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Introduction

Recently certain results in the theory of games and linear programming
have been applied to potential theory. We mention M. Nakai [2], B. Fuglede
[1] and M. Ohtsuka [4]. Our paper is along this line.

More precisely, the minimax theorem in the theory of games was applied
to the theory of capacity in [4]. For a compact Hausdorff space K and an
extended real-valued lower semicontinuous function Φ on K x K which is
bounded below, the author established

(1) inf sup\0(>, y)dμ(γ) = inf sup UA>, y)dv(x)

and

(2) sup inf \Φ{x, y)dμ(y) = sxxv inf \Φ(x, γ)dv(x) ,
μEE® χ(=Sμ) v<=® yGSvJ

where °U is the class of unit measures10 in K. See [3] for a simple proof of
(1) in the case where K is discrete. We extend these results in the present
paper. In § 1 we consider a lower semicontinuous kernel, and generalize (1)
by making use of a duality theorem in linear programming obtained in [5].
Next we are concerned with an upper semicontinuous kernel. A generali-
zation of (2) is obtained there.

Let Φ be a function (called kernel) on KxK which is bounded above or
below, and let g and / be upper or lower semicontinuous functions on K
which are bounded above or below. We denote by J^(J^+ resp.) the class of

measures (non-zero measures resp.) μ satisfying \Φ(x, y)dμ(y)<L g(χ) on Sμ9

and by Jf(Jf+ resp.) the class of measures (non-zero measures resp.) v satis-

fying [φ{χ, γ)dv(χ)<f(y) on Sv. We set

Γ C ^ ( ^ (
N= sup\/dμ, N+ = sup \fdμ, N = swp\gdv, N+ = sup \gdv

1) Here and throughout our paper a measure means a non-negative Radon measure.
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in case each class is not empty. Each of these quantities may be regarded
as a kind of capacity of K. We note that OeJ^ίλJ^ and hence both JV and
7Ϋ are non-negative, but that J^+ and Jf+ may be empty. Our interest lies
in the equalities N=N and N+ = N+. If we want to specify the basic space
K explicitly, we denote these classes and quantities by Λ~(K\ ^+(K\ etc. and
N(K\ N+(K), etc.

The primal problem in linear programming is to maximize \fdμ with

respect to μ belonging to j? = Λ(K) = <μ; \φ(x9 γ)dμ(γ)^g(χ) on K>. If this

class is not empty, sumfdμ will be denoted by M or M(K). As the dual prob-

lem we consider utf = utχκ)=lv; {φ(χ, y)dv(x)7>f(y) on κ\ and M = M(K) =

inf\gdv for v^Jί' in case Jί'Φft. For a lower semicontinuous kernel the
author showed that Jίφfi and — oo<M<°o imply Jί'Φfi and M=Af under
some conditions in \Ί5Γ\. This duality theorem will play an important role in
what follows.

§ 1. Lower semicontinuous kernel

Our first main theorem is

THEOREM 1. Let Φ be a lower semicontinuous function on KxK which is
bounded below, and g and f be upper semicontinuous functions on K which are
bounded above. Assume one of the following conditions:
( i ) inf g>0 and inf / > 0 on K,
(ii) inf Φ>0 on KxK2)

(iii) sup g<0 and sup/<0 on K2)

(iv) sup$<0 on KxK.
If jr+φ0 and N+Φ0, ±oo, then J^+φ0 and N+ = N+.

We begin our proof with

LEMMA 1. Let {μn} be a sequence of measures which converges vaguely to

a non-zero measure μ0. If \Φ(χ, y)dμn(y)^ g(χ) on Sμjι for each n, then

[x9 y)dμo(y)<^g(x) on SμQ.

PROOF. Let x0 be any point of SμQ, and A be the directed set of neigh-
borhoods of x0. For every couple (£/, ή) of Z7G A and n, we select any point
x(U, n) in UΓ\Sμ , where n is the smallest integer satisfying n'^ji and Ur\

2) Since Φ is lower semicontinuous on K, the positivity of Φ is equivalent to inf Φ > 0. However,

we shall impose (ii) on an upper semicontinuous function in § 2 so that we write inf Φ in (ii). A

similar remark applies to (iii).
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Sμn'φ0. We regard the set of all couples W=(U> n) as a directed set in a
natural manner and denote it by E. Let Xw = εX(u,n)X μn' correspond to W—
(Z7, n\ where ε* represents the unit point measure at x in general. Thus
{\w; W€L E} is a net, and converges vaguely to ε*0 x μ0. We have

, γ)dμo(γ)= \Φd(εXnxμo)<Lli
J

*(ϊ7, n\ γ)dμn,(γ)^\un g(χ(U9 n))<,

On account of the arbitrary character of xoζ Sμo, we obtain the desired con-
clusion.

We shall prove one more lemma.

LEMMA 2. Assume Jί'Φft and M'ΦQ, —&=>, and assume one of conditions

(i)-(iv). Suppose there exists a measure μ0 satisfying Sμo=K, \φ(x, y)dμo(y)<L

g(x) on K and \fdμo = M\ Then there is a non-zero measure vQ which satisfies

Φ(x, γ)dvo(x)<:f(y) on K and

PROOF. We note that M<oo if jt'φft. We choose {vn} such that \Φ(χ,

γ)dvn(χ) i>/( y) on i£ and \ gdvn <, Λf + l//ι. We have

(3)

If inf g">05 then (inf g)vn(K)<>M' + l/n and it is inferred that vn{K) is bound-

ed. Assuming (ii), we see that 0<\Φdμ0<; g on K. Let M/ = sup/ on K.
J

If Mf <Ξ 0, then v = 0 is optimal for the dual problem on K and hence M — 0,

contrary to our assumption. Hence Mf>0. For n with inf\Φ(x, y)dvn(x)>

Mf, we consider v'n — vnMf/mί\Φdvn. Otherwise we set vr

n = vn. For each n it

K J

Φdv'n^>f on K. It holds also that \gdv'n<>\gdι>n<L

Af + l/n. We observe that v'n(K) is bounded because

(inf Φ
K*K

Under (iii) we see easily that vn(K) is bounded. If vn(K) is unbounded under
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(iv), /(#) = -oo o n l and hence M = \fdμ0 = — °° against our assumption.

Hence we may suppose that vn(K) is bounded under any one of (i)-(iv).
We choose a vaguely convergent subsequence of {vn}. Without any con-

fusion we may denote it by {vn} again. Let v0 be the vague limit. Suppose

that there exists y0 such that \Φ(χ, yo)dvo(x)>f(yo). Given δ>0 ? we choose

no and a neighborhood U of y0 such that

\Φ(x, y)dvn(x) + δ>\φ(x, yo)dvo(x)
j J

for every n^>n0 and at every ye U. This is possible because vn x ey converges
vaguely to voxεyo as n->°o and y->jo If /(jo)> —°°5 then we may assume
that /(jo) + δ > / ( j ) on U. We note that μo(U)>O because γoeK= SμQ, and
have that

^ix, yo)dvo(x)>μo(U)f(Jo)

If n is large, we have by (3)

It follows that

O<[\)Φdvo-f(yo))μo(U)<S8μo(U) ,

which is impossible if δ is small. Next, if /(yo)= — °°5 then we may assume
that - l / δ > / ( j ) in U. By (3) we have

for large n. This is impossible. Consequently, \Φ(χ, y)dvo(x)<^f(y) every-

where on K. Furthermore

M = lim \ ^ y w <; \ gdv0 .
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Finally we shall show vo^O. Since \Φdμo<^g on K and Φ is bounded

below on K, g is bounded on K. Therefore if 1^—^0=0, then Jkί = lim\ gdvn =

0, contrary to our assumption.

Now we give

PROOF OF THEOREM 1. We divide the proof into three steps.

I. As the first step we shall establish N+<,N+. We choose {μn} in J^+

such that each \fdμn is finite and tends to N+ as τι-»c>o. Naturally \fdμn<,

N+(Sμn)<,N+, whence lim N+(Sμn) = N+. By our assumption, 7V+^0 and ac-

cordingly N+(Sμn) may be assumed to be non-zero for all n. Let us show
that we may assume further that / is bounded on Sμjι. We need not consider
the case subject to (i). If / is unbounded on Sμn, then we can find a large

number p > 0 such that \ fdμn is close to \fdμn and μn(Sμn — F) is small,

where F= {x e Sμn; / ( » ; > — p} is a closed set. Under (ii) the restriction μn|F

of μn to F belongs to Jί^ and \fd(μn \F)Z=Z\ fdμn. Under (iii) or (iv) we may

replace μn by aμn\F, where a is a number greater than but close to 1. Hence
we assume from the beginning t h a t / is bounded on Sμn for each n.

For each n, we choose {/4*}}, & = 1, 2, ••, in Jr+(Sflj) such that \fdμ^->

N+(Sμi) as k->°o. As agreed before, J^+(SμJ and N+(Sμj) mean the class J^+

and the value N+ respectively when Sμn is regarded as the basic space. If
in f/>0 or Φ>0 or / < 0 , μ^\K\ μ^\K\ •••, are bounded. Let us see that
we may assume the boundedness under (iv). First we note that / < 0 on Sμn

because, otherwise, there exists xoζSμn with / ( Λ ; 0 ) > 0 and μn-\-pεXo belongs
to ^+(Sμn) for any JD>0, so that

as

against our assumption. Therefore N+(Sμj)<>0. If μc

n

k\K)-^oo as k-^>°°,

there is k0 such that μc

n

kXK)>( — inf g)+/( — sup Φ) + l for every k^>k0. We
Sμn K*K

denote the value on the right hand side by b. Then bXΦdμ^/μ^XK)^ g on

Sμ(k) and, since / < : 0 on Sμn, \)fdμ^<b\fdμ(

n^/μ(

n

k\K)^N+(Sμn) for k = k0,

ko + 1, •••. Therefore we may assume from the beginning that μ(

n

ι\K), μ^XK),
• are bounded under any one of (i)-(iv).

We extract a vaguely convergent subsequence of {/4Λ)} We denote it
again by {μ™} and let \n be the limit. We have
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(4) N+(Sμn) = \im\fdμ^ ^ \fd\n

on account of the upper semicontinuity of / . We shall show that Xn^0 for
all n. We have seen above that we may assume / to be bounded on Sμn. If

μii^-^,, = 0, then N+(Sμ ) = l i m l / d μ ^ = 0. This contradicts the assumption

N+(Sμn)Φ0 made at the beginning of our proof. Therefore Xn^0 for all n.

Consequently XneJ^+(SμJ by Lemma 1 and hence \fdXn = N+(Sμj) on account

of (4). We obtain N+(SMn)=N+(SXj) easily.

We shall verify that N+(SXj) = M(SXj). Since Xn e uf(Sλj>), N+(SXj)^

M(Sλn). Let μ be any non-zero measure of ^(SXj). Then μeJr+{SXi) and

hence {fdμ<,N+(SXj). Under (i), N+(SXj)^0 and hence M(SXu)^N+(SXj).

Thus ikf(5λre)=7V+(5λre) under (i). If there exists a point xoe SXn with/(#o)<O
under (ii), then there is a neighborhood U of x0 on which / is negative. The
restriction of Xn to SXjι—U belongs to J^+(SXu) and gives a greater value for

the integral of/. This contradicts ί/Jλw = ^ + ( 5 λ J . There fore/^0 on SXjι,

whence N+(SXj)>0. It is thus inferred that M(SXj) = N+(SXj) is true under
(ii) too. The same equality is true under (iii) because 0 $ ^#(5λji). If (iv) is
assumed and 0 e ^#(5 λJ, any measure μ^O belongs to J^+(SXj) and
is concluded. The equality follows in this case too.

By a duality theorem (Theorem 4 in [5]) uT /(5λ n)= |y; U/>(*,

/(γ) on 5 λ 1 is not empty and M'(SXj) is equal to M(SXn) = N+(SXj). We apply

Lemma 2 and find a non-zero measure τtn with S^C ^λra such that \Φ(χ, γ)

dτrn(χ)<,f(γ) on Sπjι and I ^ T T ^ ^ M ^ S ^ ) . It belongs to Jr+ and it follows

that

N+(SK) = MXSXn) ^

Since N+(SXj) = N+(Sμn) as already obtained and iV+ = lim N+(Sμn\ the inequali-

ty N+ ^ N+ follows.

II. As the second step we shall prove (1).3) Let us denote both sides of
(1) by L and L. By adding a positive constant to Φ if necessary, we may
assume in this step that Φ is positive on KxK. First, we consider the case

where L is finite. Take μζ.°lι for which V(μ) = sup \Φ(χ, γ)dμ(γ) is finite.

3) This step shows that Theorem 1 implies (1).
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For μf = μ/V(μ) it holds that V(μ)= sup \Φ(x, γ)dμ'(γ) = l and μχκ) = l/V(μ).

X^Sμ'J

μ^O; \Φ(χ, γ)dμ(γ)<:l on SΛ is not empty and it is seen

that N+ = sup{μ(K); μ e J"+} equals 1/L. By our first step, J"+ = jv^O;

Φ(x, y)dv(x)<,l on SΛ is not empty and N+<^N+ = sup{v(K); »eJ"+}. It
follows also that L is finite and N+ = l/L. Since JΓ+Φ& and 0<7V+<°o ?

N+ <̂  N+ holds for the same reason as at the first step. Thus N+ = N+ and
hence L — L is concluded in case L is finite. We obtain the same conclusion
if we start from the assumption L < oo. The only remaining case is that
L = L = oo.

III. As the last step we shall show N+<LN+. If N+φ0, ±oo, we start
from JΓ+ and N+ and obtain N+<,N+ as in the first step. Since N+<,N+,
N+ Φ — oo is assured. First we shall see that 7V+ Φ 0, oo under any one of
(i)-(iii). Under (ii), both N+ and N+ are finite and 0 < N+ implies 0 < N+

because N+<,N+. We have N+= sup \gdv<0 under (iii), because (inίΦ)v(K)

<^sup/<0 and v(K) has a positive lower bound.
Next we assume (i). The assumption 0<7V+ yields 0<7V+ because N+<,

N+. We shall show that N+ = oo implies N+ = oo, whence N+ < oo implies

7V+<oo.4) We choose {^} in ^Γ+ such that \gdvn tends to oo. Since g is

bounded above, vn(K) tends to infinity. Using Lemma 1, we infer from \Φdvn

<zf that \Φdv'0<;0 on Sv'o, where vf

Q is the vague limit in °U of some subse-

quence of {vn/vn(K)}. By (1), we have

inf swp[φ(x, y)dμ(y) = L = L<L sup

Using Lemma 1 again, we observe that there is μ'oe^/ which satisfies \Φ(χ,

y)dμ'0(γ)^L<;0 on 5^. Hence kμr

Qejr+ for any k > 0 and hence 7V+:>

k\fdvf

0-+oo as A ^-oo under (i). Thus N+ = oo.

Finally, under the assumption of (iv), we can observe easily that the as-
sumption iV+<oo implies 7V+<0; see the proof of N+(Sμτ)^0 in the first step.

Γ Γ

We choose {vn} in J^+ such that \gdvn is finite for each n and \gdvn-+N+ as

^-•oo. As in the first step, we may assume that g is bounded on each SVn.

Evidently \gdvn^N+(SVj)^N+ as τz->oo. We shall show that condition (iii)

4) We can show similarly that 7V+ = co implies jV*+φφ and 7V+ = oo under (i).
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is fulfilled on S, for each n. Since \Φdvn<f on Sv , f is bounded on 5V .

If there is xo£ SUjι with g(χo)^>O, then εXo/p belongs to J^+ with any p > 0
and hence

This is impossible. Therefore g < 0 on 5Vre. Next, if there is y0 e SVn with
jo)^O, then the measure peyo belongs to JΓ+ for large p and

This is absurd. Now (iii) being valid, we have N+(SVj)<LN+(SUn)<,N+ for
every n. Hence

REMARK 1. It does not happen that N+ = 0 under either one of (i) and
(iii). If Φ = 1, g= 1 and f= — 1, then 7V+ = 0 and JΓ+ is empty. Hence the
condition N+ΦQ is necessary besides (ii). If Φ= — 1, g = l and / = 0 , then
7V+ = 0 and iV+ = oo. Hence the condition 7V+^=0 is necessary in addition to
(iv).

REMARK 2. We would check the case N+ = — oo. Under (i), N+ > 0 if
« y Γ + ^ . If ^ 1 , ^ = 1 a n d / ^ - c o , then iV+ = -oo and ^Γ+ = ^ . Hence
N+> —oo is to be assumed in addition to (ii). If Φ=— 1, g = — 1 and / Ξ =
— oo? then N+ = — oo and ^Γ+ = 0. Hence 7V+ > — oo is necessary in addition
to (iii) and (iv) too.

REMARK 3. Next we want to treat the case N+ = oo. This does not hap-
pen under any one of (ii) and (iii). If Φ = — 1, g= 0 and / = 1, then N+ = oo
but iV+ = 0. Hence the condition iV+<oo is to be assumed in addition to (iv).
As remarked at footnote 4), N+ = oo implies Jf+Φ$ and iV+ = oo under (i).

Let us next examine whether N+ = N or not. We note that N=0 if J^+

= 0, that N+ = N if jr+φ0 and 7V+^0 and that N+<N=0 if jr+φ0 and
N+<0. lίJT+φψ under (i), then 0<7V+ and hence N+=N. Under (ii), it is
easily seen that N+^>0 unless N+ = — oo. Accordingly, N+ = N unless N+ =
— oo. If we assume (iii), then 7V+<^0 and hence N= 0. Under (iv) we have
N+<^0 = N unless N+ = N=oo, as shown in the proof of Theorem 1.

Next we shall see relation between TV and N.

THEOREM 2. Under the assumptions of Theorem 1 we have N= N except
for the case where N=0 and 7V=oo or the case where N=0 and 7V=oo5 which
can really arise only under (iv).
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PROOF. It will suffice to verify N<LN. As remarked in the first para-
graph in § 1, both N and N are non-negative. First we assume (i). If yΓ+ =
0, then N=0<:N. If JT+φ0, then Jr+φ0 and N+ = N+ by Theorem 1 and
footnote 4). Hence 0<N=N+ = N+ = N. Next we assume (ii). As stated in
Remark 3 of Theorem 1, ΛΓ+<oo. If iV+<:0, then N=0<,N. If iV+>0, then
N=N+ = N+ = N by Theorem 1. Under (iii) we have N=N= 0. Finally as-
sume 0<iV+<oo under (iv). Then by Theorem 1, N=N+ = N+ = N. This is
the same if 0<7V+<oo. Thus the exceptions for N=N arise only when N=
N+ = 0 and 7V=iV+ = c>o or when N=oo and N=0. These exceptional cases
really arise as the example in Remark 3 of Theorem 1 shows.

§ 2. Upper semicontinuous kernel

In this section we are interested in upper semicontinuous kernels which
are bounded above.

LEMMA 3. Let D={κ} be a directed set, {Ψ κ} be a net of upper semicon-
tinuous functions on KxK decreasing to Φ which is bounded above, and {gκ}
be a net of lower semicontinuous functions increasing to g which is bounded

below. Then for any non-zero μ satisfying \Φ(x, y)dμ(γ)<L g(x) on Sμ,

lim mί
D XtΞSμ

is non-negative.

PROOF. Suppose, to the contrary, that there are a directed subset Ώ' C D
and a constant α>0 such that, for every /c€D\ there exists xκe Sμ satisfying

gκ(xκ)— Wax*, y)dμ(y)<— a .

We may assume that χκ converges to a point x0 G Sμ along D'. Fix κ0 G Dr for
a moment. We have

On account of the arbitrariness of κ0 e Dr we infer that
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This is a contradiction.

We define JT, jr+, Jr9 Jr+, TV, N+, N, N+ as in § 1.

THEOREM 3. Let Φ be an upper semicontinuous function bounded above on
KxK, and g and f be lower semicontinuous functions bounded below on K.
Assume one of conditions (i)-(iv) given in Theorem 1. If Λr+Φ0 and N+φ0,
± oo, then Jf+φ0 and N+ = N+.

PROOF. First we consider the case where g and / are continuous. We
denote by D the directed set of all continuous functions Ψ on K x K such that
Ψ^idK Let Jίψ{Jίψ resp.) be the class of measures (non-zero measures resp.)

μ satisfying Wdμ<Lg on Sμ and set 7V?r = sup< \fdμ; μ£Jίψ\ (iVJ = sup<\/dμ;

μ e J^ύ if Jίψφ 0 resp.). Evidently J^Ψ QJf for each Ψ e D and hence NΨ<,

TV. Similarly Nψ<,N+ if J^ψφ 0.
Assume J^+Φ0 and fix μ€ Jί^ for a moment. For ε>0, there is

such that

^g(χ) + e on Stμ

for every Ψ e D not greater than Ψε by Lemma 3. Under (i) or (ii) we see
min g> 0. Hence, given η > 0, there exists ε > 0 such that g(χ) + ε<:(l + η)
Sμ

g(x) on 5 .̂ Thus μ/(l + η) belongs to JΓΨ if Ψ e D and Ψ^(F6, and hence

fdμ if ΨeDand Ψ<,

It follows that limNψ^il + ηyΛfdμ, whence lim Nψ^>N+ on account of the
D J D

arbitrariness of η > 0 and μ £ J^+. The equality is derived because of the
inverse inequality obtained already.

Let us assume (iii) next. Given η>0, we can find ε>0 such that g(χ) +
ε<g(χ)/(l + η) on Sμ. Under (iv) we choose ΨQ£D such that a0 — sup ΨQ is

K ^ K

negative. Given η > 0, take ε > 0 smaller than —aoημ(K). We may assume
that Ψε chosen above is not greater than *F0. Then ηWdμ<—e for every

ΨeD, Ψ^fPε, and O + η)Wdμ<;g on Sμ. Thus under either one of (iii) and

(iv), (l + η)μ belongs to jrΨ for every ΨeD,Ψ<Lφε. We obtain limN£ = N+

D

as above. We note that this identity is true even if N+ = 0 or oo or — oo.

By our assumption we may assume NψφO, ±°o for every fFeD, Ψ^tFε.

We apply Theorem 1 and see Jr^Φ0 and Nψ = Nψ. Since JfψQJf^, we can

derive lim Nψ = N+ as above. Now N+ = N+ follows.
D
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Next we consider the case where g is lower semicontinuous and / is con-
tinuous. We denote by H the directed set of all continuous functions h satis-

fying h<; g. Let Jfh be the class of measures μ satisfying \Φdμ<,h on Sμ

and set 7VΛ = sup\ fdμ for μ e Jfh. In the same way as above we have lim7V̂  =
J H

v C v v

N. Consider Nh = sumhdv for veJr. Naturally Nh<^N. On the other hand,
given v e / ,

Thus we have lim Nh = N. Since Nh = 7VΛ for each h e H, N= N follows in this
H

case too. Finally we consider the general case and can complete the proof
easily.

We change the signs of Φ, f and g and obtain

COROLLARY. Let Φ be a lower semicontinuous function bounded above on
K x K, and g and f be upper semicontinuous functions bounded below on K.
Under any one of (i)-(iv) we have

(x, y)dμ(γ)> g(x) on Sμ

x)^f(y) on

provided the left hand side is well-defined and equal to none of 0, oo? — oo.
We remarked at footnote 3) that Theorem 1 implies (1). Likewise we

can show that this Corollary implies (2).
The following theorem corresponds to Theorem 2.

THEOREM 4. Under the assumptions of Theorem 3 we have N= N except
for the case where N=0 and N =oo or the case where N=0 and 7V=oo? which
can really arise only under (iv).

We can obtain a corollary corresponding to the Corollary of Theorem 3.
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