. Scr. HirosHiMA Un1v. SEr. A-1
30 (1966), 45-56

Generalized Capacity and Duality Theorem
in Linear Programming

Makoto OuTsuka
(Received March 15, 1966)

Introduction

Recently certain results in the theory of games and linear programming
have been applied to potential theory. We mention M. Nakai [ 2], B. Fuglede
[1] and M. Ohtsuka [4]. Our paper is along this line.

More precisely, the minimax theorem in the theory of games was applied
to the theory of capacity in [4]. For a compact Hausdorff space K and an
extended real-valued lower semicontinuous function @ on K x K which is
bounded below, the author established

1) inf supgcﬁ(x Ndp(y) = inf supg(/)(x, Y du(x)
KrEU 2xESp €% yESy

and

(2 sup 1nSf S(ﬁ(x y)dg(y)—sup 1nf S(ﬁ(x y)du(x) ,
LEY xE

where % is the class of unit measures” in K. See [37] for a simple proof of
(1) in the case where K is discrete. We extend these results in the present
paper. In §1 we consider a lower semicontinuous kernel, and generalize (1)
by making use of a duality theorem in linear programming obtained in [57].
Next we are concerned with an upper semicontinuous kernel. A generali-

zation of (2) is obtained there.
Let @ be a function (called kernel) on K x K which is bounded above or

below, and let g and f be upper or lower semicontinuous functions on K
which are bounded above or below. We denote by A4 (4" resp.) the class of

measures (non-zero measures resp.) p satisfying S(/)(x, ydu(y)= glx) on S,,
and by A4 (A resp.) the class of measures (non-zero measures resp.) v satis-
fying S(I)(x, Pdux)=f(y) on S.. We set

N= Supgfd,u, N* = sup+gfdy, N = Supggdu, N* = sup Sgd;
KrEN veys

LEN ve V

1) Here and throughout our paper a measure means a non-negative Radon measure.
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in case each class is not empty. Each of these quantities may be regarded
as a kind of capacity of K. We note that 0 # "4 and hence both N and
N are non-negative, but that #* and #* may be empty. Our interest lies
in the equalities N=N and N*=N*. If we want to specify the basic space
K explicitly, we denote these classes and quantities by #(K), #*(K), etc. and
NK), N*(K), ete.

The primal problem in linear programming is to maximize g fdp with
respect to u belonging to 4 =(K)={p; (0(x, )du()<gx) on K|. If this
class is not empty, supg fdp will be denoted by M or M(K). As the dual prob-
lem we consider .#'=.#'(K)= {v; S@(x, y)du(x)= f(y) on K} and M=MK)=

infg gdv for ve ' in case .#'~g. For a lower semicontinuous kernel the

author showed that .#=+ @ and —oco <M< o imply #'5~4 and M= M’ under
some conditions in [5]. This duality theorem will play an important role in
what follows.

§1. Lower semicontinuous kernel

Our first main theorem is

Tuaeorem 1.  Let & be a lower semicontinuous function on K x K which 1is
bounded below, and g and f be upper semicontinuous functions on K which are
bounded above. Assume one of the following conditions:

(i) inf g>0 and inf f>0 on K,

(ii) inf@>0 on KxK>?

(iii) sup g<0 and sup f<0 on K,”

(iv) sup@<0 on KxK.

If ¥*== & and N*=<0, + oo, then 4" and N*=N*.

We begin our proof with
LemmA 1. Let {u.} be a sequence of measures which converges vaguely to
a non-zero measure po. If S(ﬁ(x, NdpLy) = g(x) on S, for each n, then

[0, Do = glx) o 5,

Proor. Let x, be any point of S, , and 4 be the directed set of neigh-
borhoods of x,. For every couple (U, n) of U€ 4 and n, we select any point
x(U,n) in UNS, , where n’ is the smallest integer satisfying n'=n and UN

2) Since @ is lower semicontinuous on K, the positivity of @ is equivalent to inf @ >0. However,
we shall impose (ii) on an upper semicontinuous function in §2 so that we write inf® in (ii). A
similar remark applies to (iii).
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S, 7#%. Weregard the set of all couples W=(U, n) as a directed set in a
natural manner and denote it by E. Let \w=e,v, ») X s correspond to W=
(U, n), where ¢, represents the unit point measure at x in general. Thus
{\w; W€ E} is a net, and converges vaguely to ¢, X zo. We have

(oo, Do) = (e, o) <im0 drn
E -

= hngw(xw, W, Ddpn ) Shim g(x(U, m) = glx) -

On account of the arbitrary character of x,< S,, we obtain the desired con-
clusion.
We shall prove one more lemma.

Lemma 2. Assume A’ & and M0, — oo, and assume one of conditions

(1)-(iv). Suppose there exists a measure p, satisfying S, =K, S(/I(x, Ydpo )=
g(x) on K and S fdpe=M. Then there is a non-zero measure v, which satisfies

S¢(x, Yduo(x) < f(y) on K and S gdvo =M.

Proor. We note that M'< oo if .#'=~g. We choose {v,} such that S(I)(x,

¥)dva(x) = f(y) on K and SgdvngM’—l—l/n. We have

3) M+1/n=> Sgdv,, > gg(pdﬂod% - gg(ﬂdund,uo> gfd,bo -,

If inf g>0, then (inf g)»,(K)<<M'+1/n and it is inferred that »,(K) is bound-
ed. Assuming (ii), we see that 0<S(ﬁd,u0§ gon K. Let M;=supf on K.
If M;<0, then »=0 is optimal for the dual problem on K and hence M =0,

contrary to our assumption. Hence M;>0. For n with inf S(ll(x, y)dv,(x)>
yEK
My, we consider v,=v,M;/ infg(/ldu,,. Otherwise we set v,=v,. For each n it
K

holds that v,<<v, and S(ﬂdu,’, —f on K. It holds also that Sgdu,’,gggdu,,g
M +1/n. We observe that v,(K) is bounded because

(inf ¢)y;(K)§infg(ﬁdu;§Mf<oo .
KxK K

Under (iii) we see easily that v,(K) is bounded. If »,(K) is unbounded under
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(iv), f(x)= —co on K and hence M' = S fdpo= —oo against our assumption.

Hence we may suppose that v,(K) is bounded under any one of (i)-(iv).
We choose a vaguely convergent subsequence of {v,}. Without any con-
fusion we may denote it by {v,} again. Let v, be the vague limit. Suppose

that there exists y, such that S(I)(x, Yo)dvo(%) > f(¥). Given §>0, we choose
no and a neighborhood U of y, such that

S(ﬁ(x, y)dv,,(x)+8>g(ﬁ(x, yo)dvo()

for every n=>n, and at every y€ U. This is possible because v, x ¢, converges
vaguely to vo x¢,, as n—oo and y—y. If f(y)>—oo, then we may assume
that f(y)+6>f(y) on U. We note that n«(U)>0 because y€K=S,, and
have that

[, Sodsndno+ 8= w0 [0, 30)dn)> ol O30

= fdpo—duo®) .
If n is large, we have by (3)
0= gugd)dundm— SU Fdpe= Sgwdy,,dm— S Fdpoe=1/n<suU) .
It follows that
0<([@dn— (0 )ua0) =880

which is impossible if & is small. Next, if f(y,)=—co, then we may assume
that —1/8>f(y) in U. By (3) we have

— o0 < po(U)| 0o = { (@ dondpio+ 8o ( Fdpuo+ 28

<—280) 4 950

for large n. This is impossible. Consequently, S(ﬁ(x, Ydvo(x) < f(y) every-

where on K. Furthermore

M = limg gdvn = Sgduo .

n—oo
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Finally we shall show v,=£0. Since Sd)dmg g on K and @ is bounded

below on K, g is bounded on K. Therefore if »,—v,=0, then M’:limg gdv,=

0, contrary to our assumption.
Now we give

Proor or THEOREM 1. We divide the proof into three steps.
I. As the first step we shall establish N*<< N*. We choose {x,} in 4"

such that each S fdu, is finite and tends to N* as n—co. Naturally g fdu,=
N*(S,)=N*, whence Jim N*(S, )= N*. By our assumption, N* 0 and ac-

n—o

cordingly N*(S,,) may be assumed to be non-zero for all n. Let us show
that we may assume further that f is bounded on S, . We need not consider
the case subject to (i). If f is unbounded on S, , then we can find a large

number p >0 such that SF fdua is close to g fdu, and p (S, —F) is small,
where F={x¢€ S, ; f(x)=—p} is a closed set. Under (ii) the restriction u,|r
of 1, to F belongs to 4+ and gfd(pm |r)= gFfdpm. Under (iii) or (iv) we may

replace u, by au.|r, where a is a number greater than but close to 1. Hence
we assume from the beginning that f is bounded on S, for each n.

For each n, we choose {n¥}, k=1,2, ..., in #*(S, ) such that Sfd,uﬁ,’”—»

N*(S,,) as k—oo. As agreed before, #7*(S,) and N*(S, ) mean the class 4"
and the value N* respectively when S, is regarded as the basic space. If
inf f>0 or ®>0 or f<0, pP(K), p?(K), ---, are bounded. Let us see that
we may assume the boundedness under (iv). First we note that f<0 on S,
because, otherwise, there exists xo€ S, with f(x0)>0 and p,+ pe,, belongs
to #7*(S,,) for any p>0, so that

N =N (8, = | fdluntpec) = | fdpntpfaiysoo as poseo

against our assumption. Therefore N*(S,)=<0. If p¥(K)—>co as k—> oo,
there is %k, such that M;“(K)>(—§nf g /(—sup @)+1 for every k—=k,. We
Hn KxK

denote the value on the right hand side by 4. Then bg(/)dp;’”/ nP(K)= g on

S.» and, since f<0 on S,, S Fdu= bg Fdu/uP(K)=N*(S,) for k= ko,

ko+1, ... Therefore we may assume from the beginning that p{P(K), p2(K),
. are bounded under any one of (i)-(iv).
We extract a vaguely convergent subsequence of {u$”}. We denote it
again by {u%#} and let 1, be the limit. We have
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@ N(8,,) =lim{ fdup < fan,

on account of the upper semicontinuity of f. We shall show that \,5£0 for
all n. We have seen above that we may assume f to be bounded on S, . If

pF—n, =0, then N*°(S, )= limg fdp’=0. This contradicts the assumption
N*(S,,)#0 made at the begikr;:ing of our proof. Therefore )\,==0 for all n.
Consequently 1, € #(S,,) by Lemma 1 and hence S fdx,=N*(S,) on account
of (4). We obtain N*(S, )=N*(S,)) easily.

We shall verify that N*(S, )= M(S,). Since \, € .#(S,), N*(S,)=
M(S,,). Let p be any non-zero measure of .#(S, ). Then pe€#7*(S,,) and
hence {fdu<N*($,). Under (i, N'(5,)=0 and hence M(S,)<N'(S,,).

Thus M(S,,)=N*"(S,,) under (i). If there exists a point x,€ S\, with f(x,)<0
under (ii), then there is a neighborhood U of x, on which f is negative. The
restriction of X\, to S, — U belongs to 47*(S,,) and gives a greater value for

the integral of f. This contradicts S fdx,=N*(S,,). Therefore f=0 on S, ,

whence N*(S,)=0. It is thus inferred that M(S, )= N*(S,,) is true under
(ii) too. The same equality is true under (iii) because 0 .#(S, ). If (iv) is
assumed and 0 € .#(S,)), any measure »==0 belongs to 4 *(S, ) and N*(S, )=>0
is concluded. The equality follows in this case too.

By a duality theorem (Theorem 4 in [5]) .#'(S,)= {y; S(ll(x, ydu(x) =
f(y) on an} is not empty and M'(S,)) is equal to M(S, )=N*(S,,). We apply
Lemma 2 and find a non-zero measure =, with S, C S, such that Sr/)(x, ¥)

dm(x)<f(y) on S, and SgdnngM’(an). It belongs to #* and it follows
that

N(S,) = M(S,) = [ gdm= N+

Since N*(S, )=N*(S,,) as already obtained and N*=lim N*(S, ), the inequali-
ty N* < N* follows.
II. As the second step we shall prove (1).* Let us denote both sides of

(1) by L and L. By adding a positive constant to ¢ if necessary, we may
assume in this step that @ is positive on K x K. First, we consider the case

where L is finite. Take u € # for which V(u)= supgfﬁ(x, ydu(y) is finite.
xESu

3) This step shows that Theorem 1 implies (1).
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For 1s'=s/ V(1) it holds that V()= sup S(ﬁ(x, Ydp' (D=1 and x'(K)=1/V(w).
€S p-

The class 4 = {p,;éO; S(D(x, ydu(y)<1on SF} is not empty and it is seen

that V* =sup{wK); p € &} equéls 1/L. By our first step, 4 = {vaéO;

g¢(x, ydu(x)=1 on SV} is not empty and N+§ﬁ+ =sup{uK); ve A} Tt

follows also that [ is finite and ]\Zf+ =1/z. Since i*#yﬁ and 0<ﬁ*<oo,

N* < N* holds for the same reason as at the first step. Thus N *= N* and
hence L = I is concluded in case L is finite. We obtain the same conclusion
if we start from the assumption . < co. The only remaining case is that
L=[=co.

III. As the last step we shall show N*<<N*. If N*=0, +co, we start
from #* and N* and obtain N*<_N* as in the first step. Since N*< N*,
N* = —oo is assured. First we shall see that N*=~0, co under any one of
(i)-(iii).  Under (ii), both N* and N* are finite and 0 < N* implies 0 < N*
because N*<<N*. We have N*= sup+g gdv<0 under (iii), because (inf @)u(K)

=
<sup /<0 and »(K) has a positive lower bound.

Next we assume (i). The assumption 0<N* yields 0< N* because N*<

N*. We shall show that N* = o implies N* = oo, whence N* < oo implies

N*<co We choose {v,} in #* such that ggdy,, tends to co. Since g is
bounded above, v,(K) tends to infinity. Using Lemma 1, we infer from g(l)dvn

=/ that g(l)dv(’)gO on S,;, where y; is the vague limit in % of some subse-
quence of {v,/v,(K)}. By (1), we have

inf sup S(//(x, Ydu(y)=L=L< sup S(I)(x, Ydoi(x)=0 .

HrEU xESp YESug
Using Lemma 1 again, we observe that there is u,€ % which satisfies Sw(x,
Ndp(y)=L=0 on S,;. Hence kujc #* for any k>0 and hence N' >
kgfdug—wo as k—oco under (i). Thus N'=oo.

Finally, under the assumption of (iv), we can observe easily that the as-
sumption N* <eo implies N*<0; see the proof of N*(S, )=0 in the first step.

We choose {v,} in #* such that Sgdu,, is finite for each n and S gdv,—N* as
n—oo. As in the first step, we may assume that g is bounded on each S, .
Evidently S gdin= N +(Syn)—>J\7 * as n—oo. We shall show that condition (iii)

4)  We can show similarly that N* =00 implies 4" *+=¢ and N+ = oo under ().
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is fulfilled on S, for each n. Since Swdung fon S,, f is bounded on S, .

If there is xo€ S, with g(x¢)=0, then ¢, /p belongs to 4+ with any p >0
and hence

0>N+ggfde,,o/p=f(xo>/p—>o as p—oco .

This is impossible. Therefore g<0 on S, . Next, if there is y,€ S,, with
f(»)=0, then the measure pe,, belongs to .#"* for large p and

0> V' =pl fde,, = pf(50 =0 .

This is absurd. Now (iii) being valid, we have N*(S, )<< N*(S,)<N* for
every n. Hence

N*=1lim N*(S, )< N* .

Remark 1. It does not happen that N*=0 under either one of (i) and
(iii). If =1, g=1 and f= —1, then N*=0 and 4" is empty. Hence the
condition N*=~0 is necessary besides (ii). If #=—1, g=1 and f=0, then
N+=0 and N*=co. Hence the condition N*=~0 is necessary in addition to

(iv).

Remark 2. We would check the case N* = —co. Under (i), N* >0 if
NtEg., If @=1, g=1 and f= —co, then N'=—cc and #*=g. Hence
N*> —oco is to be assumed in addition to (ii). If ¢=—1, g=—1 and f=
—oo, then N*=—oc0 and #*=g. Hence N*> —oco is necessary in addition
to (iii) and (iv) too.

Remark 3. Next we want to treat the case N*=oco. This does not hap-
pen under any one of (ii) and (iii). If #= —1, g=0 and f=1, then N*=c0
but N+=0. Hence the condition N* <o is to be assumed in addition to (iv).
As remarked at footnote 4), N* =co implies /==& and N*=oo under (i).

Let us next examine whether N*=N or not. We note that N=0 if 4+
=g, that N*=N if #*5 ¢ and N*=>0 and that N*<N=0 if #*=+ & and
N*<0. If "= under (i), then 0<N* and hence N*=N. Under (ii), it is
easily seen that N* >0 unless N* = —oo. Accordingly, N*=N unless N*=
—oo, If we assume (iii), then N* <0 and hence N=0. Under (iv) we have
N*< 0= N unless N*=N=-oc0, as shown in the proof of Theorem 1.

Next we shall see relation between N and N.

Turorem 2. Under the assumptions of Theorem 1 we have N= N except
for the case where N=0 and N=co or the case where N=0 and N=co, which
can really arise only under (iv).
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Proor. It will suffice to verify N<< N. As remarked in the first para-
graph in §1, both N and N are non-negative. First we assume (i). If 4=
&, then N=0<N. If N T F | then JV*#QJ and N*= N* by Theorem 1 and
footnote 4). Hence 0<N=N*=N+=N. Next we assume (11) As stated in
Remark 3 of Theorem 1, N* <oo. If N*<<0,then N=0<N. If N*>0, then
N=N*=N*=N by Theorem 1. Under (iii) we have N=N=0. Finally as-
sume 0<N*<eco under (iv). Then by Theorem 1, N=N*=N+=N. This is
the same if 0<N*<oo. Thus the exceptions for N= N arise only when N=

=0 and N=N*=oco or when N=co and N=0. These exceptional cases
really arise as the example in Remark 3 of Theorem 1 shows.

§2. Upper semicontinuous kernel

In this section we are interested in upper semicontinuous kernels which
are bounded above.

LemMa 8. Let D= {«} be a directed set, {¥.} be a net of upper semicon-
tinuous functions on K x K decreasing to @ which 1s bounded above, and {g.}
be a net of lower semicontinuous functions increasing to g which is bounded

below. Then for any non-zero u satisfying g¢(x, ydu(y) = g(x) on S,

hm inf {g(x) SFx(x, y)dn(y)}

TESu
18 non-negative.

Proor. Suppose, to the contrary, that there are a directed subset D'CD
and a constant o >0 such that, for every « € D', there exists x,. € S, satisfying

8~(xx)—gﬂ(xx, Ndu(N< —a .

We may assume that x, converges to a point x,€ S, along D’. Fix «x,€ D’ for
a moment. We have

o) = (oo, Pl =im g (2= [ (e P 9]
<tim{ g.(v) = [ DA} = —

On account of the arbitrariness of «,€ D’ we infer that

g +a = [0, Dduy) .
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This is a contradiction.
We define 4", 4+, 47, 4%, N, N*, N, N* as in §1.

TuroreMm 3. Let @ be an upper semicontinuous function bounded above on
KxK, and g and f be lower semicontinuous functions bounded below on K.
Assume one of conditions (1)-(iv) given in Theorem 1. If ¥+ & and N*=0,
+ oo, then /==& and N*=N*.

Proor. First we consider the case where g and f are continuous. We
denote by D the directed set of all continuous functions & on K x K such that
T>@. Let 4 (A5 resp.) be the class of measures (non-zero measures resp.)

n satisfying Sélfd;bgg on S, and set Ngr:sup{gfd,u; ME./Vy,} (N;,zsup{gfd;w;
nE ./V;,} if 3=~ resp.). Evidently 4y C 4" for each ¥ € D and hence Ny<<

N. Similarly Ng<N* if # 3=~ 4.
Assume &= & and fix p€ 4" for a moment. For ¢>0, there is &€ D
such that

(7, D= gor+e on S,
for every ¥ € D not greater than . by Lemma 3. Under (i) or (ii) we see
min g> 0. Hence, given 7 > 0, there exists ¢ > 0 such that g(x)+e=1+7%)
Sp
g(x)on S,. Thus p/(1+4) belongs to 47y if ¥ € D and ¥ <%, and hence

N;;Lgfd,b frecDand ¥ v, .
.

It follows that lim N;g(l-l—n)‘lg fdu, whence lim N;>N* on account of the
D D

arbitrariness of 4 >0 and p € #*. The equality is derived because of the
inverse inequality obtained already.

Let us assume (iii) next. Given >0, we can find ¢>0 such that g(x)+
e< g(x)/(1+m) on S,. Under (iv) we choose ¥,€ D such that a, =1§13113 v, is

negative. Given 5 >0, take ¢ >0 smaller than —aepu(K). We may assume

that ¥, chosen above is not greater than ¢,. Then ng@’ dp< —e for every

reD, ¥<¥,. and (1+77)S'P'd,u§g on S,. Thus under either one of (iii) and
(iv), (1+5)u belongs to 4y for every F € D, ¥ <¥.. We obtain li)rn Ny=N*
as above. We note that this identity is true even if N*=0 or o or —co.

By our assumption we may assume Nj=0, & oo for every € D, F<¥7,.
We apply Theorem 1 and see 435~ and Ny=N;. Since 434", we can
derive liDm N;=N* as above. Now N*=N* follows.
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Next we consider the case where g is lower semicontinuous and f is con-
tinuous. We denote by H the directed set of all continuous functions 4 satis-

fying h= g. Let 4, be the class of measures p satisfying g(l)dpgh on S,

and set Nh=supgfd,u for € 47 In the same way as above we have lim N,=
H

N. Consider N,,zsupghdv for ve #. Naturally N,=<<N. On the other hand,
given ve 4,

Sgdu = supghdug sup supghdv =sup N, .

heH h€EH vENXV heH

Thus we have lim N,=N. Since N,= N, for each h€ H, N=N follows in this
H

case too. Finally we consider the general case and can complete the proof
easily.

We change the signs of @, f and g and obtain

CoroLLARY. Let @ be a lower semicontinuous function bounded above on
K x K, and g and f be upper semicontinuous functions bounded below on K.
Under any one of (1)-(iv) we have

int{{ fdu; n2o, S(/)(x, D)= glx) on S,

- inf{ggdu; V=20, g(ﬁ(x, DA = () on 8.

provided the left hand side s well-defined and equal to none of 0, co, —co.

We remarked at footnote 3) that Theorem 1 implies (1). Likewise we
can show that this Corollary implies (2).

The following theorem corresponds to Theorem 2.

Tueorem 4.  Under the assumptions of Theorem 3 we have N= N except
for the case where N=0 and N=oo or the case where N=0 and N=oco, which
can really arise only under (iv).

We can obtain a corollary corresponding to the Corollary of Theorem 3.
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