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§1. Introduction

In [ 8], p. 85 F. Maeda writes a\/ b in a lattice L with 0 to denote the
fact that aAb =0 and (a\VVx)Ab=2xAb for all x in L. He then uses this
relation to investigate direct sum decompositions of such lattices. If L is
modular the relation ¥/ is symmetric and the mapping S— SV={f: s/ f for
all s € S} induces a Galois connection in the lattice I(L) of all ideals of L.
The Galois closed objects (i.e., those ideals S such that S= SYV) are called
normal ideals. In a general continuous geometry (see [ 37, p. 90) the normal
ideals play a role analogous to that played by the center of a continuous
geometry. In this note we investigate normal ideals in a more general set-
ting. In §2 we show that in a lattice L with 0, an ideal J is in the center
of I(L) if and only if it is a direct summand of L. In §3 we use the fact
that the relation Y/ is symmetric in a relatively complemented lattice with 0
to define normal ideals in such a lattice. We then show that if L is a rela-
tively complemented lattice with 0 and 1, then the center of the completion
by cuts L of L is precisely the set of normal ideals which are kernels of
congruence relations. In the case of a complemented modular lattice, the
center of L is just the set of normal ideals of L. In §4 these results are
extended to the case of an arbitrary relatively complemented lattice with 0.

§2. Direct summands

Let S, S,,-.,S, be subsets of a lattice L with 0. Following the termi-
nology of F. Maeda ([ 3], p. 85) if

(1°) for any element a of L,a=a,V . -Va, with a; € S;(i=1,...,n),
(2% i#j implies S;cSY,

we say that L is a direct sum of S;,-..,S, and write L=3S, ®---P S,. The
subsets Si,..-,S, will be called direct summands of L. By [37], Lemma 1.3,
p. 86 every direct summand is an ideal of L. We proceed to show that the
direct summands are precisely the central elements of I(L).

TuroreM 1. Let L be a lattice with 0. Amn ideal J of L 1is a central
element of I(L) if and only if it is a direct summand of L.
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Proor: Assume first that J is a central element of I(L), and let K be
its complement. For each « € L, let J, denote the principal ideal generated
by a. Then, working in I(L), we have that J,=J.\NJVK)=T.NJ)V{,
NK). This implies that a =b\/c¢ with beJ and c € K. Furthermore, if
beJ and c €K, then for arbitrary x in L,

Thus (bVx)Ac=xAc and since bAc=0 is obvious we see that 65/c. A
similar argument produces c\/b, and we have that L=/ K.

Suppose conversely that L =JPK. Then JNK =(0) and since each a
in L can be represented in the form e=56Vc¢ with b € J and c € K| it follows
that JVK=L. Thus J and K are complements in I(L). In order to show
that J is central it suffices ((27], Theorem 7.2, p. 299) to show that for each
ideal I of L the following equations hold:

(1) I=(IVIINIVK)
(2) I=(INJ)VINK).

Now let a € I and write a=b\/c with b€ J, c € K. This puts e in (INJ)
V(INK) and establishes (2). In order to demonstrate (1), we need only
show that (IVJ)N(IVK)cI. Accordingly, let a<<(b;Vc)A(b:\VVd) with
b, b2 in I, ¢ in J and d in K. We may then write (6:Vc)A(b:Vd)=xV y
where x €J, y€ K. But now, since L=JPHK we have d\/x so that

X = (bl\/c)/\(bz\/d)/\x = (bl\/C)/\ bz/\xgbz .

This shows that x € 1. Similarly, ye I and we conclude that a is in I, since
a<x\ y. This completes the proof.

§3. Normal ideals in a relatively complemented lattice

In this section we explore the relation between normal ideals of a rela-
tively complemented lattice with 0 and 1 and central elements of I, the com-
pletion of L by cuts. We first need to know that the relation %/ is symmet-
ric.

Turorem 2. Let e, f be elements of a relatively complemented lattice with
0. The following conditions are then equivalent:
i) eVf.
(i) eV f<a implies f 1is contained in every complement of e in the in-
terval L(0,a).
(i) e1<e, f1<f, e perspective to f1 imply that e, = f1 =0.
(iv) x=(=Ve)A(xVf) forall x in L.
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Proor: (i)=(ii) Let eV f<a, and let y be a complement of e in L(0,a).
Then f=aAf=(eV y)Af=yAf shows that f<y.

(ll)’—“}(lll) Let el\/xl———flel with 61/\x1:f1/\x1———0. Then with a =
eV f\Vx1, we may assume the existence of an element x which is a common
complement for e; and fi in the interval L(0,a). Since e >e;, we see that
e\/x=a and consequently x dominates an element y which is a complement
of e in L(0,a). Invoking (ii), we see that f<y<x, fi=fiANx=0, x=a
and finally also e, =0.

(ili)=(iv) For a fixed x in L, set a=e\V V[ (xVe)A(xV[f)] We then
choose y sothat yV[(xVe)A(xV f)]=a and yA[(xVe)A(xV f)]=x.
Then y\Ve= yVf=a, so there exist elements e; e, fi <f having y as a
common complement in a. By (iii), e;=f1=0 so y=a and x=((xVe)A(xV
)

iv)=30) If x=(=Ve)A(xVf) for all x in L, then 0=0Ve) ANV )=
e/Nf and for each x in L, (xVe)Af=xVe)ANxVINf=xAf.

CoroLLARY 1.  In a relatively complemented lattice with 0 the relation </
18 symmetric.

CoroLLARY 2. Let L be a relatively complemented lattice with 0. If e\/
Sfo for each a€ A, and if f=V\ aecafa exists, then e\/f.

CoroLrLAarY 3. Let L be a relatively complemented lattice with 0. Then
if e\ f<a, eN/f i the interval L(0,a) if and only vf f is contained in every
complement of e in a.

It is worth noting that one does not need anything nearly as strong as
the fact that L is relatively complemented in order to conclude that the rela-
tion V is symmetric. Indeed if L is a lattice with 0 and 1 having the
property that e < f implies the existence of an element g=1 such that
fVg=1 and fA g=>e one can easily show that e\/f is equivalent to the
assertion that x =(x Ve) A(x\V f) for all x in L. An example of such a
lattice is provided by a relatively co-atomic lattice with 0; i.e., a lattice L
with 0 and 1 having the property that each e=£1 is the infimum of the
co-atoms that dominate it. Here a co-atom denotes an element which is
covered by 1.

If L is a lattice with 0 in which the relation Y/ is symmetric, let us
agree to call an ideal J normal in case J=(JV)'. The term homomorphism
kernel will denote an ideal which is the kernel of a congruence relation of L,
and we will call J a normal homomorphism kernel if J is both a normal ideal
and a homomorphism kernel. We are now ready to investigate the center of
L. Suppose J is central in L and K is its complement therein. Then J
induces a congruence relation on I by the formula IL=1 if [VJ/= LV J.
Since a— J, is an isomorphism of L into L, the relation ® on L defined by
a=b(0) if J,\VJ=J,\VJ is evidently a congruence relation on L whose kernel
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is J. Notice that if e € J, f € K then eV/f. On the other hand, if e/ f for
all fin K then J,NK=(0) and since J is central this implies that J.<J; i.e.,
that e € J. Thus J is a normal homomorphism kernel. Until further notice
it will be assumed that L is a relatively complemented lattice with 0 and 1. It
will be our purpose to show that every normal homomorphism kernel of L is
a central element of L.

Lemma 8.  Ewvery normal ideal J of L is an element of L.

Proor: If b€ JV, then every complement of & is an upper bound for J.
It follows that if @ is contained in every upper bound of J, then a\/b. But
this puts a in (JV)V=J, completing the proof.

An extremely useful observation is provided by

Lemma 4. Let J be a normal homomorphism kernel of L. Then a€ J¥ if
and only 1f J.NJ=(0). ‘

Proor: Suppose first that J,N\J=(0). Let b€ J, x € L, and choose ¢ to
be a complement of x Aa in (b\Vx)Aa. Now if J is the kernel of the con-
gruence relation 6@, we may write c=c A(bVx)=cAx=0(0). This implies
that ¢ € J and since ¢ <<a, we have ¢ =0 and 5%/a. Thus ea€JV. On the
other hand, if a € JV, then J,NJ=(0) is obvious, and we are done.

Lemma 5. If J is a normal homomorphism kernel of L, the same is true
of JV; furthermore, J and JV are complements in L.

Proor: Let J be the kernel of the congruence relation @ and let 6*
denote the pseudo-complement of @ in the lattice of congruence relations of
L. By [17], Lemma 17, p. 1638 a = b(0*) iff a\Vb>c>d>a Ab with ¢ = d(O)
implies ¢c=d. In particular, if a=0(0*), then a>c¢ with ¢=0(0) implies
c¢=0, so that J,NJ=(0). By Lemma 4, this puts ¢ in JV. But if a ¢ J¥ and
if a>c>d with ¢=d(®), then by [ 4], Hilfsatz 4.5, p. 37 we may write
c=d\Vt with t € J. At this point we see that 1 =0 and c=d. This shows
that JV is the kernel of ®*. Since JV is clearly normal, this completes the
proof that JV is a normal homomorphism kernel of L.

In order to show that J and JV are complements in L. We need only
show that 1 is their only common upper bound in L. To see this, let @ be an
upper bound for both J and JV in L. Choosing & as a complement of ¢ in L,
we now have that J,N\J=J,NJY=(0). Since J and J' are both normal
homomorphism kernels, two applications of Lemma 4 will now yield the fact
that b€ JNJV=(0), whence 5=0 and a=1 as claimed.

Lemma 6. Let J be a normal homomorphism kernel of L. Then for all
K in L, K=(KNJ)VENTY).

Proor: Let b€ K and suppose that ¢ <b is an upper bound for JNJ,.
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Then if d is a complement of ¢ in b, J,NJ=J.NJNJ,=(0). Applying
Lemma 4, we conclude that de JY. It follows that b is the only common
upper bound for JNJ, and JVNJ, in the interval L(0,6). Now let a be an
upper bound for both KNJ and KNJY. Then aAb is an upper bound for
both JNJ; and JVNJ, in L(0,b), whence a Ab=5b and b<a. Since b was
an arbitrary element of K, we conclude that any upper bound for both KNJ
and KNJV is also an upper bound for K. Thus KS(KNJ)V(KNJY). The
reverse inclusion is obvious.

Now by [ 2], Theorem 7.2, p. 299 if we wish to show that J in the above
lemma is a central element of L, we must show that K=KV )N KV JY)
for all K in L. We will demonstrate that this follows by duality. Let us
write e/ f incase e\/f in the dual of L; ie., if eVf=1 and (eAx)V f=
xV f forall x in L. Also, for each ideal J of L, we shall let J* denote the
set of upper bounds of J. Clearly J* is an element of the completion by
cuts of the dual of L.

Lemva 7. If J is a normal homomorphism kernel of L, then J* is a
normal homomorphism kernel of the dual of L.

Proor: We have already noted that if J is the kernel of the congru-
ence relation @, then JV is the kernel of ©*, the pseudo-complement of @ in
the lattice of congruence relations of L. Given e in J* and b a complement
of a in L, note that J,nJ=(0), b€ JY, b=0(0*) and consequently a=1(6%).
On the other hand, if «=1(0*), then any complement b of a is in JY. Now
if e€J then e/b implies e<a sothat ae J*. Thus J*= {a: a=1(6*)}.

We next show that J**=J"*. Let e€ J* and feJ"* If g isa com-
plement of £, then J,NJY=(0) puts g in J. Thus e is an upper bound for
the set of complements of f, and by the dual of Theorem 2, e/ f. Suppose
next that e/ f for all e in J*. We must show that feJ" . If h is a
complement of an element g of JV, then A€ J* implies A/ f whence f>g.
Thus f is indeed in JV* and we conclude that Jj**=/J"* = If we now make
use of the fact that J=J"Y, we may apply the above argument twice to see
that

]* — (]VV)* — (JV*)A — J*AA .

It is now obvious that the dual of Lemma 6 can be invoked. For if J is
a normal homomorphism kernel of L, working in the completion by cuts of
the dual of L, we have that for every K in L, K*=(K*N\J*)V(E*NJ*).
Now a is a lower bound for K*NJ* if and only if « is contained in every
element b which is an upper bound for both K and J. This is equivalent to
saying that a € K\/J. Similarly ¢ € K\/JV if and only if « is a lower bound
for K*NJV*. Thus if a € (KVJ)NEKV JY) then a is a lower bound for both
K*N\J* and K*NJV*. This implies that « is a lower bound for (K*N\J*)V
(K*NJV*)=K*, whence a€ K. It follows that K=(KV J)N(KV JY).
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Combining all these results, we have

Turorem 8. The center of L coincides with the set of normal homomo-
phism kernels of L.

We close this section by showing that in a complemented modular lattice
L, every normal ideal is a central element of L. In view of [ 47, Satz 4.5, p.
38 we need only show that a normal ideal is closed under perspectivity.

LemmA 9. Let L be a relatively complemented modular lattice with 0.
Then eX/f and b=>eV f imply that (eV x)A\ gV (fV x)A g for all x, g which
are complements in the interval L(0,b).

Prror: Applying Theorem 2 to the interval L(0,b) we see that x=(xV
A=V [), and if x<a<lb, then a=(@Ve)AVf)=@@VxVe)AlaVxVf).
This shows that eV xVfVx in L(x,b). We now use the fact that a>aA g
is an isomorphism of L(x,b) onto L(0, g) to conclude that (eVx)A gV (fV
x) A\ g in L(0,g). Since L is a modular lattice, it is easily seen that this
implies (eVx)AgV(fVx)Ag in L.

Lemma 10. Let J be a normal ideal of a relatively complemented modular
lattice with 0. Then if g is perspective to an element of J, g itself is in J.

Proor: Since L is modular we may assume the existence of an element
f of J such that f and g have a common complement x in fV g. For arbi-
trary e in JV, eV f and xA(eV g)=xA(eVOA(fV g=x A g=0. Also,
xV(eV g=eV fV g sothat x is a complement of eV g in eVfV g. Now

(eVa)N(eVg=eV[xA(eVgl=eV0=e and

(fVxIN(EV@=(fVeAN(eVg=g,

so by Lemma 9, e/ g. Since e was an arbitrary element of J¥, we conclude
that g isin J.
We are now ready to state our result.

Tureorem 11.  An ideal J of a complemented modular lattice L is a central
element of L 1f and only 1f it is a normal ideal.

§4. The general case

Here we shall assume that L is a relatively complemented lattice with O.
Our goal will be to extend the results of §3 to such a lattice. Instead of

considering I, it turns out to be appropriate to work in L, the set of ideals J
such that JN\J,€e L for all @« in L. Since the intersection of an arbitrary

family of elements of L falls back in L, it is obvious that L is a complete
lattice with set inclusion as the partial order and set intersection as the meet
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operation; furthermore, the mapping ¢« —J, embeds L as a sublattice of L.
In case L happens to have a greatest element, it is worth mentioning the

trivial fact that L=LI.
Lemma 12.  Every normal ideal of L is an element of L.
Proor: This follows with no difficulty from Theorem 2.

Levuma 13.  Ewvery central element of L is a normal homomorphism kernel
of L.

Proor: The argument is almost identical with the one preceding Lem-
ma 3.

We now proceed to show that the center of L is precisely the set of

normal homomorphism kernels of L. In connection with this, it will prove
convenient to let L, denote the completion by cuts of the lattice L(0, x).

Lemma 14. For each x in L, L, is a sublattice of L and
L.={JNJ.:JeL}.
Proor: We first observe that if K in L has x as an upper bound, then
KeL,. This follows from the fact that y is an upper bound for XK in L if

and only if yAx is an upper bound for K in L(0,x). Thus,if Je L, then

JNJ.€L,. On the other hand, given K€ L, we claim that Ke L. To see
this, we must show that KN\ J,€ L for every a€ L. Accordingly, let d be
contained in all upper bounds of KNJ,. Then if y is an upper bound for K
in L(0,x), surely y is an upper bound for KN/, and we have d<Ty. It
follows that d € K, and since a is an upper bound for KNJ,, we also have
d<a. Hence de€ KNJ,, and we see that KN J, € L. This shows that L,=

{JNJ.: Je L} and that L,cL. Since the infimum operation in both L, and
L is set intersection, it is evident that L, is a meet sublattice of L. On the
other hand, if J, K are elements of L, and M is their join in L,, then Me L

and is an upper bound for both J and K in L. If Ne L is a common upper
bound for J and K, then NN J, is an upper bound in L,. It follows that
NNJ.2 M and consequently that N2 NN\J.2M. Thus M is effective as the

join of J and K in L, thereby completing the proof.

LevMa 15. Let K€ L and let J be a normal homomorphism kernel of L.
Then KV J= UL[(K/\Ja)\/(Jf\Ja)] and for each b in L
a€

KNV IDNTs=ENI)VUINT) .

Proor: Let M= UL[(K/\Ja)\/(Jf\Ja)]. Since K = UL(Kf\Ja) and J=
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UL(JK\],,) it is evident that M contains both K and J. Furthermore, if N¢€ L.
a€

is an upper bound for both K and J, then N contains KNJ, and JNJ,, N2
(KNJH)V(INJ,) and finally N contains M. Thus, in order to show that M
is the join of K and J in L, we need only verify that M is in fact an element

of L. In order to demonstrate this we must prove that for each b in L, MN
Jy€ Ly. This will follow if it can be shown that MN\J,= KN J) vV UNTp).
Evidently MNJ,2(KNJy)V(INJs). To obtain the reverse inclusion, choose
x>aVb and work in the interval L(0,x). Suppose f<x and e\/f for all
e in JNJ.. Then J;,NJ=J;NJNJ.=(0) and by Lemma 4 we see that fe J".
On the other hand, if fe JYNJ. we must clearly have that e</f in L(0,x)
for all e in JNJ,. Thus (JNJ,)V as computed in L(0,x) is the ideal JYNJ,.
We thus see that JN\J, is a normal homomorphism kernel of L(0,x) and by
Theorem 8, it is a central element of L,. Hence

LENT)VINT)INTs = (KNTNIDV INTNT) S (KNT)V TNTs).
It follows that for each a in L
LNV UINTD)INT € (KNT)V I NT)
and therefore that

MNJy=A KEJL[(Kf\Ja)\/(Jf\Ja)]} NJs
= kE/L{[(Kf\Ja)\/(Jf\Ja)]f\Jb} SENIHVUINT),
thus completing the proof.

Now let K€ L and let J be a normal homomorphism kernel of L. We
claim first that K=KV J)N(KV JY). In order to see this, we choose an
element @« of L. Since JNJ, is a normal homomorphism kernel of L(0,a)
with (JNJ,)V as computed in L(0,e) equal to JVNJ,, we may invoke Lemma,
15 and Theorem 8 to see that

EVIHNEKNV TN =LENT)VINT)INLENT)VINT)]= KN,

Since this holds for every « in L, we conclude that K=KV J)NKVJY).
We next show that K=(KNJ)V(KNJY). Working in the interval L(0,a),
we have from Theorem 8 that

KN, =[KNIINTNT)IVIENTINTY NI S KNV ENTY).

Hence K= U ENJ)SENIVENIJY)SK and we have equality. By [ 2],
a€l

Theorem 7.2, p. 299 we conclude that J is a central elememt of L. Combin-
ing the above results with Lemma 10, we have
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Turorem 16. Let L be a relatively complemented lattice with 0. An ideal
J of L is a central element of L if and only if it is a normal homomorphism

kernel. In the presence of modularity, the central elements of L are precisely
the normal ideals of L.

In connection with the above theorem notice that the partial order in L
is given by set inclusion. Since the intersection of an arbitrary family of
normal homomorphism kernels is itself a normal homomorphism kernel, we

see that the center of L is a complete Boolean sublattice of L. As an imme-
diate consequence of these observations we have the following result of F.
Maeda ([ 87], Theorem 3.2, p. 89): Let L be a conditionally upper continuous,
relatively complemented modular lattice with 0. The family of normal ideals
wn L is a complete Boolean algebra, where lattice-order means set-inclusion.

In closing we mention that in a later paper we shall prove that with L

as in F. Maeda’s theorem, L is an upper continuous complemented modular
lattice. This fact together with Theorem 16 provide considerable insight
into the dimension theory of a general continuous geometry as outlined in
[37], pp. 90-92.
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