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Introduction. I. M. Singer [V] has introduced the following condition for
a Lie algebra L: (A) Any pair of elements x, y of L such that [_χ, Qx, yHH = O
satisfies \^x, y~3 = 0. M. Sugiura [2Γ\ called a Lie algebra satisfying this condi-
tion to be an (A)-algebra and proved, among other results, that a Lie algebra
L over a field of characteristic 0 is an (A)-algebra if and only if any xeL such
that (ad xf = 0 for some k 2> 2 satisfies ad x = 0. On the other hand, S. Togo [3]
has considered a Lie algebra L satisfying the condition that (ad^)2 = 0 implies
ad χ = 0, and has given an example of such a Lie algebra which is solvable
but not abelian. This is not an (A)-algebra since any solvable (A)-algebra is
abelian OH, Ĉ ID Thus we are led to consider a Lie algebra which satisfies
the condition that (ad^)^^O implies ad:χ; = 0 for a fixed integer k 2>2. We
shall call such a Lie algebra to be an (A^)-algebra. In this paper we shall
investigete the properties of (A^)-algebras.

It will be shown that a solvable (resp. nilpotent) Lie algebra over a field
of characteristic 0 is an (A^)-algebra with k J>3 (resp. k |>2) if and only if it
is abelian. We shall show that an (A2)-algebra is not always an (A^)-algebra
with k J> 3, much less an (A)-algebra. As to (A^-algebras with k I> 3, if the
basic field is algebraically closed and of characteristic 0, we can show that an
(A^)-algebra is abelian and so an (A)-algebra. A detailed discussion about
(A2)-algebras is also given.

The author wishes to express his gratitude to Dr. S. Togo for his en-
couragement given during the preparation of this paper.

Notations. We denote by Φ a field of arbitrary characteristic unless
otherwise stated and by L a finite dimensional Lie algebra over a field Φ. We
denote by Z(L) the center of L and by

Z0(i) = Z(i) C ZX(L) C Z2(L) C C Zn(L) C •

the ascending central series of L. For a subspace U of L the centralizer of
UmL will be denoted by C(U).

1. We start with the following

DEFINITION 1. For an integer k^>2, we call a Lie algebra L over a field Φ
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to be an {Ak)-algebra provided it has the property
(Ak): Any element x of L such that (ad#)* = 0 satisfies ad# = 0.

We also call L to be an (A^-algebra provided it has the property
(A^): Any element x of L such that (adx)k = 0 for some Jc^>2 satisfies

According to I. M. Singer []1] and M. Sugiura Q2], we shall give the fol-
lowing

DEFINITION 2. A Lie algebra L over a field Φ is called an (A)-algebra pro-
vided it has the property

(A): Any pair of elements x, y of L such that [_x, [_x, yX\ = Q satisfies

Among the Lie algebras given in Definitions 1 and 2 there is the follow-
ing interrelation.

PROPOSITION 1. Let L be a Lie algebra over a field Φ. Then we have the
following implications:

PROOF. Assume that L has the property (A). If x e L satisfies (ad x)k = 0
for some integer k^>2, then for any γeL we have \^x, [_χ, (ad^)^~2jHH = O.
Hence [[#, (ad^)*~2y] —0? that is, (adx)^"1 j = 0 . Repeating this procedure,
we finally have (ad^)y=0. Therefore ad^ = 0 and L has the property (A^).
The statement that (AΛ+i) implies (AΛ) is evident.

2. In this section we shall mainly study the properties of the subalge-
bras and the ideals of the (A^)-algebras. We first show

PROPOSITION 2. Let L be a Lie algebra over a field Φ and let H be any ideal
of L.

(a) // L is an (Ak+i)-algebra, then H is an (Ak)-algebra.
(b) // L is an (Ak+ι)-algebra and if HC Z{L\ then L/H is an (Ak)-algebra.

PROOF, (a): Assume that L is an (A^+i)-algebra. Suppose that x e H
satisfies (ad*)*#=(0), then (ad*)* + 1 £C(ad^*#=(0) , that is, (ad*)*+ 1 = 0.
Therefore ad x = 0. Thus H is an (A^)-algebra.

(b): Assume that L is an (AΛ+i)-algebra and HCZ(L). For any x e L,
we denote by x the corresponding element of L/H. Suppose that (&dx)k(L/H)
= (0). Then (ad*)*LC#. Since HCZ(L\ we have (ad^/ + 1 ZC(ad^)^r=(0).
Since L is an (A^+i)-algebra, (adΛ;)L = (0). It follows that (ad5)(I/ff) = (0).
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Thus L/H is an (A^)-algebra.

PROPOSITION 3. Let L be a Lie algebra over a field Φ and let H be a subal-
gebra of L. Assume that there is a subspace U such that L = H+ U and (ad χ)2U
= (0) for any x e H. Then if L is an (Ak)-algebra, H is an (Ak)-algebra.

PROOF. By using the assumption on H, we have for any x e H

(adx)kL = (adx)k-2tx, [>, H+ £ΓQ

The assertion in the proposition follows from this formula.

COROLLARY. Let L be an (Ak)-algebra. Then any subalgebra H of L such
that L=H+Zι(L) is an (Ak)-algebra.

PROOF. This is immediate from Proposition 3, since for any x e H we
have [>, O , ZxC

LEMMA 1. Let x be any element of L and let U be any subspace of L such
that Ex, UJCC(U). Then [>, [_U, Uj} = (0).

PROOF. For such x and U, we have

PROPOSITION 4. Let L be the sum of the subalgebras Lu •• •, Ln of L. Assume
that [_Li, Lj\\ C Z(L) for any ί φj and Z(Lϊ) C Z(L) for any ί. Then L is an (Ak)-
algebra (resp. an (A^-algebra) if and only if for each ί Li is an (Ak)-algebra
(resp. an (A^-algebra).

PROOF. Suppose that L is an (A^)-algebra. For any ί, put Ui=

= Li+Ui and

Hence by Proposition 3 we see that Li is an (A^)-algebra.

Conversely, suppose that for each ί L{ is an (A^)-algebra. Let x e L be

such that (ad χ)kL = (0). Then x = ^J x{ with x{ e L{. We assert that (ad χ)kL{

= (adxi)kLi for each ί. In fact,

(adΛ)*L ί==(adΛ)*-1[Λ; ί+^Λy,La = (adΛ;)*-1(adΛ/)£, ,

since [ Σ ^ y ? L{JCZ(L) and λ —1I>1. Since [S^y, LΪ}CC(Lt\ by Lemma 1
jii jΦiwe have {_^xh (ad^/)LJ = (0). Hence

jφi
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./¥=»

Repeating this procedure, we have (ad x)kU = (ad Xi)kLiy as was asserted. Since
Li has the property (A*), it follows that #,- e Z(Z, ) C Z(Z). Thus x e Z(L\ that
is, ad^ = 0. Therefore L is an (A^)-algebra. The statement for the (A^)-
algebras is immediate from this and the proposition is proved.

As a special case of Proposition 4, we have the following

COROLLARY. Let L be a Lie algebra over a field Φ. Assume that L is the
sum of the subalgebras Lu • ••, Ln of L such that [Jw, L/] = (0) for any ίφj.
Then L is an (Ak)-algebra if and only if for each ί Li is an (Ak)-algebra.

PROOF. For any i, we have [Z(Z,t ), ΣZ,y] = (0). Hence Z(i, ) C Z(L). The
jφi

statement now follows from Proposition 4.

3. In this section we study the interrelation among the properties (AΛ),
(Aco) and (A) of L in the case where L is solvable.

LEMMA 2. // L is an (Ak)-algebra, then Zι(L) = Z(L).

PROOF. By Proposition 1, L is an (A2)-algebra. For any xeZλ(L), (ad#)2L
C(adΛ;)Z(i) = (0). Hence (ad^)2 = 0 and therefore ad^ = 0, that is, x e Z(L).
Thus Zi(L) = Z(£).

It is known ([1], [2]) that any solvable (A)-algebra over a field of char-
acteristic 0 is abelian. We strengthen this in the following

THEOREM 1. (a) If L is a nilpotent Lie algebra over Φ, then the properties
(A2), •••, (Aβ), ••-, (Aeo), (A) and the property that L is abelian are equivalent.

(b) If L is a solvable Lie algebra over a field Φ of characteristic 0, then
the properties (A3), , (AΛ), , (A^), (A) and the property that L is abelian are
equivalent.

PROOF. If L is abelian, then L is obviously an (A)-algebra. Hence by
Proposition 1, to prove the statement (a) (resp. (b)), it is sufficient for us to
show that a nilpotent (A2)-algebra (resp. a solvable (A3)-algebra) is abelian.

If L is a nilpotent (A2)-algebra, then L = Zn(L) with some n. But Lemma
2 tells us that Zχ(L) = Z(L). Hence L = Z(L) and L is abelian.

Now assume that I is a solvable (A3)-algebra. Let TV denote the nil-
radical of L. Then there exists some integer n such that NnΦ(0) and
Nn+1 = (0). Now suppose that n^2. Then 3(rc-l)Ξ>τ& + 1. For any x e Nn~\
we have

(ad χ)3L C (ad x)2Nn~ι C N3(n~ι) = (0).
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Since L has the property (A3), it follows that ad x = 0. This shows that Nn~ι

CZ(L). Hence iVn = (0), which contradicts the choice of n. Thus n = l. For
any x e JV,

(ad xfL C (ad χ)NC N2 = (0).

Since L is an (A3)-algebra, we have ad^ = 0. From this it follows that NC
Z(JL). Since a field Φ is of characteristic 0, L2 C N and therefore L3 C [_L, NJ = 0.
Now we can use the statement (a) to conclude that L is abelian.

Thus the proof is complete.

To clarify the connection of the statements (a) and (b) in Theorem 1, we
here give an example of solvable Lie algebras which have the property (A2)
but not the property (A3), although the example given by S. Togo Q3] is
enough for this purpose. Let L be the Lie algebra over the field of real num-
bers described in terms of a basis eu e2, e3, e4 by the following multiplication
table:

[βi, e2j = e3, [>i, e 3 ] = — e2, [e2, e j = e4.

In addition Qe/5 eJ

r]= —[ley, ef} and for ί>j Qe/, e/] = 0 if it is not in the table
above. Then L is solvable but not nilpotent. By computation we see that
the set of all the elements x of L such that (ad^)2 = 0 is (e4) and that the set
of all the elements x of L such that (ad^)3 = 0 is (e2, e3, e4). Hence L is an
(A2)-algebra, but L is not an (A3)-algebra.

4. This section will be devoted to the study of (A2)-algebras.

THEOREM 2. Let L be an (A2)-algebra over a field of characteristic 0. Let
N be the nil-radical of L. Then L is abelian, or L is reductive, or N^

PROOF. If L is nilpotent, by Theorem 1 (a) L is abelian. So we assume
that L is not nilpotent. Let n be the integer such that NnΦ(0) and JVW+1 = (O).
Suppose that n ;>3. Then 2(n-l)^>n + l. For any x e Nn~\

Since L is an (A2)-algebra, we have ad x = 0. Thus we see that Nn~ιCZ(L)
and therefore Nn = (0), which contradicts the choice of n. Consequently, we
have n <; 2. In the case where n = 1, we have N2 = (0). For any x e N, (ad x)2L
C[>, iV] = (0) and therefore ad^ = 0. Thus we see that NCZ(L). Denoting
by R the radical of L, we have i?3 = (0) and therefore R = N=Z(L). Since L is
not nilpotent by our assumption, L is reductive. In the case where n = 2, for
any x e N2 we have
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(ad xfL C LN\ TV2] C Â 4 = (0).

By the property (A2) of L we see that ad x = 0. Hence N2CZ(L). Further-
more since N2Φ(0), we must have Z(L)φN. Thus the proof is complete.

COROLLARY. Let L be a non-abelian solvable (A2)-algebra over a field of
characteristic 0. Then dim L J> 4.

PROOF. By Theorem 1 (a), L is not nilpotent. If dimL <[ 3, the nil-radical
N of L must be of dimension <J 2. It follows that N is abelian, which contra-
dicts Theorem 2. Hence

PROPOSITION 5. Let L be a non-solvable (A2)-algebra over a field of charac-
teristic 0 whose radical R is nilpotent. If L has no non-zero abelian direct
summands, then either L is semisimple, or L — L2 and R2 — Z(L).

PROOF. By Theorem 2, either L is reductive or R^Z(L)^R2φ(0). In
the first case, L is semisimple since L has no non-zero abelian direct sum-
mands. In the second case, let L = S-\- R be a Levi decomposition of L. Since
ad S is completely reducible and since R and Z(L) are stable under ad S, there
exists a non-zero subspace U such that

R=U+Z(L), Ur\Z(L) = (P) and [5, IΓ\CU.

It follows that R2=U2. If R2φZ{L\ let V be a subspace of Z{L) comple-
mentary to R2. Since

we have VΓ\L2 = (O) and F is then an abelian direct summand of L. Hence
V=(0) and therefore R2 = Z(L). Now we assert that [5, U~]=U. In fact,
suppose that QS, ϋ~\φ U. Since adS is completely reducible and since U and
QS, U~] are stable under ad S, there exists a non-zero subspace C/i such that

£/=[S, EΓ|+ϊ7i, [5, I7]nϊ7i = (0) and [5, ί/jCί/i

For any non-zero element ux of Uu we have [wi, 5]C[^, £Γ]Γ\ f/i = (0). More-
over (ad ui)Λ C R2 = Z(L). Therefore (ad uι)2 = 0. By the property (A2) of L,
adui = 0, that is, uxeZ(L). Thus ui = 0, which is a contradiction. Hence
[5, ί7H= £/, as was asserted. It is now easy to see that L = L2 and the proof
is complete.

Next we shall show a sufficient condition for L to be an (A2)-algebra.

PROPOSITION 6. Let L be a non-nilpotent solvable Lie algebra over a field of
characteristic 0. Let the nil-radical N of L be such that N^ Z(L) ̂  N2 Φ (0)
and (ad χ)2 φ 0 for any x e N\Z(L). If there exists a subspace U of L comple-
mentary to N such that ad U is a commutative set of semisimple elements, then
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L is an (A2)-algebra.

PROOF. Since ad U is completely reducible, there exists a subspace V
such that

\ VΓ\Z(L) = (O) and \JJ

Assume that (adχ)2 = 0 for x e L. Then % is expressed as

x = u + v + z with u e U, v e V and z e Z(L).

By using the fact that N2CZ(L), we infer for any vι e V

(adu)2vι + [_v, [α,

from which it follows that

(adiO 2 t; i=-[>, C"

Hence (ad w)2 F = (0). Since ad C/ is commutative, \JJ, U~]CZ(L). Hence
(ad w)2£/C(ad u)Z(L) = (0). It follows that (ad u)2 = 0. But ad u is semisimple.
Therefore ad u = 0, that is, zz 6 Z(L). So we have w = 0. If v φ 0, then by
our hypothesis (ad#) 2 = (adt;)2=^=0. Hence v = 0 and therefore x — z e Z(L).
Thus we conclude that L is an (A2)-algebra.

It is to be noted that the conditions in Proposition 6 are satisfied by the
example of S. Togo [β~] and the example in Section 3.

Here we shall give an example of non-solvable (A2)-algebras. Let L be
the Lie algebra over a field of characteristic 0 described in terms of a basis
βi, e2, •••, e6 by the table:

[ei, β 2] = 2e2, [_eι, e 3 ] = — 2 e 3 , Ee2, e 3 ] = ei, Qβi, e 4 H = — e 4 ,

[]βi, e 5 ] = e5, de2, β 4 ] = — e5, C^3, e 5 U = — e4, Qe4, e 5 ] = e6.

In addition [e,, e y ]= — [e ; , e j and for i<j [ez, e; ] = 0 if it is not in the table
above. The radical Λ = (e4, e5, e6) is nilpotent. By computation, we see that
the set of all x e L such that (ad#)2 = 0 is equal to Z(L) = (e6). Therefore Z
is an (A2)-algebra. Z obviously satisfies the conditions that Z = Z2 and

5. In this section we shall give a characterization of (AyO-algebras for

THEOREM 3. Let L be a Lie algebra over a field of characteristic 0. Let k
be an integer ^> 3. Then L is an (Ak)-algebra if and only if either L is abelian,
or L is reductive and L2 contains no non-zero elements x such that (ad#)* = 0.
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PROOF. By Theorem 1 (b), a solvable Lie algebra is an (A O-algebra if
and only if it is abelian. Hence we may restrict ourselves to the case where
L is not solvable.

Assume that L is an (A3)-algebra. We denote by R and N respectively
the radical and the nil-radical of L. Since L is an (A2)-algebra by Proposition
1, by using Theorem 2 we see that either L is reductive, or N^Z(L)^)N2φ(0).
In the case where N^ Z(L) ^ TV2 φ (0), for any % e N

(ad xfL C (ad xfNQ N3 = (0).

It follows that ad^ = 0. Hence we have NCZ(L), which is a contradiction.
Thus L is necessarily reductive. Then L is the direct sum of a semisimple
ideal 5 and the center. It follows that S=L2. By Corollary to Proposition
4 S is an (A3)-algebra. Since Z(S) = (0), S contains no non-zero elements x
such that (ad^)3 = 0. The converse follows from Corollary to Proposition 4
and Theorem 1 (b).

The proofs of the cases where &>3 can be carried out in the similar way
as in the above case.

As a consequence of Theorem 3 we prove the following result of M.
Sugiura [_2Γ\ which was stated in Introduction.

COROLLARY. A Lie algebra L over a field of characteristic 0 is an (A)-
algebra if and only if L is an (A^-algebra.

PROOF. Assume that L is an (ATC)-algebra. Then by Proposition 1 L is
an (AΛ)-algebra for any k 2> 2. Hence by Theorem 3 either L is abelian, or L is
reductive and adZ contains no nilpotent elements. In the first case, L is an
(A)-algebra. In the second case, ad L is semisimple and therefore splittable.
Hence ad L consists of only the semisimple elements. If any elements x, y
of L satisfies [_x, [_x, j ] ] = 0, then (adχ)2y=0. Since ad^ is semisimple, it
follows that (a,dx)γ—0. Hence L is an (A)-algebra. Since any (A)-algebra
is an (Aoo)-algebra by Proposition 1, the statement is proved.

It has been shown by M. Sugiura [2] that a Lie algebra over an alge-
braically closed field of characteristic 0 is an (A)-algebra if and only if it is
abelian. In order to strengthen this result, we first prove

LEMMA 3. Let L be a split semisimple Lie algebra over a field of charac-
teristic 0. Then L is not an (A3)-algebra.

PROOF. Let H be a splitting Cartan subalgebra of L and let L =
a

be the decomposition of L to the root spaces. We can write La = (ea). Let
{au a2, •••, ai\ be the simple system of roots for L relative to H. Then any
root a is expressed in the form α = Σλ, α, with k{ integers. We choose the
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root β which is maximal in the lexicographic ordering of the roots determined
by {au a2, •••, #/}. Then (ade/8)

2/Γ=(0) and (ade^)3Lα = (0) for every root a,
since 2/9 and 3/9 + α are not roots. Hence (&deβ)

3 = 0. Thus L is not an (A3>
algebra.

THEOREM 4. A Lie algebra L over an algebraically closed field of charac-
teristic 0 is an (A3)-algebra if and only if L is abelian.

PROOF. Assume that L is an (A3)-algebra. Then by Theorem 3 either L
is abelian, or L is reductive and L2 is an (A3)-algebra. If L is reductive then
L2 is semisimple and therefore from Lemma 3 it follows that we cannot have
the latter case. Hence L is abelian. The converse is evident.
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