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1. Let Ω be a locally compact Hausdorff space and Φ(x, γ) be a kernel

on Ω, i.e. a lower semicontinuous function on Ω x Ω with values in Q0, + oo],

A measure μ will be always a non-negative Radon measure on Ω. The poten-

tial of μ is defined by Φ(x, μ)=\φ(x, γ)dμ(γ) and the mutual energy of μ and

v is defined by (y, ^,)=\<0(#, μ)dv(x). We call (μ, μ,) simply the energy of μ.

Let <f be the class of all measures with finite energy and SA be the class of
all measures of g whose supports are compact and contained in the given set
A. The support of μ will be denoted by Sμ. For a compact set K, we define

and

e(K) = O if £κ={0}

For any set A, we define an inner quantity and an outer quantity as follows:

ei(A) = swp{e(K); K is compact and KCA}

and

) = inf {e, (G); G is open and

The problem of capacitability is to discuss when e{(A) coincides with eo(A).
M. Kishi [4] proved the equality ei(A) = eo(A) for every analytic set A

(Theorem 13 in Q4]) under the hypotheses that Ω is a locally compact separa-
ble metric space, that Φ>0 and that Φ is of positive type (§3) and satisfies
the continuity principle (footnote 6), condition (*) (§4) and a regularity condi-
tion (§7).

The object of this note is to improve his theorem. Namely, we shall
show that Kishi's regularity condition, the condition Φ>0 and a restriction
on Ω can be omitted. The reasoning is analogous to that of B. Fuglede [3]
and the author [7], but our quantities are different from theirs (footnote 14).

Our problem was also studied by B. Fuglede \yr\ and M. Ohtsuka [6]
under different additional conditions. The differences will be illustrated in

2. We recall the quantities related to the capacity which were intro-
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duced by Ohtsuka [6]. For a measure μφO, we put V(μ) = sup{0(#, μ);
xβSμ}. We define F{(A) by mt{V(μ); μe<%A} if Aφφ and set Vi(φ)=°o,
where φ denotes the empty set and ^ίA~{μ\ Sμ is compact, SμCA and
μ(β) = l}. We define also Γe(^) = sup{ V{(G); G is open and G^A}. We shall
say that a property holds nearly everywhere or w.e. (quasi everywhere or g.β.
resp.) on ̂ 4 if the Vrvalue (Fe-value resp.) of the exceptional set in A is infinite.

The following propositions, which will be often used later, were obtained
by Ohtsuka.

PROPOSITION 1.1) Let {Bn} be a sequence of sets which are measurable for
every measure on Ω and A be an arbitrary set. Then we have ViQ\jAΓ\Bny

ι

PROPOSITION 2.2) Let {An} be a sequence of arbitrary sets. Then we have

As an immediate consequence of this, we have

COROLLARY. Let Aλ and A2 be arbitrary sets. If Ve(A2) = °o, then
Ve(A1-A2)= Ve{Aλ)= Ve(A1\jA2).

PROPOSITION 3.3) For any compact set K, we have Vi(K)= Ve(K).

3. We assume hereafter that the kernel Φ is of positive type, i.e. Φ(χ, γ)
= Φ(y9 x) for all x, γeΩ and (μ, μ) + (y9 v) — 2(v, μ)^>0 for all μ, vetf. The
following theorem is well-known.

THEOREM 1. For any compact set K, we have e(K)— Vi(K)~ι. In case
Vi(K)>0, there is a measure μκ£ &κ which minimizes I(v) = (v, v) — 2v(K) for

P£#K> This measure μκ has the following properties: (1) Φ(x, μκ)^ί on
Sμκ, (2) Φ(x, μκ)>l n.e. on K and (3) μκ(Ω) = (μκ, μκ) = e(K).

COROLLARY 1. For any set A, it holds that

y1 and

Consequently we see that eo(K) = ei(K) = e(<K) for any compact set K and
that eo(A) = O is equivalent to Ve(A) = oo.

COROLLARY 2. If Ve(N)=oo, then eo(A — N) = eo(A) = eo(A\jN) for any
set A.

For an arbitrary set A, we introduce two classes of measures:

1) [6], Proposition 1, p. 139.

2) [6], Proposition 2, p. 140.

3) [6], Theorem 1.14, p. 207.
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ΠA={ve#; Φ(x,v)>l n.e. on A}

and

Γe

A={»e#; Φ(x,v)^>l q.e. on A}.

In case Γ{

AΦφ, we define c\A) by inf {(y, v); veΓA}, and in case Γi

κ = φi we
set cXA) = oo. For the class ΓA, ce(A) is defined in the same way.4)

These quantities c\A) and c\A) are increasing set functions of A and it
holds in general that c\A)<^c\A) for any set A. In case A is a compact set
K, we have

THEOREM 2. c/(K) = cβ(X').

PROOF. It is enough to show Γ^Γ^. This follows from Propositions
2 and 3.

In case cXA)(ei(A) resp.) coincides with ce(A) (eo(A) resp.), we denote by
c(A) (e(A) resp.) the common value. We observe that this e(K) is equal to
the original e(K) in §1 and c\K) = ce(K) = c(K) for any compact set K and

ei(G) = e0(G) = e(G) for any open set G. The relation between c(K) and e(K)
is given by

THEOREM 3.5) e(K) = c(K) for any compact set K.

PROOF. Let ve.Γι

κ and μζ.£κ. Then it follows that (V, μ)^μ(K) and

Therefore c(K)^e(K).
The converse inequality is led by Theorem 1. In fact, in case e(K)<oo5

the measure μκ belongs to Γ*κ.

COROLLARY. ei(A)<La(A) for any set A.

4. Now we assume in the sequel that the kernel Φ satisfies the continuity
principled In case Ω is not compact, we further assume that the kernel Φ
fulfils the following condition (*) of Kishi: for any compact set K and any
positive number ε, there is a compact set Kε such that Φ(x, j)<ε on Kx(Ω — Kε).

Kishi proved in

LEMMA 1. Suppose that a sequence {μn} of measures converges vaguely to

4) Fuglede considered ΓAi ΓA) c*(A) and ce(A) in [2]. Kishi introduded a family of measures

similar to ΓAi but the meaning of "q.e." was different. Kishi defined that a set A is (f-polar if and only

if there is a measure vζig such that Φ{x, v) = oo on A. He said that a property holds q.e. on A if the

exceptional set in A is <^-polar.

5) [4], p. 107.

6) Continuity principle: If the potential Φ(x, μ) of a measure μ with compact support Sμ is finite

and continuous as a function on Sμ, then Φ(x, μ) is continuous in Ω.
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μo and that the total masses μn(Ω) are bounded. Let v be a measure which has
a compact support and whose potential is finite and continuous in Ω. Then we
have lim(ι>, μn) = (^9 μo)-

n->°o

We shall consider a quantity ΓA = inf{(v9 v) — 2v(Ω); ve#A} for the class
of measures SA— {ve <f Sv is compact and SvCA}. By the obvious relations
Γκ= — e(K) for any compact set K and ΓA = inί{Γκ; K is compact and KCA},
we have

THEOREM 4. ΓA= — e{(A) for any set A.

The relation between e^A) and c\A) is given by

THEOREM 5.7) ei(A) = c\A) for any set A. If e^A) is finite, then there is
a measure μ0 supported by A (the closure of A) such that Φ(x9 / χ o ) ^ l n.e. on
A, Φ(x, μo)^ί on Sμ0 and

PROOF. On account of Corollary to Theorem 3, we may assume that
ei(A) is finite. In this case Vi(K)7>Vi(A)>0 for any compact set KCA. Let
{Kn} be an increasing sequence of compact sets contained in A such that ΓKn

tends to IA. For each n, let μn be the measure μKn obtained in Theorem 1.
Then μn(Ω) = (μn, μn) tends to —ΓA = ei(A) (Theorem 4), Φ(x, μn)^l n.e. on Kn

and Φ(x, μ»)<Jl on Sμn. Since the total masses μn(Ω) are bounded, we can
find a vaguely convergent subsequence of {μn}> Denote it by {μn} again and
let μ0 be the vague limit. Naturally, it is suppoted by A. We set N= {x € A;
Φ(x, /z,o)<l} and prove F, (iV)=oo. If we deny this, then there would be a
unit measure V^^NC^A such that Φ(x, v) is finite and continuous in Ω by the
continuity principle; see for instance [6], for the proof of Lemma 1.4, p. 190.
Obviously we have (v, μo)<l. Since μn + tvζ.£A for any positive number ί, it
holds that

μn+tv)-2(μn+tv)(Ω)

= (μa, μn)-2μn(Ω) + 2t(μn, v)+t%V, v)-2tl>(Ω).

Letting ra^oo, we have by Lemma 1

Cancelling IA, dividing the rest by t and letting ί->0, we obtain (v9 /χo)^l
This is a contradiction. Hence Φ(x, μo)~^>l n.e. on A and (μΰ9 μo)<>]im(μn9 μn)

= e{(A). Consequently μ0 e ΓA and c\A) ^ (μθ9 μo) ^ e^A). Therefore (μθ9 μ0)

Let xo be any point of Sμθ9 and J^ be the directed set of neighborhoods
of x0. For every couple (JJ9 n) of Ue J^ and n9 we select any point x(U9 n) in
UrλSμn,, where n' is the smallest integer satisfying n'^n and Ur\Sμn'φφ.

7) cf. [4], Lemma 12, p. 107 and [2], Theorem 4.1, p. 175.
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We regard the set of all couples W=(U9 n) as a directed set in a natural man-
ner and denote it by D. Let λw = εx(u,n)X μw correspond to W=(JJ, n\ where
ε* represents the unit point measure at x in general. Thus {λw; Wζ.D} is a
net, and converges vaguely to εXQ x μ0. We have

(eXQ xΦ(x0, μo)=\φd(

= \ϊm[φ(x(U, n\
D

By the arbitrariness of xoζSμo, we conclude Φ(χ, μo)^l on Sμ0. Hence
ei(A) = (μ0, μo)<Lμo(Ω). On the other hand, /xo(^)^lim μn(Ω) = ei(A) and hence

μo(β) = ei(A\ This completes the proof.

5. In this section, we shall establish the equality eo(A) = ce(A). First
we shall prove

THEOREM 6.8) eo(Λ)<; c\A) for any set A.

PROOF. We may assume ce(A)<°o. Given ε>0, there is a measure v
such that (v9 v)<ce(A) + ε and Φ(x9 v)^>l q.e. on A. For any positive number
ί < l , put Gt={χeΩ; Φ(x9 v)>t} and N={xeA; Φ(x9 v)<l}. Then Gt is open
and contains A — N. Since v/t beings to ΓGt and Ve(N)=°o, we have eo(A) =
eo(A—N)^ei(Gt) = ci(Gt)<:(v9 v)/t2<[_ce(A) + ε~2/t2 by Theorem 5 and Corollary
2 to Theorem 1. Letting £—•!., we have eo(A)<^ce(A)-\-ε and hence obtain the
inequality.

Our problem is to see the converse inequality. In what follows, if we
assume that any open set in Ω is a Kσ-set, then our reasoning becomes sim-
plier. However, we do not assume this and we follow the method of Fuglede
[]3], making use of quasi topology but without referring to this terminology
explicitly (cf. [7J). We shall prepare several lemmas, which were proved for
Vf{AY1 and V*(AY1 in [3] (see footnote 14). We have

LEMMA 2. Assume that a set A has the following property: for any ε > 0,
there is a set B€ such that ei(B€) = eQ(B€), eo(A — B€)<εand eo(B£ — A)<ε. Then
it holds that

PROOF. This is an immediate consequence of Proposition 2 and the in-
equality a(A\J B)<>ei(A)+ eo(B).

LEMMA 3.9) Take AQΩ and μ, ve#. If Φ(x, μ)^Φ(χ, v) + t on A for a
positive number ί, then we have Vi(A)^>t2\\μ — v»||~2, where \\μ — v\\ = [_(μ, μ) +

8) cf. [4], Lemma 13, p. 108 and [2], Lemma 4.3.2, p. 181.

9) [6], Lemma 3.4, p. 298.
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LEMMA 4.10) Let μξ.#. Given ε>0, there exists a compact set K£ such that
the potential of μ£, the restriction of μ to K£, is finite and continuous in Ω
and \\μ — μ£\\<e.

Like in [4] and [6], by using Lemmas 3 and 4 we can prove

LEMMA 5. n ) The potential of a measure with finite energy is quasi con-
tinuous, i.e. for any ε>0, there is an open set G£ such that Fi (G£)>l/e and the
potential is finite and continuous as a function on Ω — G€

LEMMA 6. Let G be an open set and v be a measure with finite energy.
Then Φ(x, v)J> 1 n.e. on G implies Φ(x, v)^>l q.e. on G.

PROOF. It is enough to show that the eo-value of the exceptional set
N={x£G; Φ(χ, :>)<1} is zero. Given ε>0, by Lemma 5, there is an open set
Gε such that e, (G£)<ε and Φ(x, v) is finite and continuous as a function on
Ω-G£. Put N6=iχeΩ-G€; Φ(x, v)<l} and B£ = (N£\jG£)ίλG. Then NCB€

CN\JG€ and N£\JG£ is open. Therefore, it follows that B€ is open, eo(N—B£)
= eo(Φ) = O and eo(B€-N)^ei(G£)<e. Obviously ei(B£) = e0(B£). We see by
Lemma 2 that eo(iV) = βl (iV) = O.

REMARK. We need not condition (*) in Lemmas 2-6.

THEOREM 7.12) eQ(A) = ce(A) for any set A.

PROOF. For any open set GO A, it holds by Lemma 6 and Theorem 5
that c\A)^cβ(G) = ci(G) = ei(G). Thus we have ce(A)<,e0(A). The converse
inequality was shown in Theorem 6.

Next, we shall give

LEMMA 7.13) Let F be a closed set with e0(F)<oo. Then we have e, (F) =

PROOF. We may suppose eo(F)>O. On account of Lemma 2 and Pro-
position 3 it is enough to show that, for any ε>0, we can find a compact set
F£CF such that eo(F—F€)<e. Take an open set G such that G^)F and
e/(G)<oo. We can find, by Theorem 5, a measure μ such that μ(G) = (μ, μ) =
e, (G)>0 and Φ(χ, μ)^l n.e. on G. By Lemma 6 Φ(x, / χ ) ^ l q.e. on G. Put
N={χβG; Φ(x, μ)<l} and H={xeΩ; Φ(x9 μ)^l}. Then HVJN^)F and
eo(iV) = βl (iV) = O. Given ε>0, there is a compact set Ke such that (ρ€, ^)<ε/4,
where v£ = μ — μ€ and μ6 is the restriction of μ to Kε. On account of condi-
tion (*), there exists a compact set L£ such that Φ(χ, y)^ί/[βμ(Ω)'] on
(Ω — L£)xK£. Consequently Φ(x, μ£)<, 1/2 for any xeΩ — L£ and HΓ\(Ω — L£)CA£

= {xeΩ; Φ(x, v£)^l/2}. Since 2v£ belongs to Γβ

A, we have

10) [6], Lemma 1.4, p. 190.

11) cf. [4], Lemma 10, p, 150 and [6], Theorem 1.13, p. 206.

12) cf. [4], Lemma 13, p. 108.

13) [2], Lemma 4.22, p. 179 and [3], Corollaire du Lemme 7.1, p. 81.
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eo(H- Le) <, eo(Aε) = c\Aε) ^ 4(^, vε)<ε.

Take Fε=Fr\Lε. Then Fε is compact and F-F6C(H-L€)\JN. It follows
that eo(F-F£)^eo(H-L£)+eo(N)<ε.

We use this fact in the following theorem.
THEOREM 8.14) Suppose that a sequence {μn} of measures in £ converges

vaguley to μ0 and that the total masses μn(Ω) are bounded. Then we have
μo) Q>e> in Ω.

PROOF. If we put hn(x) = inί{Φ(x, μk)\ k^>n}> then hn(χ) increases to
limLΦ(x, μn). Given ε>0, we can find, by Lemma 5, an open set Gε such that

ei(Gε)<ε and the restriction of Φ(x, μn) to Ω — Gε is finite and continuous for
each n (7i = l, 2, •••)• For t>0, we put

En(t)= {xeΩ; hn(x)-Φ(x, μo)>t},

En(ε, t)={xeΩ-Gε;hn(x)-Φ(x, μo)^t}

and

An(t)={xβΩ; Φ(x,

Then since the restriction of hn(x) to Ω — Gε is upper semicontinuous, En(ε, t)
is a closed set in Ω. We observe that En(ε, i)CAn(t) and eo(En(ε, t))<^eo(An(tj)
= ce(An(t))<^(μn, μn)/t2<oo. Consequently, by Lemma 7, e{(En(ε, t)) = eo(En(ε, t)).
If ei(En(ε, t)) were positive, we could find a unit measure v such that Sv is
compact, SvCEn(ε, t) and Φ(x, v) is finite and continuous in Ω on account of
the continuity principle. It would follow that

(x)dv(x)-\Φ(x, μo)dv(x)

<ΛΦ(X, μk)dv(x)-\Φ(x, μo)dv(x)

, v)dμk(x)-\Φ(x,

and the right side tends to 0 as &—•oo. This is a contradiction. Therefore
eo(En(εy t)) = ei(En(ε, t)) = 0. It follows that

14) Ohtsuka [6] proved Theorem 8 in case Ω is compact. Kishi [4] and Fuglede [3] obtained simi-

lar results. However the latter two authors used the terminology "q.e." in a sense different from ours.

Namely, set V*(μ) = sup{Φ(x, μ); xζΩ}, V;(Λ) = inΐ{ F*(^) μ^%A) \ϊ Aφφ, V*{φ) = oo and V*(A)

= sup{*7(G); G is open and G^A). Obviously Vt(A)St V*(A) and Ve(A)^ F*(A). Fuglede said

that a property holds n.e. (q.e. resp.) on A if the exceptional set in A has infinite V*-value (V*-value

resp.).



224 Maretsugu YAMASAKI

0 < eo(En(t))< eo(En(ε, t)KjGe)

Thus eo(E«(ί))-O β y t h e relation

N={χeΩ; \imΦ(χ, μn)-Φ(χ, μϋ)>Q}=\J\jEn(l/k),

we see eo(iV) = O. Namely \\mΦ(χ, μn)<^Φ(χ, μo) q.e. in Ω.

Now we shall prove

THEOREM 9.15) // eo(A) is finite, then there is a measure μ0 such that

Φ(x, μo)^>l Q>e o n A, φ(x> μo)£Ξl on Sμ0 and

PROOF. We can find a sequence {Gn} of open sets such that ef (G») is
finite, limei(Gn) = e0(A) and Gn^Gn+i^^. For each Gn, combining Theorem 5

with Lemma 6, we can find a measure μn such that SμnCGn, Φ(χ, μn)^l q.e.
on Gn^A, Φ(x, μn)<^l on Sμn and μn(Ω)=(μn, μn) = ei(Gn). Since the total
masses ^(ώ) are bounded, there is a subsequence {μHj} which converges
vaguely to some measure μ0. On account of Theorem 8, we see Φ(x, μo)^l
q.e. on A and (μo, μo)^\im(μnj9 μn) = e0(A). Consequently μo belongs to Γe

A

and hence (μo, μo)^ce(A) = eo(A) (Theorem 7). Thus (μo, μo) = eo(A). The
rest of the proof is carried out in the same way as that of Theorem 5.

THEOREM 10. Let {An} be an increasing sequence of arbitrary sets and

A = \JAn. Then we have
n=l

PROOF. Since eo(An) <: eo(An+1) <; eo(A\ it holds that lim eo(An) ^ eo(A). It

is enough to prove the converse inequality in case lim eo(An) is finite. For

each n, we can find, by Theorem 9, a measure μn such that μn(Ω) = (μn, μn) =
eQ(An) ^ lim eo(A) < °° and Φ{x, μn) ^ 1 q.e. on An. We may suppose that {μn}

converges vaguely to a measure μo by selecting a subsequence if necessary.
Making use of Theorem 8, we see that μo belongs to Γe

A and hence eo(A) =
ce(A)<(μo, A6o)^lim fa, ^ ) = lim eo(An). This completes the proof.

7 2 > o o n—*oo

6. Because of Corollary 1 to Theorem 1 and Theorem 10 we can apply
Choquet's theorem (Theoreme 30.1 in [1]). Thus we have

THEOREM 11. It holds that ei(A)=eo(A\ or equivalently Vi(A)= V,{A\ for

every analytic set A.

15) cf. [2], Theorem 4.3, p. 182.
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7. We shall show that our Theorem 11 is a generalization of Kishi's
theorem (Theorem 13 in [4]). Kishi postulated further that the kernel Φ is
strictly positive and regular, i.e. for any point x0 and any neighborhood δXQ

of xo, there is a positive constant t depending only on x0, and a unit measure
μ such that μG if, SμC$x0, Φ(χ, μ)^tΦ(x, XQ) in Ω.

We shall give a kernel which satisfies all our conditions except for this
regularity.

EXAMPLE. Let Ω be the 3-dimensional Euclidean space, f(x) = \τd(\x\,

I x I ~1/2) and Φ(x, y) = -—-—r+/(#)/( γ). Then Φ satisfies both the continuity
I x y\

principle and condition (*) and is of positive type. We observe that Φ is not
regular in the above sense.

In fact, if we take xo = O = the origin, then φ(χ, xo) = l/\x\. For any

nonzero measure μ€£9 aμ— \f(x)dμ(x)>0. If there were a positive constant

ί, depending only on x0, such that

Φ(χ, μ)<^tΦ(x, XQ) in Ω,

then we should have

Namely aμ\χ\f(x)^t <°o in Ω. This is impossible because \x\f(x)-+oo as
I x |-*oo.

8. The quantities e{(A) and eo(A) were also studied by Fuglede [2Γ\ and
Ohtsuka [6] under different conditions. We shall explain the differences. If
Φ satisfies the continuity principle and condition (*) in case Ω is not compact,
we denote Φe[_Kj&\

If the kernel is of positive type, the pseudo-norm \\μ — v\\ = [_(μ, μ) + (v9 v)
— 2(v> μ)~]112 defines the strong topology on £. Fuglede called a kernel con-
sistent if it is of positive type and any strong Cauchy net converging vague-
ly to a measure converges strongly to the same measure. If Φ is consistent,
we denote Φ e [F] 1 6 ).

If £ is strongly complete (i.e. complete with respect to the strong topo-
logy), we denote Φe [_OJl6\

The range within which their theory is available will be illustrated by
the following examples. For simplicity, we assume in what follows except
in Example 3 that Ω is the 3-dimensional Euclidean space.

EXAMPLE 1.

16) The symbols K, F, 0 are after Kishi, Fuglede, Ohtsuka respectively.
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Let f(x) be the characteristic function of { |#|<1} and Φ(x, r)= Ί Γ

\x-y\
+f(χ)f(y). Fuglede observed Φ^[_F~]\j[_OJ. Since this kernel does not
satisfy the continity principle,

EXAMPLE 2. Φe [_KJ and Φ $ [F]W[0].

Let/(*) = inf(l, k |- 1 / 4 )and Φ(x, y) = * + /(*)/(y). It is clear that

J. In order to show that Φ<ζ[_F^\yj[OJ, it is sufficient to prove that
our kernel is not consistent. Let μn be the uniform measure on {\x\ =n}
with μn(Ω) = n114. Then \\μn-μm\\2<ϊ(n-iu + m-m)2. Therefore {μn} is a
strong Cauchy sequence. It converges vaguely to 0. However \\μn\\2 = n~llA + l
does not approach 0. Namely, Φ is not consistent.

EXAMPLE 3. (Fuglede [2], p. 210) Φ e [_F^Γ\[_K~] and 0 $ [0].
Let Ω be the interval [0, 1] in the real line and Φ(x, y) = x y/(2 — x y). Fuglede
proved that Φ e [F] and Φ $ [0]. It is obvious that Φ e

EXAMPLE 4. Φe [ 0 ] and

Let Φ(x, j) = l. Then our assertion is easily verified.

EXAMPLE 5. Φ^[_KJ and
See Ohtsuka's example (Example 2 in

EXAMPLE 6. 0 $ [_FJ and Φ e \LKJr\[OJ.
Let/(#) = inf(l, 1/|*|) and Φ(x, y)=f(χ)f(y).

Fuglede proved that «f is strongly complete if Φ is consistent and Φ>0
(Lemma 3.3.1 in [2], p. 167). Therefore we have [ F ] C [ 0 ] if Φ>0.

In case Ω is a compact space, we see [_KJC[_FJ. The author does not
know a kernel such that Φe[_F^] and Φ(£[_KJι\j[_O~].
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