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1. Let 2 be a locally compact Hausdorff space and @(x, y) be a kernel
on £, i.e. a lower semicontinuous function on £ x £ with values in [0, +co7].
A measure p will be always a non-negative Radon measure on 2. The poten-

tial of u is defined by @(x, u)=\0(x, y)du(y) and the mutual energy of n and
Y. Y

v is defined by (v, M):Sm(x, w)ydv(x). We call (u, n) simply the energy of .

Let & be the class of all measures with finite energy and &, be the class of
all measures of & whose supports are compact and contained in the given set
A. The support of x will be denoted by Su. For a compact set K, we define

e(K)=sup{2u(K)—(u, n); p€ x} if &x {0}
and
e(K)=0 if ¢x={0}.
For any set 4, we define an inner quantity and an outer quantity as follows:
e(A)=sup{e(K); K is compact and K 4}
and
eo(A)=inf {e;(G); G is open and G A4}.

The problem of capacitability is to discuss when e;(4) coincides with ey (A).

M. Kishi [4] proved the equality e;(4)=e¢4) for every analytic set 4
(Theorem 13 in [47]) under the hypotheses that £ is a locally compact separa-
ble metric space, that #>0 and that @ is of positive type (§3) and satisfies
the continuity principle (footnote 6), condition (x) (§4) and a regularity condi-
tion (§7).

The object of this note is to improve his theorem. Namely, we shall
show that Kishi’s regularity condition, the condition @ >0 and a restriction
on £ can be omitted. The reasoning is analogous to that of B. Fuglede [3]
and the author [ 7], but our quantities are different from theirs (footnote 14).

Our problem was also studied by B. Fuglede [27] and M. Ohtsuka [6]
under different additional conditions. The differences will be illustrated in
§8.

2. We recall the quantities related to the capacity which were intro-
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duced by Ohtsuka [6]. For a measure p=0, we put V(u)=sup{@(x, u);
x€ Su}. We define Vi(4) by inf{V(w); pn€%.4} if A==¢ and set Vi(g)= oo,
where ¢ denotes the empty set and #,={u; Sp is compact, SpC 4 and
w(@)=1}. We define also V,(4)=sup{V(G); G is open and GO A}. We shall
say that a property holds nearly everywhere or n.e. (quasi everywhere or q.e.
resp.) on A if the V;-value (V,-value resp.) of the exceptional set in 4 is infinite.

The following propositions, which will be often used later, were obtained
by Ohtsuka.

Prorosition 1.9 Let {B,} be a sequence of sets which are measurable for
every measure on 2 and A be an arbitrary set. Then we have V(\JANB,)™!
=2V(ANB,)

Prorosition 2.2 Let {4,} be a sequence of arbitrary sets. Then we have
Ve (\JA) " =23V(A4,)7"

As an immediate consequence of this, we have

Cororrary. Let A, and A, be arbitrary sets. If V.(A;)= oo, then
Vi (Adi— A)=V (A)=V.(A4,\UA,).

ProrosiTiOoN 8.9 For any compact set K, we have V{(K)= V,(K).

3. We assume hereafter that the kernel @ is of positive type, i.e. @(x, y)
=0(y, x) for all x, ye 2 and (u, p)+(, v)—20, p)=0 for all x, ve&. The
following theorem is well-known.

TueoreMm 1. For any compact set K, we have e(K)=Vy(K)™!. In case
Vi(K)>0, there is a measure ux € & x which minimizes I(v)=(v, v)—2u(K) for
vyE k. This measure ux has the following properties: (1) O(x, pg)<1 on
Spr, (2) O(x, pg)=1 n.e. on K and (3) px(2)=(nk, nx)=e(K).

CoroLrLarYy 1. For any set A, it holds that
el(A)=V(A)" and e(A)=V,(4)"

Consequently we see that eo(K)=¢;(K)=e(K) for any compact set K and
that e,(4)=0 is equivalent to V,(4)=co.

CoroLLARY 2. If V,(N)=oco, then ey(A—N)=el(A)=ei(A\IN) for any
set A.
For an arbitrary set 4, we introduce two classes of measures:

1) [6], Proposition 1, p. 139.
2) [6], Proposition 2, p. 140.
3) [6], Theorem 1.14, p. 207.
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Ii={veé&; 0(x,v)=>1 ne. on A
and
re=4{ve¢; 0(x,v)=1 q.e.on A4}.

In case 1"}, ¢, we define c¢(4) by inf{(», »); v€I'}}, and in case 'y =¢, we
set ¢'(A4)=oco. For the class I, c°(4) is defined in the same way.”

These quantities ¢(4) and ¢°(A) are increasing set functions of 4 and it
holds in general that ¢/(4)<<c°(4) for any set 4. In case 4 is a compact set
K, we have

Tureorem 2. ¢(K)=c*(K).

Proor. It is enough to show I'y=7I%. This follows from Propositions
2 and 3.

In case ¢'(A4)(ei(A) resp.) coincides with ¢?(A4) (eo(A) resp.), we denote by
c(A) (e(A) resp.) the common value. We observe that this e(K) is equal to
the original e(K) in §1 and ¢'(K)=c“(K)=c(K) for any compact set K and
ei(G)=eo(G)=e(G) for any open set G. The relation between c¢(K) and e(K)
is given by

TuroreM 3.9 e(K)=c(K) for any compact set K.
Proor. Let vel'}; and p€&,. Then it follows that (v, p)=u(K) and
o, W+ (s 1) —2p(K) = (v, )+ (5 1) —2(v, 12) =0.

Therefore ¢(K) = e(K).
The converse inequality is led by Theorem 1. In fact, in case e(K)< oo,
the measure px belongs to I'j.

CorOLLARY. e;(A)=<c{A) for any set A.

4. Now we assume in the sequel that the kernel @ satisfies the continuity
principle.” In case 2 is not compact, we further assume that the kernel @
fulfils the following condition (x) of Kishi: for any compact set K and any
positive number ¢, there is a compact set K, such that @(x, y)<e on Kx(2—K,).

Kishi proved in [4]]

Lemma 1. Suppose that a sequence {u,} of measures converges vaguely to

4) Fuglede considered Ff;b T4, ci(A) and c¢(A4) in [2]. Kishi introduded a family of measures

similar to 1", but the meaning of “q.e.” was different. Kishi defined that a set 4 is &-polar if and only
if there is a measure v& & such that @(x, v)=co on 4. He said that a property holds q.e. on A4 if the
exceptional set in A is &-polar.

5) [4], p. 107.

6) Continuity principle: If the potential @(x, 1) of a measure . with compact support Sy is finite
and continuous as a function on Sy, then @(x, p) is continuous in Q.
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wo and that the total masses 11,(2) are bounded. Let v be a measure which has
a compact support and whose potential is finite and continuous in L. Then we
have lim (v, pa)=(v, po)-

We shall consider a quantity I}=inf{(», v)—2u(2); v€ &4} for the class
of measures &,={v€ &; Sv is compact and Sy 4}. By the obvious relations
Ii: = —e(K) for any compact set K and I;=inf{I; K is compact and K C 4},
we have

TueoreM 4. I = —e;(A) for any set A.

The relation between e;,(4) and ¢’(4) is given by

THEOREM 5.7 e;(A)=c'(4) for any set A. If e(A) is finite, then there is
a measure o supported by A (the closure of A) such that @(x, p)=1 n.e. on
A, O(x, 1) =1 on Spo and po(2)=(po, po)=ei(A).

Proor. On account of Corollary to Theorem 3, we may assume that
ei(A) is finite. In this case Vy(K)=V,(4)>0 for any compact set K 4. Let
{K,} be an increasing sequence of compact sets contained in 4 such that I,
tends to I. For each n, let u, be the measure ux, obtained in Theorem 1.
Then 1,(2)=(ptn, pn) tends to — I, =e;(A) (Theorem 4), ®(x, x,)=>1 n.e. on K,
and O(x, p,)<<1on Su, Since the total masses n,(2) are bounded, we can
find a vaguely convergent subsequence of {x,}. Denote it by {u,} again and
let uo be the vague limit. Naturally, it is suppoted by 4. We set N={x € 4;
O(x, no)<1} and prove V{(N)=oco. If we deny this, then there would be a
unit measure v€ &y &4 such that d(x, v) is finite and continuous in 2 by the
continuity principle; see for instance [ 6 ], for the proof of Lemma 1.4, p. 190.
Obviously we have (v, uo)<1. Since u,+tveE &4 for any positive number ¢, it
holds that

L=yt tv, py+19)—2(n,+ ) (2)
= (s pn) = 2p0(8) + 26 (sin, v)+ 1*(v, v) — 200(R).
Letting n—>oo0, we have by Lemma 1
LI+ 2t(v, po)+ (v, v)—2t.

Cancelling I, dividing the rest by ¢ and letting :—0, we obtain (v, o) =1.
This is a contradiction. Hence @(x, no) =1 n.e. on 4 and (po, o) = lim (un, sa)

=ei(A4). Consequently po€ '} and ¢'(A) < (po, o) < ei(A). Therefore (o, o)
=ei(A)=c'(4).

Let x, be any point of Su,, and .#" be the directed set of neighborhoods
of x,. For every couple (U, n) of Uc 4 and n, we select any point x(U, n) in
UN S, where n’ is the smallest integer satisfying n'=n and UN Sy, 7 ¢.

7) cf. [4], Lemma 12, p. 107 and [2], Theorem 4.1, p. 175.
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We regard the set of all couples W=(U, n) as a directed set in a natural man-
ner and denote it by D. Let Aw =¢.w,n) X pn correspond to W=(U, n), where
¢, represents the unit point measure at x in general. Thus {iw; WD} is a
net, and converges vaguely to e, x u. We have

0o, 1) = 0d(es, % po) <lim |02y
D

By the arbitrariness of x,€ Suo, we conclude @(x, uo)<1 on Su,. Hence
e(A)= (o, po) = po(2). On the other hand, .o(2)<lim 1,(2)=e:(4) and hence

mo(@)=ei(A4), This completes the proof.

5. In this section, we shall establish the equality e((4)=c°(4). First
we shall prove

TureoreM 6.8 eo(4) < c*(A4) for any set A.

Proor. We may assume c’(A)<co. Given ¢>0, there is a measure v
such that (v, v)<c*(4)+e¢ and &(x, v)=>1 q.e. on 4. For any positive number
t<l,put G,;={x€ 82; O(x, v)>t} and N={x € 4; @(x, v)<1}. Then G; is open
and contains 4—N. Since /¢ belngs to I';, and V,(N)=co, we have ei(4)=
el A—N)=< ei{G)=c'(G) < (v, v)/t*<[c*(A)+¢]/t* by Theorem 5 and Corollary
2 to Theorem 1. Letting t—1, we have eo(4) < c°(4)+¢ and hence obtain the
inequality.

Our problem is to see the converse inequality. In what follows, if we
assume that any open set in 2 is a K,-set, then our reasoning becomes sim-
plier. However, we do not assume this and we follow the method of Fuglede
[37], making use of quasi topology but without referring to this terminology
explicitly (cf. [7]). We shall prepare several lemmas, which were proved for
VF(A)™ and VX¥(4)™" in [ 3] (see footnote 14). We have

Lemma 2. Assume that a set A has the following property: for any >0,
there is a set B. such that e (B:)=ey(Be), eo( A—B:)<eand eo(B.— A)<e. Then
it holds that e (A)=e\(A).

Proor. This is an immediate consequence of Proposition 2 and the in-
equality e;(4\UB)<< e, (A)+ eo(B).

Levma 8.9 Take ACR and p, veé. If O(x, u)=0(x,v)+t on A for a
positive number t, then we have Vi(A)=1t*||pn—v||~%, where ||p—v||= (1, )+

(v, ) —2(u, ») T

8) cf. [4], Lemma 13, p. 108 and [2], Lemma 4.3.2, p. 181.
9) [6], Lemma 3.4, p. 298.
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Lemma 4.1 Let € &. Given ¢>0, there exists a compact set K. such that
the potential of u., the restriction of u to K., 1is finite and continuous in 2
and |[p— pell<e.

Like in [4] and [ 6], by using Lemmas 3 and 4 we can prove

Lemma 5.1V The potential of a measure with finite energy is quasi con-
tinuous, i.e. for any ¢>0, there is an open set G, such that Vi{(G:)>1/c and the
potential is finite and continuous as a function on 2—Ge

Lemma 6. Let G be an open set and v be a measure with finite energy.
Then &(x, v) =1 n.e. on G implies @(x, v) =1 q.e. on G.

Proor. It is enough to show that the e,-value of the exceptional set
N={x€G; 0(x, }<1} is zero. Given ¢>0, by Lemma 5, there is an open set
G, such that ¢,(G.)<e¢ and @(x, v) is finite and continuous as a function on
2—G.. Put N.={x€82—G:; 0(x,v)<1} and B.=(N:\UG)N\G. Then NCB,
CNUG, and N.\UG, is open. Therefore, it follows that B, is open, e,(N— B;)
=eo(¢)=0 and ey(B:—N)<ei(G:)<e. Obviously ei(B:.)=ei(B:). We see by
Lemma 2 that e((V)=ei(N)=0.

Remark. We need not condition (x) in Lemmas 2-6.
TueoreM 7.'2  eo(4d)=c*(4) for any set A.

Proor. For any open set GD 4, it holds by Lemma 6 and Theorem 5
that ¢®(4) < c“(G)=c'(G)=ei(G). Thus we have c*(4)<eyA4). The converse
inequality was shown in Theorem 6.

Next, we shall give

Lemma 7. Let F be a closed set with eo(F)<oo. Then we have e (F)=
eo(F).

Proor. We may suppose eo(F)>0. On account of Lemma 2 and Pro-
position 3 it is enough to show that, for any ¢>0, we can find a compact set
F.CF such that e, (F—F,)<e. Take an open set G such that GDF and
ei(G)<oo. We can find, by Theorem 5, a measure . such that u(G)=(u, p)=
ei(G)>0and &(x, x)=1 n.e. on 6. By Lemma 6 &(x, u)=1 g.e. on G. Put
N={x€G; O0(x, p)<1} and H={x€ 2; O(x, p)=1}. Then HUNDF and
eoN)=¢e(N)=0. Givene>0, there is a compact set K. such that (v, v.)<e/4,
where v.=p— pe and . is the restriction of x to K.. On account of condi-
tion (%), there exists a compact set L. such that @(x, »)<1/[2u(2)] on
(2 — L)%K, Consequently @(x, u.)<<1/2 for any x€2— L. and H\(2— L) A,
={x€8; O(x, v:)=1/2}. Since 2v; belongs to I}, we have

10) [6], Lemma 1.4, p. 190.

11) cf. [4], Lemma 10, p, 150 and [6], Theorem 1.13, p. 206.

12) cf. [4], Lemma 13, p. 108.

13) [2], Lemma 4.22, p. 179 and [3], Corollaire du Lemme 7.1, p. 81.
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eo(H—Le) = eo(Ae) = c*(Ae) = 4(ve, ve) <.

Take F.=FNL.. Then F. is compact and F—F.C(H—L.)\UN. It follows
that eo(F—F:) < eo(H— L)+ eo( V) <.

We use this fact in the following theorem.

TueorREM 8.  Suppose that a sequence {u,} of measures in & converges
vaguley to no and that the total masses u,(2) are bounded. Then we have
im0z, 1) = 0(x, o) q.e. in L.

Proor. If we put A,(x)=inf{@(x, u); k=>n}, then h,(x) increases to
lim@(x, 11,). Given >0, we can find, by Lemma 5, an open set G. such that

N—o0

ei(G:)<e and the restriction of @(x, u,) to £—G. is finite and continuous for
each n (n=1, 2, ...). For r>0, we put

E,(t)=A{x € 2; hu(x)—O(x, po) =t},
Ey(e, )=4{x € —Ge; hu(x)—O(x, po) =t}
and
A()=Ax€2; O(x, jpn) =t}

Then since the restriction of h,(x) to 2—G. is upper semicontinuous, E,(e, t)
is a closed set in 2. We observe that E,(e, ) C 4,(¢) and eo(E,(e, 1)) = eo(4.(2))
=c(A()=(ptn, pn)/t*<o0. Consequently, by Lemma 7, eE.(¢, t)) = eo( Eu(e, t)).
If e{E.(e, t)) were positive, we could find a unit measure » such that Sv is
compact, Sy C E,(e, t) and @(x, ») is finite and continuous in £ on account of
the continuity principle. It would follow that

e =T = 0, o)) = o) ) = (0, po)dot)
={o, s — 00, podui)

= 0Ce, dyuat)— §00x, Do) (k= n),

and the right side tends to 0 as £—>oco. This is a contradiction. Therefore
eo( Ex(e, t))=edE.(e, 1))=0. It follows that

14) Ohtsuka [6] proved Theorem 8 in case £ is compact. Kishi [4] and Fuglede [3] obtained simi-
lar results. However the latter two authors used the terminology “q.e.” in a sense different from ours.
Namely, set V*(n)=sup{@(x, n); x €L}, V, (A)=inf{V*(n); pnEU.4} if AF $, V($)=0c0 and V*(4)
=sup{V;(G); G is open and GDA}. Obviously V,(4) < F}(4) and V(4)< V?*(A4). Fuglede said
that a property holds n.e. (q.e. resp.) on A if the exceptional set in A has infinite V-value (V' -value
resp.).
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0= e E(1)) =< e Eue, 1)\ IGe)
< oo e, )+ eoG) <.
Thus eo(E.(t))=0. By the relation
N={x€2; im0(x, 1un)—O(%, j10)>0} = UUEn(l/k),

=3

we see e(N)=0. Namely lim @(x, p.) = O(x, wo) q.€. in L.

n—o0

Now we shall prove

TueoreM 9.°  If eo(A) 18 finite, then there is a measure po such that
O(x, po)=1 q.e. on A, O(x, po) =1 on Spo and po(L)={(ro, 1o)=eo(A).

Proor. We can find a sequence {G,} of open sets such that e,(G.) is
finite, lim e,(G,)=eo(4) and G, >G,,1> 4. For each G,, combining Theorem 5

n—oo

with Lemma 6, we can find a measure y, such that Su,CG,, 0(x, 1) =1 q.e.
on G,O A, O(%, pn)=1 on Su, and u.(2)=(u, n)=eiG,). Since the total
masses u.(2) are bounded, there is a subsequence {u,} which converges
vaguely to some measure po. On account of Theorem 8, we see @(x, o) =1
g.e. on A and (o, /L0)<llm (tnyy pom)=eo(A). Consequently u, belongs to 74
and hence (uo, po)=c® (A)—eo(A) (Theorem 7). Thus (uo, mo)=eo(4). The
rest of the proof is carried out in the same way as that of Theorem 5.
Tureorem 10. Let {4,} be an increasing sequence of arbitrary sets and

A=\JA,. Then we have
n=1
eo(A)=1im eo(4,).

Proor. Since eo(A,) < eo(An.1) = eo(A), it holds that lim eo(4,) = eo(4). It
is enough to prove the converse inequality in case lim e((4,) is finite. For
n—»oo

each n, we can find, by Theorem 9, a measure u, such that 1,(2)=(ua, )=
eo(An) <lim eo(A4,)< oo and O(x, u,)=1 q.e.on 4,. We may suppose that {u.}

converges vaguely to a measure uo by selecting a subsequence if necessary.
Making use of Theorem 8, we see that o, belongs to I'; and hence eo(4)=
c*(A) < (o, 150) <1im (pn, pa)=lim eo(4,). This completes the proof.

N—o0 N—o0

6. Because of Corollary 1 to Theorem 1 and Theorem 10 we can apply
Choquet’s theorem (Théoréme 30.1 in [17). Thus we have

TueoreM 11. It holds that e (Ad)=-eo(A4), or equivalently Vi(A)=V.(4), for
every analytic set A.

15) cf. [2], Theorem 4.3, p. 182.
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7. We shall show that our Theorem 11 is a generalization of Kishi’s
theorem (Theorem 13 in [4]). Kishi postulated further that the kernel @ is
strictly positive and regular, i.e. for any point x, and any neighborhood ¢,
of x,, there is a positive constant : depending only on x,, and a unit measure
wsuch that pe &, Sp 0., O(x, p) <t0(x, xo) in L.

We shall give a kernel which satisfies all our conditions except for this
regularity.

ExampLe. Let £ be the 3-dimensional Euclidean space, f(x)=inf(|x]|,
|%|~'%) and O(x, y)=|~x%97|—|- f(x)f(y). Then 0 satisfies both the continuity
principle and condition (%) and is of positive type. We observe that & is not
regular in the above sense.

In fact, if we take x,=0=the origin, then @(x, xo)=1/|x|. For any
nonzero measure p € ¢, o, = S f(x)dp(x)>0. If there were a positive constant

t, depending only on x,, such that
O(x, u)<t0(x, xo) in 2,
then we should have

1 t .
s < b
S|x 7 d/L(y)—l-a”f(x)_'xl in 2.
Namely a,|x|f(x)=t <oo in & This is impossible because |x |f(x)—>co as

8. The quantities e;(4) and ey (4) were also studied by Fuglede [27] and
Ohtsuka [ 6] under different conditions. We shall explain the differences. If
0 satisfies the continuity principle and condition (x) in case £ is not compact,
we denote d [ K ]'*°.

If the kernel is of positive type, the pseudo-norm ||p—yv||=[(x, w)+ (v, v)
—2(v, n) % defines the strong topology on &. Fuglede called a kernel con-
sistent if it is of positive type and any strong Cauchy net converging vague-
ly to a measure converges strongly to the same measure. If @ is consistent,
we denote @[ F]'%.

If ¢ is strongly complete (i.e. complete with respect to the strong topo-
logy), we denote @€ [07]*°.

The range within which their theory is available will be illustrated by
the following examples. For simplicity, we assume in what follows except
in Example 3 that £ is the 3-dimensional Euclidean space.

Exampie 1. @[ K \J[FJU[O].

16) The symbols K, F, O are after Kishi, Fuglede, Ohtsuka respectively.
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1
lx— yl
+f(x)f(y). Fuglede observed @<-[F]U[O]. Since this kernel does not
satisfy the continity principle, @[ K.

ExamprLe 2. 0€[K | and O0[FU[O]
Let f(x)=inf (1, |x| "% and O(x, y)=ﬁ+ F@)f(». 1t is clear that
®c[K]. In order to show that &< F]\U[ O], it is sufficient to prove that
our kernel is not consistent. Let u, be the uniform measure on {|x|=n}
with u,(2)=n'*  Then ||gn—pnl?<(n Y*+m 4%  Therefore {u,} is a
strong Cauchy sequence. It converges vaguely to 0. However ||u,/|?=n""*+1
does not approach 0. Namely, @ is not consistent.

ExampLe 3. (Fuglede [2], p. 210) @[ F]N[K ] and @[ 0].
Let 2 be the interval [0, 1] in the real line and @(x, y)=x y/(2—x y). Fuglede
proved that # <[ F ] and @[ 0]. It is obvious that 6 [ K.

Exampre 4. 0€[0O]and 0 K J\J[F .
Let &(x, y)=1. Then our assertion is easily verified.

Let f(x) be the characteristic function of {|x|<1} and &(x, y)=

Exampre 6. O0&[K]and 0€[FN[O].
See Ohtsuka’s example (Example 2 in [5)).

ExampLE 6. O&[F Jand 0 [ K ]N[O].
Let f(x)=inf(1, 1/|x]) and O(x, y)=f(x)f(y).

Fuglede proved that & is strongly complete if @ is consistent and >0
(Lemma 3.3.1 in [ 2], p. 167). Therefore we have [F]C[0] if 0>0.

In case 2 is a compact space, we see [K JC[F]. The author does not
know a kernel such that 6 [ F | and 0 K ][ O]
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