A Note on the Cyclical Generation of Disjoint Spreads

Noboru Hamada and Teijiro Fukuda
(Received September 20, 1967)

1. It is unknown whether the BIB design $\mathrm{PG}(t=2 n-1,2)$: 1 obtained by choosing the points in $\mathrm{PG}(t, 2)$ as treatments and all lines as blocks is resolvable or not for $t \geq 5$. C. R. Rao [1], [2] showed that the BIB design $\mathrm{PG}(t=3,2): 1$ with parameters $v=15, b=35, k=3, r=7, \lambda=1$ was resolvable by decomposing all lines in $\operatorname{PG}(3,2)$ into 7 disjoint 1 -fold spreads*) S_{0}, S_{1}, \ldots, S_{6}. The procedure of constructing these spreads is as follows:
(1) A set S_{0} consisting of 5 lines cyclically generated from the initial line $\mathrm{L}\left(x^{0}, x^{5}, x^{10}\right)$ of the minimum cycle $\theta=5$ is chosen as the initial 1-fold spread.
(2) Generate S_{j+1} cyclically by a transformation $\sigma\left(S_{j}\right)=S_{j+1}(j=0,1, \ldots$, 5) where σ is a nonsingular linear transformation in $\operatorname{PG}(3,2)$ such that

$$
\begin{array}{lll}
\sigma: & \left(x^{\alpha}\right)=\left(\left(\varepsilon, y^{p}\right)\right) \longrightarrow\left(x^{\beta}\right)=\left(\left(\varepsilon, y^{p+1}\right)\right) & (p=0,1, \ldots, 5) \\
& \left(x^{3}\right)=((1,0,0,0)) \longrightarrow\left(x^{3}\right)=((1,0,0,0)) & \text { (invariant). }
\end{array}
$$

He conjectured that, in general, all lines in $\operatorname{PG}(t, 2)$ would be decomposed into disjoint 1 -fold spreads by the similar method. The purpose of this note is to show that it is impossible to decompose all lines in $\mathrm{PG}(t, 2)$ into disjoint 1 -fold spreads for all t greater than 3 by such a procedure.
2. Let x be a primitive element of $\operatorname{GF}\left(2^{t+1}\right)$, then every nonzero element of $\mathrm{GF}\left(2^{t+1}\right)$ can be represented either as a power of x or a polynomial of degree less than $t+1$ over $\mathrm{GF}(2) \bmod f(x)$ where $f(x)$ is the minimum function of $\mathrm{GF}\left(2^{t+1}\right)$ which determines x. If

$$
\begin{equation*}
x^{\alpha} \equiv \varepsilon x^{t}+a_{t-1} x^{t-1}+\cdots+a_{1} x+a_{0} \quad(\bmod f(x)) \tag{2.1}
\end{equation*}
$$

then, the correspondence x^{α} and an ordered set ($\varepsilon, a_{t-1}, \ldots, a_{1}, a_{0}$) of elements of $\mathrm{GF}(2)$ is unique.

Let y be a primitive element of $\operatorname{GF}\left(2^{t}\right)$. When $\left(a_{t-1}, \ldots, a_{1}, a_{0}\right) \neq(0, \ldots$, 0,0) in (2.1), there exists an integer p such that the element of GF $\left(2^{t}\right)$ corresponding to the ordered set $\left(a_{t-1}, \cdots, a_{1}, a_{0}\right)$ is represented as y^{p}, i.e.,

$$
\begin{equation*}
y^{p} \equiv a_{t-1} y^{t-1}+\ldots+a_{1} y+a_{0} \quad(\bmod g(y)) \tag{2.2}
\end{equation*}
$$

[^0]where $g(y)$ is the minimum function of $\mathrm{GF}\left(2^{t}\right)$ which determines y.
We denote the element of $\mathrm{GF}\left(2^{t+1}\right)$ corresponding to the ordered set ($\varepsilon, a_{t-1}, \ldots, a_{1}, a_{0}$) as x^{α} or ($\varepsilon, y^{\triangleright}$) and represent formally these correspondences as
\[

$$
\begin{equation*}
x^{\alpha}=\left(\varepsilon, a_{t-1}, \cdots, a_{1}, a_{0}\right)=\left(\varepsilon, y^{p}\right) \tag{2.3}
\end{equation*}
$$

\]

It is known that the following linear transformation in $\operatorname{PG}(t, 2)$ is nonsingular [1], [2].

$$
\sigma: \begin{array}{ll}
\left(x^{\alpha}\right)=\left(\left(\varepsilon, y^{p}\right)\right) & \longrightarrow\left(x^{\beta}\right)=\left(\left(\varepsilon, y^{p+1}\right)\right) \\
\left(x^{t}\right)=((1,0, \ldots, 0)) \longrightarrow\left(x^{t}\right)=((1,0, \ldots, 0)) & \text { (invariant) } \tag{2.4}
\end{array}
$$

where $\left(x^{\alpha}\right),\left(\left(\varepsilon, y^{p}\right)\right)$ and $\left(\left(\varepsilon, a_{t-1}, \cdots, a_{1}, a_{0}\right)\right)$ are points in $\operatorname{PG}(t, 2)$ corresponding to the elements $x^{\alpha},\left(\varepsilon, y^{p}\right)$ and $\left(\varepsilon, a_{t-1}, \ldots, a_{1}, a_{0}\right)$ of $\mathrm{GF}\left(2^{t+1}\right)$, respectively.
(i) The case of $t=2 n-1$ and $n \geq 3$

Let $\mathrm{L}\left(x^{\alpha}, x^{\beta}, x^{\gamma}\right)$ be the line in $\mathrm{PG}(t=2 n-1,2)$ passing through a pair of points $\left(x^{\alpha}\right)$ and $\left(x^{\beta}\right)$ where $\left(x^{\gamma}\right)=\left(x^{\alpha}+x^{\beta}\right)$, and let S_{0} be the initial 1-fold spread consisting of θ lines which are cyclically generated from the initial line $\mathrm{L}\left(x^{0}, x^{\theta}, x^{2 \theta}\right)$ of the minimum cycle $\theta=\left(2^{2 n}-1\right) /\left(2^{2}-1\right)$, i.e.,

$$
\begin{equation*}
S_{0}=\left\{\mathrm{L}\left(x^{\lambda}, x^{\theta+\lambda}, x^{2 \theta+\lambda}\right): \lambda=0,1, \ldots, \theta-1\right\} \tag{2.5}
\end{equation*}
$$

The other spreads S_{1}, S_{2}, \ldots are obtained by repeating the transformation σ to the initial spread S_{0}, i.e., $S_{j+1}=\sigma\left(S_{j}\right)\left(j=0,1, \ldots, 2^{2 n-1}-3\right)$. The notation $\mathrm{P}\left(\varepsilon_{1}, \varepsilon_{2}\right)$ is used as a set of points having the first component ε_{1} and the second component ε_{2}, i.e.,

$$
\begin{equation*}
\mathrm{P}\left(\varepsilon_{1}, \varepsilon_{2}\right)=\left\{\left(x^{\alpha}\right): x^{\alpha}=\left(\varepsilon_{1}, \varepsilon_{2}, a_{2 n-3}, \ldots, a_{1}, a_{0}\right)\right\} \tag{2.6}
\end{equation*}
$$

Lemma 1. If there exists a line $\mathrm{L}\left(x^{\alpha}, x^{\theta+\alpha}, x^{2 \theta+\alpha}\right)$ such that 3 points $\left(x^{\alpha}\right)$, $\left(x^{\theta+\alpha}\right)$ and $\left(x^{2 \theta+\alpha}\right)$ on the line belong simultaneously to the set $\mathrm{P}(0,0)$, then the line $\mathrm{L}\left(x^{\alpha+1}, x^{\theta+\alpha+1}, x^{2 \theta+\alpha+1}\right)$ is not only in the initial spread S_{0} but also in the spread $S_{1}=\sigma\left(S_{0}\right)$.

Proof. Since it is evident that the line $\mathrm{L}\left(x^{(\alpha+1)}, x^{\theta+(\alpha+1)}, x^{2 \theta+(\alpha+1)}\right)$ belongs to S_{0}, we show that the line belongs also to S_{1}.

By the assumption, we can denote the point $\left(x^{j \theta+\alpha}\right)$ as

$$
\begin{equation*}
\left(x^{j \theta+\alpha}\right)=\left(\left(0,0, a_{2 n-3}^{(j)}, \cdots, a_{1}^{(j)}, a_{0}^{(j)}\right)\right) \quad(j=0,1,2) \tag{2.7}
\end{equation*}
$$

Let the element of $\mathrm{GF}\left(2^{2 n-1}\right)$ corresponding to the ordered set $\left(0, a_{2 n-3}^{(j)}, \ldots\right.$, $\left.a_{1}^{(j)}, a_{0}^{(j)}\right)$ be $y^{p_{j}}$. Thus we have

$$
\begin{equation*}
\left(x^{j \theta+\alpha}\right)=\left(\left(0,0, a_{2 n-3}^{(j)}, \cdots, a_{1}^{(j)}, a_{0}^{(j)}\right)\right)=\left(\left(0, y^{p_{j}}\right)\right) \quad(j=0,1,2) . \tag{2.8}
\end{equation*}
$$

The point $\left(\left(0, y^{p_{j}}\right)\right)=\left(\left(0,0, a_{2 n-3}^{(j)}, \cdots, a_{1}^{(j)}, a_{0}^{(j)}\right)\right)$ is transformed to $\left(\left(0, y^{p_{j}+1}\right)\right)=$ $\left(\left(0, a_{2 n-3}^{(j)}, \cdots, a_{1}^{(j)}, a_{0}^{(j)}, 0\right)\right)$ by the mapping σ and the line consisting of these
three points $\left(\left(0, y^{p_{j}+1}\right)\right)(j=0,1,2)$ belongs to S_{1}. On the other hand, the point in PG $(2 n-1,2)$ corresponding to the ordered set $\left(0, a_{2 n-3}^{(j)}, \cdots, a_{1}^{(j)}, a_{0}^{(j)}, 0\right)$ is $\left(x^{(j \theta+\alpha)+1}\right)$ for any primitive element x. These considerations show that the line $\mathrm{L}\left(x^{\alpha+1}, x^{\theta+\alpha+1}, x^{2 \theta+\alpha+1}\right)$ belongs also to S_{1}.

Lemma 2. If $n \geq 3$, there exists at least one line $\mathrm{L}\left(x^{\alpha}, x^{\theta+\alpha}, x^{2 \theta+\alpha}\right)$ in S_{0} such that 3 points $\left(x^{\alpha}\right),\left(x^{\theta+\alpha}\right)$ and $\left(x^{2 \theta+\alpha}\right)$ on the line belong simultaneously to the set $\mathrm{P}(0,0)$.

Proof. If $\left(x^{\alpha}\right)$ and $\left(x^{\theta+\alpha}\right)$ belong to $\mathrm{P}(0,0)$, then $\left(x^{2 \theta+\alpha}\right)=\left(x^{\alpha}+x^{\theta+\alpha}\right)$ also belongs to $\mathrm{P}(0,0)$. It is, therefore, sufficient to show that if $n \geq 3$, then there exists at least one pair of points $\left(x^{\alpha}\right)$ and $\left(x^{\theta+\alpha}\right)$ such that these two points belong simultaneously to the set $\mathrm{P}(0,0)$.

Since for all i such that $0 \leq i \leq 2 n-3$, the point $\left(x^{i}\right)$ belongs to $\mathrm{P}(0,0)$, the following two cases can occur.
(1) The case where there exists at least one point $\left(x^{i}\right)$ such that $\left(x^{\theta+i}\right)$ belongs also to $\mathrm{P}(0,0)$.

In this case, our lemma holds.
(2) The case where the point $\left(x^{i+\theta}\right)$ does not belong to $\mathrm{P}(0,0)$ for all i ($0 \leq i \leq 2 n-3$).

In this case, any point of $2 n-2$ points $\left(x^{i+\theta}\right)(0 \leq i \leq 2 n-3)$ must belong to any one of 3 sets $\mathrm{P}(0,1), \mathrm{P}(1,0)$ and $\mathrm{P}(1,1)$. Since inequality $2 n-2 \geq 4$ is valid by the assumption $n \geq 3$, there exist at least two points ($x^{i_{1}}$) and $\left(x^{i_{2}}\right)\left(0 \leq i_{1}, i_{2} \leq 2 n-3\right)$ such that two points $\left(x^{i_{1}+\theta}\right)$ and ($\left.x^{i_{2}+\theta}\right)$ belong simultaneously to a set $\mathrm{P}\left(\varepsilon_{1}, \varepsilon_{2}\right)$ of these 3 sets, i.e.,

$$
\begin{equation*}
\left(x^{i^{i}+\theta}\right)=\left(\left(\varepsilon_{1}, \varepsilon_{2}, b_{2 n-3}^{(j)}, \cdots, b_{1}^{(j)}, b_{0}^{(j)}\right)\right) \quad(j=1,2) \tag{2.9}
\end{equation*}
$$

Let $\left(x^{\alpha}\right)=\left(x^{i_{1}}+x^{i_{2}}\right)$, then $\left(x^{\alpha}\right)$ belongs to $\mathrm{P}(0,0)$ and $\left(x^{\alpha+\theta}\right)=\left(x^{i_{1}+\theta}+x^{i_{2}+\theta}\right)$ also belongs to $\mathrm{P}(0,0)$ from (2.9). This completes the proof.

Lemma 1 and lemma 2 show that two spreads S_{0} and S_{1} are not disjoint for any $t=2 n-1(n \geq 3)$. Hence it is impossible to decompose all lines in PG($2 n-1,2$) into disjoint 1-fold spreads except for $n=2$ by the Rao's method. Our results, however, do not necessarily imply that the design $\operatorname{PG}(2 n-1,2): 1$ is not resolvable.
(ii) The case of $t=2 n$

Since $v / k=\left(2^{2 n+1}-1\right) /\left(2^{2}-1\right)$ is not integral in this case, the design $\operatorname{PG}(2 n, 2)$: 1 is not resolvable. It is, however, known that all lines in $\operatorname{PG}(2 n, 2)$ have the minimum cycle $v=2^{2 n+1}-1$ and are decomposed into η disjoint 3 -fold spreads where $\eta=\left(2^{2 n}-1\right) /\left(2^{2}-1\right)$ is the number of initial lines in $\operatorname{PG}(2 n, 2)$ [3].

References

[1] Rao, C. R. (1946). Difference sets and combinatorial arrangements derivable from finite geometries. Proc. Nat. Inst. Sci. India 12 123-135.
[2] Rao, C. R. (1966). Cyclical generation of linear subspaces in finite geometries. Tech. Report No. 31/66, Research and Training School, Indian Statist. Inst. (Presented at Chapel Hill Symposium on Combinatorial Mathematics, April, 1967.)
[3] Yamamoto, S., Fukuda, T. and Hamada, N. (1966). On finite geometries and cyclically generated incomplete block designs. J. Sci. Hiroshima Univ. Ser. A-1 30 137-149.

Department of Mathematics,
Faculty of Science, Hiroshima University and
Maritime Safety Academy, Kure

[^0]: *) A μ-fold spread S in a projective geometry Σ is defined by Rao [2] as a set of linear subspaces (flats) of a given dimension such that each point of \sum is contained in exactly μ members of S.

