac{\lim }{D^{\prime}}\left\{g_{\kappa}\left(x_{\kappa}\right)-\int \Psi_{\kappa}\left(x_{\kappa}, y\right) d \mu(y)\right\} \leqq-a .
\end{aligned}
$$

On account of the arbitrariness of $\kappa_{0} \in D^{\prime}$ we infer that

$$
g\left(x_{0}\right)+a \leqq \int \Phi\left(x_{0}, y\right) d \mu(y)
$$

This is a contradiction.
We define $\mathscr{N}, \mathscr{N}^{+}, \check{\mathscr{N}}, \check{\mathcal{N}}^{+}, N, N^{+}, \check{N}, \check{N}^{+}$as in $\S 1$.
Theorem 3. Let Φ be an upper semicontinuous function bounded above on $K \times K$, and g and f be lower semicontinuous functions bounded below on K. Assume one of conditions (i)-(iv) given in Theorem 1. If $\mathscr{N}^{+} \neq \varnothing$ and $N^{+} \neq 0$, $\pm \infty$, then $\check{\mathcal{N}}^{+} \neq \varnothing$ and $N^{+}=\check{N}^{+}$.

Proof. First we consider the case where g and f are continuous. We denote by D the directed set of all continuous functions Ψ on $K \times K$ such that $\Psi \geqq \Phi$. Let $\mathscr{N}_{\Psi}\left(\mathscr{N}_{\Psi}^{+}\right.$resp.) be the class of measures (non-zero measures resp.) μ satisfying $\int \Psi d \mu \leqq g$ on S_{μ} and set $N_{\Psi}=\sup \left\{\int f d \mu ; \mu \in \mathscr{N}_{\Psi}\right\}\left(N_{\Psi}^{+}=\sup \left\{\int f d \mu\right.\right.$; $\left.\mu \in \mathscr{N}_{\Psi}^{+}\right\}$if $\mathscr{N}_{\Psi}^{+} \neq \varnothing$ resp.). Evidently $\mathscr{N}_{\Psi} \subset \mathscr{N}$ for each $\Psi \in D$ and hence $N_{\Psi} \leqq$ N. Similarly $N_{\Psi}^{+} \leqq N^{+}$if $\mathscr{N}_{\Psi}^{+} \neq \varnothing$.

Assume $\mathscr{N}^{+} \neq \varnothing$ and fix $\mu \in \mathscr{N}^{+}$for a moment. For $\varepsilon>0$, there is $\Psi_{\varepsilon} \in D$ such that

$$
\int \Psi(x, y) d \mu(y) \leqq g(x)+\varepsilon \quad \text { on } S_{\mu}
$$

for every $\Psi \in D$ not greater than Ψ_{ε} by Lemma 3. Under (i) or (ii) we see $\min _{S_{\mu}} g>0$. Hence, given $\eta>0$, there exists $\varepsilon>0$ such that $g(x)+\varepsilon \leqq(1+\eta)$ $g(x)$ on S_{μ}. Thus $\mu /(1+\eta)$ belongs to \mathscr{N}_{Ψ} if $\Psi \in D$ and $\Psi \leqq T_{\varepsilon}$, and hence

$$
N_{\Psi}^{+} \geqq \frac{1}{1+\eta} \int f d \mu \quad \text { if } \Psi \in D \text { and } \Psi \leqq \Psi_{\varepsilon}
$$

It follows that $\lim _{D} N_{\Psi}^{+} \geqq(1+\eta)^{-1} \int f d \mu$, whence $\lim _{D} N_{\Psi}^{+} \geqq N^{+}$on account of the arbitrariness of $\eta>0$ and $\mu \in \mathscr{N}^{+}$. The equality is derived because of the inverse inequality obtained already.

Let us assume (iii) next. Given $\eta>0$, we can find $\varepsilon>0$ such that $g(x)+$ $\varepsilon<g(x) /(1+\eta)$ on S_{μ}. Under (iv) we choose $\Psi_{0} \in D$ such that $a_{0}=\sup _{K \times K} \Psi_{0}$ is negative. Given $\eta>0$, take $\varepsilon>0$ smaller than $-a_{0} \eta \mu(K)$. We may assume that Ψ_{ε} chosen above is not greater than Ψ_{0}. Then $\eta \int \Psi d \mu<-\varepsilon$ for every $\Psi \in D, \Psi \leqq \Psi_{\varepsilon}$, and $(1+\eta) \int \Psi d \mu \leqq g$ on S_{μ}. Thus under either one of (iii) and (iv), $(1+\eta) \mu$ belongs to \mathscr{N}_{Ψ} for every $\Psi \in D, \Psi \leqq \Psi_{\varepsilon}$. We obtain $\lim _{D} N_{\Psi}^{+}=N^{+}$ as above. We note that this identity is true even if $N^{+}=0$ or ∞ or $-\infty$.

By our assumption we may assume $N_{\Psi}^{+} \neq 0, \pm \infty$ for every $T \in D, \Psi \leqq \Psi_{\varepsilon}$. We apply Theorem 1 and see $\check{\mathscr{N}}_{\Psi}^{+} \neq \varnothing$ and $N_{\Psi}^{+}=\check{N}_{\Psi}^{+}$. Since $\check{\mathscr{N}}_{\Psi}^{+} \subset \check{\mathscr{N}}^{+}$, we can derive $\lim _{D} \check{N}_{\Psi}^{+}=\check{N}^{+}$as above. Now $N^{+}=\check{N}^{+}$follows.

Next we consider the case where g is lower semicontinuous and f is continuous. We denote by H the directed set of all continuous functions h satisfying $h \leqq g$. Let \mathscr{N}_{h} be the class of measures μ satisfying $\int \mathscr{D} d \mu \leqq h$ on S_{μ} and set $N_{h}=\sup \int f d \mu$ for $\mu \in \mathscr{N}_{h}$. In the same way as above we have $\lim _{H} N_{h}=$ N. Consider $\check{N}_{h}=\sup \int h d \nu$ for $\nu \in \check{\mathcal{N}}$. Naturally $\check{N}_{h} \leqq \check{N}$. On the other hand, given $\nu \in \check{\mathscr{N}}$,

$$
\int g d \nu=\sup _{h \in H} \int h d \nu \leqq \sup _{h \in H} \sup _{\nu \in \mathscr{N}} \int h d \nu=\sup _{h \in H} \check{N}_{h} .
$$

Thus we have $\lim _{H} \check{N}_{h}=\check{N}$. Since $N_{h}=\check{N}_{h}$ for each $h \in H, N=\check{N}$ follows in this case too. Finally we consider the general case and can complete the proof easily.

We change the signs of Φ, f and g and obtain
Corollary. Let Φ be a lower semicontinuous function bounded above on $K \times K$, and g and f be upper semicontinuous functions bounded below on K. Under any one of (i)-(iv) we have

$$
\begin{aligned}
\inf \left\{\int f d \mu ; \mu \neq 0,\right. & \left.\int \Phi(x, y) d \mu(y) \geqq g(x) \text { on } S_{\mu}\right\} \\
& =\inf \left\{\int g d \nu ; \nu \not \equiv 0, \int \Phi(x, y) d \nu(x) \geqq f(y) \text { on } S_{\nu}\right\}
\end{aligned}
$$

provided the left hand side is well-defined and equal to none of $0, \infty,-\infty$.
We remarked at footnote 3) that Theorem 1 implies (1). Likewise we can show that this Corollary implies (2).

The following theorem corresponds to Theorem 2.
Theorem 4. Under the assumptions of Theorem 3 we have $N=\check{N}$ except for the case where $N=0$ and $\check{N}=\infty$ or the case where $\check{N}=0$ and $N=\infty$, which can really arise only under (iv).

We can obtain a corollary corresponding to the Corollary of Theorem 3.

References

[1] B. Fuglede: Le théorème du minimax et la théorie fine du potentiel, Ann. Inst. Fourier, 15 (1965), pp. 65-87.
[2] M. Nakai: On the fundamental existence theorem of Kishi, Nagoya Math. J., 23 (1963), pp. 189-198.
[3] H. Nikaido: Proof of Ohtsuka's theorem on the value of matrix games, J. Sci. Hiroshima Univ. Ser. A-I Math., 29 (1965), pp. 223-224.
[4] M. Ohtsuka: An application of the minimax theorem to the theory of capacity, ibid.. pp. 217-
221.
[5] M. Ohtsuka: A generalization of duality theorem in the theory of linear programming, this journal.

Department of Mathematics, Faculty of Science, Hiroshima University

[^0]: 1) Here and throughout our paper a measure means a non-negative Radon measure.
[^1]: 2) Since Φ is lower semicontinuous on K, the positivity of Φ is equivalent to $\inf \Phi>0$. However, we shall impose (ii) on an upper semicontinuous function in $\S 2$ so that we write $\inf \Phi$ in (ii). A similar remark applies to (iii).
[^2]: 3) This step shows that Theorem 1 implies (1).
[^3]: 4) We can show similarly that $N^{+}=\infty$ implies $\check{\mathscr{N}}^{+} \neq \varnothing$ and $\check{N}^{+}=\infty$ under (i).
