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1. Introduction

In [3] Gilmer introduced the notion of almost Dedekind domain. In
Butts and Phillips studied a class of rings with the property that the integral
domains in this class are the almost Dedekind domains; they called these rings
almost multiplication rings. In this paper we shall obtain several results con-
cerning almost multiplication rings which reduce to known results when
stated for almost Dedekind domains. In particular, results are obtained con-
cerning overrings of a certain type of almost multiplication ring.

All rings which we consider in this paper will be commutative rings with
unity. Let R be such a ring. We shall always denote by K the total quoti-
ent ring of R. If S is a multiplicatively closed set in R, and if 5 contains no
zero-divisors, we shall assume that the ring of quotients Rs is imbedded in K
in the natural way. If P is a prime ideal of R we denote by RP the ring of
quotients of R with respect to P, by S(P) the multiplicatively closed set of
non-zero-divisors in R but not in P, and by N(P) the set of all x e R such that
sx = 0 for some s e R with H P . By an overring of R we mean a ring T such
that R^T^K. We shall write ΛQB when A is a proper subset of B; an
ideal A of R will be referred to as proper if A C R-

A ring R is called an almost multiplication ring (AM-ring) if for every
proper prime ideal P of R, each ideal of RP can be written as a product of
prime ideals. If this is the case, then for every proper prime ideal P of R,
the ring RP is either a discrete rank one valuation ring or a special primary
ring. Several sets of equivalent conditions for a ring to be an AM-ring have
been given by Butts and Phillips [1 thm. 2.0].

An element of a ring R will be called regular if it is not a zero-divisor.
An ideal A will be called regular if it contains at least one regular element;
otherwise A will be called a Z-ideal. A ring R is said to have few zero-divisors
if there are only a finite number of maximal elements in the set of Z-ideals of
R. This notion was introduced by Davis in [2]. We shall use several times
the following consequence of the fact that a ring has few zero-divisors: if R
has few zero-divisors then every regular ideal of R is generated by its regular
elements, and every finitely generated regular ideal of R has a finite set of
generators consisting of regular elements [2\ lemma BJ. A ring R is called
a quasi-valuation ring if R has few zero-divisors and if the set of regular
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ideals of R is totally ordered by inclusion this is equivalent to the definition
of Davis [2; 203].

2. Overrings of almost multiplication rings

In this section we shall study the overrings of certain ^4M-rings, showing
that they are ^4M-rings and determining their regular prime ideals. To begin
with, we need a result concerning quasi-valuation rings. Let R be a quasi-
valuation ring. Then, either R consists entirely of units and zero-divisors,
or R has exactly one regular maximal ideal P. If, in the latter case, P is
principal, then R is called a discrete quasi-valuation ring [2; 208].

LEMMA 1. Let R be a quasi-valuation ring with regular maximal ideal P.
Then RP is a discrete rank one valuation ring if and only if R is a discrete

oo

quasi-valuation ring and f\Pn = N(P).

PROOF. Assume that RP is a discrete rank one valuation ring. Let A
be a proper regular ideal of R. Then A^P and ARP=PkRP for some positive
integer k. If M is a maximal ideal of R which is not regular then both A and
Pk meet R\M, so ARM = RM = PkRM. Thus A = Pk. It follows that every as-
cending chain of regular ideals of R has only a finite number of distinct terms.
Now, since R has few zero-divisors, every regular ideal of R is generated by
its regular elements. Starting from this fact we can use the standard argu-
ment employed to show that the ACC implies the finite basis condition to
prove that every regular ideal of R can be generated by a finite number of
regular elements. It follows immediately that P is principal.

We have f\PnRP=0. Under the canonical homomorphism from R into

RP every element of f\Pn is mapped into Γ\PnRP, so f\pn^N(P). If χζN(P)
n=l n=\ «=1

then sx = 0 for some s e R\P. Since Pn is P-primary this implies that x e Pn.

Thus N(P)Qf\Pn.
Conversely, suppose that R is a discrete quasi-valuation ring with f\Pn

n = l

= N(P). Then N(P) is a prime ideal of R: the proof of this is very much like
the proof of [4; lemma 2.10]. Hence RP is an integral domain. Since
{ArΓ\R)Rp— Af for every ideal A' of RP, we see that RP is a valuation ring.
The maximal ideal of RP is PRP, which is principal, so RP is discrete and rank
one.

Let R be a quasi-valuation ring with regular maximal ideal P. We shall
call R strongly discrete if RP is a discrete rank one valuation ring.

To obtain significant results concerning the overrings of an AM-ring R
we shall have to assume that R has few zero-divisors. Since Noetherian rings
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and integral domains have few zero-divisors our results will apply to a wide
class of AM-rings. Note that R has few zero-divisors if and only if K has
few zero-divisors. Hence, if R has few zero-divisors the same is true of each
of its overrings. Our first result characterizes AM-rings (with few zero-
divisors) in terms of their overrings.

THEOREM 1. Let R be a ring with few zero-divisors. Then R is an AM-
ring if and only if

(i) K is an AM-ring, and
(ii) for every regular maximal ideal P of R the ring RS(P) is a strongly

discrete quasi-valuation ring.

PROOF. Assume that R is an ^4M-ring. Let Rr be a ring of quotients of
R and let A' be an ideal of R! such that r&d(A')=P\ a prime ideal of R'.
Then rad(A')r\R = Pfr\R = P is a prime ideal of R, and since rad(AfΓ\R)=
radiA^ίΛR, we have A'r\R = Pn for some positive integer n. Then Af = PnRf

= P'n; thus Rf is an AM-τ'mg [1; thm. 2.0]. Therefore, K is an ^M-ring, as
is Rs(P) for every regular maximal ideal P of R. By [1; thm. 2.11] and [7;
thm. 5], Rs(P) is a P-ring (the concept of P-ring is due to Davis [2; 203]).
Hence RS(P) is a quasi-valuation ring (see [_2; thm. 3]). It follows from [1;
thm. 2.12] and Lemma 1 that RS(P) is strongly discrete.

Conversely, suppose that (i) and (ii) hold. Let P be a prime ideal of R.
If P is a Z-ideal then RS(P) = K and RP^KPK [8; 231]. Hence, each ideal of
RP can be written as a product of prime ideals by (i).

Suppose that P is regular. Let M be a maximal ideal of R with P c M;
then Mis regular and RS(M)^Rs(py Since RS(p)φK (for, the regular ele-
ments of P a r e regular nonunits of RS(P)) we have RS(P) = (RS(M))S(PRS(P)Γ\RS{M))

[2; prop. 5]. Hence PRS(p)r\RS(M) is a regular prime ideal of RS(My There-
fore, since RS(M) is a discrete quasi-valuation ring, PRS(p)r\RS(M) = MRS(M),

and consequently RS(P)Z=RS(M) and PRS(P)=:MRs(My Then, by the strong dis-
creteness of Rs(M), Rp is a discrete rank one valuation ring. Therefore, R is
an

THEOREM 2. Let R be a ring with few zero-divisors. If R is an AM-ring
then every over ring of R is an AM-ring.

PROOF. Since K is the total quotient ring of an overring Rr of R, (i) of
Theorem 1 holds for R'. We may now assume that Rf is not K. Let Pf be a
regular maximal ideal of Rr. By [2; prop. 6] R''S{PΊ is a quasi-valuation ring.
Let P=P'Γ\R. We wish to conclude that RS(p)^Rfs(P^ and in order to draw
this conclusion we note that S(P) C S(P'). For, it follows from the fact that
R is a P-ring that R' is a flat overring of R [Ί\ thm. 5]. Hence, every regular
element of R is also a regular element of Rf by a well-known property of flat
modules (see N. Bourbaki, Algebre Commutative, Chap. 1, Hermann, Paris,
1961, p. 41). Thus, we do have RS(p)^R/

S(p^ and it follows that
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Thus P is a regular prime ideal of R and it follows from the proof of Theorem
1 that Rs(P) is a strongly discrete quasi-valuation ring. Since R'S(P')ΦK it
follows as in the proof of Theorem 1 that Rs(P) = R's(P'y Hence R'S(P') is
strongly discrete. Thus (ii) of Theorem 1 holds and we conclude that R' is an
AM-rmg.

Note that, in the notation of the preceding proof, we have PRs(P)
= P'Λ'S(P,), and

Rp = (RS(P))PSS{P) = (R'siP'dp'R'sir') = R'p'

A ring R is called a multiplication ring if whenever A and B are ideals
of R with A^B there is an ideal C ot R such that A = BC. Since multiplica-
tion rings are AM-rings []1; lemma 2.4] we have the

COROLLARY. Let R be a multiplication ring having few zero-divisors.
Then every overring of R is an AM-ring.

Butts and Phillips have shown that the cancellation law for regular ideals
holds in an AM-rmg [ΊL; thm. 2.11]. Our next result gives at least a partial
answer to the question of the extent to which the cancellation law for regular
ideals characterizes AM-rings.

THEOREM 3. Let R be a ring with few zero-divisors. Then R is an AM-
ring if and only if

(i) K is an AM-ring,
(ii) AB — AC and A regular imply B = C, and
(iii) for every regular maximal ideal P of R we have

PROOF. If R is an ^4M-ring, then (i) and (ii) hold. Furthermore, if P is
a regular maximal ideal of R then (2) of [1; thm. 2.12] applies and so (iii)
holds.

Conversely, suppose (i)-(iii) hold. Let P be a regular maximal ideal of
R; we shall show that Rs(P) is a strongly discrete quasi-valuation ring. By
(ii), R is a P-ring [7; thm. 5], so that RS(P) is a quasi-valuation ring. Also
by (ii), P2φP, and so P2RSiP^PRS(py

Let a/s e f\PnRs(P) and let n be a positive integer. Then a/s = b/t where

b 6 Pn\ hence ta e Pn, and since t <r P, we have a e Pn. Then, by (iii), a 6 N(P)
and so there is an element u 6 Λ \ P such that ua = 0. But u e RS(P)\PRs(P)

and ua/s = 0. Thus a/s e N(PRS(P)). Therefore, f\pnRS(P) = N(PRSiP)).

Thus Rs(P) is strongly discrete if it is discrete. This fact is a consequence
of the following
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LEMMA 2. Let R be a quasi-valuatίon ring with regular maximal ideal P.

If f\Pn=N(P) then R is a discrete quasi-valuation ring.
w = l

PROOF. Since P is regular and N(P) is not regular we must have P2 Φ P.
Since R has few zero-divisors there is a regular element α e P with a <r P2.
Let b be any regular element in P. Either a/b e R or b/a 6 R. If b/a e R
then b e (a). Suppose b/a <ϋ R. Then α/ό e i? and in fact, since this element
is a regular non-unit in R, it belongs to P. Thus a e 2>P£ P2, a contradiction.
Thus we have P=(a).

Since y4M-rings with few zero-divisors are P-rings, we have the following
corollaries to the results we have proved. For the first we use £2; cor. 2 to
thm. 3].

COROLLARY 1. Let R be an AM-ring with few zero-divisors. If Rf is an
overring of R other than K then

Rf =

where Δ is some set of regular maximal ideals.

Noetherian P-rings are called D-rings [2]. If P is a prime ideal of a D-
oo

ring then f\Pn = N(P). Hence we have

COROLLARY 2. A Noetherian ring R is an AM-ring if and only if K is
an AM-ring and R is a D-ring.

Our next result gives information concerning the prime ideals of an
overring of an AM-ring with few zero-divisors. It includes a strengthening
of Corollary 1, and is a generalization of [3; thm. 4].

THEOREM 4. Let R be an AM-ring with few zero-divisors. Let R; be an
overring of R. Let A be the set of regular prime ideals P of R such that
PRrφRf.

(i) If Pf is a regular maximal ideal of Rf and P=Rr\P' then R'S(P')
= RS(P) and Pf = PRS{P)r\Rf.

(ii) If P is a regular prime ideal of R then PcΔ if and only if
R' c i?5(P)5 and Rf = f\

(iii) // A is an ideal of R' and Rr\A = A then A' =
(iv) {PR'}P€A is the set of proper regular prime ideals of Rf.

PROOF, (i) follows from the proof of Theorem 2. The first part of (ii) is
a consequence of [7 thms. 1 and 5] the other part follows from [7 thm. 3]
and (i). Let A and A be as in the statement of (iii). To show that A' — ARr it is
sufficient to show that AR/

S(p^=:(AR/)Rfs(p^ for an arbitrary regular maximal
ideal P' of R! [7; lemma 1]. Let P=Rr\Pf. By (i), RrΩRr

S(pn = RS(py Let
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a'/s' 6 AfRf

S(P'), af e A\ s e S(P'). Then ar = a/u and s' — s/υ where α, seR

and u, v e S(P). Now, a = a'u e Rr\Af = A and s = s'v e S(Pf)ίλR^S(P). Hence

a'/s1 = av/su 6 ARS{P) = ARr

 S{pΊ = (AR')R'S(P,y Thus ArRf

S{pn <Ξ (AR')R'S(pn

the other inclusion certainly holds. Now let Δ' be the set of proper regular
prime ideals of R\ It follows from (iii) that Δ'c {PΛ'}^. If PeA then
R'^RsiP) and by (iii), PRSip)r\R/ = (PRs(P)r\R/r\R)Rf = (PRs(p)r\R)Rr = PR/ is
a regular prime ideal of R'.

3. Miscellaneous results

In this section we shall give several additional results concerning AM-
rings.

THEOREM 5. A Noetherian ring is an AM-ring if and only if it is a
multiplication ring.

PROOF. Let R be a Noetherian ^M-ring. The zero ideal of R has no
imbedded prime divisors. For, let Px and P2 be prime divisors of the zero
ideal and let Qτ and Q2 be the corresponding primary ideals in a reduced pri-
mary decomposition of the zero ideal. Suppose PiCPz By [1; thm. 2.12]
Pι = N(P2) and (?i = Pi. Also Q2 = P% for some positive integer n [1; thm. 2.3].
Hence Qι C Qi and Q2 is redundant, a contraction. Since P is the only P-
primary ideal of R when P is a non-maximal prime ideal [1\ thm. 2.12], we
have O = PιΓ\'--Γ\PsΓ\QιΓ\ 'Γ\Qt, where the Pf are non-maximal prime ideals
and the Qi are primary ideals with maximal radicals. Since there are no in-
clusion relations between the radicals of these ideals, they are comaximal
[1 thm. 2.12]. Hence R = R/P1 © ... 0 R/Ps φ R/Qx © ... φ R/Qt. Since a
homomorphic image of a Noetherian ^4M-ring is a Noetherian AM-ring, each
R/Pi is a Dedekind domain and each R/Q{ is a special primary ring. Thus R
is a multiplication ring (see [_5; 51]). We have already noted that a multi-
plication ring is an

This result has been obtained independently by J. L. Mott (see Notices
Amer. Math. Soc. 13 (1966) p. 825, thm. 4).

The next theorem is an extension of the result of [1 thm. 2.8]. It does
not require that R have few zero-divisors, nor does the result following.

THEOREM 6. A ring R is an AM-ring if and only if for every proper
primary ideal Q of R and for every maximal ideal M of R with Q^M, either Q
is a power of M or Q=N(M).

PROOF. Suppose R is an JM-ring, Q a proper primary ideal of R, rad
(Q)=P9 and Q^Mwhere Mis a maximal ideal. Then PcM. If N(P) is not
a prime then P= M and Q is a power of P by [1 thm. 2.2]. If N(P) is a prime
but PφN(P) then P=M and Q is a power of P by [1; thm 2.3]. If P=N(P)
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then Q=P by [1; thm. 2.4]; furthermore, N(P)=N(M) by [1; thm. 2.12].
Conversely, if the condition of the theorem holds then R is an AM-ring by
[1; thm. 2.8].

THEOREM 7. Let R be an AM-ring in which every regular ideal is con-
tained in only a finite number of maximal ideals. Then every regular ideal of
R can be written as a product of maximal ideals.

PROOF. Let Abe a regular ideal of R and let P be a minimal prime
divisor of A. By [ΊL; thm. 2.12] P is a maximal ideal of R. Conversely, every
maximal ideal of R containing A is a minimal prime divisor of A. Let Ph • -,
Pn be the distinct maximal ideals of R which contain A they are finite in
number by hypothesis. Then rad (A)=PιΓ\. -r\Pn = Pι--.Pn. Therefore, A is
a product of powers of Pu , Pn by [ 1 ; thm. 2.10].

This result is an extension to ^4M-rings of the first conclusion of [Ί$; thm.
3]; for ^M-rings with few zero-divisors the second conclusion of that result
of Gilmer has the following analogue.

THEOREM 8. Let R be an AM-ring with few zero-divisors and with only a
finite number of maximal ideals. Then every finitely generated regular ideal
of R is principal.

Since every finitely generated regular ideal of R has a finite set of regular
generators it is sufficient to show that if a and b are regular elements of R
then the ideal (α, b) is principal. If we consider Rs(M) instead of RM, for the
maximal ideals M of R, the proof of [β thm. 5] can be used.
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