On Some Properties of $t(n, \Phi)$ and $ft(n, \Phi)$

Shigeaki Tôgô

(Received February 27, 1967)

1. Introduction

It is known that every finite-dimensional Lie algebra L over a field $\boldsymbol{\vartheta}$ of arbitrary characteristic has a faithful finite-dimensional representation. If $\boldsymbol{\vartheta}$ is an algebraically closed field of characteristic 0, then every solvable subalgebra of $\mathfrak{gl}(n, \boldsymbol{\vartheta})$ is isomorphic to a subalgebra of the Lie algebra $\mathfrak{t}(n, \boldsymbol{\vartheta})$ of all the triangular matrices. Among solvable linear Lie algebras the following three Lie algebras are most familiar to us: $\mathfrak{t}(n, \boldsymbol{\vartheta})$, the Lie algebra $\mathfrak{fl}(n, \boldsymbol{\vartheta})$ of all the triangular matrices of trace 0, and the Lie algebra $\mathfrak{n}(n, \boldsymbol{\vartheta})$ of all the triangular matrices with 0's on the diagonal. B. Kostant orally informed the author that he had determined the structure of the first cohomology group $H^1(L, L)$ of $\mathfrak{n}(n, \boldsymbol{\vartheta})$ and that the method of constructing an outer derivation which has been employed in the proof of Theorem 1 in [1] gives another way of finding all the nilpotent outer derivations of $\mathfrak{n}(n, \boldsymbol{\vartheta})$.

It therefore seems to be an interesting problem to ask the structure of the first cohomology groups $H^1(L, L)$ of $t(n, \boldsymbol{\Phi})$ and $\mathfrak{ft}(n, \boldsymbol{\Phi})$. In this paper we are concerned with this problem and show the following two theorems.

THEOREM 1. Let L be $ft(n, \Phi)$ with $n \ge 2$.

(i) If the characteristic of $\boldsymbol{\Phi}$ is 0, or if the characteristic of $\boldsymbol{\Phi}$ is $p \neq 0$ and $n \not\equiv 0 \pmod{p}$, then $H^1(L, L) = (0)$.

(ii) If the characteristic of Φ is $p \neq 0$ and $n \equiv 0 \pmod{p}$ and if $n \geq 5$, then $\dim H^1(L, L) = n$.

THEOREM 2. Let $\boldsymbol{\Phi}$ be a field of arbitrary characteristic and let L be $t(n, \boldsymbol{\Phi})$ with $n \geq 2$. Then dim $H^1(L, L) = n$.

In Theorem 1 we exclude the case where the characteristic of $\boldsymbol{\varPhi}$ is $p \neq 0$, $n \equiv 0 \pmod{p}$ and $n \leq 4$. The structure of the first cohomology group $H^1(L, L)$ of $\mathfrak{ft}(n, \boldsymbol{\varPhi})$ in this case will be determined in Section 5.

Throughout this paper, we shall denote by $\boldsymbol{\emptyset}$ a field of arbitrary characteristic unless otherwise stated, and by e_0 the identity matrix in $\mathfrak{gl}(n, \boldsymbol{\emptyset})$.

2. Lemmas

Throughout Sections 2, 3, 4 and 5, we denote $\mathfrak{ft}(n, \Phi)$ by L for the sake

of simplicity and assume that $n \ge 3$ unless otherwise stated.

We choose a basis of L as follows.

$$e_k$$
: the $(a_{ij}) \in L$ such that $a_{kk} = 1$, $a_{k+1,k+1} = -1$ and all other $a_{ij} = 0$.

 $e_{k,k+l}$: the $(a_{ij}) \in L$ such that $a_{k,k+l} = 1$ and all other $a_{ij} = 0$.

(k=1, 2, ..., n-1, l=1, 2, ..., n-k).

We put these elements of L in the following order:

(1)
$$e_1, \ldots, e_{n-1}; e_{12}, \ldots, e_{n-1,n}; \ldots; e_{1,l+1}, \ldots, e_{n-l,n}; \ldots; e_{1,n-1}, e_{2,n}; e_{1n}$$

Then we have

LEMMA 1. Let D be any derivation of L. Then

$$De_{k} = \sum_{i=1}^{n-1} \lambda_{k}^{i} e_{i} + \sum_{i=1}^{n-1} \lambda_{k}^{i,i+1} e_{i,i+1} + \dots + \sum_{i=1}^{n-l} \lambda_{k}^{i,i+l} e_{i,i+l} + \dots + \lambda_{k}^{1n} e_{1n}$$

$$De_{k,k+l} = \sum_{i=1}^{n-l} \lambda_{k,k+l}^{i,i+l} e_{i,i+l} + \dots + \lambda_{k,k+1}^{1n} e_{1n}$$
for $k = 1, 2, \dots, n-1$ and $l = 1, 2, \dots, n-k$.

PROOF. This is immediate from the facts that

$$L^2 = (e_{12}, \dots, e_{n-1,n}; \dots; e_{1n}),$$

 $(L^2)^l = (e_{1,l+1}, \dots, e_{n-l,n}; \dots; e_{1n}) \quad \text{for} \quad l = 2, 3, \dots, n-1$

and that these are characteristic ideals of L.

We consider the following system of n-1 equations:

(2)
$$\begin{cases} 2x_1 - x_2 = 0 \\ -x_1 + 2x_2 - x_3 = 0 \\ -x^2 + 2x_3 - x_4 = 0 \\ \vdots \\ -x_{n-3} + 2x_{n-2} - x_{n-1} = 0 \\ -x_{n-2} + 2x_{n-1} = 0. \end{cases}$$

Then the determinant of the matrix of coefficients of (2) is n. We need the following multiplication table:

(3)

$$\begin{bmatrix} [e_1, e_{12}] = 2e_{12}, [e_1, e_{23}] = -e_{23}; \\ [e_j, e_{j-1,j}] = -e_{j-1,j}, [e_j, e_{j,j+1}] = 2e_{j,j+1}, \\ [e_j, e_{j+1,j+2}] = -e_{j+1,j+2}, \text{ for } j=2, 3, ..., n-2; \\ [e_{n-1}, e_{n-2,n-1}] = -e_{n-2,n-1}, [e_{n-1}, e_{n-1,n}] = 2e_{n-1,n} \\ \text{and all other } [e_k, e_{i,i+1}] = 0. \end{bmatrix}$$

LEMMA 2. Let D be any derivation of L. Let De_k and $De_{k,k+l}$ be expressed as in Lemma 1. Then $\{\lambda_k^1, \lambda_k^2, \dots, \lambda_k^{n-1}\}$ for any $k=1, 2, \dots, n-1$ is a solution of the system (2). Except the case where n=3 and the characteristic of $\boldsymbol{\varphi}$ is 3 and the case where n=4 and the characteristic of $\boldsymbol{\varphi}$ is 2, we have

$$\lambda_{k,k+1}^{i,i+1} = 0$$
 for $i, k=1, 2, ..., n-1$ and $i \neq k$.

PROOF. (i) The case where the characteristic of \emptyset is $\neq 2, 3$: Apply D to $[e_1, e_{12}] = 2e_{12}$. Then

$$2\lambda_1^1\!-\!\lambda_1^2\!=\!0 \quad ext{and} \quad \lambda_{12}^{i,\,i+1}\!=\!0 \qquad ext{for} \quad i\!\neq\!1.$$

For $j \neq 1$, applying D to the products $[e_j, e_{12}]$, we obtain

$$2\lambda_i^1 - \lambda_i^2 = 0.$$

For k=2, 3, ..., n-2, apply D to $[e_k, e_{k,k+1}]=2e_{k,k+1}$. Then we have $-\lambda_k^{k-1}+2\lambda_k^k-\lambda_k^{k+1}=0$ and $\lambda_{k,k+1}^{i,i+1}=0$ for $i \neq k$.

For $j \neq k$, applying D to the products $[e_j, e_{k,k+1}]$, we obtain

$$-\lambda_j^{k-1}+2\lambda_j^k-\lambda_j^{k+1}=0.$$

Apply D to $[e_{n-1}, e_{n-1,n}] = 2e_{n-1,n}$. Then

 $-\lambda_{n-1}^{n-2}+2\lambda_{n-1}^{n-1}=0$ and $\lambda_{n-1,n}^{i,i+1}=0$ for $i\neq n-1$.

For $j \neq n-1$, by applying D to the products $[e_j, e_{n-1,n}]$, we obtain

$$-\lambda_i^{n-2}+2\lambda_i^{n-1}=0$$

(ii) The case where the characteristic of $\boldsymbol{\phi}$ is 2: We first assume that $n \geq 5$. Apply D to $[e_2, e_{12}] = e_{12}$. Then

$$\lambda_2^2 \!=\! 0 \quad ext{and} \quad \lambda_{12}^{i,\,i+1} \!=\! 0 \qquad ext{for} \quad i \! \neq \! 1, \, 3.$$

By applying D to $[e_4, e_{12}]=0$, we obtain

$$\lambda_4^2 = 0$$
 and $\lambda_{12}^{34} = 0$.

From the other products $[e_j, e_{12}]$, it follows that

$$\lambda_j^2 = 0 \quad \text{for} \quad j \neq 2, 4.$$

Next apply D to $[e_1, e_{23}] = e_{23}$. Then

$$\lambda_1^1+\lambda_1^3=0 \quad ext{and} \quad \lambda_{23}^{i,i+1}=0 \quad ext{ for } i\neq 2.$$

From the other products $[e_j, e_{23}]$, it follows that

 $\lambda_i^1 + \lambda_i^3 = 0$ for $j \neq 1$.

Apply D to $[e_2, e_{34}] = e_{34}$. Then

$$\lambda_2^2 \! + \! \lambda_2^4 \! = \! 0 \hspace{0.5cm} ext{and} \hspace{0.5cm} \lambda_{34}^{i\, , \, i \, + \, 1} \! = \! 0 \hspace{0.5cm} ext{for} \hspace{0.5cm} i \!
eq \! 1, 3.$$

By applying D to $[e_4, e_{34}] = e_{34}$, we obtain

$$\lambda_4^2 + \lambda_4^4 = 0$$
 and $\lambda_{34}^{12} = 0$.

From the other products $[e_j, e_{34}]$, it follows that

$$\lambda_j^2 + \lambda_j^4 = 0$$
 for $j \neq 2, 4$.

For $k=4, 5, \ldots, n-2$, apply D to $[e_{k-1}, e_{k,k+1}]=e_{k,k+1}$. Then

 $\lambda_{k-1}^{i-1} + \lambda_{k-1}^{i+1} = 0$ and $\lambda_{k,k+1}^{i,i+1} = 0$ for $i \neq k-2, k$.

By applying D to $[e_{k-3}, e_{k,k+1}]=0$, we obtain

 $\lambda_{k-3}^{k-1} + \lambda_{k-3}^{k+1} = 0$ and $\lambda_{k,k+1}^{k-2,k-1} = 0.$

From the other products $[e_j, e_{k,k+1}]$, it follows that

 $\lambda_j^{k-1} + \lambda_j^{k+1} = 0$ for $j \neq k-3, k$.

For k=n-1, apply D to $[e_{n-2}, e_{n-1,n}]=e_{n-1,n}$. Then

$$\lambda_{n-2}^{n-2} = 0 \quad ext{and} \quad \lambda_{n-1,n}^{i,i+1} = 0 \qquad ext{for} \quad i \neq n-3, \ n-1.$$

By applying D to $[e_{n-4}, e_{n-1,n}]=0$, we obtain

$$\lambda_{n-4}^{n-2} = 0$$
 and $\lambda_{n-1,n}^{n-3,n-2} = 0.$

From the other products $[e_j, e_{n-1,n}]$, it follows that

$$\lambda_j^{n-2} = 0$$
 for $j \neq n-4, n-2$.

Thus we see that the statement is proved for $n \ge 5$.

By employing a similar method, in the case where n=3 the statement is immediately proved and in the case where n=4 it is proved that $\{\lambda_k^1, \lambda_k^2, \lambda_k^3\}$, k=1, 2, 3, is a solution of the system (2) of equations.

(iii) The case where the characteristic of ϕ is 3:

We first assume that $n \ge 4$. Apply D to $[e_1, e_{12}] = 2e_{12}$ and we obtain

$$2\lambda_1^1 - \lambda_1^2 = 0 \quad ext{and} \quad \lambda_{12}^{i,i+1} = 0 \qquad ext{for} \quad i \neq 1, 2.$$

By applying D to $[e_3, e_{12}]=0$, we have

$$2\lambda_3^1 - \lambda_3^2 = 0$$
 and $\lambda_{12}^{23} = 0$.

From the other products $[e_j, e_{12}]$, it follows that

$$2\lambda_j^1 - \lambda_j^2 = 0$$
 for $j \neq 1, 3$.

Now let k=2, 3, ..., n-2. Apply D to $[e_k, e_{k,k+1}]=2e_{k,k+1}$. Then

$$-\lambda_k^{k-1}+2\lambda_k^k-\lambda_k^{k+1}=0 \quad ext{and} \quad \lambda_{k,k+1}^{i,i+1}=0 \quad ext{ for } i \neq k-1, k, k+1.$$

By applying D to $[e_{k-1}, e_{k,k+1}] = [e_{k+1}, e_{k,k+1}] = -e_{k,k+1}$, we obtain

$$-\lambda_i^{k-1} + 2\lambda_i^k - \lambda_i^{k+1} = 0$$
 and $\lambda_{k,k+1}^{i,i+1} = 0$ for $i = k-1, k+1$

From the other products $[e_j, e_{k,k+1}]$, it follows that

$$-\lambda_{j}^{k-1}+2\lambda_{j}^{k}-\lambda_{j}^{k+1}=0 \qquad ext{for} \quad j\!
eq\!k\!-\!1,\,k,\,k\!+\!1.$$

Finally, apply D to $[e_{n-1}, e_{n-1,n}] = 2e_{n-1,n}$. Then

$$-\lambda_{n-1}^{n-2}+2\lambda_{n-1}^{n-1}=0$$
 and $\lambda_{n-1,n}^{i,i+1}=0$ for $i\neq n-2, n-1$.

By applying D to $[e_{n-3}, e_{n-1,n}]=0$, we obtain

$$\lambda_{n-3}^{n-2} + 2\lambda_{n-3}^{n-1} = 0 \quad ext{and} \quad \lambda_{n-1,n}^{n-2,n-1} = 0.$$

From the other products $[e_j, e_{n-1,n}]$, it follows that

 $-\lambda_{j}^{n-2}+2\lambda_{j}^{n-1}=0$ for $j\neq n-1, n-3.$

Hence the statement is proved for $n \ge 4$. In the case where n=3, it is immediate that $\{\lambda_k^1, \lambda_k^2\}$ for any k=1, 2 is a solution of the system (2) of equations.

Thus we see that in any case $\{\lambda_k^1, \lambda_k^2, \dots, \lambda_k^{n-1}\}$ for $k=1, 2, \dots, n-1$ satisfies the system (2) of equations, and that except the two cases indicated in the statement of the lemma

$$\lambda_{k,k+1}^{i,i+1} = 0$$
 for $i, k=1, 2, ..., n-1$ and $i \neq k$.

LEMMA 3. Let D be a derivation of L and let j be one of the integers 2, 3, ..., n-1. Assume that

$$De_{k,k+1} = \sum_{i=1}^{n-j} \lambda_{k,k+1}^{i,i+j} e_{i,i+j} + \dots + \lambda_{k,k+1}^{in} e_{1n} \quad for \quad k=1, 2, \dots, n-1.$$

Then for l = 1, 2, ..., n - j

$$De_{k,k+l} = \sum_{i=1}^{n-j-l+1} \lambda_{k,k+l}^{i,i+j+l-1} e_{i,i+j+l-1} + \dots + \lambda_{k,k+l}^{1n} e_{1n}$$

and for l = n - j + 1, ..., n - 1

$$De_{k,k+l} = 0, \qquad k = 1, 2, ..., n-l.$$

PROOF. We prove the lemma by induction on l. The case where l=1 is trivial. Assume that $l \ge 2$ and that the formula holds for $De_{k,k+l-1}$. For any k=1, 2, ..., n-l,

$$e_{k,k+l} = [e_{k,k+l-1}, e_{k+l-1,k+l}].$$

Hence if l = 2, 3, ..., n - j,

$$De_{k,k+l} = \begin{bmatrix} \sum_{i=1}^{n-j-l+2} \lambda_{k,k+l-1}^{i,i+j+l-2} e_{i,i+j+l-2} + \dots + \lambda_{k,k+l-1}^{ln} e_{1n}, e_{k+l-1,k+l} \end{bmatrix} \\ + \begin{bmatrix} e_{k,k+l-1}, \sum_{i=1}^{n-j} \lambda_{k+l-1,k+l}^{i,i+j} e_{i,i+j} + \dots + \lambda_{k+l-1,k+l}^{ln} e_{1n} \end{bmatrix} \\ \in (e_{1,j+l}, \dots, e_{n-j-l+1,n}; \dots; e_{1n}).$$

If l = n - j + 1,

$$De_{k,k+l} = \left[\lambda_{k,k+l-1}^{ln}e_{1n}, e_{k+l-1,k+l}\right] \\ + \left[e_{k,k+l-1}, \sum_{i=1}^{n-j} \lambda_{k+l-1,k+l}^{i,i+j}e_{i,i+j} + \dots + \lambda_{k+l-1,k+l}^{ln}e_{1n}\right] \\ = 0.$$

If $l = n - j + 2, \dots, n - 1$,

$$De_{k,k+l} = \left[e_{k,k+l-1}, \sum_{i=1}^{n-j} \lambda_{k+l-1,k+l}^{i,i+j} e_{i,i+j} + \dots + \lambda_{k+l-1,k+l}^{ln} e_{1n}\right]$$

= 0.

Thus the formula holds for $De_{k,k+l}$. This completes the proof.

LEMMA 4. Let D be a derivation of L. Assume that

$$De_{k} = \sum_{i=1}^{n-1} \lambda_{k}^{i,i+1} e_{i,i+1} + \dots + \lambda_{k}^{1n} e_{1n},$$

$$De_{k,k+1} = \sum_{i=1}^{n-2} \lambda_{k,k+1}^{i,i+2} e_{i,i+2} + \dots + \lambda_{k,k+1}^{1n} e_{1n}$$
for $k = 1, 2, \dots, n-1.$

Then there exists an inner derivation $\operatorname{ad} x$ such that $D' = D + \operatorname{ad} x$ has the fol-

lowing form for e_k and $e_{k,k+1}$:

$$D'e_{k} = \sum_{i=1}^{n-2} \mu_{k}^{i,i+2} e_{i,i+2} + \dots + \mu_{k}^{1n} e_{1n},$$

$$D'e_{k,k+1} = \sum_{i=1}^{n-2} \mu_{k,k+1}^{i,i+2} e_{i,i+2} + \dots + \mu_{k,k+1}^{1n} e_{1n}$$

for $k = 1, 2, \dots, n-1.$

PROOF. (i) The case where the characteristic of $\boldsymbol{0}$ is $\neq 2$: We put

$$D' = D + \frac{1}{2} \sum_{i=1}^{n-1} \lambda_i^{i, i+1} \text{ ad } e_{i, i+1}$$

Then we can write

(4)
$$\begin{pmatrix} D'e_{k} = \sum_{i=1}^{n-1} \mu_{k}^{i,i+1}e_{i,i+1} + \dots + \mu_{k}^{1n}e_{1n}, \\ D'e_{k,k+1} = \sum_{i=1}^{n-2} \mu_{k,k+1}^{i,i+2}e_{i,i+2} + \dots + \mu_{k}^{1n}e_{1n} \\ \text{for} \quad k = 1, 2, \dots, n-1 \end{cases}$$

We assert that $\mu_k^{k,k+1}=0$ for k=1, 2, ..., n-1. In fact,

$$D'e_{k} = \sum_{i=1}^{n-1} \lambda_{k}^{i,i+1}e_{i,i+1} + \dots + \lambda_{k}^{1n}e_{1n} + \frac{1}{2}\sum_{i=1}^{n-1} \lambda_{i}^{i,i+1}[e_{i,i+1}, e_{k}]$$

and therefore by (3)

$$\mu_{k}^{k,k+1} = \lambda_{k}^{k,k+1} + \frac{1}{2}(-2\lambda_{k}^{k,k+1}) = 0,$$

as was asserted. Applying D' to $[e_1, e_2] = \dots = [e_1, e_{n-1}] = 0$, we have

$$\mu_1^{i,i+1} = 0$$
 for $i=1, 2, ..., n-1$
 $\mu_m^{12} = \mu_m^{23} = 0$ for $m=2, 3, ..., n-1$.

and

Assume that $k \ge 2$ and that we have

$\mu_l^{i,i+1} = 0$ for l=1, 2, ..., k-1 and i=1, 2, ..., n-1 $\mu_m^{12} = \mu_m^{23} = ... = \mu_m^{k,k+1} = 0$ for m=k, k+1, ..., n-1.

and

Then by applying D' to $[e_k, e_{k+1}] = \dots = [e_k, e_{n-1}] = 0$, we obtain

$$\mu_k^{i,i+1} = 0$$
 for $i = k+1, k+2, ..., n-1$
and $\mu_m^{k+1,k+2} = 0$ for $m = k+2, k+3, ..., n-1$.

Hence by induction we see that

$$\mu_k^{i,i+1} = 0$$
 for $i, k=1, 2, ..., n-1$.

(ii) The case where the characteristic of $\boldsymbol{\Phi}$ is 2 and n is odd:

We put

and

$$D' = D + (\lambda_2^{12} \operatorname{ad} e_{12} + \lambda_1^{23} \operatorname{ad} e_{23}) + \dots + (\lambda_{n-1}^{n-2,n-1} \operatorname{ad} e_{n-2,n-1} + \lambda_{n-2}^{n-1,n} \operatorname{ad} e_{n-1,n})$$

Then we can express $D'e_k$ and $D'e_{k,k+1}$ in the form (4). Since

$$\begin{split} D'e_{k} &= \sum_{i=1}^{n-1} \lambda_{k}^{i,i+1} e_{i,i+1} + \dots + \lambda_{k}^{1n} e_{1n} \\ &+ (\lambda_{2}^{12} [e_{12}, e_{k}] + \lambda_{1}^{23} [e_{23}, e_{k}]) + \dots + (\lambda_{n-1}^{n-2,n-1} [e_{n-2,n-1}, e_{k}] \\ &+ \lambda_{n+2}^{n-1,n} [e_{n-1,n}, e_{k}]), \end{split}$$

by making use of (3) it is immediate that

$$\mu_2^{12} = \mu_1^{23} = \dots = \mu_{n-1}^{n-2,n-1} = \mu_{n-2}^{n-1,n} = 0.$$

Applying D' to $[e_1, e_2] = \dots = [e_1, e_{n-1}] = 0$, we obtain

$$egin{array}{lll} \mu_1^{i,\,i+1}\!=\!0 & ext{for} & i\!=\!1,\,2,\,...,\,n\!-\!1 \ \mu_m^{23}\!=\!0 & ext{for} & m\!=\!2,\,3,\,...,\,n\!-\!1. \end{array}$$

Next apply D' to $[e_2, e_3] = \dots = [e_2, e_{n-1}] = 0$. Then

	$\mu_2^{i,i+1} \!=\! 0$	for	i = 1, 2,, n - 1
and	$\mu_m^{12} = \mu_m^{34} = 0$	for	$m = 3, 4, \dots, n-1.$

Now, as in the proof of the first case, by induction we have

$$\mu_k^{i,i+1} = 0$$
 for $i, k=1, 2, ..., n-1$.

(iii) The case where the characteristic of $\boldsymbol{0}$ is 2 and n is even: Put

$$D' = D + (\lambda_2^{12} \text{ ad } e_{12} + \lambda_1^{23} \text{ ad } e_{23}) + \dots + (\lambda_{n-2}^{n-3,n-2} \text{ ad } e_{n-3,n-2} + \lambda_{n-3}^{n-2,n-1} \text{ ad } e_{n-2,n-1}) + \lambda_{n-2}^{n-1,n} \text{ ad } e_{n-1,n},$$

and write $D'e_k$ and $D'e_{k,k+1}$ in the form (4). Then it is immediate by (3) that

$$\mu_2^{12} = \mu_1^{23} = \dots = \mu_{n-2}^{n-3, n-2} = \mu_{n-3}^{n-2, n-1} = \mu_{n-2}^{n-1, n-2} = 0.$$

If n=4, apply D' to $[e_1, e_2]=[e_1, e_3]=0$. Then

$$\mu_1^{12} = \mu_1^{34} = 0, \quad \mu_2^{23} = \mu_3^{23} = 0.$$

By applying D' to $[e_2, e_3] = 0$, we obtain

$$\mu_3^{12} = \mu_3^{34} = 0.$$

Since $\mu_1^{23} = \mu_2^{12} = \mu_2^{34} = 0$ as seen above,

$$\mu_k^{i,i+1} = 0$$
 for $i, k=1, 2, 3$.

Now we consider the case where $n \ge 6$. As in the previous case, we obtain

$$\mu_k^{i,i+1} = 0$$
 for $k=1, 2, ..., n-3$ and $i=1, 2, ..., n-1$

and

$$\mu_m^{12} = \mu_m^{23} = \dots = \mu_m^{n-2,n-1} = 0$$
 for $m = n-2, n-1$.

As seen above, $\mu_{n-2}^{n-1,n}=0$ and, by applying D' to $[e_{n-2}, e_{n-1}]=0$, we obtain $\mu_{n-1}^{n-1,n}=0$. Therefore

$$\mu_k^{i,i+1} = 0$$
 for $i, k=1, 2, ..., n-1$.

Thus the proof is complete.

To prove the next Iemma, we need the following multiplication tables where j=2, 3, ..., n-1. For n>2j+1,

$$\begin{bmatrix} [e_1, e_{1,j+1}] = e_{1,j+1}, [e_1, e_{2,j+2}] = -e_{2,j+2}, \\ \vdots \\ [e_{j-1}, e_{j-1,2j-1}] = e_{j-1,2j-1}, [e_{j-1}, e_{j,2j}] = -e_{j,2j}, \\ [e_j, e_{1,j+1}] = e_{1,j+1}, [e_j, e_{j,2j}] = e_{j,2j}, [e_j, e_{j+1,2j+1}] = -e_{j+1,2j+1}, \\ [e_{j+1}, e_{1,j+1}] = -e_{1,j+1}, [e_{j+1}, e_{2,j-2}] = e_{2,j+2}, [e_{j+1}, e_{j+1,2j+1}] = e_{j+1,2j+1}, \\ [e_{j+1}, e_{j+2,2j+2}] = -e_{j+2,2j+2}, \\ \vdots \\ [e_{n-j-1}, e_{n-2j-1,n-j-1}] = -e_{n-2j-1,n-j-1}, [e_{n-j-1}, e_{n-2j,n-j}] = e_{n-2j,n-j}, \\ [e_{n-j}, e_{n-j-1}, e_{n-j-1,n-1}] = e_{n-j-1,n-1}, [e_{n-j-1}, e_{n-j,n}] = -e_{n-j,n}, \\ [e_{n-j}, e_{n-2j,n-j}] = -e_{n-2j,n-j}, [e_{n-j}, e_{n-2j+1,n-j+1}] = e_{n-2j+1,n-j+1}, \\ [e_{n-j}, e_{n-j,n}] = e_{n-j,n}, \\ [e_{n-j+1}, e_{n-2j+1,n-j+1}] = -e_{n-2j+1,n-j+1}, [e_{n-j+1}, e_{n-2j+2,n-j+2}] = e_{n-2j+2,n-j+2}, \\ [e_{n-1}, e_{n-j-1,n-1}] = -e_{n-j-1,n-1}, [e_{n-1}, e_{n-j,n}] = e_{n-j,n}, \\ and all other products [e_k, e_{i,i+j}] = 0.$$

For n = 2j + 1,

Shigeaki Tôgô

$$\begin{cases} \begin{bmatrix} e_{1}, e_{1,j+1} \end{bmatrix} = e_{1,j+1}, \quad \begin{bmatrix} e_{1}, e_{2,j+2} \end{bmatrix} = -e_{2,j+2}, \\ \vdots \\ \begin{bmatrix} e_{j-1}, e_{j-1,2j-1} \end{bmatrix} = e_{j-1,2j-1}, \quad \begin{bmatrix} e_{j-1}, e_{j,2j} \end{bmatrix} = -e_{j,2j}, \\ \begin{bmatrix} e_{j}, e_{1,j+1} \end{bmatrix} = e_{1,j+1}, \quad \begin{bmatrix} e_{j}, e_{j,2j} \end{bmatrix} = e_{j,2j}, \quad \begin{bmatrix} e_{j}, e_{j+1,2j+1} \end{bmatrix} = -e_{j+1,2j+1}, \\ \begin{bmatrix} e_{n-j}, e_{1,j+1} \end{bmatrix} = -e_{1,j+1}, \quad \begin{bmatrix} e_{n-j}, e_{2,j+2} \end{bmatrix} = e_{2,j+2}, \quad \begin{bmatrix} e_{n-j}, e_{n-j,n} \end{bmatrix} = e_{n-j,n}, \\ \begin{bmatrix} e_{n-j+1}, e_{2,j+2} \end{bmatrix} = -e_{2,j+2}, \quad \begin{bmatrix} e_{n-j+1}, e_{3,j+3} \end{bmatrix} = e_{3,j+3}, \\ \vdots \\ \begin{bmatrix} e_{n-1}, e_{n-j-1,n-1} \end{bmatrix} = -e_{n-j-1,n-1}, \quad \begin{bmatrix} e_{n-1}, e_{n-j,n} \end{bmatrix} = e_{n-j,n} \\ \text{and all other products} \quad \begin{bmatrix} e_{k}, e_{i,i+j} \end{bmatrix} = 0. \end{cases}$$

For n=2j,

(5)III
$$\begin{cases} \begin{bmatrix} e_{1}, e_{1,j+1} \end{bmatrix} = e_{1,j+1}, \quad \begin{bmatrix} e_{1}, e_{2,j+2} \end{bmatrix} = -e_{2,j+2}, \\ \vdots \\ \begin{bmatrix} e_{j-1}, e_{j-1,2j-1} \end{bmatrix} = e_{j-1,2j-1}, \quad \begin{bmatrix} e_{j-1}, e_{j,2j} \end{bmatrix} = -e_{j,2j}, \\ \begin{bmatrix} e_{n-j}, e_{1,j+1} \end{bmatrix} = e_{1,j+1}, \quad \begin{bmatrix} e_{n-j}, e_{n-j,n} \end{bmatrix} = e_{n-j,n}, \\ \begin{bmatrix} e_{n-j+1}, e_{1,j+1} \end{bmatrix} = -e_{1,j+1}, \quad \begin{bmatrix} e_{n-j+1}, e_{2,j+2} \end{bmatrix} = e_{2,j+2}, \\ \vdots \\ \begin{bmatrix} e_{n-1}, e_{n-j-1,n-1} \end{bmatrix} = -e_{n-j+1,n-1}, \quad \begin{bmatrix} e_{n-1}, e_{n-j,n} \end{bmatrix} = e_{n-j,n} \\ \text{and all other products} \quad \begin{bmatrix} e_{k}, e_{i,i+j} \end{bmatrix} = 0. \end{cases}$$

For j+1 < n < 2j,

$$\begin{bmatrix} e_{1}, e_{1,j+1} \end{bmatrix} = e_{1,j+1}, \quad \begin{bmatrix} e_{1}, e_{2,j+2} \end{bmatrix} = -e_{2,j+2}, \\ \vdots \\ \begin{bmatrix} e_{n-j-1}, e_{n-j-1,n-1} \end{bmatrix} = e_{n-j-1,n-1}, \quad \begin{bmatrix} e_{n-j-1}, e_{n-j,n} \end{bmatrix} = -e_{n-j,n}, \\ \begin{bmatrix} e_{n-j}, e_{n-j,n} \end{bmatrix} = e_{n-j,n}, \\ \begin{bmatrix} e_{j}, e_{1,j+1} \end{bmatrix} = e_{1,j+1}, \\ \begin{bmatrix} e_{j+1}, e_{1,j+1} \end{bmatrix} = -e_{1,j+1}, \quad \begin{bmatrix} e_{j+1}, e_{2,j+2} \end{bmatrix} = e_{2,j+2}, \\ \vdots \\ \begin{bmatrix} e_{n-1}, e_{n-j-1,n-1} \end{bmatrix} = -e_{n-j-1,n-1}, \quad \begin{bmatrix} e_{n-1}, e_{n-j,n} \end{bmatrix} = e_{n-j,n} \\ \text{and all other products} \quad \begin{bmatrix} e_{k}, e_{i,i+j} \end{bmatrix} = 0.$$

For n=j+1,

$$(5)_{\mathsf{V}}\left\{ \begin{bmatrix} e_1, \ e_{1n} \end{bmatrix} = e_{1n}, \\ \begin{bmatrix} e_{n-1}, \ e_{1n} \end{bmatrix} = e_{1n}, \\ \end{array} \right.$$

 \lfloor and all other products $[e_k, e_{i,i+j}]=0.$

LEMMA 5. Let D be a derivation of L and let j be one of the integers 2, 3, \dots , n-1. Assume that

$$De_{k} = \sum_{i=1}^{n-j} \lambda_{k}^{i,i+j} e_{i,i+j} + \dots + \lambda_{k}^{1n} e_{1n},$$

$$De_{k,k+1} = \sum_{i=1}^{n-j} \lambda_{k,k+1}^{i,i+j} e_{i,i+j} + \dots + \lambda_{k,k+1}^{1n} e_{1n}$$
for $k = 1, 2, \dots, n-1.$

Then except the case where n=4, the characteristic of ϕ is 2 and j=3, we have

 $\lambda_{k,k+1}^{i,i+j} = 0$ for k = 1, 2, ..., n-1 and i = 1, 2, ..., n-j.

PROOF. (i) The case where the characteristic of $\boldsymbol{\Phi}$ is $\neq 2, 3$;

As shown in the table (5),

$$[e_k, e_{i,i+j}] = \alpha(k, i, j)e_{i,i+j}$$

for $k=1, 2, ..., n-1$ and $i=1, 2, ..., n-j$

where $\alpha(k, i, j) = 0$ or 1 or -1. For k=1, 2, ..., n-1, applying D to $[e_k, e_{k,k+1}] = 2e_{k,k+1}$, we obtain

$$2(\sum_{i=1}^{n-j} \lambda_{k,k+1}^{i,i+j} e_{i,i+j} + \dots + \lambda_{k,k+1}^{1n} e_{1n})$$

$$= \left[\sum_{i=1}^{n-j} \lambda_{k}^{i,i+j} e_{i,i+j} + \dots + \lambda_{k}^{1n} e_{1n}, e_{k,k+1}\right]$$

$$+ \left[e_{k}, \sum_{i=1}^{n-j} \lambda_{k,k+1}^{i,i+j} e_{i,i+j} + \dots + \lambda_{k,k+1}^{1n} e_{1n}\right]$$

$$= \sum_{i=1}^{n-j} \alpha(k, i, j) \lambda_{k,k+1}^{i,i+j} e_{i,i+j} + \sum_{i=1}^{n-j-1} \mu_{k,k+1}^{i,i+j+1} e_{i,i+j+1} + \dots + \mu_{k,k+1}^{1n} e_{1n}.$$

It follows that

$$\lambda_{k,k+1}^{i,i+j} = 0$$
 for $k=1, 2, ..., n-1$ and $i=1, 2, ..., n-j$.

(ii) The case where the characteristic of $\boldsymbol{\sigma}$ is 2: First we assume that n > 2j+1. We divide the proof into several cases according to the value of k.

k=1, 2, ..., j-2: By applying D to $[e_{k+1}, e_{k,k+1}]=e_{k,k+1}$, we obtain $\lambda_{k,k+1}^{i:i+j}=0$ for $i \neq k+1, k+2$. From $[e_k, e_{k,k+1}] = 0$, it follows that

$$\lambda_{k,k+1}^{k+1,k+j+1} = 0.$$

From $[e_{k+2}, e_{k,k+1}] = 0$, it follows that

 $\lambda_{k,k+1}^{k+2,k+j+2} = 0.$

k=j-1: By applying D to $[e_{k+1}, e_{k,k+1}]=e_{k,k+1}$, we obtain $\lambda_{k,k+1}^{i,i+j}=0$ for $i\neq 1, k+1, k+2$.

From $[e_k, e_{k,k+1}] = 0$, it follows that

$$\lambda_{k,k+1}^{k+1,k+j+1} = 0.$$

From $[e_{k+2}, e_{k,k+1}] = 0$, it follows that

$$\lambda_{k,k+1}^{1,j+1} = \lambda_{k,k+1}^{k+2,k+j+2} = 0.$$

k=j: By applying D to $[e_{k-1}, e_{k,k+1}]=e_{k,k+1}$, we have $\lambda_{k,k+1}^{i,i+j}=0$ for $i \neq k-1, k$.

From $[e_k, e_{k,k+1}] = 0$, it follows that

$$\lambda_{k,k+1}^{k,k+j+1} = 0.$$

From $[e_{2k-1}, e_{k,k+1}] = 0$, it follows that

$$\lambda_{k,k+1}^{k-1,k+j-1} = 0$$

k=j+1: By applying D to $[e_{k-1}, e_{k,k+1}]=e_{k,k+1}$, we obtain $\lambda_{k,k+1}^{i,i+j}=0$ for $i \neq 1, k-1, k$.

From $[e_k, e_{k,k+1}] = 0$, it follows that

$$\lambda_{k,k+1}^{1,j+1} = \lambda_{k,k+1}^{k,k+j} = 0.$$

From $[e_{2j}, e_{k,k+1}] = 0$, it follows that

$$\lambda_{k,k+1}^{k-1,k+j-1} = 0.$$

 $k=j+2, \dots, n-j$: By applying D to $[e_{k-1}, e_{k,k+1}]=e_{k,k+1}$ we have $\lambda_{k,k+1}^{i,i+j}=0$ for $i\neq k-j-1, k-j, k-1, k$.

From $[e_k, e_{k,k+1}] = 0$, it follows that

$$\lambda_{k,k+1}^{k-j,k} = \lambda_{k,k+1}^{k,k+j} = 0.$$

From $[e_{k-2}, e_{k,k+1}] = 0$, it follows that

$$\lambda_{k,k+1}^{k-j-1,k-1} = \lambda_{k,k+1}^{k-1,k+j-1} = 0.$$

k=n-j+1: By applying D to $[e_{k-1}, e_{k,k+1}]=e_{k,k+1}$, we see $\lambda_{k,k+1}^{i,i+j}=0$ for $i\neq k-j-1, k-j, n-j$. From $[e_k, e_{k,k+1}] = 0$, it follows that

$$\lambda_{k,k+1}^{k-j,k}=0.$$

From $[e_{k-2}, e_{k,k+1}] = 0$, it follows that

$$\lambda_{k,k+1}^{k-j-1,k-1} = \lambda_{k,k+1}^{n-j,n} = 0.$$

 $k=n-j+2, \dots, n-1$: By applying D to $[e_{k-1}, e_{k,k+1}]=e_{k,k+1}$, we have

$$\lambda_{k,k+1}^{i,i+j} = 0 \quad \text{for} \quad i \neq k-j-1, \ k-j.$$

From $[e_k, e_{k,k+1}] = 0$, it follows that

$$\lambda_{k,k+1}^{k-j,k}=0.$$

From $[e_{k-2}, e_{k,k+1}] = 0$, it follows that

$$\lambda_{k,k+1}^{k-j-1,k-1} = 0.$$

By a similar method we can show the assertion of the lemma in the case n=2j+1, the case n=2j and the case j+1 < n < 2j respectively by using the multiplication tables (5)_{II}, (5)_{III} and (5)_{IV}. Therefore we omit the proof for these cases.

Now we consider the remaining case n=j+1. If n=3, apply D to $[e_1, e_{12}]=[e_2, e_{23}]=0$. Then we have

$$\lambda_{12}^{13} = \lambda_{23}^{13} = 0.$$

For $n \ge 5$, applying D to $[e_1, e_{12}] = [e_{n-1}, e_{n-1,n}] = 0$, we obtain

$$\lambda_{12}^{1n} = \lambda_{n-1,n}^{1n} = 0$$

From $[e_3, e_{23}] = e_{23}, \dots, [e_{n-2}, e_{n-3,n-2}] = e_{n-3,n-2}$, it follows that

$$\lambda_{23}^{1n} = \cdots = \lambda_{n-3,n-2}^{1n} = 0.$$

From $[e_{n-3}, e_{n-2,n-1}] = e_{n-2,n-1}$, it follows that

$$\lambda_{n-2,n-1}^{1n} = 0.$$

Thus in the case where the characteristic of $\boldsymbol{\Phi}$ is 2, we have shown the assertion of the lemma where the case n=4 is excluded.

(iii) The case where the characteristic of $\boldsymbol{0}$ is 3: First we consider the case where n > 2j+1. For $k=1, 2, \dots, j$, applying D to $[e_k, e_{k,k+1}]=2e_{k,k+1}$ we have

$$\lambda_{k,k+1}^{i,i+j} = 0$$
 for $i \neq k+1$.

From $[e_{k+1}, e_{k,k+1}] = -e_{k,k+1}$, it follows that

$$\lambda_{k,k+1}^{k+1,k+j+1} = 0$$

For k=j+1, ..., n-j-1, applying D to $[e_k, e_{k,k+1}]=2e_{k,k+1}$ we obtain

 $\lambda_{k,k+1}^{i,i+j} = 0$ for $i \neq k-j, k+1$.

From $[e_{k+1}, e_{k,k+1}] = -e_{k,k+1}$, it follows that

$$\lambda_{k,k+1}^{k-j,k} = \lambda_{k,k+1}^{k+1,k+j+1} = 0$$

For k=n-j, ..., n-1, applying D to $[e_k, e_{k,k+1}]=2e_{k,k+1}$ we have

$$\lambda_{k,k+1}^{i,i+j} = 0$$
 for $i \neq k-j$.

From $[e_{k-1}, e_{k,k+1}] = -e_{k,k+1}$, it follows that

$$\lambda_{k,k+1}^{k-j,k}=0.$$

By a similar method we can show the assertion for the case n=2j+1, the case n=2j, the case j+1 < n < 2j and the case n=j+1 respectively by using the tables $(5)_{II}$, $(5)_{III}$, $(5)_{III}$, $(5)_{V}$ and $(5)_{V}$. So we omit the proof for these cases.

LEMMA 6. Let D be a derivation of L and let j be one of the integers 2, 3, ..., n-1. Assume that for k=1, 2, ..., n-1

$$De_{k} = \sum_{i=1}^{n-j} \lambda_{k}^{i,i+j} e_{i,i+j} + \dots + \lambda_{k}^{1n} e_{1n},$$

$$De_{k,k+1} = \begin{cases} \sum_{i=1}^{n-j-1} \lambda_{k,k+1}^{i,i+j+1} e_{i,i+j+1} + \dots + \lambda_{k,k+1}^{1n} e_{1n} & \text{if } j \neq n-1, \\ 0 & \text{if } j = n-1. \end{cases}$$

If we put $D' = D + \sum_{i=1}^{n-j} \lambda_i^{i,i+j}$ ad $e_{i,i+j}$, then for $j \neq n-1$ $D'e_k = \sum_{i=1}^{n-j-1} \mu_k^{i,i+j+1}e_{i,i+j+1} + \dots + \mu_k^{1n}e_{1n}$, $D'e_{k,k+1} = \sum_{i=1}^{n-j-1} \mu_{k,k+1}^{i,i+j+1}e_{i,i+j+1} + \dots + \mu_{k,k+1}^{1n}e_{1n}$

and for j=n-1

$$D'e_k = D'e_{k,k+1} = 0, \qquad k = 1, 2, ..., n-1.$$

PROOF. It is immediate that D' has the same form as that of D for e_k and $e_{k,k+1}$. Therefore we put

$$D'e_{k} = \sum_{i=1}^{n-j} \mu_{k}^{i,i+j} e_{i,i+j} + \dots + \mu_{k}^{1n} e_{1n},$$

$$D'e_{k,k+1} = \sum_{i=1}^{n-j-1} \mu_{k,k+1}^{i,i+j+1} e_{i,i+j+1} + \dots + \mu_{k,k+1}^{1n} e_{1n}$$

for $k = 1, 2, \dots, n-1.$

Then we have

$$\mu_k^{k,k+j} = 0$$
 for $k = 1, 2, ..., n-j$.

In fact,

$$D'e_k = De_k + \sum_{i=1}^{n-j} \lambda_i^{i+j} [e_{i,i+j}, e_k]$$

and therefore

$$\mu_k^{k,k+j} \!=\! \lambda_k^{k,k+j} \!+\! (-\lambda_k^{k,k+j}) \!=\! 0.$$

By applying D' to $[e_1, e_2] = \dots = [e_1, e_{n-j-1}] = 0$, we have

$$\mu_1^{i,i+j} = 0$$
 for $i = 1, 2, ..., n-j$

 $\mu_m^{1,j+1} = \mu_m^{2,j+2} = 0$ for m = 2, 3, ..., n-j-1.

and

For m=n-j, ..., n-1, apply D' to $[e_1, e_m]=0$ and we obtain

$$\mu_m^{1,j+1} = \mu_m^{2,j+2} = 0$$

Now assume that $2 \le k \le n-j-1$ and that we have

$$\mu_{l}^{i,i+j} = 0 \quad \text{for} \quad l = 1, 2, ..., k-1 \quad \text{and} \quad i = 1, 2, ..., n-j$$

and
$$\mu_{m}^{1,j-1} = \mu_{m}^{2,j+1} = ... = \mu_{m}^{k,k+j} = 0 \quad \text{for} \quad m = k, k+1, ..., n-1.$$

Then applying D' to $[e_{k}, e_{k+1}] = ... = [e_{k}, e_{n-j-1}] = 0$, we have
$$\mu_{k}^{i,i+j} = 0 \quad \text{for} \quad i = k+1, ..., n-j$$

and $\mu_m^{k+1,k+j+1} = 0$ for m = k+2, ..., n-j-1.

For m=n-j, ..., n-1, apply D' to $[e_k, e_m]=0$ and we obtain

$$\mu_m^{k+1,k+j+1} = 0.$$

Thus we conclude that

 $\mu_k^{i,i+j} = 0$ for k=1, 2, ..., n-1 and i=1, 2, ..., n-j.

3. The first statement of Theorem 1

Throughout this section we assume that either the characteristic of $\boldsymbol{\Phi}$ is 0, or the characteristic of $\boldsymbol{\Phi}$ is $p \neq 0$ and $n \not\equiv 0 \pmod{p}$.

By our assumption on the characteristic of \emptyset , the system (2) of n-1 equations has the nonsingular matrix of coefficients. Therefore by virtue of Lemma 2 any derivation D of L has the following form:

Shigeaki Tôgô

(6)
$$\begin{cases} De_{k} = \sum_{i=1}^{n-1} \lambda_{k}^{i,i+1} e_{i,i+1} + \dots + \lambda_{k}^{1n} e_{1n}, \\ De_{k,k+1} = \lambda_{k,k+1}^{k,k+1} e_{k,k+1} + \sum_{i=1}^{n-2} \lambda_{k,k+1}^{i,i+2} e_{i,i+2} + \dots + \lambda_{k,k+1}^{1n} e_{1n} \\ \text{for} \quad k = 1, 2, \dots, n-1. \end{cases}$$

LEMMA 7. Let D be any derivation of L. Then there exist $\alpha_1, \alpha_2, ..., \alpha_{n-1}$ in $\boldsymbol{\Phi}$ such that

$$D'=D-\sum_{i=1}^{n-1}\alpha_i \operatorname{ad} e_i$$

has the following form for $e_{k,k+1}$:

$$D'e_{k,k+1} = \sum_{i=1}^{n-2} \lambda_{k,k+1}^{i,i+2} e_{i,i+2} + \dots + \lambda_{k,k+1}^{1n} e_{1n}$$

for $k=1, 2, \dots, n-1.$

PROOF. By the remark preceding the lemma,

$$De_{k,k+1} = \lambda_{k,k+1}^{k,k+1}e_{k,k+1} + \sum_{i=1}^{n-2} \lambda_{k,k+1}^{i,i+2}e_{i,i+2} + \dots + \lambda_{k,k+1}^{in}e_{1n}$$

for $k = 1, 2, \dots, n-1.$

We now consider the following system of n-1 equations:

Since the matrix of coefficients of the system is nonsingular, the system has a unique solution, which we denote by $\alpha_1, \alpha_2, \dots, \alpha_{n-1}$. With these α_i 's we define D' as in the statement. Then

$$D'e_{k,k+1} = De_{k,k+1} - \sum_{i=1}^{n-1} \alpha_i [e_i, e_{k,k+1}]$$

$$\begin{pmatrix} (\lambda_{12}^{12} - 2\alpha_1 + \alpha_2)e_{12} + \sum_{i=1}^{n-2} \lambda_{12}^{i,i+2}e_{i,i+2} + \dots + \lambda_{12}^{1n}e_{1n} & \text{for } k = 1, \\ (\lambda_{k,k+1}^{k,k+1} + \alpha_{k-1} - 2\alpha_k + \alpha_{k+1})e_{k,k+1} + \sum_{i=1}^{n-2} \lambda_{k,k+1}^{i,i+2}e_{i,i+2} + \dots + \lambda_{k,k+1}^{1n}e_{1n} \end{pmatrix}$$

On Some Properties of $\mathfrak{t}(n, \Phi)$ and $\mathfrak{ft}(n, \Phi)$

$$= \left\{ \begin{array}{c} \text{for} \quad k=2, 3, ..., n-2, \\ (\lambda_{n-1,n}^{n-1,n} + \alpha_{n-2} - 2\alpha_{n-1})e_{n-1,n} + \sum_{i=1}^{n-2} \lambda_{n-1,n}^{i,i+2}e_{i,i+2} + ... + \lambda_{n-1,n}^{1n}e_{1n} \\ \text{for} \quad k=n-1. \end{array} \right.$$
$$= \sum_{i=1}^{n-2} \lambda_{k,k+1}^{i,i+2}e_{i,i+2} + ... + \lambda_{k,k+1}^{1n}e_{1n}.$$

PROOF OF THE FIRST STATEMENT OF THEOREM 1:

In the case where n=2, the characteristic of $\boldsymbol{0}$ is $\neq 2$. Therefore L is a 2-dimensional non-abelian solvable Lie algebra. It is known that L has then no outer derivation, that is, $H^1(L, L)=(0)$.

We therefore assume that $n \ge 3$. Let D be any derivation of L. Then D has the form (6) for e_k and $e_{k,k+1}$, k=1, 2, ..., n-1. By virtue of Lemma 7, adding an inner derivation to D, we may suppose that

$$\lambda_{k,k+1}^{k,k+1} = 0$$
 for $k = 1, 2, ..., n-1$.

Owing to Lemma 4, by adding an inner derivation to D, we may furthermore suppose that

$$\lambda_k^{i,i+1} = 0$$
 for $i, k = 1, 2, ..., n-1$.

By making use of Lemmas 5 and 6, we can proceed by induction to conclude that after replacing D by the sum of D and a suitable inner derivation we have

$$De_k = De_{k,k+1} = 0$$
 for $k = 1, 2, ..., n-1$.

But Lemma 3 then tells us that D=0. This shows that the first given D is an inner derivation and we have $H^1(L, L)=(0)$.

4. The second statement of Theorem 1

Throughout this section, we assume that the characteristic of $\boldsymbol{\varphi}$ is $p \neq 0$ and that $n \equiv 0 \pmod{p}$.

The matrix of coefficients of the system (2) of n-1 equations is singular but has rank n-2. Therefore any solution of (2) is of the form:

$$x_1 = \beta, x_2 = 2\beta, ..., x_{n-1} = (n-1)\beta,$$

where β is an element of $\boldsymbol{\Phi}$.

By virtue of Lemma 2 any derivation D of L has the following form for e_k and $e_{k,k+1}$.

Shigeaki Tôcô

(7)
$$\begin{cases} De_{k} = \sum_{i=1}^{n-1} i\beta_{k}e_{i} + \sum_{i=1}^{n-1} \lambda_{k}^{i,i+1}e_{i,i+1} + \dots + \lambda_{k}^{1n}e_{1n} & \text{for} \quad k=1, 2, \dots, n-1. \\ \text{For} \quad n \ge 5, \\ De_{k,k+1} = \lambda_{k,k+1}^{k,k+1}e_{k,k+1} + \sum_{i=1}^{n-1} \lambda_{k,k+1}^{i,i+1}e_{i,i+1} + \dots + \lambda_{k,k+1}^{1n}e_{1n} & \text{for} \quad k=1, 2, \dots, n-1 \end{cases}$$

LEMMA 8. The center of L is spanned by the identity matrix e_0 .

PROOF. The trace of e_0 is 0 and therefore $e_0 \in L$. e_0 evidently belongs to the center of L.

Conversely, suppose that

$$e = \sum_{i=1}^{n-1} \lambda^{i} e_{i} + \sum_{i=1}^{n-1} \lambda^{i,i+1} e_{i,i+1} + \dots + \lambda^{1n} e_{1n}$$

is an element of the center of L. By taking the products $[e, e_i]=0$, i=1, 2, ..., n-1, and by using the tables (3) and (5), we see that

 $\lambda^{i,i+j} = 0$ for i=1, 2, ..., n-j and j=1, 2, ..., n-1.

From $[e, e_{12}] = 0$, it follows that

$$2\lambda^1-\lambda^2=0.$$

For k=2, 3, ..., n-2, it follows from $[e, e_{k,k+1}]=0$ that

$$-\lambda^{k-1}+2\lambda^k-\lambda^{k+1}=0.$$

From $[e, e_{n-1,n}] = 0$, it follows that

$$-\lambda^{n-2}+2\lambda^{n-1}=0.$$

Thus $\{\lambda^1, \lambda^2, ..., \lambda^{n-1}\}$ is a solution of the system (2) of equations. Therefore we can write

$$\lambda^i = i\beta, \qquad i = 1, 2, \dots, n-1$$

with some $\beta \in \boldsymbol{\Phi}$. Hence

$$e = \beta(\sum_{i=1}^{n-1} ie_i) = \beta e_0.$$

LEMMA 9. For any k=1, 2, ..., n-1, let D_k be the endomorphism of L sending e_k to e_0 and all other elements of a basis (1) to 0. Let D_{12} be the endomorphism of L sending e_{1k} to e_{1k} for k=2, 3, ..., n and all other elements of a basis (1) to 0. Then D_k and D_{12} are outer derivations of L.

PROOF. By Lemma 8 we see that D_k maps L into the center of L and L^2 into (0). Hence D_k is a derivation of L, which is outer since $e_0 \notin L^2$.

It is easy to verify that D_{12} is a derivation of L. It is furthemore outer. In fact, suppose that

$$D_{12} = \sum_{i=2}^{n-1} \lambda^{i} \text{ ad } e_{i} + \sum_{i=1}^{n-1} \lambda^{i,i+1} \text{ ad } e_{i,i+1} + \dots + \lambda^{1n} \text{ ad } e_{1n}.$$

Applying D_{12} to e_k , k=1, 2, ..., n-1, by (3) and (5) we obtain

 $\lambda^{i,i+j} = 0$ for i=1, 2, ..., n-j and j=1, 2, ..., n-1.

Hence $D_{12} = \sum_{i=2}^{n-1} \lambda^i \operatorname{ad} e_i$. Now apply D_{12} to $e_{12}, e_{23}, \dots, e_{n-1,n}$. Then we see that $-\lambda^2 = 1$ and that $\lambda^2, \lambda^3, \dots, \lambda^{n-1}$ satisfy the following system of equations.

(8)
$$\begin{pmatrix} -2x_2 - x_3 &= 0\\ -x_2 + 2x_3 - x_4 &= 0\\ \vdots\\ -x_{n-3} + 2x_{n-2} - x_{n-1} = 0\\ -x_{n-2} + 2x_{n-1} = 0 \end{pmatrix}$$

The system (8) has the nonsingular matrix of coefficients and therefore it has only the trivial solution. Hence

$$\lambda^2 = \lambda^3 = \ldots = \lambda^{n-1} = 0.$$

This contradicts the fact that $-\lambda^2 = 1$. Therefore D_{12} is outer, as was asserted.

LEMMA 10. Let D be a derivation of L. Assume that

$$De_{k} = \sum_{i=1}^{n-1} i\beta_{k}e_{i} + \sum_{i=1}^{n-1} \lambda_{k}^{i,i+1}e_{i,i+1} + \dots + \lambda_{k}^{1n}e_{1n} \quad for \quad k = 1, 2, \dots, n-1$$

If we put

$$D' = D - \sum_{i=1}^{n-1} \beta_i D_i$$

with D_i 's the derivations defined in Lemma 9, then

$$D'e_{k} = \sum_{i=1}^{n-1} \lambda_{k}^{i,i+1}e_{i,i-1} + \dots + \lambda_{k}^{i,n}e_{1n} \quad for \quad k = 1, 2, \dots, n-1.$$

PROOF. By Lemma 9 we have

$$D'e_{k} = \sum_{i=1}^{n-1} i\beta_{k}e_{i} + \sum_{i=1}^{n-1} \lambda_{k}^{i,i+1}e_{i,i+1} + \dots + \lambda_{k}^{1n}e_{1n} - (\sum_{i=1}^{n-1} \beta_{i}D_{i})e_{k}$$
$$= \beta_{k}e_{0} + \sum_{i=1}^{n-1} \lambda_{k}^{i,i+1}e_{i,i+1} + \dots + \lambda_{k}^{1n}e_{1n} - \beta_{k}D_{k}e_{k}$$

$$=\sum_{i=1}^{n-1}\lambda_{k}^{i,i+1}e_{i,i+1}+\cdots+\lambda_{k}^{1n}e_{1n}.$$

LEMMA 11. Let D be a derivation of L. Assume that

$$De_{k} = \sum_{i=1}^{n-1} \lambda_{k}^{i,i+1} e_{i,i+1} + \dots + \lambda_{k}^{1n} e_{1n},$$

$$De_{k,k+1} = \lambda_{k,k+1}^{i,k+1} e_{k,k+1} + \sum_{i=1}^{n-2} \lambda_{k,k+1}^{i,i+2} e_{i,i+2} + \dots + \lambda_{k,k+1}^{1n} e_{1n}$$

for $k = 1, 2, \dots, n-1.$

Then there exist $\alpha_2, \alpha_3, ..., \alpha_{n-1}$ in ϕ such that

$$D' = D - (\lambda_{12}^{12} + \alpha_2) D_{12} - \sum_{i=2}^{n-1} \alpha_i \text{ ad } e_i$$

has the following form for $e_{k,k+1}$:

$$D'e_{k,k+1} = \sum_{i=1}^{n-2} \lambda_{k,k+1}^{i,i+2} e_{i,i+2} + \dots + \lambda_{k,k+1}^{1n} e_{1n} \quad for \quad k=1, 2, \dots, n-1.$$

PROOF. We consider the system of n-2 equations

$$\begin{cases} 2x_2 - x_3 &= \lambda_{23}^{23} \\ -x_2 + 2x_3 - x_4 &= \lambda_{34}^{34} \\ \vdots \\ & \vdots \\ & -x_{n-3} + 2x_{n-2} - x_{n-1} = \lambda_{n-2,n-1}^{n-2,n-1} \\ & -x_{n-2} + 2x_{n-1} = \lambda_{n-1,n}^{n-1,n}. \end{cases}$$

This system has the nonsingular matrix of coefficients and therefore it has a solution. Denote a solution of the system by $\alpha_2, \alpha_3, \dots, \alpha_{n-1}$ and define D' as in the statement. Then

$$D'e_{12} = De_{12} - (\lambda_{12}^{12} + \alpha_2)e_{12} - \sum_{i=2}^{n-1} \alpha_i [e_i, e_{12}]$$

= $(\lambda_{12}^{12} - (\lambda_{12}^{12} + \alpha_2) + \alpha_2)e_{12} + \sum_{i=1}^{n-2} \lambda_{12}^{i,i-2}e_{i,i+2} + \dots + \lambda_{12}^{1n}e_{1n}$
= $\sum_{i=1}^{n-2} \lambda_{12}^{i,i+2}e_{i,i+2} + \dots + \lambda_{12}^{1n}e_{1n}$.
$$D'e_{23} = De_{23} - \sum_{i=2}^{n-1} \alpha_i [e_i, e_{23}]$$

= $(\lambda_{23}^{23} - 2\alpha_2 + \alpha_3)e_{23} + \sum_{i=1}^{n-2} \lambda_{23}^{i,i+2}e_{i,i-2} + \dots + \lambda_{23}^{1n}e_{1n}$

$$=\sum_{i=1}^{n-2} \lambda_{23}^{i,i+2} e_{i,i+2} + \dots + \lambda_{23}^{in} e_{1n}.$$

For $k=3, 4, \dots, n-2,$
 $D'e_{k,k+1} = De_{k,k+1} - \sum_{i=2}^{n-1} \alpha_i [e_i, e_{k,k+1}]$
 $= (\lambda_{k,k+1}^{k,i+1} + \alpha_{k-1} - 2\alpha_k + \alpha_{k+1})e_{k,k+1} + \sum_{i=1}^{n-2} \lambda_{k,k+1}^{i,i+2} e_{i,i+2} + \dots + \lambda_{k,k+1}^{in} e_{1n}$
 $= \sum_{i=1}^{n-2} \lambda_{k,k+1}^{i,i+2} e_{i,i+2} + \dots + \lambda_{k,k+1}^{in} e_{1n}.$
 $D'e_{n-1,n} = De_{n-1,n} - \sum_{i=2}^{n-1} \alpha_i [e_i, e_{n-1,n}]$
 $= (\lambda_{n-1,n}^{n-1,n} + \alpha_{n-2} - 2\alpha_{n-1})e_{n-1,n} + \sum_{i=1}^{n-2} \lambda_{n-1,n}^{i,i+2} e_{i,i+2} + \dots + \lambda_{n-1,n}^{in} e_{1n}.$

Thus the proof is complete.

PROOF OF THE SECOND STATEMMENT OF THEOREM 1:

Any derivation D of L has the form (7) for e_k and $e_{k,k+1}$, k=1, 2, ..., n-1. Put

$$D' = D - \sum_{i=1}^{n-1} \beta_i D_i - (\lambda_{12}^{12} + \alpha_2) D_{12} - \sum_{i=2}^{n-1} \alpha_i \text{ ad } e_i,$$

where $\alpha_2, \alpha_3, ..., \alpha_{n-1}$ are the elements of $\boldsymbol{\Phi}$ chosen in Lemma 11. Then by making use of Lemmas 10 and 11 we have

$$D'e_{k} = \sum_{i=1}^{n-1} \lambda_{k}^{i,i+1} e_{i,i+1} + \dots + \lambda_{k}^{1n} e_{1n},$$

$$D'e_{k,k+1} = \sum_{i=1}^{n-2} \lambda_{k,k+1}^{i,i+2} e_{i,i+2} + \dots + \lambda_{k,k+1}^{1n} e_{1n} \quad \text{for} \quad k=1, 2, \dots, n-1.$$

Now as in the proof of the first statement of Theorem 1, we can use Lemmas 3, 4, 5 and 6 to see that D' is an inner derivation of L. Therefore in order to see that $H^1(L, L)$ is of dimension n, it is sufficient for us to show that D_1, D_2, \dots, D_{n-1} and D_{12} are linearly independent modulo the inner derivations. Suppose that the derivation

(9)
$$\sum_{i=1}^{n-1} \lambda^i D_i + \lambda D_{12} + \sum_{i=2}^{n-1} \mu^i \operatorname{ad} e_i + \sum_{i=1}^{n-1} \mu^{i,i+1} \operatorname{ad} e_{i,i+1} + \dots + \mu^{1n} \operatorname{ad} e_{1n}$$

is identically 0, where all the λ 's and μ 's are in Φ . Applying the derivation

(9) to e_k , we obtain $\lambda^k = 0$ for k = 1, 2, ..., n-1. Apply the derivation (9) to e_{12} . Then $\lambda - \mu^2 = 0$. By applying the derivation (9) to $e_{23}, e_{34}, ..., e_{n-1,n}$, we see that $\mu^2, \mu^3, ..., \mu^{n-1}$ satisfy the system (8) of n-2 equations. It follows that $\mu^2 = \mu^3 = ... = \mu^{n-1} = 0$. Therefore $\lambda = 0$. It is now immediate that all the other μ 's are 0. This completes the proof.

5. Remark to Theorem 1

In this section, we shall consider the three cases excluded in Theorem 1. In the case where n=2 and the characteristic of $\boldsymbol{\phi}$ is 2, L is a 2-dimensional abelian Lie algebra. Hence dim $H^1(L, L)=4$.

The case where n=3 and the characteristic of ϕ is 3: By virtue of Lemma 2 we see that

$$De_{k} = \beta_{k}(e_{1} - e_{2}) + \sum_{i=1}^{2} \lambda_{k}^{i, i+1} e_{i, i+1} + \lambda_{k}^{13} e_{13},$$
$$De_{k, k+1} = \sum_{i=1}^{2} \lambda_{k, k+1}^{i, i+1} e_{i, i+1} + \lambda_{k}^{13} e_{13} \quad \text{for} \quad k = 1, 2.$$

Let D_{12}^{23} (resp. D_{23}^{12}) be the endomorphism of L sending e_{12} (resp. e_{23}) to e_{23} (resp. e_{12}) and all other elements of a basis (1) to 0. Then these are outer derivations of L. With a slight modification of the reasoning in the preceding section, we can show that any derivation of L is a linear combination of D_1 , D_2 , D_{12} , D_{12}^{23} , D_{12}^{12} and an inner derivation. It is easy to see that these outer derivations are linearly independent modulo the inner derivations. Therefore we conclude that dim $H^1(L, L)=5$.

The case where n=4 and the characteristic of ϕ is 2: By Lemma 2 and its proof, we see that

$$De_{k} = \beta_{k}(e_{1} + e_{3}) + \sum_{i=1}^{3} \lambda_{k}^{i,i+1} e_{i,i+1} + \sum_{i=1}^{2} \lambda_{k}^{i,i+2} e_{i,i+2} + \lambda_{k}^{14} e_{14}$$

for $k=1, 2, 3,$
$$De_{12} = (\lambda_{12}^{12} e_{12} + \lambda_{12}^{34} e_{34}) + \sum_{i=1}^{2} \lambda_{12}^{i,i+2} e_{i,i+2} + \lambda_{12}^{14} e_{14},$$

$$De_{23} = \lambda_{23}^{23} e_{23} + \sum_{i=1}^{2} \lambda_{23}^{i,i+2} e_{i,i+2} + \lambda_{23}^{14} e_{14},$$

$$De_{34} = (\lambda_{34}^{12} e_{12} + \lambda_{34}^{34} e_{34}) + \sum_{i=1}^{2} \lambda_{34}^{i,i+2} e_{i,i+2} + \lambda_{34}^{14} e_{14}.$$

Let D_{12}^{34} (resp. D_{34}^{12}) be the endomorphism of L sending e_{12} (resp. e_{34}) to e_{34} (resp. e_{12}), e_{13} (resp. e_{24}) to $-e_{24}$ (resp. $-e_{13}$) and all the other elements of a

basis (1) to 0. Let D_{23}^{14} be the endomorphism of L sending e_{23} to e_{14} and all other elements of a basis (1) to 0. Then these are outer derivations of L. With a slight modification of the reasoning in the preceding section, we can show that any derivation of L is a linear combination of D_1 , D_2 , D_3 , D_{12} , D_{34}^{14} , D_{23}^{14} and an inner derivation. It is easy to see that these outer derivations are linearly independent modulo the inner derivations. Thus we conclude that dim $H^1(L, L)=7$.

6. Proof of Theorem 2

We can prove Theorem 2 in a quite similar manner as in the proof of the second statement of Theorem 1. Therefore we shall only write the outline of the proof.

Throughout this section, let $\boldsymbol{\varphi}$ be a field of arbitrary characteristic and denote $t(n, \boldsymbol{\varphi})$ with $n \geq 2$ by L for the sake of simplicity.

We choose a basis of L as follows.

 e_k : the $(a_{ij}) \in L$ such that $a_{kk} = 1$ and all other $a_{ij} = 0$,

for k = 1, 2, ..., n.

 $e_{k,k+l}$: the $(a_{ij}) \in L$ such that $a_{k,k+l} = 1$ and all other $a_{ij} = 0$,

for k=1, 2, ..., n-1 and l=1, 2, ..., n-k.

We put these elements of L in the following order:

(10) $e_1, \ldots, e_n; e_{12}, \ldots, e_{n-1,n}; \ldots; e_{1,n-1}, e_{2n}; e_{1n}$

Then, corresponding to Lemma 1, for any derivation D of L we have

$$De_{k} = \sum_{i=1}^{n} \lambda_{k}^{i} e_{i} + \sum_{i=1}^{n-1} \lambda_{k}^{i,i+1} e_{i,i+1} + \dots + \lambda_{k}^{1n} e_{1n} \quad \text{for} \quad k = 1, 2, \dots, n,$$

$$De_{k,k+l} = \sum_{i=1}^{n-l} \lambda_{k,k+l}^{i,i+l} e_{i,i+l} + \dots + \lambda_{k,k+l}^{1n} e_{1n} \quad \text{for} \quad k = 1, 2, \dots, n-1 \quad \text{and} \quad l = 1, 2, \dots, n-k.$$

Corresponding to Lemma 2, we can show without any restriction on n and ϕ that

$$\lambda_k^1 = \lambda_k^2 = \dots = \lambda_k^n$$
 for $k = 1, 2, \dots, n$
 $\lambda_{k+k+1}^{i+i-1} = 0$ for $i, k = 1, 2, \dots, n-1$ and $i \neq k$.

and

The results corresponding to Lemmas 3, 4, 5 and 6 hold for a derivation of $L=t(n, \Phi)$ without any restriction on n and Φ . It is to be noted that in the proof of the result corresponding to Lemma 4 we only need to define D' as follows:

$$D' = D + \sum_{i=1}^{n-1} \lambda_i^{i,i+1} \text{ ad } e_{i,i+1}.$$

It is evident that the center of L is spanned by the identity matrix e_0 . We define the derivation D_k , k=1, 2, ..., n, as in Lemma 9. Corresponding to (8), we consider the following system of n-1 equations in n indeterminates:

$$\begin{cases} x_1 - x_2 &= \lambda_{12}^{12} \\ x_2 - x_3 &= \lambda_{23}^{23} \\ \vdots & \vdots \\ x_{n-1} - x_n = \lambda_{n-1,n}^{n-1,n} \end{cases}$$

Then the system has a solution of the following type:

$$x_1=0, x_2=\alpha_2, \ldots, x_n=\alpha_n.$$

Putting

$$D' = D - \sum_{i=1}^{n} \lambda_i^{1} D_i - \sum_{i=2}^{n} \alpha_i \text{ ad } e_i,$$

we have

$$D'e_{k} = \sum_{i=1}^{n-1} \lambda_{k}^{i,i+1}e_{i,i+1} + \dots + \lambda_{k}^{i,n}e_{1n}, \qquad k = 1, 2, \dots, n,$$
$$D'e_{k,k+1} = \sum_{i=1}^{n-2} \lambda_{k,k+1}^{i,i+2}e_{i,i+2} + \dots + \lambda_{k,k+1}^{i,n}e_{1n}, \qquad k = 1, 2, \dots, n-1.$$

Now as in the proof of the second statement of Theorem 1, we see by making use of the results corresponding to Lemmas 3, 4, 5 and 6 that D' is an inner derivation of L and we can conclude that dim $H^1(L, L) = n$.

Reference

[1] S. Tôgô, Outer derivations of Lie algebras, to appear in Trans. Amer. Math. Soc.

Department of Mathematics, Faculty of Science, Hiroshima University