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1. It is unknown whether the BIB design PG(¢t=2n—1, 2): 1 obtained
by choosing the points in PG (¢, 2) as treatments and all lines as blocks is re-
solvable or not for :>>5. C.R. Rao [1], [2] showed that the BIB design
PG(t=3, 2): 1 with parameters v=15, 56=35, k=3, r=7, A=1 was resolvable
by decomposing all lines in PG(8, 2) into 7 disjoint 1-fold spreads™® S,, S, -,
S¢. The procedure of constructing these spreads is as follows:

(1) A set S, consisting of 5 lines cyclically generated from the initial
line L(x° x°, x°) of the minimum cycle 6=5 is chosen as the initial 1-fold
spread.

(2) Generate S;,; cyclically by a transformation ¢(S;)=S;,1 (j=0,1, .-,
5) where ¢ is a nonsingular linear transformation in PG(8, 2) such that

(x%)= ((5, y”)) — (2P = ((8, yﬁ+1)) (p:O, 1, ...,5)
(= =(1,0,0,0)—>(x*)=(1,0,0,0) (invariant).

He conjectured that, in general, all lines in PG (¢, 2) would be decomposed
into disjoint 1-fold spreads by the similar method. The purpose of this note
is to show that it is impossible to decompose all lines in PG (z, 2) into disjoint
1-fold spreads for all ¢ greater than 3 by such a procedure.

2. Let x be a primitive element of GF(2*!), then every nonzero ele-
ment of GF(2'*!) can be represented either as a power of x or a polynomial
of degree less than 1 +1 over GF(2) mod f(x) where f(x) is the minimum func-
tion of GF(2'*') which determines ». If

s¥=ex'+a 5"+ Fax+a,  (mod f(x)) 2.1)

then, the correspondence x“ and an ordered set (¢, a;_1, -, a1, ap) of elements
of GF(2) is unique.

Let ybe a primitive element of GF(2). When (a1, -, a1, a0) (0, -,
0, 0) in (2.1), there exists an integer p such that the element of GF(2') cor-
responding to the ordered set (a;_1, ---, a1, ao) is represented as y?, i.e.,

yP=a, 1y 4 Haryta (mod g() 2.2)

*#) A p-fold spread S in a projective geometry 3, is defined by Rao [2] as a set of linear subspaces
(flats) of a given dimension such that each point of 3] is contained in exactly ¢ members of S.
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where g(y) is the minimum function of GF(2) which determines .

We denote the element of GF(2'*!) corresponding to the ordered set
(e, as_1, -+, a1, ag) as x® or (g, y?) and represent formally these correspondences
as

x% = (53 Ar-1y ---5 A1, aO) = (8, yp> (23)

It is known that the following linear transformation in PG(z, 2) is non-
singular [17], [27].

(xa)z ((Ea }/p)) —"_)(xﬁ):((ea }’Nl)) (P:O) 1> ] 2t—3>

g: (2.4)
(x)=(1,0,...,0)—>(x)=(1,0, ..., 0)) (invariant)

where (x%), (s, ¥") and ((s, a;_1, -, a1, ao)) are points in PG(z, 2) correspond-
ing to the elements x%, (¢, y*) and (¢, a;_y, -, a1, ao) of GF(2'*"), respectively.

(i) The case of t=2n—1and n>3

Let L(x%, x#, x7) be the line in PG(t=2n—1, 2) passing through a pair
of points (x%) and (x?) where (x")=(x*+ x?), and let S, be the initial 1-fold
spread consisting of 0 lines which are cyclically generated from the initial
line L(x°, x% x%%) of the minimum eycle 6=(2°"—1)/(2*—1), i.e.,

So = {L(x*, x%%*, x2"): 1=0, 1,..., 6—1}. (2.5)
The other spreads S;, S, --- are obtained by repeating the transformation ¢
to the initial spread S, ie., S;;.1=0(S;) (j=0,1, ..., 2**-'—3). The notation
P(ey, &) is used as a set of points having the first component ¢; and the second
component ¢, i.e.,

P(e, e2)={(x%): x“=(ey, &2, @203, -+, a1, a0)}- (2.6)

Lemma 1. If there exists a line L(x%, x°7%, x*°7%) such that 3 points (x%),
(x%7%) and (x*°**) on the line belong simultaneously to the set P(0, 0), then the
line Li(x**Y, x%o+l x%0+2*1) 45 not only in the initial spread S, but also in the
spread S;=0(Sy).

Proof. Since it is evident that the line L (@D, xf @+ x20+ (@i 1)) helongs
to Sy, we show that the line belongs also to S;.
By the assumption, we can denote the point (x/°%%) as

() =((0, 0, ag), -, af, a§)  (j=0,1,2). @7

Let the element of GF(2*""") corresponding to the ordered set (0, a%} s, -,
ay’, ay’) be y?. Thus we have

(67 =((0, 0, ag)s, -, af”, af))=((0, y™))  (j=0,1,2).  (28)

The point ((0, y?))=((0, 0, a%,", ---, a’’, ay”)) is transformed to ((0, y**"))=
0, a%), -, a’, af’, 0)) by the mapping ¢ and the line consisting of these
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three points ((0, y?*!)) (j=0, 1, 2) belongs to S;. On the other hand, the
point in PG (2n—1, 2) corresponding to the ordered set (0, a3, ---, a$’>, a§”, 0)
is (xU%+®*1) for any primitive element x». These considerations show that
the line L(x**1, xf*atl yx20+a+1) helongs also to S;.

Lemma 2. If n>>38, there exists at least one line L(x%, x°*%, x**%) in S,
such that 3 points (x%), (x°%) and (x*°**) on the line belong simultaneously to
the set P (0, 0).

Proof. If (x#*) and (x°"%) belong to P(0, 0), then (x%+%)=(x*+ x°*%) also
belongs to P(0, 0). It is, therefore, sufficient to show that if n >>3, then there
exists at least one pair of points (x*) and (x°*%) such that these two points
belong simultaneously to the set P(0, 0).

Since for all i such that 0<{i <<2n —38, the point (x?) belongs to P(0, 0),
the following two cases can occur.

(1) The case where there exists at least one point (x?) such that (x°*%)
belongs also to P(0, 0).

In this case, our lemma holds.

(2) The case where the point (x'*°) does not belong to P(0, 0) for all :
(0 <<i<<2n-—3).

In this case, any point of 2n —2 points (x**?) (0 <<i <2n—38) must belong
to any one of 3 sets P(0, 1), P(1, 0) and P(1,1). Since inequality 2n—2>4
is valid by the assumption n>>3, there exist at least two points (x*) and
(x2) (0 <iy, i, <<2n—3) such that two points (x1*%) and (x27%) belong simul-
taneously to a set P(e, ¢;) of these 3 sets, i.e.,

(%) = (o1, €2, b5y - B, B57)  (j=1,2) (29)

Let (x%)=(x"1+ x'2), then (x%) belongs to P(0,0) and (x**%)=(x"1%+ x2*%)
also belongs to P(0, 0) from (2. 9). This completes the proof.

Lemma 1 and lemma 2 show that two spreads S, and S; are not disjoint
for any t=2n—1 (n>3). Hence it is impossible to decompose all lines in
PG(2n—1, 2) into disjoint 1-fold spreads except for n=2 by the Rao’s method.
Our results, however, do not necessarily imply that the design PG(2n —1, 2): 1
is not resolvable.

(ii) The case of t=2n

Since v/k=(2*"*1—1)/(22—1) is not integral in this case, the design
PG(2n, 2): 1 is not resolvable. It is, however, known that all lines in PG (2n, 2)
have the minimum cycle v=22"*!—1 and are decomposed into 7 disjoint 3-fold
spreads where »=(2?"—1)/(2°—1) is the number of initial lines in PG (2n, 2)
[3].
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