J. Sci. Hiroshima Univ. Ser. A-I 31 (1967), 191-194

A Note on the Cyclical Generation of Disjoint Spreads

Noboru HAMADA and Teijiro FUKUDA (Received September 20, 1967)

1. It is unknown whether the BIB design PG(t=2n-1, 2): 1 obtained by choosing the points in PG(t, 2) as treatments and all lines as blocks is resolvable or not for $t \ge 5$. C. R. Rao [1], [2] showed that the BIB design PG(t=3, 2): 1 with parameters $v=15, b=35, k=3, r=7, \lambda=1$ was resolvable by decomposing all lines in PG(3, 2) into 7 disjoint 1-fold spreads^{*)} S_0, S_1, \ldots, S_6 . The procedure of constructing these spreads is as follows:

(1) A set S_0 consisting of 5 lines cyclically generated from the initial line $L(x^0, x^5, x^{10})$ of the minimum cycle $\theta=5$ is chosen as the initial 1-fold spread.

(2) Generate S_{j+1} cyclically by a transformation $\sigma(S_j) = S_{j+1}$ (j=0, 1, ..., 5) where σ is a nonsingular linear transformation in PG(3, 2) such that

$$\sigma: \qquad (x^{\alpha}) = ((\varepsilon, y^{p})) \longrightarrow (x^{\beta}) = ((\varepsilon, y^{p+1})) \qquad (p=0, 1, ..., 5)$$

$$(x^{3}) = ((1, 0, 0, 0)) \longrightarrow (x^{3}) = ((1, 0, 0, 0)) \qquad (\text{invariant}).$$

He conjectured that, in general, all lines in PG(t, 2) would be decomposed into disjoint 1-fold spreads by the similar method. The purpose of this note is to show that it is impossible to decompose all lines in PG(t, 2) into disjoint 1-fold spreads for all t greater than 3 by such a procedure.

2. Let x be a primitive element of $GF(2^{t+1})$, then every nonzero element of $GF(2^{t+1})$ can be represented either as a power of x or a polynomial of degree less than t+1 over $GF(2) \mod f(x)$ where f(x) is the minimum function of $GF(2^{t+1})$ which determines x. If

$$x^{\alpha} \equiv \varepsilon x^{t} + a_{t-1}x^{t-1} + \dots + a_{1}x + a_{0} \pmod{f(x)}$$
(2.1)

then, the correspondence x^{α} and an ordered set $(\varepsilon, a_{t-1}, \dots, a_1, a_0)$ of elements of GF(2) is unique.

Let y be a primitive element of $GF(2^t)$. When $(a_{t-1}, ..., a_1, a_0) \rightleftharpoons (0, ..., 0, 0)$ in (2.1), there exists an integer p such that the element of $GF(2^t)$ corresponding to the ordered set $(a_{t-1}, ..., a_1, a_0)$ is represented as y^p , i.e.,

$$y^{p} \equiv a_{t-1}y^{t-1} + \dots + a_{1}y + a_{0} \pmod{g(y)}$$
 (2.2)

^{*)} A μ -fold spread S in a projective geometry Σ is defined by Rao [2] as a set of linear subspaces (flats) of a given dimension such that each point of Σ is contained in exactly μ members of S.

where g(y) is the minimum function of $GF(2^t)$ which determines y.

We denote the element of $GF(2^{t+1})$ corresponding to the ordered set $(\varepsilon, a_{t-1}, \dots, a_1, a_0)$ as x^{α} or (ε, y^{p}) and represent formally these correspondences as

$$x^{\alpha} = (\varepsilon, a_{t-1}, \dots, a_1, a_0) = (\varepsilon, y^{p}).$$

$$(2.3)$$

It is known that the following linear transformation in PG(t, 2) is nonsingular [1], [2].

$$\sigma: \begin{array}{l} (x^{\alpha}) = ((\varepsilon, y^{p})) \longrightarrow (x^{\beta}) = ((\varepsilon, y^{p+1})) \quad (p=0, 1, \dots, 2^{t}-3) \\ (x^{t}) = ((1, 0, \dots, 0)) \longrightarrow (x^{t}) = ((1, 0, \dots, 0)) \quad (\text{invariant}) \end{array}$$

$$(2.4)$$

where (x^{α}) , $((\varepsilon, y^{p}))$ and $((\varepsilon, a_{t-1}, \dots, a_{1}, a_{0}))$ are points in PG(t, 2) corresponding to the elements x^{α} , (ε, y^{p}) and $(\varepsilon, a_{t-1}, \dots, a_{1}, a_{0})$ of GF (2^{t+1}) , respectively.

(i) The case of t=2n-1 and $n\geq 3$

Let $L(x^{\alpha}, x^{\beta}, x^{\gamma})$ be the line in PG(t=2n-1, 2) passing through a pair of points (x^{α}) and (x^{β}) where $(x^{\gamma})=(x^{\alpha}+x^{\beta})$, and let S_0 be the initial 1-fold spread consisting of θ lines which are cyclically generated from the initial line $L(x^0, x^{\theta}, x^{2\theta})$ of the minimum cycle $\theta = (2^{2n}-1)/(2^2-1)$, i.e.,

$$S_0 = \{ \mathcal{L}(x^{\lambda}, x^{\theta+\lambda}, x^{2\theta+\lambda}) \colon \lambda = 0, 1, \dots, \theta - 1 \}.$$

$$(2.5)$$

The other spreads S_1, S_2, \ldots are obtained by repeating the transformation σ to the initial spread S_0 , i.e., $S_{j+1} = \sigma(S_j)$ $(j=0, 1, \ldots, 2^{2n-1}-3)$. The notation $P(\varepsilon_1, \varepsilon_2)$ is used as a set of points having the first component ε_1 and the second component ε_2 , i.e.,

$$\mathbf{P}(\varepsilon_1, \varepsilon_2) = \{ (x^{\alpha}) \colon x^{\alpha} = (\varepsilon_1, \varepsilon_2, a_{2n-3}, \dots, a_1, a_0) \}.$$

$$(2.6)$$

Lemma 1. If there exists a line $L(x^{\alpha}, x^{\theta+\alpha}, x^{2\theta+\alpha})$ such that 3 points (x^{α}) , $(x^{\theta+\alpha})$ and $(x^{2\theta+\alpha})$ on the line belong simultaneously to the set P(0, 0), then the line $L(x^{\alpha+1}, x^{\theta+\alpha+1}, x^{2\theta+\alpha+1})$ is not only in the initial spread S_0 but also in the spread $S_1 = \sigma(S_0)$.

Proof. Since it is evident that the line $L(x^{(\alpha+1)}, x^{\theta+(\alpha+1)}, x^{2\theta+(\alpha+1)})$ belongs to S_0 , we show that the line belongs also to S_1 .

By the assumption, we can denote the point $(x^{j\theta+\alpha})$ as

$$(x^{j\theta+\alpha}) = ((0, 0, a_{2n-3}^{(j)}, \dots, a_1^{(j)}, a_0^{(j)})) \qquad (j=0, 1, 2).$$
(2.7)

Let the element of $GF(2^{2n-1})$ corresponding to the ordered set $(0, a_{2n-3}^{(j)}, \dots, a_1^{(j)}, a_0^{(j)})$ be y^{b_j} . Thus we have

$$(x^{j\theta+\alpha}) = ((0, 0, a_{2n-3}^{(j)}, \dots, a_1^{(j)}, a_0^{(j)})) = ((0, y^{p_j})) \quad (j=0, 1, 2).$$
(2.8)

The point $((0, y^{p_j})) = ((0, 0, a_{2n-3}^{(j)}, ..., a_1^{(j)}, a_0^{(j)}))$ is transformed to $((0, y^{p_j+1})) = ((0, a_{2n-3}^{(j)}, ..., a_1^{(j)}, a_0^{(j)}, 0))$ by the mapping σ and the line consisting of these

192

three points $((0, \gamma^{p_j+1}))$ (j=0, 1, 2) belongs to S_1 . On the other hand, the point in PG(2n-1, 2) corresponding to the ordered set $(0, a_{2n-3}^{(j)}, \dots, a_1^{(j)}, a_0^{(j)}, 0)$ is $(x^{(j\theta+\alpha)+1})$ for any primitive element x. These considerations show that the line $L(x^{\alpha+1}, x^{\theta+\alpha+1}, x^{2\theta+\alpha+1})$ belongs also to S_1 .

Lemma 2. If $n \ge 3$, there exists at least one line $L(x^{\alpha}, x^{\theta+\alpha}, x^{2\theta+\alpha})$ in S_0 such that 3 points $(x^{\alpha}), (x^{\theta+\alpha})$ and $(x^{2\theta+\alpha})$ on the line belong simultaneously to the set P(0, 0).

Proof. If (x^{α}) and $(x^{\theta+\alpha})$ belong to P(0, 0), then $(x^{2\theta+\alpha})=(x^{\alpha}+x^{\theta+\alpha})$ also belongs to P(0, 0). It is, therefore, sufficient to show that if $n \ge 3$, then there exists at least one pair of points (x^{α}) and $(x^{\theta+\alpha})$ such that these two points belong simultaneously to the set P(0, 0).

Since for all *i* such that $0 \le i \le 2n-3$, the point (x^i) belongs to P(0, 0), the following two cases can occur.

(1) The case where there exists at least one point (x^i) such that $(x^{\theta+i})$ belongs also to P(0, 0).

In this case, our lemma holds.

(2) The case where the point $(x^{i+\theta})$ does not belong to P(0, 0) for all i $(0 \le i \le 2n-3)$.

In this case, any point of 2n-2 points $(x^{i+\theta})$ $(0 \le i \le 2n-3)$ must belong to any one of 3 sets P(0, 1), P(1, 0) and P(1, 1). Since inequality $2n-2\ge 4$ is valid by the assumption $n\ge 3$, there exist at least two points (x^{i_1}) and (x^{i_2}) $(0\le i_1, i_2\le 2n-3)$ such that two points $(x^{i_1+\theta})$ and $(x^{i_2+\theta})$ belong simultaneously to a set P($\varepsilon_1, \varepsilon_2$) of these 3 sets, i.e.,

$$(x^{i_j+\theta}) = ((\varepsilon_1, \varepsilon_2, b_{2n-3}^{(j)}, \dots, b_1^{(j)}, b_0^{(j)})) \quad (j=1, 2)$$
(2.9)

Let $(x^{\alpha}) = (x^{i_1} + x^{i_2})$, then (x^{α}) belongs to P(0,0) and $(x^{\alpha+\theta}) = (x^{i_1+\theta} + x^{i_2+\theta})$ also belongs to P(0, 0) from (2. 9). This completes the proof.

Lemma 1 and lemma 2 show that two spreads S_0 and S_1 are not disjoint for any t=2n-1 $(n \ge 3)$. Hence it is impossible to decompose all lines in PG(2n-1, 2) into disjoint 1-fold spreads except for n=2 by the Rao's method. Our results, however, do not necessarily imply that the design PG(2n-1, 2): 1 is not resolvable.

(ii) The case of t=2n

Since $v/k = (2^{2n+1}-1)/(2^2-1)$ is not integral in this case, the design PG(2n, 2): 1 is not resolvable. It is, however, known that all lines in PG(2n, 2) have the minimum cycle $v=2^{2n+1}-1$ and are decomposed into η disjoint 3-fold spreads where $\eta = (2^{2n}-1)/(2^2-1)$ is the number of initial lines in PG(2n, 2) [3].

References

- [1] Rao, C. R. (1946). Difference sets and combinatorial arrangements derivable from finite geometries. Proc. Nat. Inst. Sci. India 12 123-135.
- [2] Rao, C. R. (1966). Cyclical generation of linear subspaces in finite geometries. Tech. Report No. 31/66, Research and Training School, Indian Statist. Inst. (Presented at Chapel Hill Symposium on Combinatorial Mathematics, April, 1967.)
- [3] Yamamoto, S., Fukuda, T. and Hamada, N. (1966). On finite geometries and cyclically generated incomplete block designs. J. Sci. Hiroshima Univ. Ser. A-1 30 137-149.

Department of Mathematics, Faculty of Science, Hiroshima University and Maritime Safety Academy, Kure