On Some Properties of $\mathfrak{t}(\boldsymbol{n}, \Phi)$ and $\mathfrak{f t}(n, \Phi)$

Shigeaki TôGô
(Received February 27, 1967)

1. Introduction

It is known that every finite-dimensional Lie algebra L over a field Φ of arbitrary characteristic has a faithful finite-dimensional representation. If Φ is an algebraically closed field of characteristic 0 , then every solvable subalgebra of $\mathfrak{g l}(n, \Phi)$ is isomorphic to a subalgebra of the Lie algebra $t(n, \Phi)$ of all the triangular matrices. Among solvable linear Lie algebras the following three Lie algebras are most familiar to us: $\mathrm{t}(n, \Phi)$, the Lie algebra $\mathfrak{f t}(n, \Phi)$ of all the triangular matrices of trace 0 , and the Lie algebra $\mathfrak{n}(n, \Phi)$ of all the triangular matrices with 0 's on the diagonal. B. Kostant orally informed the author that he had determined the structure of the first cohomology group $H^{1}(L, L)$ of $n(n, \Phi)$ and that the method of constructing an outer derivation which has been employed in the proof of Theorem 1 in [1] gives another way of finding all the nilpotent outer derivations of $\mathfrak{n}(n, \Phi)$.

It therefore seems to be an interesting problem to ask the structure of the first cohomology groups $H^{1}(L, L)$ of $t(n, \Phi)$ and $\mathfrak{j t}(n, \Phi)$. In this paper we are concerned with this problem and show the following two theorems.

Theorem 1. Let L be ft $n, ~(\Phi)$ with $n \geq 2$.
(i) If the characteristic of Φ is 0 , or if the characteristic of Φ is $p \neq 0$ and $n \neq 0(\bmod p)$, then $H^{1}(L, L)=(0)$.
(ii) If the characteristic of Φ is $p \neq 0$ and $n \equiv 0(\bmod p)$ and if $n \geq 5$, then $\operatorname{dim} H^{1}(L, L)=n$.

Theorem 2. Let Φ be a field of arbitrary characteristic and let L be $\mathrm{t}(n, \Phi)$ with $n \geq 2$. Then $\operatorname{dim} H^{1}(L, L)=n$.

In Theorem 1 we exclude the case where the characteristic of Φ is $p \neq 0$, $n \equiv 0(\bmod p)$ and $n \leq 4$. The structure of the first cohomology group $H^{1}(L, L)$ of $\mathfrak{f t}(n, \Phi)$ in this case will be determined in Section 5 .

Throughout this paper, we shall denote by Φ a field of arbitrary characteristic unless otherwise stated, and by e_{0} the identity matrix in $\mathfrak{g l}(n, \Phi)$.

2. Lemmas

Throughout Secticns $2,3,4$ and 5 , we denote $\mathfrak{f t}(n, \Phi)$ by L for the sake
of simplicity and assume that $n \geq 3$ unless otherwise stated.
We choose a basis of L as follows.
$e_{k}:$ the $\left(a_{i j}\right) \in L$ such that $a_{k k}=1, a_{k+1, k+1}=-1$ and all other $a_{i j}=0$.
$e_{k, k+l}:$ the $\left(a_{i j}\right) \in L$ such that $a_{k, k+l}=1$ and all other $a_{i j}=0$.

$$
(k=1,2, \ldots, n-1, \quad l=1,2, \cdots, n-k) .
$$

We put these elements of L in the following order:

$$
\begin{equation*}
e_{1}, \cdots, e_{n-1} ; e_{12}, \cdots, e_{n-1, n} ; \cdots ; e_{1, l+1}, \cdots, e_{n-l, n} ; \cdots ; e_{1, n-1}, e_{2, n} ; e_{1 n} \tag{1}
\end{equation*}
$$

Then we have

Lemma 1. Let D be any derivation of L. Then

$$
\begin{aligned}
& D e_{k}=\sum_{i=1}^{n-1} \lambda_{k}^{i} e_{i}+\sum_{i=1}^{n-1} \lambda_{k}^{i, i+1} e_{i, i+1}+\cdots+\sum_{i=1}^{n-l} \lambda_{k}^{i, i+l} e_{i, i+l}+\cdots+\lambda_{k}^{1 n} e_{1 n}, \\
& D e_{k, k+l}=\sum_{i=1}^{n-l} \lambda_{k, k+l}^{i, i+l} e_{i, i+l}+\cdots+\lambda_{k, k+1}^{1 n} e_{1 n} \\
& \quad \text { for } \quad k=1,2, \cdots, n-1 \quad \text { and } \quad l=1,2, \cdots, n-k .
\end{aligned}
$$

Proof. This is immediate from the facts that

$$
\begin{aligned}
& L^{2}=\left(e_{12}, \cdots, e_{n-1, n} ; \cdots ; e_{1 n}\right), \\
& \left(L^{2}\right)^{l}=\left(e_{1, l+1}, \cdots, e_{n-l, n} ; \cdots ; e_{1 n}\right) \quad \text { for } \quad l=2,3, \cdots, n-1
\end{aligned}
$$

and that these are characteristic ideals of L.
We consider the following system of $n-1$ equations:

$$
\left\{\begin{array}{rr}
2 x_{1}-x_{2} & =0 \tag{2}\\
-x_{1}+2 x_{2}-x_{3} & \\
-x^{2}+2 x_{3}-x_{4} & =0 \\
\cdot & \\
-x_{n-3}+2 x_{n-2}-x_{n-1} & =0 \\
-x_{n-2}+2 x_{n-1} & =0
\end{array}\right.
$$

Then the determinant of the matrix of coefficients of (2) is n.
We need the following multiplication table:

$$
\left\{\begin{array}{l}
{\left[e_{1}, e_{12}\right]=2 e_{12},\left[e_{1}, e_{23}\right]=-e_{23} ;} \tag{3}\\
{\left[e_{j}, e_{j-1, j}\right]=-e_{j-1, j},\left[e_{j}, e_{j, j+1}\right]=2 e_{j, j+1},} \\
\quad\left[e_{j}, e_{j+1, j+2}\right]=-e_{j+1, j+2}, \text { for } \quad j=2,3, \ldots, n-2 ; \\
{\left[e_{n-1}, e_{n-2, n-1}\right]=-e_{n-2, n-1},\left[e_{n-1}, e_{n-1, n}\right]=2 e_{n-1, n}} \\
\text { and all other }\left[e_{k}, e_{i, i+1}\right]=0 .
\end{array}\right.
$$

Lemma 2. Let D be any derivation of L. Let $D e_{k}$ and $D e_{k, k+l}$ be expressed as in Lemma 1. Then $\left\{\lambda_{k}^{1}, \lambda_{k}^{2}, \ldots, \lambda_{k}^{n-1}\right\}$ for any $k=1,2, \ldots, n-1$ is a solution of the system (2). Except the case where $n=3$ and the characteristic of Φ is 3 and the case where $n=4$ and the characteristic of Φ is 2 , we have

$$
\lambda_{k, k+1}^{i, i+1}=0 \quad \text { for } \quad i, k=1,2, \ldots, n-1 \quad \text { and } \quad i \neq k .
$$

Proof. (i) The case where the characteristic of Φ is $\neq 2,3$: Apply D to $\left[e_{1}, e_{12}\right]=2 e_{12}$. Then

$$
2 \lambda_{1}^{1}-\lambda_{1}^{2}=0 \quad \text { and } \quad \lambda_{12}^{i, i+1}=0 \quad \text { for } \quad i \neq 1 .
$$

For $j \neq 1$, applying D to the products $\left[e_{j}, e_{12}\right]$, we obtain

$$
2 \lambda_{j}^{1}-\lambda_{j}^{2}=0 .
$$

For $k=2,3, \ldots, n-2$, apply D to $\left[e_{k}, e_{k, k+1}\right]=2 e_{k, k+1}$. Then we have

$$
-\lambda_{k}^{k-1}+2 \lambda_{k}^{k}-\lambda_{k}^{k+1}=0 \quad \text { and } \quad \lambda_{k, k+1}^{i, i+1}=0 \quad \text { for } \quad i \neq k .
$$

For $j \neq k$, applying D to the products $\left[e_{j}, e_{k, k+1}\right]$, we obtain

$$
-\lambda_{j}^{k-1}+2 \lambda_{j}^{k}-\lambda_{j}^{k+1}=0 .
$$

Apply D to $\left[e_{n-1}, e_{n-1, n}\right]=2 e_{n-1, n}$. Then

$$
-\lambda_{n-1}^{n-2}+2 \lambda_{n-1}^{n-1}=0 \quad \text { and } \quad \lambda_{n-1, n}^{i, i+1}=0 \quad \text { for } \quad i \neq n-1
$$

For $j \neq n-1$, by applying D to the products $\left[e_{j}, e_{n-1, n}\right]$, we obtain

$$
-\lambda_{j}^{n-2}+2 \lambda_{j}^{n-1}=0 .
$$

(ii) The case where the characteristic of Φ is 2 :

We first assume that $n \geq 5$. Apply D to $\left[e_{2}, e_{12}\right]=e_{12}$. Then

$$
\lambda_{2}^{2}=0 \quad \text { and } \quad \lambda_{12}^{i, i+1}=0 \quad \text { for } \quad i \neq 1,3 .
$$

By applying D to $\left[e_{4}, e_{12}\right]=0$, we obtain

$$
\lambda_{4}^{2}=0 \quad \text { and } \quad \lambda_{12}^{34}=0 .
$$

From the other products $\left[e_{j}, e_{12}\right]$, it follows that

$$
\lambda_{j}^{2}=0 \quad \text { for } \quad j \neq 2,4
$$

Next apply D to $\left[e_{1}, e_{23}\right]=e_{23}$. Then

$$
\lambda_{1}^{1}+\lambda_{1}^{3}=0 \quad \text { and } \quad \lambda_{23}^{i, i+1}=0 \quad \text { for } \quad i \neq 2
$$

From the other products [$\left.e_{j}, e_{23}\right]$, it follows that

$$
\lambda_{j}^{1}+\lambda_{j}^{3}=0 \quad \text { for } \quad j \neq 1 .
$$

Apply D to $\left[e_{2}, e_{34}\right]=e_{34}$. Then

$$
\lambda_{2}^{2}+\lambda_{2}^{4}=0 \quad \text { and } \quad \lambda_{34}^{i, i+1}=0 \quad \text { for } \quad i \neq 1,3
$$

By applying D to $\left[e_{4}, e_{34}\right]=e_{34}$, we obtain

$$
\lambda_{4}^{2}+\lambda_{4}^{4}=0 \quad \text { and } \quad \lambda_{34}^{12}=0
$$

From the other products [$\left.e_{j}, e_{34}\right]$, it follows that

$$
\lambda_{j}^{2}+\lambda_{j}^{4}=0 \quad \text { for } \quad j \neq 2,4
$$

For $k=4,5, \ldots, n-2$, apply D to $\left[e_{k-1}, e_{k, k+1}\right]=e_{k, k+1}$. Then

$$
\lambda_{k-1}^{k-1}+\lambda_{k-1}^{k+1}=0 \quad \text { and } \quad \lambda_{k, k+1}^{i, i+1}=0 \quad \text { for } \quad i \neq k-2, k
$$

By applying D to $\left[e_{k-3}, e_{k, k+1}\right]=0$, we obtain

$$
\lambda_{k-3}^{k-1}+\lambda_{k-3}^{k+1}=0 \quad \text { and } \quad \lambda_{k, k+1}^{k-2, k-1}=0
$$

From the other products $\left[e_{j}, e_{k, k+1}\right]$, it follows that

$$
\lambda_{j}^{k-1}+\lambda_{j}^{k+1}=0 \quad \text { for } \quad j \neq k-3, k
$$

For $k=n-1$, apply D to $\left[e_{n-2}, e_{n-1, n}\right]=e_{n-1, n}$. Then

$$
\lambda_{n-2}^{n-2}=0 \quad \text { and } \quad \lambda_{n-1, n}^{i, i+1}=0 \quad \text { for } \quad i \neq n-3, n-1
$$

By applying D to $\left[e_{n-4}, e_{n-1, n}\right]=0$, we obtain

$$
\lambda_{n-4}^{n-2}=0 \quad \text { and } \quad \lambda_{n-1, n}^{n-3, n-2}=0 .
$$

From the other products $\left[e_{j}, e_{n-1, n}\right]$, it follows that

$$
\lambda_{j}^{n-2}=0 \quad \text { for } \quad j \neq n-4, n-2
$$

Thus we see that the statement is proved for $n \geq 5$.
By employing a similar method, in the case where $n=3$ the statement is immediately proved and in the case where $n=4$ it is proved that $\left\{\lambda_{k}^{1}, \lambda_{k}^{2}, \lambda_{k}^{3}\right\}$, $k=1,2,3$, is a solution of the system (2) of equations.
(iii) The case where the characteristic of Φ is 3 :

We first assume that $n \geq 4$. Apply D to $\left[e_{1}, e_{12}\right]=2 e_{12}$ and we obtain

$$
2 \lambda_{1}^{1}-\lambda_{1}^{2}=0 \quad \text { and } \quad \lambda_{12}^{i, i+1}=0 \quad \text { for } \quad i \neq 1,2 .
$$

By applying D to $\left[e_{3}, e_{12}\right]=0$, we have

$$
2 \lambda_{3}^{1}-\lambda_{3}^{2}=0 \quad \text { and } \quad \lambda_{12}^{23}=0
$$

From the other products [e_{j}, e_{12}], it follows that

$$
2 \lambda_{j}^{1}-\lambda_{j}^{2}=0 \quad \text { for } \quad j \neq 1,3 .
$$

Now let $k=2,3, \ldots, n-2$. Apply D to $\left[e_{k}, e_{k, k+1}\right]=2 e_{k, k+1}$. Then

$$
-\lambda_{k}^{k-1}+2 \lambda_{k}^{k}-\lambda_{k}^{k+1}=0 \quad \text { and } \quad \lambda_{k, k+1}^{i, i+1}=0 \quad \text { for } \quad i \neq k-1, k, k+1 .
$$

By applying D to $\left[e_{k-1}, e_{k, k+1}\right]=\left[e_{k+1}, e_{k, k+1}\right]=-e_{k, k+1}$, we obtain

$$
-\lambda_{i}^{k-1}+2 \lambda_{i}^{k}-\lambda_{i}^{k+1}=0 \quad \text { and } \quad \lambda_{k, k+1}^{i, i+1}=0 \quad \text { for } \quad i=k-1, k+1 .
$$

From the other products [$e_{j}, e_{k, k+1}$], it follows that

$$
-\lambda_{j}^{k-1}+2 \lambda_{j}^{k}-\lambda_{j}^{k+1}=0 \quad \text { for } j \neq k-1, k, k+1
$$

Finally, apply D to $\left[e_{n-1}, e_{n-1, n}\right]=2 e_{n-1, n}$. Then

$$
-\lambda_{n-1}^{n-2}+2 \lambda_{n-1}^{n-1}=0 \quad \text { and } \quad \lambda_{n-1, n}^{i, i+1}=0 \quad \text { for } \quad i \neq n-2, n-1 .
$$

By applying D to $\left[e_{n-3}, e_{n-1, n}\right]=0$, we obtain

$$
-\lambda_{n-3}^{n-2}+2 \lambda_{n-3}^{n-1}=0 \quad \text { and } \quad \lambda_{n-1, n}^{n-2, n-1}=0 .
$$

From the other products [$\left.e_{j}, e_{n-1, n}\right]$, it follows that

$$
-\lambda_{j}^{n-2}+2 \lambda_{j}^{n-1}=0 \quad \text { for } \quad j \neq n-1, n-3 .
$$

Hence the statement is proved for $n \geq 4$. In the case where $n=3$, it is immediate that $\left\{\lambda_{k}^{1}, \lambda_{k}^{2}\right\}$ for any $k=1,2$ is a solution of the system (2) of equations.

Thus we see that in any case $\left\{\lambda_{k}^{1}, \lambda_{k}^{2}, \ldots, \lambda_{k}^{n-1}\right\}$ for $k=1,2, \ldots, n-1$ satisfies the system (2) of equations, and that except the two cases indicated in the statement of the lemma

$$
\lambda_{k, k+1}^{i, i+1}=0 \quad \text { for } \quad i, k=1,2, \ldots, n-1 \text { and } i \neq k
$$

Lemma 3. Let D be a derivation of L and let j be one of the integers 2, 3, $\ldots, n-1$. Assume that

$$
D e_{k, k+1}=\sum_{i=1}^{n-j} \lambda_{k, k+1}^{i, i+j} e_{i, i+j}+\cdots+\lambda_{k, k+1}^{1 n} e_{1 n} \quad \text { for } \quad k=1,2, \ldots, n-1 .
$$

Then for $l=1,2, \cdots, n-j$

$$
D e_{k, k+l}=\sum_{i=1}^{n-j-l+1} \lambda_{k, k+l}^{i, i+j+l-1} e_{i, i+j+l-1}+\cdots+\lambda_{k, k+l}^{1 n} e_{1 n}
$$

and for $l=n-j+1, \ldots, n-1$

$$
D e_{k, k+l}=0, \quad k=1,2, \ldots, n-l .
$$

Proof. We prove the lemma by induction on l. The case where $l=1$ is trivial. Assume that $l \geq 2$ and that the formula holds for $D e_{k, k+l-1}$. For any $k=1,2, \ldots, n-l$,

$$
e_{k, k+l}=\left[e_{k, k+l-1}, e_{k+l-1, k+l}\right]
$$

Hence if $l=2,3, \ldots, n-j$,

$$
\begin{aligned}
D e_{k, k+l}= & {\left[\sum_{i=1}^{n-j-l+2} \lambda_{k, k+l-1}^{i, i+j+l-2} e_{i, i+j+l-2}+\cdots+\lambda_{k, k+l-1}^{1 n} e_{1 n}, e_{k+l-1, k+l}\right] } \\
& +\left[e_{k, k+l-1}, \sum_{i=1}^{n-j} \lambda_{k+l-1, k+l}^{i, i+j} e_{i, i+j}+\cdots+\lambda_{k+l-1, k+l}^{1 n} e_{1 n}\right] \\
& \epsilon\left(e_{1, j+l}, \cdots, e_{n-j-l+1, n} ; \cdots ; e_{1 n}\right) .
\end{aligned}
$$

If $l=n-j+1$,

$$
\begin{aligned}
D e_{k, k+l}= & {\left[\lambda_{k, k+l-1}^{1 n} e_{1 n}, e_{k+l-1, k+l}\right] } \\
& \quad+\left[e_{k, k+l-1}, \sum_{i=1}^{n-j} \lambda_{k+l}^{i, i+j}, j, k+l\right. \\
& \left.e_{i, i+j}+\cdots+\lambda_{k+l-1, k+l}^{1 n} e_{1 n}\right] \\
= & 0
\end{aligned}
$$

If $l=n-j+2, \ldots, n-1$,

$$
\begin{aligned}
D e_{k, k+l} & =\left[e_{k, k+l-1}, \sum_{i=1}^{n-j} \lambda_{k+l}^{i, i+j}{ }_{1, k+l} e_{i, i+j}+\cdots+\lambda_{k+l-1, k+l}^{1 n} e_{1 n}\right] \\
& =0 .
\end{aligned}
$$

Thus the formula holds for $D e_{k, k+l}$. This completes the proof.
Lemma 4. Let D be a derivation of L. Assume that

$$
\begin{aligned}
& D e_{k}=\sum_{i=1}^{n-1} \lambda_{k}^{i, i+1} e_{i, i+1}+\cdots+\lambda_{k}^{1 n} e_{1 n} \\
& D e_{k, k+1}=\sum_{i=1}^{n-2} \lambda_{k, k+1}^{i, i+2} e_{i, i+2}+\cdots+\lambda_{k, k+1}^{1 n} e_{1 n} \\
& \quad \text { for } \quad k=1,2, \ldots, n-1 .
\end{aligned}
$$

Then there exists an inner derivation ad x such that $D^{\prime}=D+\operatorname{ad} x$ has the fol-
lowing form for e_{k} and $e_{k, k+1}$:

$$
\begin{aligned}
& D^{\prime} e_{k}=\sum_{i=1}^{n-2} \mu_{k}^{i, i+2} e_{i, i+2}+\cdots+\mu_{k}^{1 n} e_{1 n} \\
& D^{\prime} e_{k, k+1}=\sum_{i=1}^{n-2} \mu_{k, k+1}^{i, i+2} e_{i, i+2}+\cdots+\mu_{k, k+1}^{1 n} e_{1 n} \\
& \quad \text { for } \quad k=1,2, \cdots, n-1 .
\end{aligned}
$$

Proof. (i) The case where the characteristic of Φ is $\neq 2$:
We put

$$
D^{\prime}=D+\frac{1}{2} \sum_{i=1}^{n-1} \lambda_{i}^{i, i+1} \text { ad } e_{i, i+1} .
$$

Then we can write

$$
\left\{\begin{array}{l}
D^{\prime} e_{k}=\sum_{i=1}^{n-1} \mu_{k}^{i, i+1} e_{i, i+1}+\cdots+\mu_{k}^{1 n} e_{1 n}, \\
D^{\prime} e_{k, k+1}=\sum_{i=1}^{n-2} \mu_{k, k+1}^{i, i+2} e_{i, i+2}+\cdots+\mu_{k}^{1 n} e_{1 n} \tag{4}\\
\quad \text { for } \quad k=1,2, \ldots, n-1 .
\end{array}\right.
$$

We assert that $\mu_{k}^{k, k+1}=0$ for $k=1,2, \ldots, n-1$. In fact,

$$
D^{\prime} e_{k}=\sum_{i=1}^{n-1} \lambda_{k}^{i, i+1} e_{i, i+1}+\cdots+\lambda_{k}^{1 n} e_{1 n}+\frac{1}{2} \sum_{i=1}^{n-1} \lambda_{2}^{i, i+1}\left[e_{i, i+1}, e_{k}\right]
$$

and therefore by (3)

$$
\mu_{k}^{k, k+1}=\lambda_{k}^{k, k+1}+\frac{1}{2}\left(-2 \lambda_{k}^{k, k+1}\right)=0,
$$

as was asserted. Applying D^{\prime} to $\left[e_{1}, e_{2}\right]=\ldots=\left[e_{1}, e_{n-1}\right]=0$, we have
and

$$
\mu_{1}^{i, i+1}=0 \quad \text { for } \quad i=1,2, \ldots, n-1
$$

$$
\mu_{m}^{12}=\mu_{m}^{23}=0 \quad \text { for } \quad m=2,3, \ldots, n-1
$$

Assume that $k \geq 2$ and that we have
and

$$
\mu_{l}^{i, i+1}=0 \quad \text { for } \quad l=1,2, \ldots, k-1 \quad \text { and } \quad i=1,2, \ldots, n-1
$$

Then by applying D^{\prime} to $\left[e_{k}, e_{k+1}\right]=\ldots=\left[e_{k}, e_{n-1}\right]=0$, we obtain
and

$$
\mu_{k}^{i, i+1}=0 \quad \text { for } \quad i=k+1, k+2, \ldots, n-1
$$

$$
\mu_{m}^{k+1, k+2}=0 \quad \text { for } \quad m=k+2, k+3, \cdots, n-1 .
$$

Hence by induction we see that

$$
\mu_{k}^{i, i+1}=0 \quad \text { for } \quad i, k=1,2, \ldots, n-1 .
$$

(ii) The case where the characteristic of Φ is 2 and n is odd:

We put

$$
D^{\prime}=D+\left(\lambda_{2}^{12} \operatorname{ad} e_{12}+\lambda_{1}^{23} \operatorname{ad} e_{23}\right)+\ldots+\left(\lambda_{n-1}^{n-2, n-1} \operatorname{ad} e_{n-2, n-1}+\lambda_{n-2}^{n-1, n} \operatorname{ad} e_{n-1, n}\right) .
$$

Then we can express $D^{\prime} e_{k}$ and $D^{\prime} e_{k, k+1}$ in the form (4). Since

$$
\begin{aligned}
D^{\prime} e_{k}= & \sum_{i=1}^{n-1} \lambda_{k}^{i, i+1} e_{i, i+1}+\cdots+\lambda_{k}^{1 n} e_{1 n} \\
& +\left(\lambda_{2}^{12}\left[e_{12}, e_{k}\right]+\lambda_{1}^{23}\left[e_{23}, e_{k}\right]\right)+\cdots+\left(\lambda_{n-1}^{n-2, n-1}\left[e_{n-2, n-1}, e_{k}\right]\right. \\
& \left.+\lambda_{n+2}^{n-1, n}\left[e_{n-1, n}, e_{k}\right]\right)
\end{aligned}
$$

by making use of (3) it is immediate that

$$
\mu_{2}^{12}=\mu_{1}^{23}=\cdots=\mu_{n-1}^{n-2, n-1}=\mu_{n-2}^{n-1, n}=0 .
$$

Applying D^{\prime} to $\left[e_{1}, e_{2}\right]=\ldots=\left[e_{1}, e_{n-1}\right]=0$, we obtain
and $\quad \mu_{m}^{23}=0 \quad$ for $m=2,3, \ldots, n-1$.
Next apply D^{\prime} to $\left[e_{2}, e_{3}\right]=\ldots=\left[e_{2}, e_{n-1}\right]=0$. Then
and

$$
\begin{array}{cc}
\mu_{2}^{i, i+1}=0 & \text { for } \quad i=1,2, \cdots, n-1 \\
\mu_{m}^{12}=\mu_{m}^{34}=0 & \text { for } \quad m=3,4, \ldots, n-1 .
\end{array}
$$

Now, as in the proof of the first case, by induction we have

$$
\mu_{k}^{i, i+1}=0 \quad \text { for } \quad i, k=1,2, \ldots, n-1 .
$$

(iii) The case where the characteristic of Φ is 2 and n is even:

Put

$$
\begin{aligned}
D^{\prime}= & D+\left(\lambda_{2}^{12} \text { ad } e_{12}+\lambda_{1}^{23} \text { ad } e_{23}\right)+\cdots+\left(\lambda_{n-2}^{n-3, n-2} \text { ad } e_{n-3, n-2}\right. \\
& \left.+\lambda_{n-3}^{n-2, n-1} \text { ad } e_{n-2, n-1}\right)+\lambda_{n-2}^{n-1, n} \operatorname{ad} e_{n-1, n},
\end{aligned}
$$

and write $D^{\prime} e_{k}$ and $D^{\prime} e_{k, k+1}$ in the form (4). Then it is immediate by (3) that

$$
\mu_{2}^{12}=\mu_{1}^{23}=\ldots=\mu_{n-2}^{n-3, n-2}=\mu_{n-3}^{n-2, n-1}=\mu_{n-2}^{n-1, n}=0 .
$$

If $n=4$, apply D^{\prime} to $\left[e_{1}, e_{2}\right]=\left[e_{1}, e_{3}\right]=0$. Then

$$
\mu_{1}^{12}=\mu_{1}^{34}=0, \quad \mu_{2}^{23}=\mu_{3}^{23}=0 .
$$

By applying D^{\prime} to $\left[e_{2}, e_{3}\right]=0$, we obtain

$$
\mu_{3}^{12}=\mu_{3}^{34}=0 .
$$

Since $\mu_{1}^{23}=\mu_{2}^{12}=\mu_{2}^{34}=0$ as seen above,

$$
\mu_{k}^{i, i+1}=0 \quad \text { for } \quad i, k=1,2,3
$$

Now we consider the case where $n \geq 6$. As in the previous case, we obtain
and

$$
\mu_{k}^{i, i+1}=0 \quad \text { for } \quad k=1,2, \ldots, n-3 \quad \text { and } \quad i=1,2, \ldots, n-1
$$

As seen above, $\mu_{n-2}^{n-1, n}=0$ and, by applying D^{\prime} to $\left[e_{n-2}, e_{n-1}\right]=0$, we obtain $\mu_{n-1}^{n-1, n}=0$. Therefore

$$
\mu_{k}^{i, i+1}=0 \quad \text { for } \quad i, k=1,2, \cdots, n-1
$$

Thus the proof is complete.
To prove the next Iemma, we need the following multiplication tables where $j=2,3, \cdots, n-1$. For $n>2 j+1$,

$$
(5)_{I}
$$

$$
\left\{\begin{array}{l}
{\left[e_{1}, e_{1, j+1}\right]=e_{1, j+1}, \quad\left[e_{1}, e_{2, j+2}\right]=-e_{2, j+2},} \\
\vdots \\
{\left[e_{j-1}, e_{j-1,2 j-1}\right]=e_{j-1,2 j-1}, \quad\left[e_{j-1}, e_{j, 2 j}\right]=-e_{j, 2 j},} \\
{\left[e_{j}, e_{1, j+1}\right]=e_{1, j+1}, \quad\left[e_{j}, e_{j, 2 j}\right]=e_{j, 2 j}, \quad\left[e_{j}, e_{j+1,2 j+1}\right]=-e_{j+1,2 j+1},} \\
{\left[e_{j+1}, e_{1, j+1}\right]=-e_{1, j+1}, \quad\left[e_{j+1}, e_{2, j+2}\right]=e_{2, j+2}, \quad\left[e_{j+1}, e_{j+1,2 j+1}\right]=e_{j+1,2 j+1},} \\
{\left[e_{j+1}, e_{j+2,2 j+2}\right]=-e_{j+2,2 j+2},} \\
\vdots \\
\left\{\begin{array}{c}
{\left[e_{n-j-1}, e_{n-2 j-1, n-j-1}\right]=-e_{n-2 j-1, n-j-1}, \quad\left[e_{n-j-1}, e_{n-2 j, n-j}\right]=e_{n-2 j, n-j},} \\
{\left[e_{n-j-1}, e_{n-j-1, n-1}\right]=e_{n-j-1, n-1}, \quad\left[e_{n-j-1}, e_{n-j, n}\right]=-e_{n-j, n},} \\
{\left[e_{n-j}, e_{n-2 j, n-j}\right]=-e_{n-2 j, n-j}, \quad\left[e_{n-j}, e_{n-2 j+1, n-j+1}\right]=e_{n-2 j+1, n-j+1},} \\
\quad\left[e_{n-j}, e_{n-j, n}\right]=e_{n-j, n}, \\
{\left[e_{n-j+1}, e_{n-2 j+1, n-j+1}\right]=-e_{n-2 j+1, n-j+1}, \quad\left[e_{n-j+1}, e_{n-2 j+2, n-j+2}\right]=e_{n-2 j+2, n-j+2},} \\
{\left[e_{n-1}, e_{n-j-1, n-1}\right]=-e_{n-j-1, n-1}, \quad\left[e_{n-1}, e_{n-j, n}\right]=e_{n-j, n},} \\
\text { and all other products } \quad\left[e_{k}, e_{i, i+j}\right]=0 .
\end{array}\right. \\
\quad
\end{array}\right.
$$

For $n=2 j+1$,

$$
(5)_{\mathrm{II}}\left\{\begin{array}{c}
{\left[e_{1}, e_{1, j+1}\right]=e_{1, j+1}, \quad\left[e_{1}, e_{2, j+2}\right]=-e_{2, j+2},} \\
\vdots \\
{\left[e_{j-1}, e_{j-1,2 j-1}\right]=e_{j-1,2 j-1}, \quad\left[e_{j-1}, e_{j, 2 j}\right]=-e_{j, 2 j},} \\
{\left[e_{j}, e_{1, j+1}\right]=e_{1, j+1}, \quad\left[e_{j}, e_{j, 2 j}\right]=e_{j, 2 j}, \quad\left[e_{j}, e_{j+1,2 j+1}\right]=-e_{j+1,2 j+1},} \\
{\left[e_{n-j}, e_{1, j+1}\right]=-e_{1, j+1}, \quad\left[e_{n-j}, e_{2, j+2}\right]=e_{2, j+2}, \quad\left[e_{n-j}, e_{n-j, n}\right]=e_{n-j, n},} \\
{\left[e_{n-j+1}, e_{2, j+2}\right]=-e_{2, j+2}, \quad\left[e_{n-j+1}, e_{3, j+3}\right]=e_{3, j+3},} \\
\vdots \\
{\left[e_{n-1}, e_{n-j-1, n-1}\right]=-e_{n-j-1, n-1}, \quad\left[e_{n-1}, e_{n-j, n}\right]=e_{n-j, n}} \\
\text { and all other products } \quad\left[e_{k}, e_{i, i+j}\right]=0 .
\end{array}\right.
$$

For $n=2 j$,
(5) III

$$
\left\{\begin{array}{c}
{\left[e_{1}, e_{1, j+1}\right]=e_{1, j+1}, \quad\left[e_{1}, e_{2, j+2}\right]=-e_{2, j+2},} \\
\vdots \\
{\left[e_{j-1}, e_{j-1,2 j-1}\right]=e_{j-1,2 j-1}, \quad\left[e_{j-1}, e_{j, 2 j}\right]=-e_{j, 2 j},} \\
{\left[e_{n-j}, e_{1, j+1}\right]=e_{1, j+1}, \quad\left[e_{n-j}, e_{n-j, n}\right]=e_{n-j, n},} \\
{\left[e_{n-j+1}, e_{1, j+1}\right]=-e_{1, j+1}, \quad\left[e_{n-j+1}, e_{2, j+2}\right]=e_{2, j+2},} \\
\vdots \\
{\left[e_{n-1}, e_{n-j-1, n-1}\right]=-e_{n-j+1, n-1}, \quad\left[e_{n-1}, e_{n-j, n}\right]=e_{n-j, n}} \\
\text { and all other products } \quad\left[e_{k}, e_{i, i+j}\right]=0 .
\end{array}\right.
$$

For $j+1<n<2 j$,

$$
(5)_{\mathrm{Iv}}\left\{\begin{array}{l}
{\left[e_{1}, e_{1, j+1}\right]=e_{1, j+1}, \quad\left[e_{1}, e_{2, j+2}\right]=-e_{2, j+2},} \\
\vdots \\
{\left[e_{n-j-1}, e_{n-j-1, n-1}\right]=e_{n-j-1, n-1}, \quad\left[e_{n-j-1}, e_{n-j, n}\right]=-e_{n-j, n},} \\
{\left[e_{n-j}, e_{n-j, n}\right]=e_{n-j, n},} \\
{\left[e_{j}, e_{1, j+1}\right]=e_{1, j+1},} \\
{\left[e_{j+1}, e_{1, j+1}\right]=-e_{1, j+1}, \quad\left[e_{j+1}, e_{2, j+2}\right]=e_{2, j+2},} \\
\vdots \\
{\left[e_{n-1}, e_{n-j-1, n-1}\right]=-e_{n-j-1, n-1}, \quad\left[e_{n-1}, e_{n-j, n}\right]=e_{n-j, n}} \\
\text { and all other products } \quad\left[e_{k}, e_{i, i+j}\right]=0 .
\end{array}\right.
$$

For $n=j+1$,
$(5)_{\mathrm{V}}\left\{\begin{array}{l}{\left[e_{1}, e_{1 n}\right]=e_{1 n},} \\ {\left[e_{n-1}, e_{1 n}\right]=e_{1 n},} \\ \text { and all other products } \quad\left[e_{k}, e_{i, i+j}\right]=0 .\end{array}\right.$
Lemma 5. Let D be a derivation of L and let j be one of the integers 2, 3, ..., $n-1$. Assume that

$$
\begin{aligned}
& D e_{k}=\sum_{i=1}^{n-j} \lambda_{k}^{i, i+j} e_{i, i+j}+\cdots+\lambda_{k}^{1 n} e_{1 n}, \\
& D e_{k, k+1}=\sum_{i=1}^{n-j} \lambda_{k, k+1}^{i, i+j} e_{i, i+j}+\cdots+\lambda_{k, k+1}^{1 n} e_{1 n} \\
& \qquad \text { for } \quad k=1,2, \cdots, n-1 .
\end{aligned}
$$

Then except the case where $n=4$, the characteristic of Φ is 2 and $j=3$, we have

$$
\lambda_{k, k+1}^{i, i+j}=0 \quad \text { for } \quad k=1,2, \cdots, n-1 \quad \text { and } \quad i=1,2, \cdots, n-j .
$$

Proof. (i) The case where the characteristic of \mathscr{D} is $\neq 2,3$;
As shown in the table (5),

$$
\begin{aligned}
& {\left[e_{k}, e_{i, i+j}\right]=\alpha(k, i, j) e_{i, i+j}} \\
& \quad \text { for } \quad k=1,2, \ldots, n-1 \quad \text { and } \quad i=1,2, \ldots, n-j
\end{aligned}
$$

where $\alpha(k, i, j)=0$ or 1 or -1 . For $k=1,2, \ldots, n-1$, applying D to $\left[e_{k}, e_{k, k+1}\right]$ $=2 e_{k, k+1}$, we obtain

$$
\begin{aligned}
& 2\left(\sum_{i=1}^{n-j} \lambda_{k, k+1}^{i, i+j} e_{i, i+j}+\cdots+\lambda_{k, k+1}^{1 n} e_{1 n}\right) \\
&= {\left[\sum_{i=1}^{n-j} \lambda_{k}^{i, i+j} e_{i, i+j}+\cdots+\lambda_{k}^{1 n} e_{1 n}, e_{k, k+1}\right] } \\
&+\left[e_{k}, \sum_{i=1}^{n-j} \lambda_{k, k, 1}^{i, i+j} e_{i, i+j}+\cdots+\lambda_{k, k+1}^{1 n} e_{1 n}\right] \\
&=\sum_{i=1}^{n-j} \alpha(k, i, j) \lambda_{k, k+1}^{i, i+j} e_{i, i+j}+\sum_{i=1}^{n-j-1} \mu_{k, k+1}^{i, i+j+1} e_{i, i+j+1}+\cdots+\mu_{k, k+1}^{1 n} e_{1 n} .
\end{aligned}
$$

It follows that

$$
\lambda_{k, k+1}^{i, i+j}=0 \quad \text { for } \quad k=1,2, \cdots, n-1 \quad \text { and } \quad i=1,2, \cdots, n-j .
$$

(ii) The case where the characteristic of Φ is 2 :

First we assume that $n>2 j+1$. We divide the proof into several cases according to the value of k.
$k=1,2, \ldots, j-2$: By applying D to $\left[e_{k+1}, e_{k, k+1}\right]=e_{k, k+1}$, we obtain

$$
\lambda_{k, k+1}^{i, i+j}=0 \quad \text { for } \quad i \neq k+1, k+2 .
$$

From $\left[e_{k}, e_{k, k+1}\right]=0$, it follows that

$$
\lambda_{k, k+1}^{k+1, k+j+1}=0
$$

From $\left[e_{k+2}, e_{k, k+1}\right]=0$, it follows that

$$
\lambda_{k, k+1}^{k+2, k+j+2}=0
$$

$k=j-1$: By applying D to $\left[e_{k+1}, e_{k, k+1}\right]=e_{k, k+1}$, we obtain

$$
\lambda_{k, k+1}^{i, i+j}=0 \quad \text { for } \quad i \neq 1, k+1, k+2 .
$$

From $\left[e_{k}, e_{k, k+1}\right]=0$, it follows that

$$
\lambda_{k, k+1}^{k+1, k+j+1}=0 .
$$

From $\left[e_{k+2}, e_{k, k+1}\right]=0$, it follows that

$$
\lambda_{k, k+1}^{1, j+1}=\lambda_{k, k+1}^{k+2, k+j+2}=0 .
$$

$k=j$: By applying D to $\left[e_{k-1}, e_{k, k+1}\right]=e_{k, k+1}$, we have

$$
\lambda_{k, k+1}^{i, i+j}=0 \quad \text { for } \quad i \neq k-1, k
$$

From $\left[e_{k}, e_{k, k+1}\right]=0$, it follows that

$$
\lambda_{k, k+1}^{k, k+j+1}=0 .
$$

From $\left[e_{2 k-1}, e_{k, k+1}\right]=0$, it follows that

$$
\lambda_{k, k+1}^{k-1, k+j-1}=0 .
$$

$k=j+1$: By applying D to $\left[e_{k-1}, e_{k, k+1}\right]=e_{k, k+1}$, we obtain

$$
\lambda_{k, k+1}^{i, i+j}=0 \quad \text { for } \quad i \neq 1, k-1, k
$$

From $\left[e_{k}, e_{k, k+1}\right]=0$, it follows that

$$
\lambda_{k, k+1}^{1, j+1}=\lambda_{k, k+1}^{k, k+j}=0 .
$$

From $\left[e_{2 j}, e_{k, k+1}\right]=0$, it follows that

$$
\lambda_{k, k+1}^{k-1, k+j-1}=0 .
$$

$k=j+2, \cdots, n-j$: By applying D to $\left[e_{k-1}, e_{k, k+1}\right]=e_{k, k+1}$ we have

$$
\lambda_{k, k+1}^{i, i+j}=0 \quad \text { for } \quad i \neq k-j-1, k-j, k-1, k
$$

From $\left[e_{k}, e_{k, k+1}\right]=0$, it follows that

$$
\lambda_{k, k+1}^{k-j, k}=\lambda_{k, k+1}^{k, k+j}=0 .
$$

From $\left[e_{k-2}, e_{k, k+1}\right]=0$, it follows that

$$
\lambda_{k, k+1}^{k-j-1, k-1}=\lambda_{k, k+1}^{k-1, k+j-1}=0 .
$$

$k=n-j+1$: By applying D to $\left[e_{k-1}, e_{k, k+1}\right]=e_{k, k+1}$, we see

$$
\lambda_{k, k+1}^{i, i+j}=0 \quad \text { for } \quad i \neq k-j-1, k-j, n-j .
$$

From $\left[e_{k}, e_{k, k+1}\right]=0$, it follows that

$$
\lambda_{k, k+1}^{k-j, k}=0 .
$$

From $\left[e_{k-2}, e_{k, k+1}\right]=0$, it follows that

$$
\lambda_{k, k+1}^{k-j-1, k-1}=\lambda_{k, k+1}^{n-j, n}=0 .
$$

$k=n-j+2, \ldots, n-1$: By applying D to $\left[e_{k-1}, e_{k, k+1}\right]=e_{k, k+1}$, we have

$$
\lambda_{k, k+1}^{i, i+j}=0 \quad \text { for } \quad i \neq k-j-1, k-j
$$

From $\left[e_{k}, e_{k, k+1}\right]=0$, it follows that

$$
\lambda_{k, k+1}^{k-j, k}=0 .
$$

From $\left[e_{k-2}, e_{k, k+1}\right]=0$, it follows that

$$
\lambda_{k, k+1}^{k-j-1, k-1}=0 .
$$

By a similar method we can show the assertion of the lemma in the case $n=2 j+1$, the case $n=2 j$ and the case $j+1<n<2 j$ respectively by using the multiplication tables (5) $)_{\mathrm{II}},(5)_{\mathrm{III}}$ and (5) $)_{\mathrm{IV}}$. Therefore we omit the proof for these cases.

Now we consider the remaining case $n=j+1$. If $n=3$, apply D to $\left[e_{1}, e_{12}\right]=\left[e_{2}, e_{23}\right]=0$. Then we have

$$
\lambda_{12}^{13}=\lambda_{23}^{13}=0 .
$$

For $n \geq 5$, applying D to $\left[e_{1}, e_{12}\right]=\left[e_{n-1}, e_{n-1, n}\right]=0$, we obtain

$$
\lambda_{12}^{1 n}=\lambda_{n-1, n}^{1 n}=0 .
$$

From $\left[e_{3}, e_{23}\right]=e_{23}, \cdots,\left[e_{n-2}, e_{n-3, n-2}\right]=e_{n-3, n-2}$, it follows that

$$
\lambda_{23}^{1 n}=\cdots=\lambda_{n-3, n-2}^{1 n}=0
$$

From $\left[e_{n-3}, e_{n-2, n-1}\right]=e_{n-2, n-1}$, it follows that

$$
\lambda_{n-2, n-1}^{1 n}=0
$$

Thus in the case where the characteristic of Φ is 2 , we have shown the assertion of the lemma where the case $n=4$ is excluded.
(iii) The case where the characteristic of Φ is 3 :

First we consider the case where $n>2 j+1$.
For $k=1,2, \ldots, j$, applying D to $\left[e_{k}, e_{k, k+1}\right]=2 e_{k, k+1}$ we have

$$
\lambda_{k, k+1}^{i, i+j}=0 \quad \text { for } \quad i \neq k+1
$$

From $\left[e_{k+1}, e_{k, k+1}\right]=-e_{k, k+1}$, it follows that

$$
\lambda_{k, k+1}^{k+1, k+j+1}=0 .
$$

For $k=j+1, \ldots, n-j-1$, applying D to $\left[e_{k}, e_{k, k+1}\right]=2 e_{k, k+1}$ we obtain

$$
\lambda_{k, k+1}^{i, i+j}=0 \quad \text { for } \quad i \neq k-j, k+1
$$

From $\left[e_{k+1}, e_{k, k+1}\right]=-e_{k, k+1}$, it follows that

$$
\lambda_{k, k+1}^{k-j, k}=\lambda_{k, k+1}^{k+1, k+j+1}=0 .
$$

For $k=n-j, \ldots, n-1$, applying D to $\left[e_{k}, e_{k, k+1}\right]=2 e_{k, k+1}$ we have

$$
\lambda_{k, k+1}^{i, i+j}=0 \quad \text { for } \quad i \neq k-j
$$

From $\left[e_{k-1}, e_{k, k+1}\right]=-e_{k, k+1}$, it follows that

$$
\lambda_{k, k+1}^{k-j, k}=0 .
$$

By a similar method we can show the assertion for the case $n=2 j+1$, the case $n=2 j$, the case $j+1<n<2 j$ and the case $n=j+1$ respectively by using the tables $(5)_{\mathrm{II}},(5)_{\mathrm{III}},(5)_{\mathrm{IV}}$ and $(5)_{\mathrm{V}}$. So we omit the proof for these cases.

Lemma 6. Let D be a derivation of L and let j be one of the integers 2, 3, $\ldots, n-1$. Assume that for $k=1,2, \ldots, n-1$

$$
\begin{aligned}
& D e_{k}=\sum_{i=1}^{n-j} \lambda_{k}^{i, i+j} e_{i, i+j}+\cdots+\lambda_{k}^{1 n} e_{1 n}, \\
& D e_{k, k+1}= \begin{cases}\sum_{i=1}^{n-j-1} \lambda_{k, k+1}^{i, i+j+1} e_{i, i+j+1}+\cdots+\lambda_{k, k+1}^{1 n} e_{1 n} & \text { if } j \neq n-1, \\
0 & \text { if } j=n-1 .\end{cases}
\end{aligned}
$$

If we put $D^{\prime}=D+\sum_{i=1}^{n-j} \lambda_{i}^{i, i+j}$ ad $e_{i, i+j}$, then for $j \neq n-1$

$$
\begin{aligned}
& D^{\prime} e_{k}=\sum_{i=1}^{n-j-1} \mu_{k}^{i, i+j+1} e_{i, i+j+1}+\ldots+\mu_{k}^{1 n} e_{1 n}, \\
& D^{\prime} e_{k, k+1}=\sum_{i=1}^{n-j-1} \mu_{k, k+1}^{i, i+j+1} e_{i, i+j+1}+\ldots+\mu_{k, k+1}^{1 n} e_{1 n}
\end{aligned}
$$

and for $j=n-1$

$$
D^{\prime} e_{k}=D^{\prime} e_{k, k+1}=0, \quad k=1,2, \cdots, n-1
$$

Proof. It is immediate that D^{\prime} has the same form as that of D for e_{k} and $e_{k, k+1}$. Therefore we put

$$
\begin{gathered}
D^{\prime} e_{k}=\sum_{i=1}^{n-j} \mu_{k}^{i, i+j} e_{i, i+j}+\cdots+\mu_{k}^{1 n} e_{1 n} \\
D^{\prime} e_{k, k+1}=\sum_{i=1}^{n-j-1} \mu_{k, k+1}^{i, i+j+1} e_{i, i+j+1}+\cdots+\mu_{k, k+1}^{1 n} e_{1 n} \\
\quad \text { for } \quad k=1,2, \cdots, n-1
\end{gathered}
$$

Then we have

$$
\mu_{k}^{k, k+j}=0 \quad \text { for } k=1,2, \cdots, n-j
$$

In fact,

$$
D^{\prime} e_{k}=D e_{k}+\sum_{i=1}^{n-j} \lambda_{i}^{i+j}\left[e_{i, i+j}, e_{k}\right]
$$

and therefore

$$
\mu_{k}^{k, k+j}=\lambda_{k}^{k, k+j}+\left(-\lambda_{k}^{k, k+j}\right)=0 .
$$

By applying D^{\prime} to $\left[e_{1}, e_{2}\right]=\ldots=\left[e_{1}, e_{n-j-1}\right]=0$, we have

$$
\mu_{1}^{i, i+j}=0 \quad \text { for } \quad i=1,2, \ldots, n-j
$$

and

$$
\mu_{m}^{1, j+1}=\mu_{m}^{2, j+2}=0 \quad \text { for } \quad m=2,3, \cdots, n-j-1
$$

For $m=n-j, \ldots, n-1$, apply D^{\prime} to $\left[e_{1}, e_{m}\right]=0$ and we obtain

$$
\mu_{m}^{1, j+1}=\mu_{m}^{2, j+2}=0 .
$$

Now assume that $2 \leq k \leq n-j-1$ and that we have

$$
\mu_{l}^{i, i+j}=0 \quad \text { for } \quad l=1,2, \ldots, k-1 \quad \text { and } \quad i=1,2, \ldots, n-j
$$

and

$$
\mu_{m}^{1, j-1}=\mu_{m}^{2, j+1}=\ldots=\mu_{m}^{k, k+j}=0 \quad \text { for } \quad m=k, k+1, \ldots, n-1 .
$$

Then applying D^{\prime} to $\left[e_{k}, e_{k+1}\right]=\ldots=\left[e_{k}, e_{n-j-1}\right]=0$, we have
and

$$
\mu_{k}^{i, i+j}=0 \quad \text { for } \quad i=k+1, \ldots, n-j
$$

$$
\mu_{m}^{k+1, k+j+1}=0 \quad \text { for } \quad m=k+2, \cdots, n-j-1
$$

For $m=n-j, \cdots, n-1$, apply D^{\prime} to $\left[e_{k}, e_{m}\right]=0$ and we obtain

$$
\mu_{m}^{k+1, k+j+1}=0 .
$$

Thus we conclude that

$$
\mu_{k}^{i, i+j}=0 \quad \text { for } \quad k=1,2, \cdots, n-1 \quad \text { and } \quad i=1,2, \cdots, n-j
$$

3. The first statement of Theorem 1

Throughout this section we assume that either the characteristic of Φ is 0 , or the characteristic of Φ is $p \neq 0$ and $n \neq 0(\bmod p)$.

By our assumption on the characteristic of Φ, the system (2) of $n-1$ equations has the nonsingular matrix of coefficients. Therefore by virtue of Lemma 2 any derivation D of L has the following form:

$$
\left\{\begin{array}{l}
D e_{k}=\sum_{i=1}^{n-1} \lambda_{k}^{i, i+1} e_{i, i+1}+\cdots+\lambda_{k}^{1 n} e_{1 n} \tag{6}\\
D e_{k, k+1}=\lambda_{k, k+1}^{k, k+1} e_{k, k+1}+\sum_{i=1}^{n-2} \lambda_{k, k+1}^{i, i+2} e_{i, i+2}+\cdots+\lambda_{k, k+1}^{1 n} e_{1 n} \\
\text { for } \quad k=1,2, \cdots, n-1 .
\end{array}\right.
$$

Lemma 7. Let D be any derivation of L. Then there exist $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n-1}$ in Φ such that

$$
D^{\prime}=D-\sum_{i=1}^{n-1} \alpha_{i} \operatorname{ad} e_{i}
$$

has the following form for $e_{k, k+1}$:

$$
\begin{array}{r}
D^{\prime} e_{k, k+1}=\sum_{i=1}^{n-2} \lambda_{k, k+1}^{i, i+2} e_{i, i+2}+\cdots+\lambda_{k, k+1}^{1 n} e_{1 n} \\
\text { for } \quad k=1,2, \cdots, n-1 .
\end{array}
$$

Proof. By the remark preceding the lemma,

$$
\begin{array}{r}
D e_{k, k+1}=\lambda_{k, k+1}^{k, k+1} e_{k, k+1}+\sum_{i=1}^{n-2} \lambda_{k, k+1}^{i, i+2} e_{i, i+2}+\cdots+\lambda_{k, k+1}^{1 n} e_{1 n} \\
\text { for } k=1,2, \ldots, n-1 .
\end{array}
$$

We now consider the following system of $n-1$ equations:

$$
\left\{\begin{aligned}
2 x_{1}-x_{2} & =\lambda_{12}^{12} \\
-x_{1}+2 x_{2}-x_{3} & \\
\cdot & =\lambda_{23}^{23} \\
\cdot & \\
-x_{n-3}+2 x_{n-2}-x_{n-1} & =\lambda_{n-2, n-1}^{n-2, n-1} \\
-x_{n-2}+2 x_{n-1} & =\lambda_{n-1, n}^{n-1, n}
\end{aligned}\right.
$$

Since the matrix of coefficients of the system is nonsingular, the system has a unique solution, which we denote by $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n-1}$. With these α_{i} 's we define D^{\prime} as in the statement. Then

$$
\begin{aligned}
D^{\prime} e_{k, k+1}= & D e_{k, k+1}-\sum_{i=1}^{n-1} \alpha_{i}\left[e_{i}, e_{k, k+1}\right] \\
& \left\{\begin{array}{l}
\left(\lambda_{12}^{12}-2 \alpha_{1}+\alpha_{2}\right) e_{12}+\sum_{i=1}^{n-2} \lambda_{12}^{i, i+2} e_{i, i+2}+\ldots+\lambda_{12}^{1 n} e_{1 n} \quad \text { for } k=1, \\
\left(\lambda_{k, k+1}^{k, k+1}+\alpha_{k-1}-2 \alpha_{k}+\alpha_{k+1}\right) e_{k, k+1}+\sum_{i=1}^{n-2} \lambda_{k, k+1}^{i, i+2} e_{i, i+2}+\cdots+\lambda_{k, k+1}^{1 n} e_{1 n}
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& =\left\{\begin{array}{rr}
\text { for } \quad k=2,3, \ldots, n-2, \\
\left(\lambda_{n-1, n}^{n-1, n}+\alpha_{n-2}-2 \alpha_{n-1}\right) e_{n-1, n}+\sum_{i=1}^{n-2} \lambda_{n-1, n}^{i, i+2} e_{i, i+2}+\ldots+\lambda_{n-1, n}^{1 n} e_{1 n} \\
\text { for } \quad k=n-1 .
\end{array}\right. \\
& =\sum_{i=1}^{n-2} \lambda_{k, k+1}^{i, i+2} e_{i, i+2}+\cdots+\lambda_{k, k+1}^{1 n} e_{1 n} .
\end{aligned}
$$

Proof of the First Statement of Theorem 1:
In the case where $n=2$, the characteristic of Φ is $\neq 2$. Therefore L is a 2 -dimensional non-abelian solvable Lie algebra. It is known that L has then no outer derivation, that is, $H^{1}(L, L)=(0)$.

We therefore assume that $n \geq 3$. Let D be any derivation of L. Then D has the form (6) for e_{k} and $e_{k, k+1}, k=1,2, \ldots, n-1$. By virtue of Lemma 7, adding an inner derivation to D, we may suppose that

$$
\lambda_{k, k+1}^{k, k+1}=0 \quad \text { for } \quad k=1,2, \cdots, n-1
$$

Owing to Lemma 4, by adding an inner derivation to D, we may furthermore suppose that

$$
\lambda_{k}^{i, i+1}=0 \quad \text { for } \quad i, k=1,2, \cdots, n-1
$$

By making use of Lemmas 5 and 6, we can proceed by induction to conclude that after replacing D by the sum of D and a suitable inner derivation we have

$$
D e_{k}=D e_{k, k+1}=0 \quad \text { for } \quad k=1,2, \ldots, n-1
$$

But Lemma 3 then tells us that $D=0$. This shows that the first given D is an inner derivation and we have $H^{1}(L, L)=(0)$.

4. The second statement of Theorem 1

Throughout this section, we assume that the characteristic of Φ is $p \neq 0$ and that $n \equiv 0(\bmod p)$.

The matrix of coefficients of the system (2) of $n-1$ equations is singular but has rank $n-2$. Therefore any solution of (2) is of the form:

$$
x_{1}=\beta, x_{2}=2 \beta, \ldots, x_{n-1}=(n-1) \beta,
$$

where β is an element of \varnothing.
By virtue of Lemma 2 any derivation D of L has the following form for e_{k} and $e_{k, k+1}$.

$$
\left\{\begin{array}{l}
D e_{k}=\sum_{i=1}^{n-1} i \beta_{k} e_{i}+\sum_{i=1}^{n-1} \lambda_{k}^{i, i+1} e_{i, i+1}+\cdots+\lambda_{k}^{1 n} e_{1 n} \quad \text { for } \quad k=1,2, \ldots, n-1 . \tag{7}\\
\text { For } \quad n \geq 5, \\
D e_{k, k+1}=\lambda_{k, k+1}^{k, k+1} e_{k, k+1}+\sum_{i=1}^{n-1} \lambda_{k, k+1}^{i, i+1} e_{i, i+1}+\ldots+\lambda_{k, k+1}^{1 n} e_{1 n} \quad \text { for } k=1,2, \ldots, n-1 .
\end{array}\right.
$$

Lemma 8. The center of L is spanned by the identity matrix e_{0}.
Proof. The trace of e_{0} is 0 and therefore $e_{0} \epsilon L . \quad e_{0}$ evidently belongs to the center of L.

Conversely, suppose that

$$
e=\sum_{i=1}^{n-1} \lambda^{i} e_{i}+\sum_{i=1}^{n-1} \lambda^{i, i+1} e_{i, i+1}+\cdots+\lambda^{1 n} e_{1 n}
$$

is an element of the center of L. By taking the products $\left[e, e_{i}\right]=0, i=1,2$, $\cdots, n-1$, and by using the tables (3) and (5), we see that

$$
\lambda^{i, i+j}=0 \quad \text { for } \quad i=1,2, \ldots, n-j \quad \text { and } \quad j=1,2, \ldots, n-1
$$

From $\left[e, e_{12}\right]=0$, it follows that

$$
2 \lambda^{1}-\lambda^{2}=0
$$

For $k=2,3, \ldots, n-2$, it follows from $\left[e, e_{k, k+1}\right]=0$ that

$$
-\lambda^{k-1}+2 \lambda^{k}-\lambda^{k+1}=0
$$

From $\left[e, e_{n-1, n}\right]=0$, it follows that

$$
-\lambda^{n-2}+2 \lambda^{n-1}=0
$$

Thus $\left\{\lambda^{1}, \lambda^{2}, \ldots, \lambda^{n-1}\right\}$ is a solution of the system (2) of equations. Therefore we can write

$$
\lambda^{i}=i \beta, \quad i=1,2, \cdots, n-1
$$

with some $\beta \in \Phi$. Hence

$$
e=\beta\left(\sum_{i=1}^{n-1} i e_{i}\right)=\beta e_{0} .
$$

Lemma 9. For any $k=1,2, \ldots, n-1$, let D_{k} be the endomorphism of L sending e_{k} to e_{0} and all other elements of a basis (1) to 0 . Let D_{12} be the endomorphism of L sending $e_{1 k}$ to $e_{1 k}$ for $k=2,3, \ldots, n$ and all other elements of a basis (1) to 0 . Then D_{k} and D_{12} are outer derivations of L.

Proof. By Lemma 8 we see that D_{k} maps L into the center of L and L^{2} into (0). Hence D_{k} is a derivation of L, which is outer since $e_{0} \S L^{2}$.

It is easy to verify that D_{12} is a derivation of L. It is furthemore outer. In fact, suppose that

$$
D_{12}=\sum_{i=2}^{n-1} \lambda^{i} \operatorname{ad} e_{i}+\sum_{i=1}^{n-1} \lambda^{i, i+1} \text { ad } e_{i, i+1}+\ldots+\lambda^{1 n} \text { ad } e_{1 n}
$$

Applying D_{12} to $e_{k}, k=1,2, \ldots, n-1$, by (3) and (5) we obtain

$$
\lambda^{i, i+j}=0 \quad \text { for } \quad i=1,2, \ldots, n-j \quad \text { and } \quad j=1,2, \ldots, n-1
$$

Hence $D_{12}=\sum_{i=2}^{n-1} \lambda^{i}$ ad e_{i}. Now apply D_{12} to $e_{12}, e_{23}, \cdots, e_{n-1, n}$. Then we see that $-\lambda^{2}=1$ and that $\lambda^{2}, \lambda^{3}, \ldots, \lambda^{n-1}$ satisfy the following system of equations.

$$
\left\{\begin{align*}
-2 x_{2}-x_{3} & =0 \tag{8}\\
-x_{2}+2 x_{3}-x_{4} & =0 \\
\cdot & \\
-x_{n-3}+2 x_{n-2}-x_{n-1} & =0 \\
-x_{n-2}+2 x_{n-1} & =0
\end{align*}\right.
$$

The system (8) has the nonsingular matrix of coefficients and therefore it has only the trivial solution. Hence

$$
\lambda^{2}=\lambda^{3}=\cdots=\lambda^{n-1}=0
$$

This contradicts the fact that $-\lambda^{2}=1$. Therefore D_{12} is outer, as was asserted.

Lemma 10. Let D be a derivation of L. Assume that

$$
D e_{k}=\sum_{i=1}^{n-1} i \beta_{k} e_{i}+\sum_{i=1}^{n-1} \lambda_{k}^{i, i+1} e_{i, i+1}+\ldots+\lambda_{k}^{1 n} e_{1 n} \quad \text { for } \quad k=1,2, \ldots, n-1
$$

If we put

$$
D^{\prime}=D-\sum_{i=1}^{n-1} \beta_{i} D_{i}
$$

with D_{i} 's the derivations defined in Lemma 9, then

$$
D^{\prime} e_{k}=\sum_{i=1}^{n-1} \lambda_{k}^{i, i+1} e_{i, i-1}+\ldots+\lambda_{k}^{1 n} e_{1 n} \quad \text { for } \quad k=1,2, \ldots, n-1
$$

Proof. By Lemma 9 we have

$$
\begin{aligned}
D^{\prime} e_{k} & =\sum_{i=1}^{n-1} i \beta_{k} e_{i}+\sum_{i=1}^{n-1} \lambda_{k}^{i, i+1} e_{i, i+1}+\cdots+\lambda_{k}^{1 n} e_{1 n}-\left(\sum_{i=1}^{n-1} \beta_{i} D_{i}\right) e_{k} \\
& =\beta_{k} e_{0}+\sum_{i=1}^{n-1} \lambda_{k}^{i, i+1} e_{i, i+1}+\cdots+\lambda_{k}^{1 n} e_{1 n}-\beta_{k} D_{k} e_{k}
\end{aligned}
$$

$$
=\sum_{i=1}^{n-1} \lambda_{k}^{i, i+1} e_{i, i+1}+\ldots+\lambda_{k}^{1 n} e_{1 n}
$$

Lemma 11. Let D be a derivation of L. Assume that

$$
\begin{aligned}
& D e_{k}=\sum_{i=1}^{n-1} \lambda_{k}^{i, i+1} e_{i, i+1}+\ldots+\lambda_{k}^{1 n} e_{1 n}, \\
& D e_{k, k+1}=\lambda_{k, k+1}^{k, k+1} e_{k, k+1}+\sum_{i=1}^{n-2} \lambda_{k, k+1}^{i, i+2} e_{i, i+2}+\cdots+\lambda_{k, k+1}^{1 n} e_{1 n} \\
& \text { for } k=1,2, \cdots, n-1 .
\end{aligned}
$$

Then there exist $\alpha_{2}, \alpha_{3}, \ldots, \alpha_{n-1}$ in Φ such that

$$
D^{\prime}=D-\left(\lambda_{12}^{12}+\alpha_{2}\right) D_{12}-\sum_{i=2}^{n-1} \alpha_{i} \text { ad } e_{i}
$$

has the following form for $e_{k, k+1}$:

$$
D^{\prime} e_{k, k+1}=\sum_{i=1}^{n-2} \lambda_{k, k+1}^{i, i+2} e_{i, i+2}+\cdots+\lambda_{k, k+1}^{1 n} e_{1 n} \quad \text { for } \quad k=1,2, \ldots, n-1
$$

Proof. We consider the system of $n-2$ equations

$$
\left\{\begin{aligned}
& 2 x_{2}-x_{3}=\lambda_{23}^{23} \\
&-x_{2}+2 x_{3}-x_{4}=\lambda_{34}^{34} \\
& \cdot \\
&-x_{n-3}+2 x_{n-2}-x_{n-1}=\lambda_{n-2, n-1}^{n-2, n-1} \\
&-x_{n-2}+2 x_{n-1}=\lambda_{n-1, n}^{n-1, n} .
\end{aligned}\right.
$$

This system has the nonsingular matrix of coefficients and therefore it has a solution. Denote a solution of the system by $\alpha_{2}, \alpha_{3}, \ldots, \alpha_{n-1}$ and define D^{\prime} as in the statement. Then

$$
\begin{aligned}
D^{\prime} e_{12} & =D e_{12}-\left(\lambda_{12}^{12}+\alpha_{2}\right) e_{12}-\sum_{i=2}^{n-1} \alpha_{i}\left[e_{i}, e_{12}\right] \\
& =\left(\lambda_{12}^{12}-\left(\lambda_{12}^{12}+\alpha_{2}\right)+\alpha_{2}\right) e_{12}+\sum_{i=1}^{n-2} \lambda_{12}^{i, i-2} e_{i, i+2}+\ldots+\lambda_{12}^{1 n} e_{1 n} \\
& =\sum_{i=1}^{n-2} \lambda_{12}^{i, i+2} e_{i, i+2}+\cdots+\lambda_{12}^{1 n} e_{1 n} \\
D^{\prime} e_{23} & =D e_{23}-\sum_{i=2}^{n-1} \alpha_{i}\left[e_{i}, e_{23}\right] \\
& =\left(\lambda_{23}^{23}-2 \alpha_{2}+\alpha_{3}\right) e_{23}+\sum_{i=1}^{n-2} \lambda_{23}^{i, i+2} e_{i, i+2}+\cdots+\lambda_{23}^{1 n} e_{1 n}
\end{aligned}
$$

$$
=\sum_{i=1}^{n-2} \lambda_{23}^{i, i+2} e_{i, i+2}+\cdots+\lambda_{23}^{1 n} e_{1 n} .
$$

For $k=3,4, \ldots, n-2$,

$$
\begin{aligned}
D^{\prime} e_{k, k+1} & =D e_{k, k+1}-\sum_{i=2}^{n-1} \alpha_{i}\left[e_{i}, e_{k, k+1}\right] \\
& =\left(\lambda_{k, k+1}^{k, k+1}+\alpha_{k-1}-2 \alpha_{k}+\alpha_{k+1}\right) e_{k, k+1}+\sum_{i=1}^{n-2} \lambda_{k, k+1}^{i, i+2} e_{i, i+2}+\cdots+\lambda_{k, k+1}^{1 n} e_{1 n} \\
& =\sum_{i=1}^{n-2} \lambda_{k, k+1}^{i, i+2} e_{i, i+2}+\cdots+\lambda_{k, k+1}^{1 n} e_{1 n} . \\
D^{\prime} e_{n-1, n} & =D e_{n-1, n}-\sum_{i=2}^{n-1} \alpha_{i}\left[e_{i}, e_{n-1, n}\right] \\
& =\left(\lambda_{n-1, n}^{n-1, n}+\alpha_{n-2}-2 \alpha_{n-1}\right) e_{n-1, n}+\sum_{i=1}^{n-2} \lambda_{n-1, n}^{i, i+2} e_{i, i+2}+\cdots+\lambda_{n-1, n}^{1 n} e_{1 n} \\
& =\sum_{i=1}^{n-2} \lambda_{n-1, n}^{i, i+2} e_{i, i+2}+\cdots+\lambda_{n-1, n}^{1 n} e_{1 n} .
\end{aligned}
$$

Thus the proof is complete.

Proof of the Second Statemment of Theorem 1:

Any derivation D of L has the form (7) for e_{k} and $e_{k, k+1}, k=1,2, \ldots, n-1$. Put

$$
D^{\prime}=D-\sum_{i=1}^{n-1} \beta_{i} D_{i}-\left(\lambda_{12}^{12}+\alpha_{2}\right) D_{12}-\sum_{i=2}^{n-1} \alpha_{i} \text { ad } e_{i}
$$

where $\alpha_{2}, \alpha_{3}, \ldots, \alpha_{n-1}$ are the elements of Φ chosen in Lemma 11. Then by making use of Lemmas 10 and 11 we have

$$
\begin{aligned}
& D^{\prime} e_{k}=\sum_{i=1}^{n-1} \lambda_{k}^{i, i+1} e_{i, i+1}+\ldots+\lambda_{k}^{1 n} e_{1 n} \\
& D^{\prime} e_{k, k+1}=\sum_{i=1}^{n-2} \lambda_{k, k+1}^{i, i+2} e_{i, i \cdots 2}+\ldots+\lambda_{k, k+1}^{1 n} e_{1 n} \quad \text { for } \quad k=1,2, \cdots, n-1
\end{aligned}
$$

Now as in the proof of the first statement of Theorem 1, we can use Lemmas $3,4,5$ and 6 to see that D^{\prime} is an inner derivation of L. Therefore in order to see that $H^{1}(L, L)$ is of dimension n, it is sufficient for us to show that $D_{1}, D_{2}, \ldots, D_{n-1}$ and D_{12} are linearly independent modulo the inner derivations. Suppose that the derivation

$$
\begin{equation*}
\sum_{i=1}^{n-1} \lambda^{i} D_{i}+\lambda D_{12}+\sum_{i=2}^{n-1} \mu^{i} \operatorname{ad} e_{i}+\sum_{i=1}^{n-1} \mu^{i, i+1} \operatorname{ad} e_{i, i+1}+\ldots+\mu^{1 n} \operatorname{ad} e_{1 n} \tag{9}
\end{equation*}
$$

is identically 0 , where all the $\lambda ' s$ and μ 's are in \varnothing. Applying the derivation
(9) to e_{k}, we obtain $\lambda^{k}=0$ for $k=1,2, \ldots, n-1$. Apply the derivation (9) to e_{12}. Then $\lambda-\mu^{2}=0$. By applying the derivation (9) to $e_{23}, e_{34}, \ldots, e_{n-1, n}$, we see that $\mu^{2}, \mu^{3}, \ldots, \mu^{n-1}$ satisfy the system (8) of $n-2$ equations. It follows that $\mu^{2}=\mu^{3}=\ldots=\mu^{n-1}=0$. Therefore $\lambda=0$. It is now immediate that all the other μ 's are 0 . This completes the proof.

5. Remark to Theorem 1

In this section, we shall consider the three cases excluded in Theorem 1.
In the case where $n=2$ and the characteristic of Φ is $2, L$ is a 2 -dimensional abelian Lie algebra. Hence $\operatorname{dim} H^{1}(L, L)=4$.

The case where $n=3$ and the characteristic of Φ is 3 :
By virtue of Lemma 2 we see that

$$
\begin{aligned}
& D e_{k}=\beta_{k}\left(e_{1}-e_{2}\right)+\sum_{i=1}^{2} \lambda_{k}^{i, i+1} e_{i, i+1}+\lambda_{k}^{13} e_{13} \\
& D e_{k, k+1}=\sum_{i=1}^{2} \lambda_{k, k+1}^{i, i+1} e_{i, i+1}+\lambda_{k}^{13} e_{13} \quad \text { for } \quad k=1,2
\end{aligned}
$$

Let D_{12}^{23} (resp. D_{23}^{12}) be the endomorphism of L sending e_{12} (resp. e_{23}) to e_{23} (resp. e_{12}) and all other elements of a basis (1) to 0 . Then these are outer derivations of L. With a slight modification of the reasoning in the preceding section, we can show that any derivation of L is a linear combination of D_{1}, $D_{2}, D_{12}, D_{12}^{23}, D_{23}^{12}$ and an inner derivation. It is easy to see that these outer derivations are linearly independent modulo the inner derivations. Therefore we conclude that $\operatorname{dim} H^{1}(L, L)=5$.

The case where $n=4$ and the characteristic of Φ is 2 : By Lemma 2 and its proof, we see that

$$
\begin{aligned}
& D e_{k}=\beta_{k}\left(e_{1}+e_{3}\right)+\sum_{i=1}^{3} \lambda_{k}^{i, i+1} e_{i, i+1}+\sum_{i=1}^{2} \lambda_{k}^{i, i+2} e_{i, i+2}+\lambda_{k}^{14} e_{14} \\
& \quad \text { for } k=1,2,3, \\
& D e_{12}=\left(\lambda_{12}^{12} e_{12}+\lambda_{12}^{34} e_{34}\right)+\sum_{i=1}^{2} \lambda_{12}^{i, i+2} e_{i, i+2}+\lambda_{12}^{14} e_{14}, \\
& D e_{23}=\lambda_{23}^{23} e_{23}+\sum_{i=1}^{2} \lambda_{23}^{i, i+2} e_{i, i+2}+\lambda_{23}^{14} e_{14}, \\
& D e_{34}=\left(\lambda_{34}^{12} e_{12}+\lambda_{34}^{34} e_{34}\right)+\sum_{i=1}^{2} \lambda_{34}^{i, i+2} e_{i, i+2}+\lambda_{34}^{14} e_{14} .
\end{aligned}
$$

Let D_{12}^{34} (resp. D_{34}^{12}) be the endomorphism of L sending e_{12} (resp. e_{34}) to e_{34} (resp. e_{12}), e_{13} (resp. e_{24}) to $-e_{24}$ (resp. $-e_{13}$) and all the other elements of a
basis (1) to 0 . Let D_{23}^{14} be the endomorphism of L sending e_{23} to e_{14} and all other elements of a basis (1) to 0 . Then these are outer derivations of L. With a slight modification of the reasoning in the preceding section, we can show that any derivation of L is a linear combination of $D_{1}, D_{2}, D_{3}, D_{12}, D_{12}^{34}$, D_{34}^{12}, D_{23}^{14} and an inner derivation. It is easy to see that these outer derivations are linearly independent modulo the inner derivations. Thus we conclude that $\operatorname{dim} H^{1}(L, L)=7$.

6. Proof of Theorem 2

We can prove Theorem 2 in a quite similar manner as in the proof of the second statement of Theorem 1. Therefore we shall only write the outline of the proof.

Throughout this section, let Φ be a field of arbitrary characteristic and denote $\mathrm{t}(n, \Phi)$ with $n \geq 2$ by L for the sake of simplicity.

We choose a basis of L as follows.
e_{k} : the $\left(a_{i j}\right) \in L$ such that $a_{k k}=1$ and all other $a_{i j}=0$,
for $k=1,2, \ldots, n$.
$e_{k, k+l}$: the $\left(a_{i j}\right) \in L$ such that $a_{k, k+l}=1$ and all other $a_{i j}=0$, for $k=1,2, \cdots, n-1$ and $l=1,2, \cdots, n-k$.
We put these elements of L in the following order:

$$
\begin{equation*}
e_{1}, \ldots, e_{n} ; e_{12}, \cdots, e_{n-1, n} ; \cdots ; e_{1, n-1}, e_{2 n} ; e_{1 n} \tag{10}
\end{equation*}
$$

Then, corresponding to Lemma 1 , for any derivation D of L we have

$$
\begin{aligned}
& D e_{k}=\sum_{i=1}^{n} \lambda_{k}^{i} e_{i}+\sum_{i=1}^{n-1} \lambda_{k}^{i, i+1} e_{i, i+1}+\ldots+\lambda_{k}^{1 n} e_{1 n} \quad \text { for } k=1,2, \ldots, n, \\
& D e_{k, k-l}=\sum_{i=1}^{n-l} \lambda_{k, k+l}^{i, i+l} e_{i, i+l}+\ldots+\lambda_{k, k+l}^{1 n} e_{1 n} \\
& \quad \text { for } \quad k=1,2, \ldots, n-1 \quad \text { and } \quad l=1,2, \ldots, n-k .
\end{aligned}
$$

Corresponding to Lemma 2, we can show without any restriction on n and Φ that
and

$$
\lambda_{k}^{1}=\lambda_{k}^{2}=\ldots=\lambda_{k}^{n} \quad \text { for } \quad k=1,2, \ldots, n
$$

$\lambda_{k, k r 1}^{i, i-1}=0 \quad$ for $\quad i, k=1,2, \cdots, n-1 \quad$ and $\quad i \neq k$.
The results corresponding to Lemmas 3, 4, 5 and 6 hold for a derivation of $L=\mathrm{t}(n, \Phi)$ without any restriction on n and Φ. It is to be noted that in the proof of the result corresponding to Lemma 4 we only need to define D^{\prime} as follows:

$$
D^{\prime}=D+\sum_{i=1}^{n-1} \lambda_{i}^{i, i+1} \text { ad } e_{i, i+1} .
$$

It is evident that the center of L is spanned by the identity matrix e_{0}. We define the derivation $D_{k}, k=1,2, \ldots, n$, as in Lemma 9. Corresponding to (8), we consider the following system of $n-1$ equations in n indeterminates:

$$
\left\{\begin{array}{rlll}
x_{1}-x_{2} & & =\lambda_{12}^{12} \\
x_{2}-x_{3} & & =\lambda_{23}^{23} \\
& \cdot & & \\
& \cdot & \cdot & \\
& & x_{n-1}-x_{n} & =\lambda_{n-1, n}^{n-1, n .}
\end{array}\right.
$$

Then the system has a solution of the following type:

$$
x_{1}=0, x_{2}=\alpha_{2}, \ldots, x_{n}=\alpha_{n} .
$$

Putting

$$
D^{\prime}=D-\sum_{i=1}^{n} \lambda_{i}^{1} D_{i}-\sum_{i=2}^{n} \alpha_{i} \text { ad } e_{i},
$$

we have

$$
\begin{aligned}
& D^{\prime} e_{k}=\sum_{i=1}^{n-1} \lambda_{k}^{i, i+1} e_{i, i+1}+\cdots+\lambda_{k}^{1 n} e_{1 n}, \quad k=1,2, \ldots, n, \\
& D^{\prime} e_{k, k+1}=\sum_{i=1}^{n-2} \lambda_{k, k+1}^{i, i+2} e_{i, i+2}+\ldots+\lambda_{k, k+1}^{1 n} e_{1 n}, \quad k=1,2, \cdots, n-1
\end{aligned}
$$

Now as in the proof of the second statement of Theorem 1, we see by making use of the results corresponding to Lemmas $3,4,5$ and 6 that D^{\prime} is an inner derivation of L and we can conclude that $\operatorname{dim} H^{1}(L, L)=n$.

Reference

[1] S. Tôgô, Outer derivations of Lie algebras, to appear in Trans. Amer. Math. Soc.
Department of Mathematics, Faculty of Science, Hiroshima University

