On the Immersion Problem for Certain Manifolds* ${ }^{*}$

Teiichi Kobayashi

(Received September 20, 1967)

§1. Introduction

In this note, let M^{m} denote a compact connected orientable C^{∞}-manifold (with boundary) of dimension m, and R^{k} the k-dimensional Euclidean space. We write $M^{m} \subseteq R^{k}$ (or $M^{m} \subseteq R^{k}$) to denote the existence (or the non-existence) of a C^{∞}-immersion of M^{m} into R^{k}.

The purpose of this note is to discuss the immersion problem for some manifolds M^{m} whose integral cohomology groups $H^{i}\left(M^{m} ; Z\right)$ in positive dimensions are finite and have no 2-primary subgroups.

We obtain the following immersion theorems of such manifolds M^{m} into R^{k}, where k is near to $3 m / 2$.

Theorem 1. Let M^{m} be a manifold of dimension $m=4 n+r(n>0, r=1,2$, 3 or 4) which has the following properties (i)-(iii):
(i) $\quad H^{i}\left(M^{m} ; Z\right)$ is finite and has no 2-primary subgroup for any $i>2 n-1$.
(ii) $\bar{p}_{n}=0$, where $\bar{p}_{i} \in H^{4 i}\left(M^{m} ; Z\right)$ is the i-th dual Pontrjagin class of M^{m}.
(iii) $H^{4 n+3}\left(M^{m} ; Z_{3}\right)=0$, if $r=4$.

Then we have $M^{4 n+r} \subseteq R^{6 n+r-1}$.
Theorem 2. Let M^{m} be a manifold of dimension $m=4 n+r(n>1, r=1,2$; $n>2, r=3$) which has the following properties (i)-(iii):
(i) $\quad H^{i}\left(M^{m} ; Z\right)$ is finite and has no 2-primary subgroup for any $i>2 n-3$.
(ii) $\bar{p}_{n}=0$ and $\bar{p}_{n-1}=0$.
(iii) $H^{4 n-1}\left(M^{m} ; Z_{3}\right)=0$.

Then we have $M^{4 n+r} \subseteq R^{6 n+r-3}$.
As applications of these two theorems, we obtain the following two theorems about the lens space $L^{n}(p)=L^{n}(p ; 1, \ldots, 1)$ of dimension $2 n+1$.

Theorem 3. Let p be an odd prime. If n is an even integer such that $\binom{n+1+n / 2}{n / 2} \equiv 0(\bmod p)$, then $L^{n}(p) \subseteq R^{3 n+2}$.

Theorem 4. Let p be a prime >3. If n is an odd integer such that $\binom{n+1+(n-1) / 2}{(n-1) / 2} \equiv 0(\bmod p)$, then $L^{n}(p) \subseteq R^{3 n+1}$.

[^0]The immersions of these two theorems are shown to be best possible for some kind of p and n (Theorems 7 and 8), by the non-immersion theorems obtained in the previous paper [5].

Finally, we remark that there is a lens space $L=L^{n}\left(p ; q_{1}, \cdots, q_{n}\right)$, which has the homotopy type of $L^{n}(p)$ but that $L \subseteq R^{3 n}$ and $L^{n}(p) \nsubseteq R^{3 n+1}$ (Proposition $2)$.

The proofs of Theorems 1 and 2 are in §3, and are based on the following well-known theorem of M. W. Hirsch [3]:
(1.1) If M^{m} is immersible in R^{k} with a transversal r-field, then M^{m} is immersible in R^{k-r}, where $m<k-r$.

To apply this theorem, we use the obstruction theory for the existence of a cross-section of the r-frame bundle associated with the normal bundle of $M^{m} \subseteq R^{k}$. We recall in $\S 2$ some known facts about the cohomology and homotopy groups of the Stiefel manifolds $V_{n, r}$, which are used to determine these obstructions.

Theorems $3,4,7$ and 8 are proved in §4. We notice that Theorems 3 and 4 are partial improvements of the following results of F. Uchida [15]:

$$
L^{n}(p) \subseteq R^{2 n+2[n / 2]+4}, \quad \text { for an odd prime } p .
$$

Also notice that D. Sjerve [10] has announced the following more general results:

$$
L^{n}\left(p ; q_{1}, \cdots, q_{n}\right) \subseteq R^{2 n+2[n / 2]+2}, \quad \text { for an odd prime } p .
$$

The author wishes to express his sincere gratitude to Professor M. Sugawara for valuable suggestions and helpful discussions.

§2. Preliminaries

Let S^{n} be the n-sphere and let $V_{n, m}$ be the Stiefel manifold of orthonormal m-frames in R^{n}. In this section we list some known results about the integral cohomology groups and homotopy groups of $V_{n, m}$ which will be used in later sections (cf. [1], [9], [12] and [14]).
(2.1) If n is odd, m is even and $k=n-m>0$, then

$$
H^{i}\left(V_{n, m} ; Z\right)=\left\{\begin{array}{lll}
Z & \text { for } & i=0,2 k+1 \\
Z_{2} & \text { for } & k<i<2 k+1, i \text { even } \\
0 & \text { for } & \text { other } i<2 k+1
\end{array}\right.
$$

(2.2) $\quad \pi_{i}\left(V_{n, m}\right)=0 \quad$ for $\quad i<n-m$.
(2.3) If n is odd, m is even and $k=n-m>0$, then $\pi_{i}\left(V_{n, m}\right)$ is a finite 2-
primary group for $i<2 k+1$ and $\pi_{2 k+1}\left(V_{n, m}\right)$ is isomorphic to the direct sum of the infinite cyclic group Z and a finite 2-primary group.
(2.4) Let p be an odd prime. If $n>1$ is odd, then $\pi_{i}\left(V_{n, 2}\right)$ is finite for $i>2 n-3$ and the p-primary component $\pi_{i}\left(V_{n, 2} ; p\right)$ of $\pi_{i}\left(V_{n, 2}\right)$ is isomorphic to that of $\pi_{i}\left(S^{2 n-3}\right)$, and so

$$
\begin{array}{lll}
\pi_{2 n-3+i}\left(V_{n, 2} ; p\right)=0 & \text { for } & n>2, i=1,2,4,5 \\
& \text { or } & n>3, i=6 \\
\pi_{2 n}\left(V_{n, 2} ; 3\right)=Z_{3} & \text { for } & n>2 \\
\pi_{2 n}\left(V_{n, 2} ; p\right)=0 & \text { for } & n>2, p>3 .
\end{array}
$$

§3. Proofs of Theorems 1 and 2

To prove Theorems 1 and 2, we shall prove in the first the following
Proposition 1. Let M^{m} be a manifold of dimension $m=4 n+r$ ($n \geqq 0$, $r=1,2,3$ or 4) such that $H^{i}\left(M^{m} ; Z\right)$ is finite and has no 2-primary subgroup for any $i>2 n+1$.

Then we have $M^{4 n+r} \subseteq R^{6 n+r+1}$.
Proof. We remark that the manifold M^{m} is a manifold with boundary, because M^{m} is compact, connected, orientable and $H^{m}\left(M^{m} ; Z\right)$ is finite. Then $H^{m}\left(M^{m} ; G\right)=0$ for any abelian group G.

According to Whitney's theorem [16] we have

$$
M^{4 n+r} \subseteq R^{2(4 n+r)-1} \subset R^{8 n+r+3},
$$

and let ν be its oriented ($4 n+3$)-dimensional normal bundle over $M^{4 n+r}$ and $\nu^{(2 n+2)}$ be the associated $(2 n+2)$-frame bundle of ν. The obstructions for the existence of a cross-section of $\nu^{(2 n+2)}$ are contained in $H^{i+1}\left(M^{4 n+r} ; \pi_{i}\left(V_{4 n+3,2 n+2}\right)\right)$. Here we notice that the local coefficients $\pi_{i}\left(V_{4 n+3,2 n+2}\right)$ in these cohomology groups are trivial, because ν is orientable [8, p. 445].

According to (2.2) and (2.3),

$$
\pi_{i}\left(V_{4 n+3,2 n+2}\right)=\left\{\begin{array}{l}
0, \quad \text { for } \quad i<2 n+1, \\
\text { finite 2-primary group, for } \quad 2 n+1 \leqq i \leqq 4 n+2
\end{array}\right.
$$

Therefore $H^{i+1}\left(M^{4 n+r} ; \pi_{i}\left(V_{4 n+3,2 n+2}\right)\right)=0$ for $i \leqq 4 n+2$. By the above remark, $H^{4 n+4}\left(M^{4 n+4} ; \pi_{4 n+3}\left(V_{4 n+3,2 n+2}\right)\right)=0$. Hence $\nu^{(2 n+2)}$ has a cross-section and $M^{4 n+r}$ $\subseteq R^{6 n+r+1}$ by (1.1). q.e.d.

Proof of Theorem 1. By Proposition 1 we have $M^{4 n+r} \subseteq R^{6 n+r+1}$. Let ν be its oriented $(2 n+1)$-dimensional normal bundle and $\nu^{(2)}$ be the associated 2 -frame bundle. According to (2.2)-(2.4), $\pi_{i}\left(V_{2 n+1,2}\right)$ is a finite group except
for $i=4 n-1$, and

$$
\begin{aligned}
& \pi_{i}\left(V_{2 n+1,2}\right)=\left\{\begin{array}{l}
0, \quad \text { for } \quad i<2 n-1, \\
\text { finite 2-primary group, for } 2 n-1 \leqq i \leqq 4 \mathrm{n}+1, i \neq 4 n-1, \\
Z+\text { finite 2-primary group, } \quad \text { for } i=4 n-1,
\end{array}\right. \\
& \pi_{4 n+2}\left(V_{2 n+1,2} ; 3\right)=Z_{3}, \\
& \pi_{4 n+2}\left(V_{2 n+1,2} ; p\right)=0, \quad \text { if } p \text { is a prime }>3 .
\end{aligned}
$$

Since M^{m} is a manifold with boundary, $H^{m}\left(M^{m} ; G\right)=0$ for any abelian group G. Therefore, by the assumptions (i) and (iii), the primary (and the last) obstruction for the existence of a cross-section of $\nu^{(2)}$ lies in $H^{4 n}\left(M^{m}\right.$; $\left.\pi_{4 n-1}\left(V_{2 n+1,2}\right)\right)\left(=H^{4 n}\left(M^{m} ; Z\right)\right.$).

Let E be the total space of the bundle $\nu^{(2)}$ and let $\pi: E \rightarrow M^{m}$ be the projection of $\nu^{(2)}$. Consider the following commutative diagram:

$$
\begin{gathered}
H^{4 n-1}\left(V_{2 n+1,2} ; Z\right) \stackrel{\delta}{\longrightarrow} H^{4 n}\left(E, V_{2 n+1,2} ; Z\right) \stackrel{\bar{\pi}^{*}}{\leftarrow} H^{4 n}\left(M^{m} ; Z\right) \\
j^{*} \searrow \\
H^{4 n}(E ; Z)
\end{gathered}
$$

where $j: E \rightarrow\left(E, V_{2 n+1,2}\right)$ is the injection, $\bar{\pi}:\left(E, V_{2 n+1,2}\right) \rightarrow\left(M^{m}, *\right)$ is π, and δ is the coboundary homomorphism. Note that $\pi_{1}\left(M^{m}\right)$ acts trivially on $H_{*}\left(V_{2 n+1,2} ; Z\right)[8, \mathrm{p} .445]$ and that $H_{i}\left(V_{2 n+1,2} ; Z\right)$ is a finite 2-primary group for $i<4 n-1$ (cf. §2). Thus, by Theorem 1.B of J. -P. Serre [9, p.268], we see that $\bar{\pi}^{*}$ is a monomorphism since $H^{4 n}\left(M^{m} ; Z\right)$ has no 2-primary subgroup.

Theorem 30.10 of A. Borel and F. Hirzebruch [2, p. 377] implies that, for a generator c of $H^{4 n-1}\left(V_{2 n+1,2} ; Z\right)=Z$ (cf. (2.1)), $2 c$ is transgressive and that

$$
p_{n}(\nu)=(-1)^{n+1} \bar{\pi}^{*-1} \delta(2 c) \quad \text { modulo a 2-primary group },
$$

where $p_{n}(\nu)$ denote the n-th Pontrjagin class of ν. Since $H^{4 n}\left(M^{m} ; Z\right)$ has no 2-primary subgroup, we have $p_{n}(\nu)=\bar{p}_{n}$ and $\bar{p}_{n}=(-1)^{n+1} \bar{\pi}^{*-1} \delta(2 c)$.

Let $c \in H^{4 n}\left(M^{m} ; \pi_{4 n-1}\left(V_{2 n+1,2}\right)\right)$ be the primary (and the last) obstruction to the construction of a cross-section of $\nu^{(2)}$. Then $\pi^{*} c=0$ [11, p. 188], and so $j^{*} \bar{\pi}^{*} c=0$. By the exactness of the cohomology sequence, there is an element $x \in H^{4 n-1}\left(V_{2 n+1,2} ; Z\right)$ such that $\delta x=\bar{\pi}^{*} c$. Since ι is a generator, $x=2 q \iota$ or $(2 q+1)$ c for some integer q.

If $x=2 q c$, then $c=(-1)^{n+1} q \bar{p}_{n}$.
If $x=(2 q+1) \iota$, then $\iota=x-2 q \iota$, and hence ι is transgressive. Thus we may take $y=\bar{\pi}^{*-1} \delta c$. Therefore $2 y=(-1)^{n+1} \bar{p}_{n}$. By the assumption (i), there is an odd integer $2 s-1$ such that $(2 s-1) y=0$. Then $y=2 s y=(-1)^{n+1} s \bar{p}_{n}$. Hence $c=y+(-1)^{n+1} q \bar{p}_{n}=(-1)^{n+1}(s+q) \bar{p}_{n}$.

Therefore, in both cases we see that $c=0$ if $\bar{p}_{n}=0$. Hence, by the assumption (ii), $\nu^{(2)}$ has a cross-section and we have $M^{4 n+r} \subseteq R^{6 n+r-1}$ by (1.1). q.e.d.

Proof of Theorem 2. By Theorem 1 we have $M^{4 n+r} \subseteq R^{6 n+r-1}$. Let ν be its oriented ($2 n-1$)-dimensional normal bundle and $\nu^{(2)}$ be the associated 2frame bundle. According to (2.2)-(2.4), $\pi_{i}\left(V_{2 n-1,2}\right)$ is a finite group except for $i=4 n-5$, and

$$
\begin{aligned}
& \pi_{i}\left(V_{2 n-1,2}\right)= \begin{cases}0, \quad \text { for } i<2 n-3, \\
\text { finite 2-primary group, for } 2 n-3 \leqq i<4 n+2, \\
& i \neq 4 n-5,4 n-2, \\
Z+\text { finite 2-primary group, for } i=4 n-5,\end{cases} \\
& \pi_{4 n-2}\left(V_{2 n-1,2} ; 3\right)=Z_{3}, \\
& \pi_{4 n-2}\left(V_{2 n-1,2} ; p\right)=0, \text { if } p \text { is a prime }>3 .
\end{aligned}
$$

Since M^{m} is a manifold with boundary, $H^{m}\left(M^{m} ; G\right)=0$ for any abelian group G. Therefore, the assumptions (i) and (iii) imply that the primary (and the last) obstruction for the existence of a cross-section of $\nu^{(2)}$ lies in $H^{4 n-4}\left(M^{m}\right.$; $\left.\pi_{4 n-5}\left(V_{2 n-1,2}\right)\right)\left(=H^{4 n-4}\left(M^{m} ; Z\right)\right)$. In the similar way to the proof of Theorem 1 , we can see that the obstruction vanishes if $\bar{p}_{n-1}=0$. Thus $\nu^{(2)}$ has a crosssection by (ii) and we have $M^{4 n+r} \subseteq R^{6 n+r-3}$ by (1.1). q.e.d.

\$4. Applications for lens spaces

Let $p>2$ be an integer and let Γ be the cyclic group of order p with generator t. Let $S^{2 n+1}\left(C^{n+1}\right.$ be the unit ($2 n+1$)-sphere in the complex $(n+1)$-space. Given $n+1$ primitive p-th roots $\alpha_{0}\left(=e^{2 \pi i / p}\right), \alpha_{1}, \ldots, \alpha_{n}(\epsilon C)$ of unity, define an action of Γ on $S^{2 n+1}$ by the formula:

$$
t\left(z_{0}, z_{1}, \cdots, z_{n}\right)=\left(\alpha_{0} z_{0}, \alpha_{1} z_{1}, \ldots, \alpha_{n} z_{n}\right)
$$

where $z_{j}(j=0,1, \cdots, n)$ are complex numbers with $\sum_{j=0}^{n}\left|z_{j}\right|^{2}=1$. The quotient manifold $S^{2 n+1} / \Gamma$ is called a lens space. Set

$$
\alpha_{j}=\alpha_{0}{ }^{q_{j}}=e^{2 \pi i q_{j} / \phi} .
$$

The lens space $S^{2 n+1} / \Gamma$ is written by $L^{n}\left(p ; q_{1}, q_{2}, \cdots, q_{n}\right)$ (or briefly $L^{2 n+1}$). The notation $L^{n}(p)$ will be used for the lens space $L^{n}(p ; 1,1, \ldots, 1)$.

The lens space $L^{2 n+1}$ has a structure of a $C W$-complex with one cell in each dimension. The cohomology groups of $L^{2 n+1}$ are given as follows:

$$
\begin{aligned}
& H^{j}\left(L^{2 n+1} ; Z\right)=\left\{\begin{array}{lll}
Z & \text { for } j=0,2 n+1, \\
Z_{p} & \text { for } \quad j=2,4, \ldots, 2 n \\
0 & \text { for } & \text { other } j
\end{array}\right. \\
& H^{j}\left(L^{2 n+1} ; Z_{p}\right)=Z_{p} \quad \text { for } \quad 0 \leqq j \leqq 2 n+1
\end{aligned}
$$

Let $x \in H^{2}\left(L^{2 n+1} ; Z\right)$ be a generator. The total Pontrjagin class of $L^{2 n+1}$ $\left(=L^{n}\left(p ; q_{1}, q_{2}, \cdots, q_{n}\right)\right)$ is given by the formula ($[13]$, Corollary 3.2):

$$
\begin{equation*}
p\left(L^{2 n+1}\right)=\left(1+x^{2}\right)\left(1+q_{1}^{2} x^{2}\right)\left(1+q_{2}^{2} x^{2}\right) \ldots\left(1+q_{n}^{2} x^{2}\right) . \tag{4.1}
\end{equation*}
$$

Let $L_{0}^{2 n+1}$ denote the set $L^{2 n+1}-\operatorname{Int} D$, where D is a $(2 n+1)$-dimensional disk contained in the interior of the highest dimensional cell of the given $C W$-decomposition. Then $L_{0}^{2 n+1}$ is the compact connected orientable manifold (with boundary $S^{2 n}=\dot{D}$) of dimension $2 n+1$. Let $j: L_{0}^{2 n+1} \rightarrow L^{2 n+1}$ be the inclusion map. It is easily seen that the induced homomorphism $j^{*}: H^{i}\left(L^{2 n+1}\right.$; $Z) \rightarrow H^{i}\left(L_{0}^{2 n+1} ; Z\right)$ is an isomorphism for $i<2 n+1$ and that $H^{2 n+1}\left(L_{0}^{2 n+1} ; G\right)=0$, where G is any abelian group. Thus we may identify the Pontrjagin class of $L_{0}^{2 n+1}$ and that of $L^{2 n+1}$.

Hereafter, we assume that p is an odd prime. We shall apply the previous results to the problem of finding the least integer $k>0$ such that $L^{n}(p)=$ $L^{n}(p ; 1, \ldots, 1)$ can be immersed in $R^{2 n+1+k}$. According to (1.1), such an integer $k>0$ is equal to the geometrical dimension ${ }^{1)}$ of $-\tau_{0}\left(L^{n}(p)\right.$) (written by $g \cdot \operatorname{dim}\left(-\tau_{0}\left(L^{n}(p)\right)\right)$), where $\tau_{0}\left(L^{n}(p)\right)$ is the stable class of the tangent bundle $\tau\left(L^{n}(p)\right)$ of $L^{n}(p)$. Some results about the non-immersibility and the nonembeddability of $L^{n}(p)$ were obtained in [4], [5] and [6].

Let x be a generator of $H^{2}\left(L^{n}(p)_{0} ; Z\right)\left(=H^{2}\left(L^{n}(p) ; Z\right)\right)$. (4.1) shows that the total Pontrjagin class of $L^{n}(p)_{0}$ is given by the formula:

$$
p\left(L^{n}(p)_{0}\right)=\left(1+x^{2}\right)^{n+1}
$$

and so the dual Pontrjagin class is given by the formula:

$$
\bar{p}\left(L^{n}(p)_{0}\right)=\left(1+x^{2}\right)^{-n-1}=\sum_{i=0}^{[n / 2]}(-1)^{i}\binom{n+i}{i} x^{2 i} .
$$

Since $L^{n}(p)$ is naturally embedded in $L^{n+1}(p)_{0}$, Theorems 3 and 4 are immediate consequences of the following two theorems.

Theorem 5. Let p be an odd prime. If n is an even integer such that $\binom{n+1+n / 2}{n / 2} \equiv 0(\bmod p)$, then $L^{n+1}(p)_{0} \subseteq R^{3 n+2}$.

[^1]Proof. By the assumption, we have

$$
\bar{p}_{n / 2}\left(L^{n+1}(p)_{0}\right)=(-1)^{n / 2}\binom{n+1+n / 2}{n / 2} x^{n}=0
$$

and so we get $L^{n+1}(p)_{0} \subseteq R^{3 n+2}$ by Theorem 1 (for $r=3$).
q.e.d.

Theorem 6. Let p be a prime >3. If n is an odd integer such that $\binom{n+1+(n-1) / 2}{(n-1) / 2} \equiv 0(\bmod p)$, then $L^{n+1}(p)_{0} \subseteq R^{3 n+1}$.

Proof. By the assumption, we have

$$
\begin{aligned}
\binom{n+1+(n+1) / 2}{(n+1) / 2} & =\frac{n+1+(n+1) / 2}{(n+1) / 2}\binom{n+1+(n-1) / 2}{(n-1) / 2} \\
& =3\binom{n+1+(n-1) / 2}{(n-1) / 2} \equiv 0 \quad(\bmod p)
\end{aligned}
$$

Thus we have $\bar{p}_{(n-1) \mid 2}\left(L^{n+1}(p)_{0}\right)=0$ and $\bar{p}_{(n+1) / 2}\left(L^{n+1}(p)_{0}\right)=0$, and hence we get $L^{n+1}(p)_{0} \subseteq R^{3 n+1}$ by Theorem 2 (for $r=1$).
q.e.d.

If we combine these two results with the non-immersion theorems which we have obtained in the previous paper ([5], Theorems 4 and 5), we obtain the following results.

Theroem 7. Assume that either of the conditions I) and II) below is satisfied.
I) $p=6 k+1(k>0)$ is a prime, α and β are even integers such that $0<\alpha$ $\leqq(2 p-2) / 3$ and $\beta=(2 p-2) / 3$, and $l>1$ is an integer.
II) $p=6 k-1(k>0)$ is a prime, α and β are odd integers such that $0<\alpha$ $\leqq(2 p-1) / 3$ and $\beta=(p-2) / 3$, and l is an integer such that $l>1$ if $\alpha>1$ and $l>2$ if $\alpha=1$.

Then, for $n=\alpha p^{l}+\beta$, we have

$$
L^{n}(p) \subseteq R^{3 n+2}, \quad L^{n}(p) \subseteq R^{3 n+1} .
$$

Proof. $L^{n}(p) \nsubseteq R^{3 n+1}$ is a consequence of Theorem 4 in [5].
Under the condition I),

$$
\binom{n+1+n / 2}{n / 2}=\binom{\frac{3 \alpha}{2} p^{l}+p}{\frac{\alpha}{2} p^{l}+\frac{p-1}{3}} \equiv 0 \quad(\bmod p)^{2)}
$$

and under the condition II),
2) If $a=\sum_{i} a_{i} p^{i}$ and $b=\sum_{i} b_{i} p^{i}$ are p-adic expansions, then $\binom{a}{b} \equiv \Pi_{i}\binom{a_{i}}{b_{1}} \quad(\bmod p)$.

$$
\begin{aligned}
\binom{n+1+n / 2}{n / 2} & =\binom{\frac{3 \alpha-1}{2} p^{l}+\frac{p-1}{2} p^{l-1}+\ldots+\frac{p-1}{2} p^{2}+\frac{p+1}{2} p}{\frac{\alpha-1}{2} p^{l}+\frac{p-1}{2} p^{l-1}+\ldots+\frac{p-1}{2} p^{2}+\frac{p-1}{2} p+\frac{2 p-1}{3}} \\
& \equiv 0 \quad(\bmod p)
\end{aligned}
$$

Therefore, by Theorem 3, we have $L^{n}(p) \subseteq R^{3 n+2}$. q.e.d.

Theorem 8. Assume that either of the conditions III) and IV) below is satisfied.
III) $p=6 k-1(k>0)$ is a prime, α is an even integer such that $0<\alpha \leqq$ $(2 p-2) / 3, \beta=(2 p-1) / 3$, and $l>1$ is an integer.
IV) $p=6 k+1(k>0)$ is a prime, α is an odd integer such that $0<\alpha \leq$ $(2 p-1) / 3, \beta=(p-1) / 3$, and l is an integer such that $l>1$ if $\alpha>1$ and $l>2$ if $\alpha=1$.

Then, for $n=\alpha p^{l}+\beta$, we have

$$
L^{n}(p) \subseteq R^{3 n+1}, \quad L^{n}(p) \nsubseteq R^{3 n}
$$

Proof. $L^{n}(p) \nsubseteq R^{3 n}$ is a consequence of Theorem 5 in [5]. Under the condition III),

$$
\binom{n+1+(n-1) / 2}{(n-1) / 2}=\binom{\frac{3 \alpha}{2} p^{l}+p}{\frac{\alpha}{2} p^{l}+\frac{p-2}{3}} \equiv 0 \quad(\bmod p)
$$

and under the condition IV),

$$
\begin{aligned}
\binom{n+1+(n-1) / 2}{(n-1) / 2} & =\binom{\frac{3 \alpha-1}{2} p^{l}+\frac{p-1}{2} p^{l-1}+\cdots+\frac{p-1}{2} p^{2}+\frac{p+1}{2} p}{\frac{\alpha-1}{2} p^{l}+\frac{p-1}{2} p^{l-1}+\cdots+\frac{p-1}{2} p^{2}+\frac{p-1}{2} p+\frac{2 p-2}{3}} \\
& \equiv 0 \quad(\bmod p) .
\end{aligned}
$$

Thus, by Theorem 4, we have $L^{n}(p) \subseteq R^{3 n+1}$. q.e.d.

If the number of the non-zero terms of the p-adic expansions of n is larger than 2, we have many types of results corresponding to Theorems 7 and 8. For examples, we have the following (cf. [5], Theorems 4^{\prime} and 5^{\prime}).

Theorem 7'. Assume either of the conditions I^{\prime}) and II^{\prime}) below is satisfied.
$\left.\mathrm{I}^{\prime}\right) \quad p=6 k+1(k>0)$ is a prime; $m>2$ is an integer; $\alpha_{i}(i=1,2, \ldots, m)$ are even integers such that $0<\alpha_{i} \leqq(2 p-2) / 3$ for $i \geqq 2$ and $\alpha_{1}=(2 p-2) / 3$; and $l_{i}(i=1,2, \ldots, m)$ are integers with $l_{m}>l_{m-1}>\ldots>l_{2}>l_{1}=0$.
$\left.\mathrm{II}^{\prime}\right) \quad p=6 k-1(k>0)$ is a prime $; m>2$ is an even integer; $\alpha_{i}(i=1,2, \ldots, m)$ are odd integers such that $0<\alpha_{i} \leqq(2 p-1) / 3$ if i is even, $0<\alpha_{i} \leqq(p-2) / 3$ if i
is odd >1, and $\alpha_{1}=(p-2) / 3$; and $l_{i}(i=1,2, \ldots, m)$ are integers with $l_{m}>l_{m-1}>$ $\ldots>l_{2}>l_{1}=0$.

Then, for $n=\sum_{i=1}^{m} \alpha_{i} p^{l_{i}}$, we have

$$
L^{n}(p) \subseteq R^{3 n+2}, \quad L^{n}(p) \nsubseteq R^{3 n+1}
$$

Theroem 8'. Assume that either of the conditions III^{\prime}) and IV^{\prime}) below is satisfied.

III') $p=6 k-1(k>0)$ is a prime; $m>2$ is an integer; $\alpha_{i}(i=2,3, \ldots, m)$ are even integers such that $0<\alpha_{i} \leqq(2 p-2) / 3$, and $\alpha_{1}=(2 p-1) / 3$; and $l_{i}(i=1$, $2, \ldots, m)$ are integers with $l_{m}>l_{m-1}>\ldots>l_{2}>l_{1}=0$.

IV') $p=6 k+1(k>0)$ is a prime; $m>2$ is an integer; $\alpha_{i}(i=3,4, \ldots, m)$ are even integers such that $0<\alpha_{i} \leqq(2 p-2) / 3, \alpha_{2}$ is an odd integer such that $0<\alpha_{2} \leqq(2 p-1) / 3$, and $\alpha_{1}=(p-1) / 3$; and $l_{i}(i=1,2, \cdots, m)$ are integers with $l_{m}>l_{m-1}>\ldots>l_{2}>l_{1}=0$.

Then, for $n=\sum_{i=1}^{m} \alpha_{i} p^{l_{i}}$, we have

$$
L^{n}(p) \subseteq R^{3 n+1}, \quad L^{n}(p) \subseteq R^{3 n}
$$

The proof of Theorem 7^{\prime} (or Theorem 8^{\prime}) is similar to that of Theorem 7 (or Theorem 8), and so we omit the details.

§5. Remarks

In this section we shall give an example of the lens space $L=L^{n}\left(p ; q_{1}, q_{2}\right.$, \cdots, q_{n}) which has the homotopy type of $L^{n}(p)$ but has the geometrical dimension of the stable normal bundle different from that of $L^{n}(p)$.

First, we recall Theorem VI of P. Olum [7, p. 468] about the homotopy types of lens spaces:
(5.1) Two lens spaces $L^{n}\left(p ; q_{1}, q_{2}, \ldots, q_{n}\right)$ and $L^{n}\left(p ; q_{1}^{\prime}, q_{2}^{\prime}, \ldots, q_{n}^{\prime}\right)$ have the same homotopy type if and only if

$$
q_{1} q_{2} \cdots q_{n}= \pm k^{n+1} q_{1}^{\prime} q_{2}^{\prime} \cdots q_{n}^{\prime} \quad(\bmod p)
$$

for some integer k relatively prime to p.
Proposition 2. Let $n=3 \cdot 5^{l}+1=2 m(l>1)$, and let

$$
L=L^{n}(5 ; \overbrace{1, \cdots, 1}^{m-1}, \overbrace{2, \cdots, 2}^{m+1}) .
$$

Then we have

1) L and $L^{n}(5)$ have the same homotopy type.
2) $L^{n}(5) \subseteq R^{3 n+2}$ and $L^{n}(5) \nsubseteq R^{3 n+1}$, that is, $g \cdot \operatorname{dim}\left(-\tau_{0}\left(L^{n}(5)\right)\right)=n+1$.
3) $L \subseteq R^{3 n}$, that is, $g \cdot \operatorname{dim}\left(-\tau_{0}(L)\right) \leqq n-1$.

Proof. 1) $2^{m+1}=2^{5^{l}+2 \cdot 5^{l-1}+\cdots+2 \cdot 5+4}$

$$
\begin{aligned}
& =2^{5 l} \cdot 4^{5^{l-1}+\cdots+5} \cdot 16 \equiv \pm 2^{5^{l}} \equiv \pm 2 \quad(\bmod 5) \\
2^{n+1} & =2^{3 \cdot 5^{l}+2} \equiv-8^{5 l} \equiv 2^{5^{l}} \equiv 2 \quad(\bmod 5)
\end{aligned}
$$

Thus, by (5.1) we see that L and $L^{n}(5)$ have the same homotopy type.
2) This fact is a consequence of Theorem 7 in $\S 4$.
3) Consider the ($2 n+3$)-dimensional manifold (with boundary)

$$
L_{0}^{\prime}=L^{n+1}(5 ; \overbrace{1, \ldots, 1}^{m}, \overbrace{2, \cdots, 2}^{m+1})_{0} .
$$

According to (4.1), we have

$$
\begin{gathered}
p\left(L_{0}^{\prime}\right)=\left(1+x^{2}\right)^{m+1}\left(1-x^{2}\right)^{m+1}=\left(1-x^{4}\right)^{m+1} \\
\bar{p}\left(L_{0}^{\prime}\right)=\left(1-x^{4}\right)^{-m-1}=\sum_{i}\binom{m+i}{i} x^{4 i} .
\end{gathered}
$$

Thus,

$$
\bar{p}_{m}=\binom{m+m / 2}{m / 2} x^{n}=\binom{2 \cdot 5^{l}+5^{l-1}+\cdots+5+2}{3 \cdot 5^{l-1}+\ldots+3 \cdot 5+4} x^{n}=0
$$

and, clearly, $\bar{p}_{m-1}=0$. Therefore, by Theorem 2 (for $r=3$), we have $L_{0}^{\prime} \subseteq R^{3 n}$. Since L is naturally embedded in L_{0}^{\prime}, we obtain $L \subseteq R^{3 n}$.
q.e.d.

References

[1] A. Borel, Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts, Ann. of Math., 57 (1953), 115-207.
[2] A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces, II, Amer. J. Math., 81 (1959), 315-382.
[3] M. W. Hirsch, Immersions of manifolds, Trans. Amer. Math. Soc., 93 (1959), 242-276.
[4] T. Kambe, The structure of K_{A}-rings of the lens space and their applications, J. Math. Soc. Japan, 18 (1966), 135-146.
[5] T. Kobayashi, Non-immersion theorems for lens spaces, J. Math. Kyoto Univ., 6 (1966), 91-108.
[6] R. Nakagawa and T. Kobayashi, Non-embeddability of lens spaces mod 3, J. Math. Kyoto Univ., 5 (1966), 313-324.
[7] P. Olum, Mappings of manifolds and the notion of degree, Ann. of Math., 58 (1953), 458-480.
[8] J.-P. Serre, Homologie singulière des espaces fibrés, Ann. of Math., 54 (1951), 425-505.
[9] J.-P. Serre, Groupes d'homotopie et classes de groupes abéliens, Ann. of Math., 58 (1953), 258-294.
[10] D. Sjerve, Geometric dimension of vector bundles over lens spaces, Notices Amer. Math. Soc., 14 (1967), 67T-439.
[11] N. Steenrod, The Topology of Fibre Bundles, Princeton Univ. Press, 1951.
[12] E. Stiefel, Richtungsfelder uud Fernparallelismus in Mannigfaltigkeiten, Comm. Math. Helv., 8 (1936), 3-51.
[13] R. H. Szczarba, On tangent bundles of fibre spaces and quotient spaces, Amer. J. Math., 86 (1964), 685-697.
[14] H. Toda, Composition Methods in Homotopy Groups of Spheres, Princeton Univ. Press, 1962.
[15] F. Uchida, Immersions of lens spaces, Tôhoku Math. J., 18 (1966), 393-397.
[16] H. Whitney, The singularities of a smooth n-manifold in (2n-1)-space, Ann. of Math., 45 (1944), 247293.

Department of Mathematics, Faculty of Science Hiroshima University

[^0]: *) This work was partly supported by the Sakkokai Foundation.

[^1]: 1) The geometrical dimension of $\alpha \in \widetilde{K O}(X)$ is the least integer k such that $\alpha+k=\theta(\beta)$ for some $\beta \in \varepsilon(X)$, where $\theta: \varepsilon(X) \rightarrow K O(X)$ is the natural map of the set of equivalence classes $\varepsilon(X)$ of real vector bundles over a $C W$-complex X into the associated Grothendieck group $K O(X)$.
