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Many attempts have been made to define a multiplication for distribu-
tions. H. Kδnig [9, 10] was the first to develop a systematic treatment of
the subject in an abstract way, and showed that there are actually many pos-
sible multiplication theories if one gives up some of the requirements that
L. Schwartz [14] has shown impossible to be satisfied. His theory is, how-
ever, rather complicated and mainly concerns with the one dimensional case.
Some writers [1], [7] also worked out the theories designed for certain
physical applications, where multiplication need not be commutative and the
product may contain arbitrary constants.

Y. Hirata and H. Ogata [4] introduced the definition of the multiplica-
tive product of two distributions in order to generalize the exchange formula
concerning Fourier transformation. An equivalent definition of the product
was given by J. Mikusiήski [13]. Among the results of [18] and [6], it has
been shown that given 5, T e 2)'(J2), where Ω is a non-empty open subset of
an iV-dimensional Euclidean space RN, the product ST exists if and only if to
every a e Q)(Ω) there is a 0-neighbourhood of RN so that aS*T is equivalent
to a bounded measurable function continuous at 0. Here S T is defined to be
a unique distribution We ζΰ'(Ω) such that < W, a>=(aS*T)(0). The same
result has been announced by J. Jelinek [8] incidentally.

The main purpose of this paper is to generalize the multiplication just
considered above so as to maintain as many reasonable properties as possible.
With this in mind, we reach the requirements I through IV (see Section 1 be-
low) for multiplication between distributions. Especially the requirement IV
states that multiplicative product of distributions is invariant under diffeo-
morphisms. The results of [6] constitute a basis and background for the
present paper. With the same notations as above, if aS*T has the value
(aS*T)(0) at 0 in the sense of S. Lojasiewicz [12], the distribution We Q)'(Ω)
defined as before will be called the multiplicative product of S and T and de-
noted by SO Γ. The multiplication thus defined will satisfy the requirements
indicated above. In the case JV=1, we can make further generalizations of
the notion of the multiplication. Another purpose of this paper is to investi-
gate these multiplications.

The presentation of the material is arranged as follows: In Section 1 we
write down our requirements I-IV for multiplication. Any multiplication
satisfying these requirements is called normal. Section 2 contains two lem-
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mas concerning the value of a distribution at a point for our later purpose.
In Section 3 some equivalent definitions of the product SOT are given. We
show that the multiplication thus defined is normal. It is noticed that we
can introduce a multiplication between distributions for any differentiable
maniford, which is invariant under diffeomorphisms. Section 4 is devoted to
the investigations of further properties of the multiplication. It contains
also the results concerning simultaneous product of more than two distribu-
tions and partial multiplication. In the rest of this paper we shall consider
only the case N=l. Section 5 deals with a generalization of SOT which
will be denoted by SxoT. We show that if SxoT makes sense, then so does
SO T (the product in the strict sense of H. G. Tillmann) and they coincide.
In the final section a further generalization is made so as to make the product
of δ by δ significant. The section is closed with the comparison between the
product and that in the general sense of Tillmann.

§ 1. Requirements for multiplicative product

Let RN be an TV-dimensional Euclidean space. If x = (#i,
(yu ...5 yN)eRN and λ is a real number, we write x + γ=(χι +

N Λ

is an JV-tuple (puy
N

of non-negative integers, the sum 'Σpj will be denoted by \p\, the product

flpjl byjσ! and the product i ί f ^ ) by (P\ where q=(qi, •••, qn) is such t h a t

q<,P, t h a t is, qj^pj for / = 1 , 2, ..., N. With D=(DU ..., DN), Dj=-£-, we
0X j

put DP = D{1 ••• DP

N

N. Similarly we write xp = x{1 ••• χp

N

N.
Denoting by Ω a non-empty open subset of RN, we shall consider the fol-

lowing spaces:
C(Ω): the space of the complex valued continuous functions in Ω
2)00): the space of the complex valued C°°-functions in Ω with compact

support, equipped with the usual topology
ζbf(β): the space of Schwartz distributions in Ω, the strong dual of 2)(i2);
S(Ω): the space of the complex valued C°°-ΐunctions in Ω, with the usual

topology;
&'(Ω): the subspace of distributions e Q)r(Ω) with compact support, the

strong dual of &(Ω).
Without explaining explicitly, < 5 , φ> will denote the scalar product of

S e Q)'(Ω) and φ e Q)(Ω\ or 5 6 &'(Ω) and φ e &(Ω). We often use the symbol
S(χ) instead of S. This does not mean that 5 is a function of x. For ex-
ample, < SO), φ(χ)> means <S,φ>. The restriction of 5 e Q)'(Ω) to a non-
empty open subset ΩiCΩ^ will be denoted by SΩί. Let x = Φ(x') be a diίfeo-
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morphism of Ω' onto 42, that is, Φ carries Ω' homeomorphically onto Ω and
both Φ and Φ~ι are smooth. Given SeQ)\Ω\ we denote by S(x')=S(Φ(x'))
the distribution in Ω' such that

<S(x'\φ(x')> = <S(χ\ \Kχ)\Φ(Φ-Kx))>, Φt2KΩ'\

where J(x) is the Jacobian of the mapping xf = Φ~\x).
Now let a e &(Ω) and S e Q>'(β). According to Schwartz [Ί5[] the multi-

plicative product aS is a distribution in Ω defined by

<aS, ψ> = <S, aφ>, φcQ)(Ω).

This multiplication has the usual properties, in particular bilinearity, as-
sociativity with multiplication in S(Ω\ and Leibniz5 formula for the deriva-
tive of the product and so on. However, multiplication of arbitrary two
distributions cannot be defined so that it may possess these reasonable pro-
perties. If we can associate a subset TlΩ C 2)'(i2) x 2)'(i2) with each non-empty
open subset ΩCRN in such a way that SOTe Q)'(β\ called the multiplicative
product of 5 and Γ, is defined for any (5, T) e TlΩ with the following condi-
tions I through IV, then the multiplication will be called normal:

11. if (/, g) € C(Ω) x C(Ω\ then (/, g) e WlΩ and fθ g coincides with the
ordinary product/g ;

12. if (5, T) 6 <mΩ, then (Γ, S) e WiΩ and 5O Γ = TO S;
13. if (Si, T\ (S2, T) 6 2RΛ, then (Sλ+S2, T) e 90ΐ̂  and (S1+ S2)O Γ = SiO Γ

+ 5 2 OΓ;
14. if α e &(Ω\ (5, Γ) 6 aw*, then (α5, Γ) e ^ and (α5)O Γ = α ( 5 O Γ);

II. if ( | ^ , r )ea j l f i for y = l, 2, ..., TV, then (5, Γ), ( s , | ^ ) e 2HΛ for

IΠi. if (S, T)6 93ΐβ, then (5 f l l, Γώ l)eTOώ l and 5 β l O Γβ l = ( 5 θ Γ) f i l for
any Ωλ<ZΩ\

IΠ2. if (5Λ t, TΩ) e 9Kfit for each *, where 5, Γ 6 Q)\Ω) and Ω=VJtΩt, then
(5, Γ)6TOβ;

IV. if (5, Γ) 6 9JlΛ and r = 5O Γ, then (S, f) e 2ΛΛ, and W= SO T for any
diffeomorphism x = Φ(x') of ώr onto Ω.

One of our main objectives is to generalize the multiplication in the sense
of Hirata-Ogata Q4] or Mikusiήski [[13] s o that it may be made normal.
Before proceeding further we shall stay here to make a few remarks on
normal multiplication between distributions.

REMARK 1. Suppose a normal multiplication D is defined. Let 5,
T 6 Q)\Ω) and letp be a multi-index with p^>0. If (DqS, T) e mΩ for any q
such that 0<I | q \ ^ \p \, we see by II that Leibniz' formula for the derivative
of the product
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T)

remains true. Especially, in the case S=a e S(Ω) and T=f e C(β\ Ii implies
that Dqaθf exists for any multi-index q^O and DqaOf=(Dqa)f. Thus
aODpf = a(Dpf) in Ω. Furthermore, if ae&(Ω) and TeQ)f(Ω\ then
(a, T) e SΰlΩ and aθ T=aT. In fact, T is locally represented as a derivative
of a continuous function (Q15J, I, p. 82). For each point xt e Ω, there exist a
multi-index/>,, an open neighbourhood ΩL{CΩ) of a, and a continuous func-
tion/, in Ωt, for which Tβ=Dpyt. Thus (α^, Γ^) 6 2M*4 and aΩp TΩ=aΩTΩί

and then (a O Γ)Λ4 = (α T)Ωί by IΠi and III2. Consequently we see that
(α, Γ) 6 9K.β and αO T=aT, completing the proof.

REMARK 2. Let JV=1. Pf—OS cannot be defined because otherwise we
x

would obtain

REMARK 3. If SO T exists, then a(SO T)=(aS)O T= SO(aT) by I2 and
I4, and hence the support theorem

supp(5O Γ)Csupp 5Πsupp T

is valid.
For our later purpose we shall show in the case N= 1 the following

LEMMA 1. Let T, δ e Q)r(Ω). Assume that TOδ exists, then Tθδ = cδ with
a constant c. If δ(pQ)Oδ(qo) exists, then δ(p)θδ(q) exists and is equal to 0 for

PROOF. By Remark 3 we can write

with constants ah ; = 0, 1, , n. Since xδ^O and χδU)=-jδu-ι) for
we have

This means that ax = a2 == = an = 0. Thus we have Tθδ = aoδ.
If δ(Po)Oδ(qo) exists, then we see by Remark 1 that δ(p)θδ(q) exists for

and Leibniz' formula
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remains true. For our end, it suffices to show that δ(k)Oδ = 0 for each A^O.
There exists a constant c such that δ(k)θδ = cδ. Let us now consider the dif-
feomorphism x — ax' of Ω' onto Ω with a positive number α, and we shall have

Thus * δik)θ— δ = — δ, that is, δ(k)θδ = ak+1cδ. This implies c = 0, which

completes the proof.

§ 2. The value of a distribution at a point

We shall first recall some basic facts and definitions concerning the value
of a distribution at a point introduced by Lojasiewicz Qll, 12] which will
play an important role in studying our multiplication theory.

Let T be a distribution defined in a neighbourhood of x0 e RN and λ a
positive real number. If the distributional limit

lim T(xo + λx)
λ-» + o

exists in a neighbourhood of 0 and is a constant function, then the value T(x0)
of T Sit χ = χ0 is defined as the value of this constant function.

It is known that T has the value c at # = #0 if and only if there exist a
multi-index p^O, a neighbourhood U of Λ;0 and a continuous function F(x) in
Z7, for which

in £/, where F(x) = o(\x — xo\ '*') as |x — Λ; 0 | ->0.

Lojasiewicz has also introduced a notion of the section of a distribution,
extending the notion of the value of a distribution at a point.

Consider a non-empty open subset Ω of RN=Rm x J?w. A point of JR* will
be denoted by (x, y\ where χ = (χu •••, #m), γ=(yu •••, >)• Put

Let Γ e ©'(ώ) and let γ0 be such that ΩyQ is not empty. If there exists a
distribution 5 e Q)'(Ωyι) such that

lim T(x,

or equivalently

^ ( l ^ y ή { φ(y)dγ
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for any φ e Q)(Ωyo\ ψ e Q)(Rn\ then according to Lojasiewicz [12] (p. 15) we
shall say that y= y0 can be fixed in T(x, y) and that S is the section of T for
y= jo which will be denoted by T(x9 y0).

It is known that a necessary and sufficient condition for S to be the sec-
tion of T for y= y0 is that for any non-empty open subset G C C ^ 0 ( i C C - δ
means that A is relatively compact in B), there exist a multi-order (/?, q\ a
neighbourhood Δ of y0 and a continuous function F(x, j) in Gx J, for which

T(x, y)=S(x)®ly + Dp

xD
q

yF(x, y)

in G x J, where F(x, y) = o(\ y— y0\
ιg]) as | y— y01 ->0. We may take here p,

q so that pΞ>/>o, q^qo f°^ any given p0^05 q0^0. As an immediate consequ-
ence of these considerations, we obtain the following

LEMMA 2, // T(x, y0) exists, then

Urn <T,xx(x

for any xλ e Q)(ΩyQ x Rn) depending on λ>0 such that
(i) supp%λCGx{y: \y-yo\<λ};

(ii)

(iii) \ X\(χ> y)dy->φ(x) in Q)(ΩyQ) as λ^O.

Now we shall show

LEMMA 3. Let S be a distribution in a neighbourhood of 0 in RN. If the
dS

values ——(0) = cy exist for y = l, 2, •••, iV, then the same is also true of S.

PROOF. Let S> = |^-, y = l, 2, ..., N and P λ = { ^ ; | ^ | e e = m a x | ^ | < A } for

any positive number λ <J 1. We may assume that cy = 0 and supp Sj

2, ..., iV. In fact, otherwise setting S'=S-^CJXJ we shall have ^ ° ; = ^ -
1 UXj UXj

— cy in a neighbourhood of 0, where a is taken from 2)(Pi) and equal to 1 in
a neighbourhood of 0. Then there exist a multi-index p with \p\^>N and
continuous functions .F, (Λ;) in Pu for which

in Pi, where Fj(x)=o(\x\ιpι) as | Λ ; | ^ 0 . Let supp S/CΛ0, 0<^ 0 <l, and let
/9 e ©(Pi) be chosen so that /9=1 in Pλo. If we put G, — /9F; , then we can write
5/ in the form

where |Gy|^s( |^U) |^ | I / M and e(|^U) | 0 as | * L | 0 . Then suppGyCPi and
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Now, let E be a fundamental solution for Laplacian Δ. Then we can write
with a constant C

Kj \X\

inΛ\{0}.
Now

dE

Since ΣT/*-*— is continuous at 0, we only have to show that Dp\Gι*-=—Vθ)
1 OX' \ UX'J

exists for each y = l, 2, ..., iV.

Let x e P*v with (? = -!• (v=l, 2, ...). Put
Li

We have an estimate for Ij>v

where εv is a constant such that ev I 0 as v | °°.
On the other hand,

and we can write with a constant d

£>/> ^ ( ^ ) _ fa) \&.
I Λ I I •* I

Putting

we shall estimate DpIf>v — aj in P̂ v.



158 Mitsuyuki ITANO

— Γ1 4- T?
— J j ,v\ J j ,v

Then we have with εί j 0

\ p y _ i1 J rβ

When x e Pθv and y 6 Pι\Pθv-i we can write with a constant CJ and a posi-
tive t < 1

φj(χ-γ) _ φj(-γ)
<

Since

we have with constants C2, C3

Thus we obtain

where εζ is a constant such that εj j 0 as v t °°

Consequently there exist continuous functions HjtV(x) in Pθv such that we
can write

DpIlv-aj = DpHj>v(x\ x 6 Pθv,

where |J?yfI,|^e:/0" l ϊ' and εf j 0 as v \ oo,
Combining these results we can find continuous functions Kjt£x) in P#v

such that

where |XJ

If we put
and τjv JO as vf °°

= 1, 2, ..., TV, v = l , 2,

then the functions gyjV are continuous in P̂ v+i and DpqJV = 0 in P^v+i. By vir-

tue of Lemma 2 in [[12] (p. 12), there exist continuous functions <//)t, in P# such
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that

(i)

(ii)

(iii)

where K is a constant independent of v and j .
Consider the continuous functions Kj>v in Pθ defined by

then owing to (i) through (iii) we obtain

(iv) RJ,,\PΘ* = KJ,V;

(v) DpKJ>v = DpKjΛ;

(vi) I Kj>v+σ-Kj>v I = I qj>v + • • • + qjtV+v

Ί-ΘN

This shows that Kjv converges uniformly for each j as v \ oo. Hence if we
put for each j

Σ
i = 1

then Xy is a continuous function in P^ satisfying

where τj'v is a constant such that *η'v \ 0 as v \ oo. This means that Kj = o( | Λ; | I / H)
Consequently we can write

where | Xjr | = o( | x \' '̂) as | Λ; | j 0. This shows that DpGj has the value aj at 0
for each j . Thus the proof is completed.

REMARK 4. Let P(D) be any hypoelliptic differential operator of degree
and E(x) a fundamental solution for P(D). There exist then constants

<:i) andCsuch that P(σ+ιr)=0, |r|^27V6Ίσ|Λ when |σ| is large.
V.V. Grusin [3] obtained the following estimate:

\DΈ\ =

0(1)

O(|logU| |) form-

N-\-
a

N+
a

r

r = 0,
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as I x I -> 0. If P(£)S(0) exists, then DrS(0) exists for r such that \r\< a(m - 1 )
—iV(l — a). In fact, as in the proof of Lemma 3, we may assume that
P(D)S(0)=0 and supp SCP\0CPi with a contant λ0. Then there exist a multi-
index p with \p I J> TV and a continuous function F ( » in Pi, for which P(D)S=
DPF in Pi, where f t * ) = o ( | x \]p]) as | x | ->0. Let £ er 2)(Pi) be equal to 1 in
P λ o and put G=/2F. Then P(D)S=DPG+T, where G = o ( | * | ] p ] ) as |* |-»0.
We can write DrS in the form

DrS =DrS *δ = DrS *P(D)E

=P(D)S*DrE

= D%G*DrE)+T*DrE,

where T*DrE is continuous at 0 and \DrE\=θ(-.—n^rr)as l#|-*0 Apply-
\ I X I /

ing the method in the proof of Lemma 3, we can show that (DrS)(0) exists. Since
we can choose a = l if P(β) is elliptic, DrS(ϋ) exists for r such that \r\ <^m — 1.

For example, if ΔS(0) exists for Laplacian Δ, then 5, ^— have the values at 0.
( X j

§ 3. The multiplicative product SOT

Let 5, T 6 2)'(i2). When 5* Γ exists in a neighbourhood of 0 and has the
value at 0, we shall define the scalar product < 5, T> of 5 and T by the for-
mula ([11], p. 34)

<5, Γ> = (S*Γ)(0),

which is a generalization of the notion of the scalar product between ζΰ'(β)
and QXβ).

We shall now define normal multiplication between distributions basing
on this generalized scalar product.

Assuming that the scalar product <aS, T> exists for any a e 2)(i2), the
linear form α-><αS, Γ> will be continuous on 2)(42). In fact, if we put

-γ\ λ being a positive real number,

for any φ e Q)(RN) such that ^;>0 and \φ(x)dχ = l, then <aS*T, φλ> is well

defined for small λ>0. The mapping α-*<αS*Γ, φx> being continuous, the
linear form QXβ) z a^»<aS, T> will be continuous by the Banach-Steinhaus
theorem, and so there exists a unique distribution W e Q)r(Ω) such that

< r, a> = <aS, T>, a e

We shall now introduce
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DEFINITION I. Let S, T e Q)\Ω). If there exists <aS, T> for any a e ©(42),
then W € Q)f(Ω) defined by the formula

• = <aS, T> =((αS)*Γ)(O), a e

will be called the multiplicative product of S and T and denoted by SOT.

The identity

< (α S> f, φλ > = < S( Γ*0λ), α >, α e 2)(i2),

makes it possible to restate this definition in the following

DEFINITION II. Let S, T e Q)'(Ω\ If the distributional limit

lim S(T*φλ)

exists in Q)'(Ω) and does not depend on the choice of φ^ then the limit will be called
the multiplicative product of S and T and denoted by SOT.

For the sake of convenience we shall use the symbol S(#)® T(x — y) to
denote the distribution obtained from the tensor product S(x')®T(y) by the
change of variables, x = x\ y=x'— y\ and use similar notations in later con-
sideration. Owing to the discussion in Section 2, this definition will prove
to be equivalent to the following

DEFINITION III. Let S, TeQ)f{Ω). If S(x)<g> T(x - y) admits a section W
for y= 0, then W will be called the multiplicative product of S and T and de-
noted by SOT.

In what follows we shall show that the multiplication just defined is nor-
mal; that is, if we take 2KΛ as the set of (5, T) e ©'(£) x Q)\Ω) such that SO T
exists, the requirements I through IV in Section 1 are fulfilled.

11 and I3 are obvious from the definition of our multiplicative product.
As for I2, assume that SO T exists. We have for any a e Q)(Ω)

<(aT)*S, φx> = <(S*φλ)T, a>

= <S(x- y)(g)T(x\ a(x)φλ(y)>

= < S(x)®T(x-y\ a(x-y)φλ(y)>.

Here \a(x— y)φλ(y)dy tends to a(χ) in Q)(Ω) as Λ̂ -0 and

sup I Dp

xD"ya(χ - y)φλ( y) \ = θ(—L-^. By Lemma 2 we obtain

lim <(αΓ)*S, $ λ> = <SO Γ, a>.

Consequently TO S exists and is equal to SOT.
12 means that, if y=Q can be fixed in S(x)(g) T(x — y), the same is true of
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S(x — y)® T(x) and they have the same section for y=0. This will also be
proved by a change of variable. The method will be applied to a similar
question in Section 5.

As for I4, assume that 5 O Γ exists. Let a e S(Ω). Since φa e Q)(Ω) for
any φ € Q)(Ω), the value ((0αS)*Γ)(O) exists, which implies the existence of
(aS)O T. In addition, we have

Γ, φ> = ( )

= < 5 O Γ , α ^ > = <α(5O Γ),

Thus (aS)O T=a(SO T\ which completes the proof.

As for II, assume that ~OT exists for each y = l, 2, •••, iV. Then we
(j X j

have for any φ e Q)(Ω)

< H O Γ> ^> = ( | | * ( ^ r ) ( 0 ) = ^ ( S ^ Γ ) v ) ( 0 ) , y = l , 2, .., iV.

Owing to Lemma 3 the value (S*(φT)v)(0) exists, and so does SO T. From the
equations

ΘT d S
we can conclude that SO-w— exists since SOT and -^—O T exist. Further-
more, we have

that is,

completing the proof.
IΠi is obvious from the definition of our multiplicative product.
As for IΠ2, we can choose a partition of unity subordinate to the cover-

ing {£,}, that is, we can choose functions p, and c(j\ / = 1 , 2, ... so that

(i) pjeQ)(ΩιU));

(ii) all but a finite number of functions py vanish identically on any
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compact subset of Ω
(iii) 5]ypy = l on ώ.

We can now write for any φ e QXβ)

where each summand has the value at 0 equal to < SΩι{j) O TΩι(J), φpj> respec-
tively. Then the distribution We ©'(β) defined by

< r , Φ>=*Σ>s<sΩiU)oτΩ^ φpj>,

will yield the multiplicative product SO T. This completes the proof.
Finally, we shall show that O has the property IV. By Definition III, if

we put W=SO T the distribution 5(.r)(g) T(x — y) admits ίFas the section for
y= 0: Namely, for any open subset Δ C C Ω there exist a multi-order (p, q\
a neighbourhood U of 0 in JR̂  and a continuous function F(x, y) in Δ x U, for
which the relation

S(x)®T(x-y)=nx)<8>ly + Dp

xDlF(x9 γ)

remains true in Δx U, where F(x, y) = o(\ γ\lq[) as | j | ->0 . Let x = Φ(x') be a
diffeomorphism of Ω' onto Ω. The distributions corresponding to S, T and
W will be denoted by 5, T and W c Q)'(Ωr) respectively. Since the distribution
Xx')®T(x'- /)= S(Φ(x'))®T(Φ(xr- yf)) is obtained from S(*)(g) T(x - γ) by
the change of variables

(*) x = Φ(x'\ γ=Φ(x/)-Φ(x/-γ/)

and

Stx'^Kx'- / ) = W(Φ{x'))(3lr + WP

xDlF)(Φ(x'\ Φ{x')-Φ{x'-y'%

we only have to show that W is the section of S(χ'}®T(x'— y1), in other words,
(Dp

xD
q

yF){Φ(x'\ Φ(xf)-Φ{xf- / ) ) has 0 as the section for / = 0. Let

x'=g(x\ y' = h(x, y)

be the inverse of the transformation (*). Differentiating with respect to xh

yj we obtain

(DxF)(Φ(x'\ Φ(x')-<Kx'- yΊ) = ̂ k(DXkF)g%x') + ̂ kφyίF)h%χ\ / ) ,

'\ Φ(x')-Φ(x'- y')) = ̂ k(Dy,FMx\ y'\

where we have written

F(x\ yf) = F{Φ(x'\ Φ(x')-Φ(x' - / ) ) ,
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{χ% h%x', /)=||(0(*'), Φ(χ')-Φ(χ'~y%

Since y' = 0 corresponds to y=0, these expressions yield

\hkj\=(K\y'\), \h)\=O{l\ j , k = l92,. .,N.

Let <x\ a\ βr and β'! be multi-orders of the distributional derivatives relative
to the variables x, y9 x' and yr respectively. Put a~{a\ a!!\ β=(β\ β").

Now by induction over the order of differentiation we can show that

aβ(x\ y'){DβF){x\ / ) ,

where aβ are indefinitely diίferentiable and | β" | J> | a" \ implies

i^i-od/r'1-1^1).
If I a I = 1 the result is already shown above. Next, assume that the re-

sult is valid for any a with | a \ fS I. From our hypothesis we have

((DX.D«)F)(Φ(X'), 0 0 0 - * ( * ' - /))

Σ δ /α^X^HΣ* Σ
l

Σ AJ(/?,/oiSχZ)^)+Σ* Σ h"jaβ(DrD
βF).

With regard to the first two sums of the last expression the desired estimates
are valid by the hypothesis. Consider the third sum. | β" \ Ξ> | a" | implies that
|A5 |=O( |/ | ) and \D,-aβ\ =O(\ y'\ i'5''-'"'!-1), and therefore | A)(2?,ίβ/9) | -

O(| / I " 3 ' 1 -'*"')• In the last sum, if | /9" |+l^ |α" | , thβn|AJo / 9 |=0(|/|w s ' l* 1- l β ' 1),
since |h) \ =0( \ y'\) and |aβ\ =0(\ y' \ '^'-'«'') hold for | β"\ ̂  |a" \. Combining
these together we obtain the desired result.
Consider also the equations:

({DyjD«)F)(Φ(x'\ Φ(x')-Φ(x'- / ))

= Σ**JM Σ a ?

=Σ* Σ Σ

In the first sum of the last expression, | β" \ ̂  | a!' \ + 1 implies that | h) \ =0(1)
and 1 2 ) ^ 1 = 0 ( 1 / | l ^ ' - | α # | - 1 ) , and therefore \Tή(JDy'aβ)\=(K\ytyβ'^a'''1).
In the second sum, \β"\ + l ^ | α r / | + 1 implies t h a t \h.*\=O(l) and \aβ\ =

0(\ y\lβ9{-la0ι\ and so \h)aβ\=O(\y'Vβ^~>a"{\
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Combining these together, we obtain also the desired result. This completes
the induction step.

Thus we can write

(Dp

xD«yF)(Φ(x>\ Φ(x')-Φ(x'-y'))=
\p'\ + \

where F=o(\/\lql\ and \ap,>q,\ =O(| /I 1 * ' 1 - 1 * 1 ) for | y Ί ^ | g | . By Leibniz'
formula, we have

ay> q,DP;DfF= ^ ^ ( - 1 ) " ' + '

For the conclusion of the proof of IV, it is sufficient to show that

It is trivially true of the case | q'\ < | q |, otherwise it follows from the estimates
F=o(\/\]ql) and \ap,,q,\ = 0( | y'\n''-'*') already proved.

Thus we have shown

THEOREM 1. The multiplication given by Definition I (II, III) is normal.

REMARK 5. In Definition I, if (αS)* ί is a bounded function in a neigh-

bourhood of 0 and continuous at 0, then according to [18] W will be written

ST instead oί SOT. By definition, if ST exists, SO T also exists and co-

incides with ST. But the converse is not always true; s i n — 0 5 = 0 but
X

sin — )δ does not exist.

REMARK 6. Let M be a differenciable manifold of dimension N and {fc}
its coordinate systems ([5], p. 25). tz is a homeomorphism of an open set
ΩKCMonto an open set ΩκCi?^, and the mapping

is a diffeomorphism for any two coordinate systems /c, /c'. If to every coord-
inate system ic in M we are given a distribution 5K e Q)r(Ωκ) such that SΛ/(#') =
5/C(Λ:Λ;/~1(Λ;/)) i n ιt'(βκΓ\Ωκ,\ then the system {Sκ} is called a distribution 5 in M
and the set of all distributions in M will be denoted by 2X(M). Let 5,
T e ζΰf(M). Assume that Wκ= SKO Tκ exists for every coordinate system fc.
It follows from IV that JFκ,(x')= WXtciz'^ίx)) for any K and κ\ so there ex-
ists a unique distribution Weζt)'(M) determined by the system {Wκ}. We
shall define JFas the multiplicative product SO T oί S and T. The require-
ments I through IV for manifold will have an obvious meaning and are ful-
filled by the multiplication just considered.
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§ 4. Further properties of the multiplicative product SOT

This section is devoted to a discussion about multiplication considered in
the preceding section. Otherwise explicitely stated, we shall assume that 5,
T are distributions in a non-empty open subset Ω C RN.

LEMMA 4. 5(0) exists if and only if SOd exists. Then we can write
Sθδ=S(0)δ.

This is clear from the identity

Consequently we have

COROLLARY. The multiplicative product SOT exists if and only if
(aS*T)Oδ exists for every a e Q)(Ω). If this is the case, we can write
(aS*f)Od=<SOT, a>δ.

PROPOSITION 1. SOT exists for every T e Q)'(Ω) if and only if S e &(Ω).

PROOF. The "if" part is evident. We only have to show the "only if"

part. Let φ c Q)(Ω) be such that φ^>0 and \φ(x)dx = l. Then by definition

Owing to the Banach-Steinhaus theorem, the mapping Γ->5<0 T is continu-
ous from Q)'(Ω) into itself, so there exists for any φ e ζb(Ω) a unique x 6 Q)(Ω)
such that

<SOT, φ> = <T,x>.

Replacing Γ b y α e 2)(ώ), we can conclude that φS=x and therefore 5 c S(Ω).
This completes the proof.

The method of proof just given is also applied in proving that 5 is a local-
ly bounded function if and only if SO T exists for every locally summable
function T in Ω.

If we put RN=R%x Rn

y, N=m+n, then we have

LEMMA 5. Let Wx e ©'(£), 0<A<l. If

lim < r

exists for any a e 2)(Λ?), β £ Q>(R") with supp a x supp βCΩ, then there exists
a unique W e 2)'(X?) such that

lim <Wλ,Φ> = <W,<p>, φe QXβ).
λ
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PROOF. Let K, L be compact cubes in Rf andi^ respectively such that
KxLCΩ. Q)KxL = Q)κ^πQ)L. Since Q)κ and Q)L are spaces of type (F)
lim < W\, α®/?> is separately continuous, and so continuous in ζΰκχζΰL.
λ-^ + 0

Hence there exists a unique We Q)'K*L such that

lim < JFλ, a(g)β> = <W, α(g)/9>, a e Q)κ, β a Q)L.

We can therefore assume that W= 0. We only have to show that

lim < r λ , <^>=0, φeQ)KxL.
λ

Using the Banach-Steinhaus theorem and the fact that Q)κ and ζbL are
nuclear, we see that the convergence lim < JFλ, a<g)β> is uniform on some

λ-» + o

0-neighbourhoods of Q)κ and Q)L. Namely, if ε>0 is given, there are norms
α—̂ HαHife and /?->||j9||/ so that for small λ

On the other hand, φ may be written in the form

Φ = ΊljCXj<8)βj, aj<-Q)κ,βj<-Q)L

where 5J/11 CCJ \ \ n 11 βj \ I / < °° It follows therefore that

which completes the proof.
Applying Lemma 5, it is clear that we can reformulate Definition I with

a replaced by a<S)β indicated above. Another application of the lemma gives

LEMMA 6. If Si(0) and S2(0) exist, so does (5i(8)52)(0). Then (5i(8)52)(0) =
5!(0)52(0).

From Lemmas 5, 6 we have immediately

PROPOSITION 2. Let Su TΊ c ζb\Ωλ) and S2, T2 c Q)f{Ω2\ Ω\ Ω2 being any
non-empty open subsets of R™, Rn

y respectively. If S\ O TΊ and S2 O T2 exist,
then (Si(g)52)O(Γi(g)71

2) exists and is equal to (5iO Γχ)(g)(52O Γ2).

PROOF. Let a c ©(i?1) and β c Q)(Ω2). Then

Since (αSi*?i)(0) and (j8S2*f2)(0) exist, (5i(g)52)O(Γ1(g)Γ2) exists and is equal
to (5iO Γi)(g)(52O Γ2), which was to be proved.

LEMMA 7, ((ct(£)β)S*T)(Q) exists for every a<S>β c Q)(Ω) if and only if
(aS*(βTY)(0) exists for every α®/? 6 Q)(Ω).
Then ((α®/9)5*f )(0) =(αS*(/9Γ)x/)(0).
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PROOF. Recall that if ((α(g)£)S*Γ)(0) and (αS*(/?Γ)v)(0) make sense, they
are respectively the sections of a(χ)β(y)S(χ9 y)ξξ>T(x — x1, y — y1) and
a(x)S(x9 y)®β(y-yι)T(x-x\ y-y1) for x

1=y

1 = 0. Take γ a Q)(Rn) with
value 1 in a small neighbourhood of supp β. We can write for small | y1 \

a(x)β(y)S(x, y)<g>T(x-x\ y-yι)-a(x)S(x, y)®β(y-y1)^-x\ y-y1)

= {β{y)-β{y- yι)){a{x)γ{y)S{x, y)<g>T(x-x\ y- y%

which has the section 0 for x1=y1 = 0 when ((α®/?)S*!Γ)(0) exists, because
β(y)-β(y-λy1) converges to 0 in Q)(Rn x Rn) as λ j 0. This shows the "only
if" part. The "if" part will follow with γ(y) replaced by γ(y— j 1 ) . This
completes the proof.

As a result we obtain immediately

COROLLARY. SO T exists if and only if (αS*(/?Γ)v)(0) exists for every
a(g)β e 2)(i?). In this case

Basing on this corollary we shall show

PROPOSITION 3. If the multiplicative products -=—O Γ, y^l, 2, , n, and
0Jj

^ 5 ί = l, 2, ..., 7n, exist, then SO T, f^-O T and 5 O ^ - ? i = l, 2, ...,m,
(j x i (y x i (y Ύj

7 = 1, 2, ..., n, also exist and

d
-(SO T)=

PROOF. We can write

and

Owing to the hypotheses it follows from Lemma 3 that (a(χ)S*(β(y)Γ)v)(0)
exists, and so does SOT from the preceding corollary. We have for any φeQ)(Ω)

I — 1 , Δ) , Til.

d SEach term of the right side has the value at 0, so ^—O T exists for each i.
σxi

In addition, it follows from the above equations that
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Consequently we obtain

>ξ^, £ = 1,2,

dT
Similarly we can show the existence of 5 O ^ — , 7 = 1, 2, ..., n9 and the

(s Xj

relations

—(SO T)= — O T+ SO ^-,

completing the proof.

REMARK 7. By making use of Remark 4 we can show that if ASO T ex-

ists, then SOT, - ~ - θ Γ , SO^ and SO AT exist for j=l, 2, ..., TV and

4-(soτ)=^-oτ+so^,

Δ(5O Γ)= -Δ5O

REMARK 8. Let S = DPS1 e Q)'(Ω) and T = ΌqTxeQ)\Ω) be such that
Dq/SιOD'''T1 exists for every ?'<^, p'^p. Then 5O Γ exists and

soτ= Σ

In fact, we can write for any a e Q)(Ώ)

aSt-f=aDpS1*(D"Tiy

Σ(
p'&p

' £ #

p J\q
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Consequently our assertion will be clear. We can also show that if DqSiθ

DP'TX exists for every ?'<;? + (!, 0, ..., 0), p<,p> then SOT,SO^- and
O X\

|^-O T exist and / - ( S O Γ)= |^- O Γ+ SO | ^ . The results also hold true of
oxi dxi dxi dxi

the multiplication discussed in [18]. This gives an extended version of Miku-
siήski's theorems ([13], pp. 257-258).

We shall introduce the notion of partial multiplication as follows:
DEFINITION IV. Let S(x) e 2)'(JR?) and T(x, y) e Q/(RN). If (S(*)<g)l,)θ

T(x, y) exists in Q)XRN), then it is called the multiplicative product of S and
T and denoted by SOT.

PROPOSITION 4. Let S(x) e ζb\Rf) and T(x, γ) e Q)\RN). A necessary and
sufficient condition for the existence of SOT is that S(x)O < T(x, y), φ(y)>y

exists in Q)'(R™) for every φ(y) e Q)(Rn

y). In this case <SθT,ψ>y =
S(x)O<T(x, y\ψ(y)>y.

PROOF. Let φ e Q)(RN) be such that φ(x9 y)^0 and \[φ(x, y)dxdy= 1. If

we put φ(x)={φ(x, y)dy, then φ e Q)(R™\ φ^O and {φ(x)dx = l. Clearly

Φχ{x)=\φx{x, y)dy, λ being positive. Conversely, given φ(x) € QXJRf) such

that φ(x)^0 and \φ(x)dx = l, we can also choose φ(x, y)eQ)(RN) satisfying

the above conditions. Then we can assert the proposition from the relation

Thus the proof is completed.

From these consideration it is clear that Proposition 4 is also true of the
partial multiplication ST which is defined as (S(x)<g>ly)T(x9 y).

Now we shall turn to the consideration of simultaneous multiplication of
more than two distributions. First we show

PROPOSITION 5. Let 5, T e Q)r(Ω). In order that the multiplicative product
SOT exists, it is necessary and sufficient that for any φ, φ e Q)(RN) such that

0^0, 0^>O, \φ(x)dx = l and \φ(x)dx = l, the distributional limit lim
J J λ,λ'- + 0

(S*φχ)(T*φλ,) exists and does not depend on the choice of φ, φ. If this is the case,

SOT= lim (S*φλ)(T*φλ,).
λ.λ'-^ + O

PROOF. The sufficiency is obvious in view of Definition II. To prove the
necessity, it suffices to prove that lim (aS*φλ)(βT*φx,) exists for every

a, βe QXβ\ that is, <(aS*φx)(βT*ψx,\ x> converges for any x a Q)(RN) as λ,
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λ'-+ + 0. In order prove this, we may assume x to be extended to a periodic
function with period 21 relative to each coordinate. Consider the Fourier
expansion of x:

where S w | cm | (1 + | m \ )k < oo for every positive integer k. Now, we can write
for smalΠ, λf>0

<(aS*φx)(βT*φx,\ %>=*ΣlmCm<(aS*φ0(βT*φλ,\ e(m)>

= Σ*c» <(e(m)aS)*(βΓ)v, e(-m)$x*

For the sake of simplicity, we assume that supp0, supp0Ci)i We may also
assume t h a t λ <I λ'. Since supp (e( - m)φx*φx) C P2v and λ/N+'p' Dp

x(e( — τn)φx*φx)
is bounded because of the equality

it follows from Lemma 2 that <(e(m)aS)*(βT)v, e( — m)φλ*φλ,> converges
to ((e(m)aS)*(βTyχθ) as Γ-^ + O.

On the other hand, if we consider the mapping

then we can find a multi-index p and a constant M independent of λf such
that

remains true. Then we obtain with a new constant M and a multi-index p

I <(e(m)aS)*{βT)\ e{-m)φx*Φχ>>\<,Mf(X+ | τ7 i | ) l ί Ί .

Consequently

lim <(αS*0OG9Γ*0λΛ), % > = Σ w c M lim < ( e ( ^ 5 ) ^ Γ ) v , e(-m)φx*φx,>
λ.λ'-^ + O λ.λ'-^ + O

where we are justified to interchange the order of Σ m and lim since

^>]m I cm I (1 + I w I)'p/' < 00 as already remarked.
Thus the proof is completed.

DEFINITION V. Let S, Γ, W e Q)f(Ω). If, for any φ, φ and x e Q)(RN) such
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that φ^>0, 0I>O, x^>0 and \φ(x)dx=\ψ(x)dx = \x(x)dx = l, the distributional

limit

lim (S*

exists and does not depend on the choice of φ, ψ and x, then the limit will be
called as the multiplicative product of S, T and W, and denoted by SO TOW,

Now we can show

PROPOSITION 6. If TOW and SO TOW exist, then SO (TOW) exists and
is equal to SO TO W.

PROOF. By Definition II, Proposition 5 and Definition V we have

SOTOW= lim (S*

= SO(TOW),

which completes the proof.

A locally convex space 96C3)f(RN) with topology finer than ζΰ'(RN) is
called a space of distributions. In addition, if Q)(RN) is contained in 96 with
a finer topology and dense in 96,96 is called to be normal. Let 96, Jl be spaces
of distributions. We assume that 96 is normal. S e Q)'(RN) is called a multi-
plicator of 96 into M if there exists a continuous linear mapping < 5 > of 96
into Jl such that <S>a = aS for every a c Q)(RN). When <^=J?, we shall
say that 5 is a multiplicator of 96.

PROPOSITION 7. Let 96 be a normal barrelled space of distribution. Given
S, if SOT exists for every T e 96 then S is a multiplicator of 96 into Q)'(RN)
and < S> T= SO T for every T e 96 and aS e 96' for every a e Q)(RN).

In addition, if Sθ96(iJl and Q)(RN) is strictly dense in Jl'c, where Jl is a
space of distributions, then S is a multiplicator of 96 into Jl.

PROOF. Let φ e Q)(RN) be such that φ^>0 and [φ(x)dx = l. Then by

Definition II

soτ=

Since the mapping 96 D T^>S(T*φλ) e Q)'(RN) is continuous and 96 is barrelled^
it follows from the Banach-Steinhaus theorem that < 5 > : 96zT^
SOTe Q)'(RN) is continuous. Then < S>a=aS for every a e Q)(RN). This
shows that S is a multiplicator of 96 into Q)'(RN). Therefore there exists for
any a e ζΰ(RN) a unique Wa e 96f such that < SO Γ, a> = < Γ, Wa> ΛtΛ,. Let
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T be taken arbitrarily from Q)(RN). Then we can conclude that aS= Wa £ 9ί\
Now assume that R has the properties stated in the last part of the pro-

position. If u is a continuous linear mapping from a barrelled space E into
Q)f(RN) with range in Jl, then u must be continuous from E into Jl ([17], p.
176). Accordingly 5 will be a multiplicator of 9C into Jl. Thus the proof is
completed.

REMARK 9. Let 9C be a normal space of distributions. Assume that 91
has the approximation properties by regularization and truncation ([16], p.
7). It was shown ([18], p. 232) that if 5 is a multiplicator of 9ί into Q)\RN),
then ST exists for every T e 91, and < S> T= ST. Furthermore we assume
that 9ί is barrelled. Let SO T exists for every Te 9t. Then by Proposition
7 Γ->5O T is a multiplicator of 9ί into Q)'(RN) so that ST exists for every T
and SOT=ST. The result is not true if the approximation properties are
not satisfied. Consider the example given in Remark 3 in [18], where 9t, di
were defined by

« = {/;||/Hi = Wfϊ

It was shown there that the ordinary product fg, f e 96, g e £K, is always sum-
mable while for some /, g their multiplicative product in the sense of [4]
does not exist. 9C and X are normal barrelled spaces with the approximation
property by truncation, not by reguralization. Now we show that fOg al-
ways exists and is equal to fg. Let Vε be the volume of the ball with center

0 and radius ε>0. Put M€(g)=-ΎF-\ g(x — t)dt for any gtdί. Noting

that ±Φ-\ -i—t—r is bounded, we obtain with a constant C>0
Vε J\t\^ε \χ — t\

x-t\\g(x-t)\2dt)(\

Consequently we have for any / e 9ί and g e £K

11 I ^ c

This implies that

-M \(f*g)(t)-\f(χ)g(χ)dx\dt^O

as ε^-0, that is, /*£has the value \f(x)g(x)dx at 0 in the sense of Lojasiewicz
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[12]. Since every a e Q)(RN) is a multiplicator of 91, it follows therefore that
fOg exists for every / e 9t, g e 3ί and is equal to fg.

§ 5. An extension of the multiplicative product SOT

in the case N=l

Hereafter we shall assume that N=l. The foregoing discussions about
the multiplication between distributions can be extended preserving normali-
ty through an extension of the notion of the value of a distribution at a point.
For this end, recall the notion of the right and left hand limits of a distri-
bution at a point.

Let S be a distribution defined in a O-neighbourhood. S has a right hand
limit c+ at 0 if the distributional limit lim S(λx) exists in the positive axis

λ-> + o

x>0 and is a constant function c+([ll], p. 3). We write lim S=c+. The
χ-^ + 0

condition may be written ([11], p. 5):

S=c+Y+DPF+,

where Y is the Heaviside function and F+ is a continuous function in an
open interval (0, a) such that F+ = o(\x\p) as x->0.

Similarly we can define the left hand limit.
We shall say that 5 has no mass at 0 if lim λS(λx) =0 ([12], p. 23).

λ-> + 0

If lim S=c+, lim S=c^ and moreover 5 has no mass at x = Q, then we

write

which will be referred to as the extended value of S at 0.
A necessary and sufficient condition for the existence of 5[0] is that there

exists a non-negative integer p, a O-neighbourhood U and a continuous func-
tion F(x) in £/, for which

in U, where F(x) = o(| x|p) as \x\->0.
Let Ω be a non-empty open subset of R and 5, T e Q)'(β). When 5*f is

defined in a neighbourhood of 0 and has the extended value (S*ί)[0], we
shall define the extended scalar product [5, Γ] of S and T by the formula

If the extended scalar product [aS, Γ] exists for any a e Q>(β\ then for
any φ+, φ~ 6 Q)(R) such that ^ + ^ 0 , ^ " ^ 0 , supp0+C(O, oo), supp0-C(-^, 0)



On the Theory of the Multiplicative Products of Distributions 175

and [φ+(x)dx=\φ-(x)dx = l9 <aS*f, ] Φ+(Jf)> and <aS*T, ±-φ-(-?f
J J A \ A / A \ A

are defined for small λ > 0 and

f, λ^+(±)> + lim
A \ A / λ-̂  + o

By virtue of the Banach-Steinhaus theorem we see that there exists a unique
distribution W e Q)'(Ω) such that

< ΪF, a> = [>S, Γ], α 6 2)(β).

DEFINITION VI. Lei 5, T e Q)\Ω). If [aS, Γ] exists for every a 6 2)(i2),
Q)f(Ω) defined by the formula

α

ΐii be called the multiplicative product of S and T and denoted by Sx0T.

From the definition we see that if SO T exists then SxoT exists and

coincides with SO T. The converse is not true: Yxod=-^ΰ but YOδ does
LA

not exist.
In what follows we shall show that the multiplication just defined is

normal.
Ii and I3 are obvious. I4, IΠi and IΠ2 may be verified by the same way as

in Section 8. '
As for I2, assume that 5xo T= W exists. By the definition of multiplica-

tion, given a non-empty open subset JC CΩ, there exists a O-neighbourhood
UCRy, for which we can write in Jx U

S(x)®T(x-γ)= WXx)®Y(y)+ W-(x)®Ϋ(y)+ V(x, y\

where V is a distribution in ΔxΌ with 0 as the section for γ—0 and

W=—^—=. After the change of variables, %=•%— y' and j = — y\ we

can write

SW-y')®TW)= JΓ+(α;'-/)(8)f(/)+ W.{x'-y')®Y(y')+ V(xr - y\ - yf).

It is easy to verify that V(x — y\ — yr) has the section 0 for y' = 0.
Consequently we only have to show that both

and

have the section 0 for y' = 0.
Let φ e ®(J x U). Then we have with small λ>0



176 Mitsuyuki ITANO

< JF+(x-λy)®Ϋ(λy)- W+(x)®Ϋ(λy), φ(x,

(x, y)dxdy~^JF+(x)Ϋ(y)φ(x, y)dxdy

^ y, y)-φ(x, y))dxdy,

which yields

lim < W+(x-λy)®Ϋ(λy)- W+(x)®Ϋ(λy), φ(x,
λ + o

Thus W+(χ- y)<g)Y(y)-W+(χ)(g)Y(y) has the section 0 for y=0. Similarly
the same is true of W-(x — y)(g)Γ(y) — W-(χ)(&Y(y). Thus the proof is com-
pleted.

As for II, from the proof of the corresponding case of Section 3 it is

sufficient to note that if ^~[β~] exists, so does S[0]. If we put Γ = 5 -
dx

ϊ±^(x+ + x_) with c+=lim 4^ and c_= lim -^> then 4^ = 4^~
2 χ-++o ax χ-+-o ax ax ax

C+~C~(Y- Ϋ) and therefore 4^(°) exists. It follows from Lemma 3 that
2 ax

the value Γ(0) exists and a fortiori 5(0).
Finally we shall show that IV is fulfilled. We shall continue to use the

same notation as in the proof of I2. Assume that SxoT= W exists. Then
we can write as before

S(x)(g)T(x-y)= W+(x)®Y(y)+ W-(x)®Ϋ(y)+ V{x, y).

The distribution S(x')®T(xf- yf)= S(Φ{x'))®T(Φ(xf- /)) is obtained from
S(x)(g) T(x — y) after the change of variables:

X = Φ(χ'\ y= Φ(χf) - φ(χ' - / ) .

Consequently we have

V - / ) = W+{φ(χ'))®Y(Φ(x')-φ{χ'- /))

where V(χ\ 0) = 0 as seen from the proof of IV given in Section 3.
On the other hand, we can write

j W+(Φ(xf))®Y(yf)+W-(Φ(xf))®Y(yf) for ^ > 0 ,

1 W+(Φ(χf))®Y(yf)+W-(Φ(χ'))®Y(yf) for 0'<O.

This shows that SxoT exists and SxoT=W, completing the proof.
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Thus we have shown

THEOREM 2. The multiplication given by Definition VI is normal.

We shall consider the multiplicative product in the sense of Tillmann
[19]. Let S, T e 2)'(Λ) We have shown in [6] (p. 71) that if (aS*T)Od = caδ
exists for each a e ©(/?), where ca is a constant depending on a, then SO T
exists and < S O T , a > — ca.

LEMMA 8. // Sxoδ exists, so does S[0~]. Conversely, if S[_QΓ\ exists, then
both Sxoδ and SOδ exist and are equal to S{ΊΓ}δ.

PROOF. From the identity S*(aδ)v = a(0)S, aeQ)(R), we see that the
first part of the lemma is clear, and that if S[(Γ] exists, Sxoδ exists and is
equal to S[XΓ]<y. On the other hand, we can write in a O-neighbourhood

S=c+Y+c-Ϋ+DpF, F(x) = o(\x\p),

where (DpF)Oδ = 0 since (DpF)(0) = 0 and YOδ= ΫOδ=±-δ ([6], p. 66, p.

69). Consequently SOδ = c+~tc~δ = S[0]δ, completing the proof.

By aid of this lemma we shall show

THEOREM 3. Let 5, TeQ)r(R). If SxoT exists, then SOT exists and is
equal to Sx o T.

PROOF. Let SxoT exist. That is, (αS*ί)[(Γ] exists for every a e 2)(Λ).
Hence it follows that (aS*T)Oδ exists and is equal to <SxoT, a>δ. Con-
sequently 5 O ^ exists and is equal to SxoT.

Note that the converse of the theorem is not true: Pf—Oδ=—~^rδ
/

x 2
([2], p. 251) but Pf—x oδ does not exist.

X

§ 6. Further extension of the multiplicative product

in the case N= 1

This section is devoted to a further extension of the preceding discussion
so that the multiplicative product of δ by δ makes sense.

In the definition of SCO], we drop the condition that 5 has no mass at 0.
We shall denote the generalized value thus defined by 5{0} instead of S[0Γ\.
For example £(y){0} = 0 for ; = 0, 1, 2, .... 5{0} exists if and only if we can
write S in the form

with constants c+, c_, α0, •••, am in a O-neighbourhood U, where F is a continu-
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ous function in U such that F= o(\ x\p) as \x\ —>Ό.
Let Ω be any non-empty open subset of R and 5, T e Q)\Ω). When S*T

is defined in a O-neighbourhoόd and (S*Γ){0} exists, we shall define the genera-
lized scalar product {5, T} of & and T by the formula

{S, Γ}=C2

If {αS, Γ} exists for every a e 2)(J2), then we can prove, as in Section 5, that
the linear form a^{aS, T} is continuous on 2)(J2). Thus there exists a uni-
que distribution W e ©'(£) such that

<)T, α > = {αS, Γ}, α e ©(£).

DEFINITION VII. Let S, T e Q)\Ω). If {aS, T} exists for every a e Q)(Ω\
then We Q)'(β) defined by the formula

< r , α > = {αS, Γ} =(αS*f ){0}, α e Q)(Ω)

will be called the multiplicative product of S and T and denoted by SxiT.

From the definition we see that if Sx o Γ exists, then SxiT also exists
and is equal to SxoΓ. The converse is not true: δU)x1δ

(k) = 0 for any non-
negative integers /, h but ff(y)xoί

(*} does not exist.

THEOREM 4. The multiplication given by Definition VII is normal.

The proof is omitted since it may be carried out with necessary modifica-
tions along the same line as in the proof of Theorem 3.

We shall denote by S T the multiplicative product of the general sense
of Tillmann ([6], p. 56, [19], p. 108).

THEOREM 5. Let S, TeQ)\R). If SxλT exists, then S T exists and is
equal to SX\T.

PROOF. Let K be a compact subset of R and a e Q)(R) be chosen equal to
1 in a neighbourhood of K so that aS*(φTY may coincide with S*(φTY in a
0-neighbourhood for every φ e Q)κ. We use the notations and the results of
[6]. Putting SΊ = αS, ^2 = ( l-α)S, Tλ = aT and T2 = (l-a)T, we can write
S6 = (3i)6 + (S2)£, f€ = (T1)€ + (f2)ε ([6], p. 61). Both S2(z) and T2(z) are analy-
tic in C\(R\K), where C is a complex plane and each of (Si)£(f 2)£, (S2)€(Tι)£

and (S2)£(f 2) e tends to 0 in Q)f

κ as ε | 0. Put h€= — 2

ε

 2 . S T was defined

as PfS6f €. We note that

=Pf <(aS*he)(aT*h€\ φ >, 0 e ©^

so far as either side of the equation makes sense. Here we have used the
symbol Pf to denote the finite part of the limit in the sense of Hadamard.
Let β e Q)(R) be chosen equal to 1 in a 0-neighbourhood. We assume that
β = β. Then we can write the above equation as follows:
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Pf<S€fε, φ> =

Since aT*βhε is of compact support we may assume that φ is a periodic func-
tion with period 21 relative tp each coordinate with a sufficiently large I.
Consider the Fourier expansion of φ:

tτ^m'X

where ^] w \c m \( l+ \m\)k<oo for every positive integer k. Then we have

hε)(aT*βhε\ e(m)>

€, e(m)aT*e(m)βh€>

By the hypothesis Sx\T exists, we can therefore,write for any γ e

=H(χ)+A(r).

Here Fi s a distribution such that F(0) = 0 and c+5 c_5 α0, au ..., an are con-
tinuous linear forms of γ e £. H(f) and A(γ) denote c + F + c _ f + Γ and
aoδ + a\δr + •• + anδ

{n) respectively. Using these symbols we have

<(aS*h6)(aT*βh€\ Φ>=^lmcm<(H(e(m))*h£)h€, e(m)β>

£5 e(m)β>.

From the definition of aSxiT together with the fact that A(γ) δ = 0, we ob-
tain

<aSxιT9

Consequently we obtain for any x e £

-δ, x>= lim <H(γ\ h£*βh€x>.

Now, for each ε>0 the bilinear form uε\ (γ, x)-><H(γ), h£*βhεx> on £x£ is
continuous. As £ is of type (F), we can find an integer k0 ^ 0 and a positive
constant M independent of ε such that

I < H(γ\ hε*βhεx > I <: M sup | Djγ \ sup | D>'x \.

Hence we have with new constants k\ Mi

I <(H(e(m))*h€)h€y e(m)β>\^M1(l+ \m\)2k'.

Because of the fact that ^m\cm\(l+\m\)2k'<oo as already remarked, the
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series Σmk»l S UP I <(H(e(τrι))*hλhε, e(m)β>\ converges, which we shall for
0<£<l

simplicity say that ^mcm<(H(e(m))*h£)h£, e(m)β> converges normally. Since

lim <(H(e(m))*h£)h£, e(m)β> = <<aSXχT, e{m)a>d, e(m)β>

= <aSxιT, e(m)a>,

it follows therefore that

lim*Σmcm<(H(e(m))*h€)h£, e(m)β>=^]mcm<aSxίT, e(m)a>

= <aSx1T,φa>

= <Sx1T,φ>.

On the other hand, we have

fi, e(m)β>

h£+ - + an(e(m))h£
(n))h€, e(

With the aid of the formulas established in [6] (p. 69):

e, Φ > =(-
and

as ε-> + 0, where h = 2~ττ?

we can show that

Pf ̂ Σmcm^j(^^ny)<^fι

£

J)h£, e(τn)β^> = 0.

First consider the case j=2p. ^mcma2p(e(m))<h£

(2p)h£, e(m)β> is a linear

combination of ^ } \ j=l, 2, ..., 2p + l, λ = 0, 1, ..., 2p. Since |a2p(e(m))|^

M2\m\r with an integer r ^ 0 and a positive constant M2 independent of ε, we

can easily verify that the coefficient of -—V-̂  converges normally. Thus we

can write

(

£ , e(m)β>

< r2, β>
"" ^2 -Γ -Γ
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with distributions JFU W2, •••, W2p+i e 2)'CR). Similarly for the case j=2p — l.
Thus we have shown that S T exists and is equal to SxxT, completing

the proof.
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