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On Atomistic Lattices with the Covering Property
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In the investigations of lattices in geometries, a matroid lattice is de-
fined as an upper continuous atomistic lattice with the covering property.
(See [5] and [3]. A matroid lattice is called a geometric lattice in [ΊΓ].)
On the other hand, there exist atomistic lattices of another type with the
covering property, for instance, the lattice of all closed subspaces of a normed
space or a Hubert space. Such a lattice L has the following property:

(*) Both L and its dual are atomistic and have the covering property.

In this paper, a lattice with the property (*) is called a DAC-lattice.
Since it can be proved that the dual of a matroid lattice is atomistic, the def-
ference between a matroid lattice and a DAC-lattice is that the former is
upper continuous and the latter has the dual covering property.

In the literature, the properties of matroid lattices are well investigated.
The main purpose of this paper is to investigate the properties of DAC-lattices
compared with those of matroid lattices.

An important common property is that the modular relation is symmetric
(see §2). Other common properties appear in the arguments on the perspec-
tivity of atoms and on irreducible decomposability (see §3 and §4).

An important difference between them is that the atoms of a DAC-
lattice form a projective space but those of a non-modular matroid lattice do
not. For this reason, in the theory of matroid lattices parallelism is very
important but in a DAC-lattice there exists only trivial parallelism, and we
have an embedding theorem of DAC-lattices into projective lattice (see §5).

In the last section of this paper, we give some examples of DAC-lattices:
the lattices of closed subspaces of some vector spaces, and discuss representa-
tion theorems.

§1. DAC-lattices and matroid lattices

DEFINITION, (i) Let a and b be elements of a lattice L. We say that b
covers a and write α<6 if a<b and there does not exist c e L with a<c<b.

(ii) Let L be a lattice with 0. An element p of L is called an atom (or
a point) if 0</?. L is called atomic if every non-zero element of L contains an
atom. L is called atomistic if every element of L is the join of some set
(which may be empty) of atoms. It is easy to show that L is atomistic if
and only if L is relatively atomic, that is, a<b implies a<a\Jp<,b for some
atom p.
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(iii) Let Z be a lattice with 1. An element h of Z is called a dual-atom
(or a hyperplane) if Λ<1. Z is called dual-atomic (resp. dual-atomistic) if the
dual Z* of 1/ is atomic (resp. atomistic).

(iv) Let α and b be elements of a lattice Z. We say that (α, ό) is a
modular pair and write (α, ό)M if

(cWo)Λl = cU(cΛi) for every cfSδ.

We say that (α, b) is a dual-modular pair and write (α, ό)Af* if

(a\Jb)Γ\c = a\j(bΓ\c) for every cl>α.

Evidently, (α, b)M* holds in Z if and only if (b, d)M holds in Z*. Z is called
M-symmetric if (α, 6)Λί implies (δ, α)Λί in Z.

(v) The following property of a lattice Z with 0 is called the covering
property.

(C) If p is an atom andp^a then a<la\Jp.

When Z is atomistic, (C) is equivalent to each of the following statements (see
[ΊΓ], Lemma 1).

(Ci) If p is an atom then (/?, ά)M holds for every α.

(C2) If p and <jr are atoms a n d p ^ α then/?<!αWg implies q<La\Jp.
(Exchange property)

(C3) If aΓ\b<ia then b<<a\Jb.

It follows from (Ci) that if Z is M-symmetric then it has the covering prop-
erty. For brevity, an atomistic lattice with the covering property is called
an AC-lattίce.

(vi) An upper continuous AC-lattice is called a matroid lattice. An
upper continuous atomistic modular lattice, that is, a modular matroid lattice
is called a protective lattice (see [3]).

(vii) A lattice Z with 0 and 1 is called a DAC-lattice if both Z and its
dual Z* are AC-lattices. It follows from (C3) that Z is a DAC-lattice if and
only if Z satisfies the following two conditions:

(Di) Z is atomistic and dual-atomistic,

(D2) aί\b<ia is equivalent to 6<αWi.

If Z is a DAC-lattice then so is Z* evidently. (In [10], McLaughlin called a
complete DAC-lattice a C-lattice.)

LEMMA 1.1. If an AC-lattice L is relatively complemented then L is dual-
atomistic.

PROOF. Let a<b in Z. It suffices to show the existence of a dual-atom
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h such that a < h and b ^ h. Since L is relatively atomic, there exists an
atom p such that p<,a and p^b. Since the sublattice L(a, 1) is comple-
mented, there exists an element h such that

(a\Jp)Γ\h = a and (a\Jp)\Jh = 1.

Sincep%a and a<;h, we have

= hΓ\(a\Jp)Γ\p = αΛp = 0 and ΛW/? = h\Ja\Jp = 1.

Hence, by the covering property, we have h<<h\Jp = 1, that is, A is a dual-
atom. Since /? ^ Λ we have bi^h. This completes the proof.

LEMMA 1.2. Lei L be a matroid lattice.
(i) L is relatively complemented.
(ii) Z is dual-atomistic.

PROOF, (i) follows from Q5], Lemma 9. (ii) follows from (i) and Lemma
1.1.

REMARK. Both a matroid lattice and a DAC-lattice are dual-atomistic
AC-lattices. The difference between them is that the former is upper con-
tinuous and the latter has the dual covering property.

THEOREM 1.1. (i) Any complemented modular atomic lattice is a DAC-
lattice.

(ii) A protective lattice is an upper continuous DAC-lattice and conversely.

PROOF, (i) Let L be a complemented modular atomic lattice. Since a
complemented modular lattice is relatively complemented, L is relatively
atomic and hence is atomistic. Since L and Z* are modular, they have the
covering property. It follows from Lemma 1.1 that L is dual-atomistic. Thus
L is a DAC-lattice.

(ii) A protective lattice is complemented by Lemma 1.2 (i) and hence it
is a DAC-lattice by (i). Conversely, if L is an upper continuous DAC-lattice
then L is a matroid lattice satisfying (D2). Hence L is modular by Q8], Corol-
lary of Theorem 1.

REMARK. The above theorem gives some examples of modular DAC-
lattices. Here we shall give those of non-modular DAC-lattices.

(i) An orthocomplemented AC-lattice is a DAC-lattice since it is self-
dual. This lattice is closely related to the quantum theory. In [111], Piron
shows that a system of propositions forms a complete orthocomplemented
(moreover orthomodular) AC-lattice.

(ii) The set of all closed subspaces of a normed space forms a DAC-lattice
which we shall discuss in §6.
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§2. Modularity in AC-lattices

DEFINITION, (i) In a lattice L with 0, an element is called finite if it is
the join of a finite set (which may be empty) of atoms. The set of all finite
elements of L is denoted by F(L).

(ii) An element a of a lattice L is called modular if (ό, ά)M holds for
every b e L. A lattice L with 0 is called finite-modular if every finite element
of L is modular.

LEMMA 2.1. // L is an AC-lattice then F(L) is an ideal of L.

PROOF. [4], Theorem 4.1. (Cf. [8], Lemma 3.)

LEMMA 2.2. (i) Let L be an AC-lattice. The following five statements are
equivalent.

(a) L is finite-modular.
(/?) // I is the join of two different atoms then I is modular.
(γ) If I is the join of two different atoms then a<^a\Jl implies aίλl<il.
(δ) If p and q are atoms and p<,q\Ja(a^0), then there exists an atom r

such that p<,q\Jr and r<^a.
(ε) If p is an atom, if a or b is finite and if p<.a\Jb(a^0, δ=V0), then

there exist two atoms q and r such that p<q\Jr, q<,a and r<,b.
(ii) In a finite-modular AC-lattice, if a is a finite element then (α, b)M,

(&, a)M, (α, έ)M* and (ό, α)M* hold for every b.

PROOF. This lemma is a consequence of Q8], Theorem 1.

LEMMA 2.3. Let L be a finite-modular AC-lattice.
(i) (α, ό)M* is equivalent to the following: if p is an atom and p<^a\Jb

then there exist atoms q and r such that p<,q\Jr, q<?a and r<;b.
(ii) The dual of L is M-symmetric.

PROOF. [8], Lemma 4.

THEOREM 2.1. (i) Any D AC-lattice is finite-modular. If a finite-modular
AC-lattice is dual-atomistic then it is a DAC-lattice.

(ii) Any DAC-lattice is M-symmetric.

PROOF, (i) if L is a DAC-lattice, then it follows from (D2) that L satis-
fies (r) of Lemma 2.2, whence L is finite-modular. Next, if L is a dual-atomis-
tic finite-modular AC-lattice, then by Lemma 2.3 Z,* is M-symmetric, whence
L* has the covering property. Thus L is a DAC-lattice.

Statement (ii) is a consequence of (i) and Lemma 2.3. (Cf. Q8], Lemma 5.)

REMARK. Any matroid lattice is also M-symmetric. (This can be proved
using the upper continuity. Cf. [13].) But, except for protective lattices,
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matroid lattices are not finite-modular. Because if L is a matroid lattice,
then by the upper continuity, (ε) of Lemma 2.2 implies the modularity (cf. [8],
Corollary of Theorem 1).

Next we give a theorem for a DAC-lattice L, which does not hold when
L is a non-modular matroid lattice.

DEFINITION. In a lattice L with 1, an element is called dual-finite if it is
finite in the dual Z*. In a lattice L with 0 and 1, the set of all finite elements
and all dual-finite elements is denoted by F(L). That is,

F(L) = F(L)\JF(L*).

THEOREM 2.2. Let L be a DAC-lattice.
(i) If ad F(L) then (α, b)M, (ό, a)M, (α, b)M* and (6, a)M* hold for every

btL.
(ii) F(L) is a DAC-sublattice of L which is complemented and modular.

PROOF, (i) If a e F(L\ then it follows from Theorem 2.1 and Lemma 2.2
(ii) that the four modular relations for a and b hold. If a e F(L*\ then since
Z* is a DAC-lattice the four modular relations for a and b hold in Z*, whence
they hold in L also.

(ii) Let a, be F(L). We shall show aΓ\b e F(L). Since F(L) is an ideal
by Lemma 2.1, aΓ\b e F(L) when either a or b is finite. When both a and b
are dual-finite, aί\b is dual-finite by the dual statement of Lemma 2.1. Thus
we have aίλb e F(L). Similarly we have a\Jb e F(L). Hence F(L) is a sub-
lattice of L. F(L) is modular by (i). Since F(L) contains all atoms and all
dual-atoms of L, F(L) is atomistic and dual-atomistic. Hence F(L) is a modu-
lar DAC-lattice. Finally we shall prove that it is complemented. By the
duality, it suffices to show that if a e F(L*) then a has a complement which
belongs to F(L). When a e F(L*\ by the dual covering property there exists
a finite chain

and hence there exist atoms pu • , pn such that

For each ί with 2<>i<Ln, since (ph α, _i)Mby (Ci) and jθiW Wjo, - i ^ α f _i, we
have

aΓ\(pιKJ KJpϊ) = aΓ\(piKJ' Wjo/_i W/?, )Λα f _i

= aΓ\ {(pi W Vpi-i)VJ(pirΛai-ι)} = aΓ\(pi\J • \Jpi-i).

Hence aΓΛ(pi\J ' \Jpn)=aΓ\(pi\J' -\Jpn-i) = - =aΓ\pi = O. It is evident that
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ayj(pι\J . \Jpn) = l. Therefore the element pι\J \Jpn of F{L) is a com-
plement of α.

§3. Perspectivity of atoms in AC-lattices

DEFINITION. Let a and b be elements of a lattice L with 0. If there exists
x a L such that

a\Jx = b\Jx and aΓ\x = bΓ\x = 0,

then we say that a and b are perspective and write a~~xb (or simply a~^b).
It is evident that α — oα

We write axj b if (χ\Ja)Γ\b = xΓ\b for every x e L. It is easily seen that
if a^-b and «V& then a = b = 0 and that if a v £> « i ^ α and bi^b then

LEMMA 3.1. Lβί α lattice L with 0 ftαve ίfeβ covering property, and let p
and q be atoms of L.

(i) If q<pVJχ and qΓ\χ = 0 (p is subperspective to q) then p^xq.
(ii) If p^ψq and if p\Jq contains a third atom r thenp^rq.
(iii) p-^q holds if and only if p\j q does not hold.

PROOF, (i) Let q<Lp\Jχ and qΓ\x = 0. If p<^χ then q<^p\Jx = x which
contradicts qΓ\χ = 0. Hence pΓλχ = 0. Since x<^p\Jx by the covering pro-
perty and since x<q\Jχ<,p\Jχ, we have q\Jx=p\Jx. Thereforep~~xq.

(ii) If p^q and if r is an atom such that r<Lp\Jq, r^p and r^ψq, then
by the covering property we havep\Jr=p\Jq and q\Jr=p\Jq. Hencep^ rq-

(iii) If p^q holds then p\7 q does not hold since p =̂= 0. Conversely, if
p\7 q does not hold then there exists x e L such that (xVjp)r\q>χΓ\q. Then
q<^p\Jx and qΓΛχ = 0; because, if qi$p\Jx then (x\Jp)r\q:=0=xΓ\q, a con-
tradiction, and if q<,χ then {x\Jp)r\q = q — χΓ\q, a contradiction. Hence we
have p ~ *qr by (i).

LEMMA 3.2. Let L be an AC-lattice. L is finite-modular if and only if L
has the following property:

(*) If p and q are different atoms of L such that p~~xq then p^Jq con-
tains a third atom r with r<^x.

PROOF, (i) Assume that L is finite-modular. If p^q and p^xq, then
since p<^q\Jχ it follows from (d) of Lemma 2.2 that there exists an atom r
such that p<±q\Jr and r<,x. By (C2) we have r<^p\jq. Moreover r^p
sincepΓ\r<,pr\χ = 0; and similarly r^q.

(ii) Assume that L has the property (*). We shall show that (δ) of
Lemma 2.2 holds. Let p^qKJa. When p = q, any atom r with r<^a satisfies
(γ). When p<La, r=p satisfies (ί). When p^q and p^a, since p^aq by
Lemma 3.1 (i), it follows from (*) that there exists an atom r such that r\q,
r<^p\Jq and r^a. By (C2) we havep<,q\Jr. Therefore L is finite-modular
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by Lemma 2.2.

THEOREM 3.1. Let L be a finite-modular AC-lattice (in particular a DAC-
lattice).

(i) Two different atoms p and q of L are perspective if and only if p\Jq
contains a third atom.

(ii) If p, q and r are atoms of L then p~~q and q~^r imply p~~r. (Transi-
tivity of perspectivity)

PROOF, (i) If p^q then it follows from Lemma 3.2 thatpW^r contains
a third atom. The converse follows from Lemma 3.1 (ii).

(ii) Let jD~q and q^r. We shall provep^>r. We may assumep^vq,
It follows from (i) that there exist atoms s and t such that

s<,p\Jq and t<^q\Jr with s^ψp, s^q, t^q and

By the covering property we have

p\Js = qKJs=p\Jq and

Since t <^q\jr<^s\Jp\Jr, by (d) of Lemma 2.2 there exists an atom u such
that t<zSUu and u^pKJr. When u^ψp and u ^ r , we have/>~~αr by Lemma
3.1 (ii). When u—p, we have

Hencep^gr by Lemma 3.1 (i). When u = r, we have

By (C2) we have s^qVJr and then p<*q\Js<*q\Jr. Hence p~^qr by Lemma
3.1 (i). This completes the proof.

REMARK, (i) When I is a non-modular matroid lattice, the statement
(*) of Lemma 3.2 does not hold, since L is not finite-modular.

(ii) If L is the lattice of all affine subspaces of a vector space E, then L
is a non-modular matroid lattice, but for any different atoms p and q (points
of E) the element p\Jq is a line in E and contains infinitely many atoms.
Hence in this lattice statement (i) of Theorem 3.1 holds. On the contrary,
the following figure shows a non-modular matroid lattice where statement (i)
of Theorem 3.1 does not hold; because in this latticep^αq but p\jq does not
contain a third atom.
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(iii) It was proved in [[14], Theorem 1 that in any matroid lattice state-
ment (ii) of Theorem 3.1 holds.

LEMMA 3.3. Let p and qa (<x € /) be atoms of a DAC-lattίce L, and assume
that \J(qa', cce I) exists. If for some x

p<\J(qa\ a £ I)\Jx and

(in particular if p<\J(qa\ <% £ -O)> thenp is perspective to qafor some a.

PROOF. Since p ^ x and L is dual-atomistic, there exists a dual-atom h
such that h >̂ x and h^p. Put

a = \J(qa; cte I) and b = hΓ\(aKJx).

We have h^a\Jx since h^p<^a\Jx. Hence b<la\Jx by the dual-covering
property. It qa<Lb for every a e /, then a^b^h and then h^>a\Jx, a con-
tradiction. Hence there exists qa such that qa ĝ b. SincepΓ\b<^pΓΛh = 0 and
b<la\Jχ, we havepWό^αWΛ:^^. Hencep^tqa by Lemma 3.1 (i).

THEOREM 3.2. For elements a and b of a DAC-lattίce L, the following three
statements are equivalent.

(a) aXjb.

(/?) There do not exist atoms p and q such that

(γ) There do not exist non-zero elements a\ and b\ such that

αi — δi, aι<^a and

PROOF. (ά)^=¥(χ). If 0=̂= αi^α, O^bι<^b and αi^όχ, then oiV^i does
not hold, whence α\7* does not hold. (r)=K#). This is trivial. (/5)=>(α). If
«V& does not hold, then there exists x such that (αWx)Γ\b>xΓ\b. Since Z
is relatively atomic, there exists an atom q such that

q<^(a\Jx)Γ\b and q



On Atomistic Lattices with the Covering Property 113

Since q<^a\Jx and qΓ\x = qΓ\br\χ = O!> it follows from Lemma 3.3 that there
exists an atom p<^a such that p-^q. Hence (β) does not hold. This com-
pletes the proof.

We get from this proof the following

COROLLARY. In a DAC-lattice, if a^b and q is an atom with q^Lb, then

there exists an atomp such thatp^q andp<^a.

REMARK. We can prove that Lemma 3.3 holds when L is a matroid lat-
tice. Because by the upper continuity of Z,, if p<,\J(qa', cce. I)\Jx then there
exist au • ••, an e /such t h a t / ? ^ ^ V J W ^ W Λ ; (cf. [7], Lemmas 3.2 and 3.3).
Therefore Theorem 3.2 also holds when L is a matroid lattice.

§4. Irreducible decompositions and central covers in complete atomistic
lattices

We have seen in §3 that both matroid lattices and complete DAC-lattices
are complete atomistic lattices with the following property:

(P) If p<L\J(qa\ & e ΐ)\Jχ and pί\χ — ̂ S (p and qa are atoms), then p is
perspective to qa for some α.

In this section, we shall give the irreducible decomposition of such a lat-
tice.

LEMMA 4.1. An element z of a complete atomistic lattice L with the pro-
perty (P) is a central element if and only if

(*) p~~q<,z implies p<Lz,

where p and q are atoms of L.

PROOF. It is evident that (*) holds if z is central. To prove the con-
verse, we remark that z is central if z has a complement zf satisfying the
following two conditions (see [6], Kap. I, Proof of Satz 3.3, (#)=KαO):

(1) z\jzr and z\jz,

(2) a = (ar\z)\j(aΓ\zr) f o r e v e r y α e L

Let z satisfy (*) and put z' = \J(p;p =g z). Evidently z\Jz' = 1. If there exist
atoms p and q such that p^q, p<Lz and q<,z\ then by (P) there exists an
atom r such that q ^ r and r ^ z. From (*), r ~~ q ~^p <Ξ z implies r <J z, a con-
tradiction. Hence it follows from the proof (β)=$(a) of Theorem 3.2 that (1)
holds, and then z is a complement of z. Next, since for any atom p either
p <I z or p <J *', we have
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a —

Hence (2) holds. This completes the proof.

LEMMA 4.2. // a complete atomistic lattice L has property (P), then L is a
Z-lattice (see [9~J), that is,

(1) the center Z(L) of L is a, complete sublattice of L, and

(2) if za e Z(L) for every ae I then

\J(za; a e I)Γ\a = \J(zaΓ\a; a e I).

In particular, any complete DAC-lattice or any matroid lattice is a Z-lattice.

PROOF. It follows from [9], Corollary 3 that (2) is implied by (1). We
shall prove (1). Let za e Z(L). If p~~q<^ Γ\aza, then by Lemma 4.1 we have
p<;Za for every a and then p^f\aza- Hence f\azaeZ(L) by Lemma 4.1.
Next, iίp~~q<;\JaZa, then by (P) there exists an atom r such that q^r and
r<Ξza for some ae I. Then q<;za andp<=za<^\Jaza. Hence \Jaza £ Z(L).

DEFINITION. For any element a of a Z-lattice, there exists the least
central element z with a<^z. We denote it by e(α).

LEMMA 4.3. // a complete atomistic lattice L is a ZΊattice, then L is the
direct sum of irreducible sublattices L(0,za) of L. For every element ae L,

a — \J(aa ae I) with aa e Z(0, za)

and the elements aa are uniquely determined.

PROOF. We shall show that the center Z(L) is atomistic. It is easily
seen that if p is an atom of L then e(p) is an atom of Z(L). For every z e Z(L)
we have

\J(e(p) ;p<z)= e(\J(p ;p^z))= e(z) = z.

Hence Z(L) is atomistic.
Let {za; ae 1} be the set of all atoms of Z(L). We have zaΓ\zβ=-§ if

a^β, and \J(za; ae J) = l. Hence, by [9], Theorem 2, L is a direct sum of
L(0,za) and the expression given above for a e L is unique. L(0,za) is irredu-
cible since za is an atom of Z(L).

DEFINITION. For atoms p and g in a lattice L with 0, we write p ~ q if
there exist atoms r, (ί = 0, 1, , n) such that

ro=p, rn = q a n d Γ ί - i ^ r / (ί = 1, • •-, n).

We writep^a(p is an atom) if there exists an atom q such thatp~q<,a.
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LEMMA 4.4. Let L be a complete atomistic lattice with property (P). Let
p and q be atoms of L and let ae I.

(i) p <; e(a) if and only ifp<a.
(ii) e(a) = \J(p;p<a).
(iii) e(p)=e(q) if and only if p^q.

PROOF. Put z = \J(p p 5> a). If q is an atom with q<^z, then by (P)
there existsp such that q-^p andp~?$a. Hence q%a. Thus

(1) qi^z if and only if q^a.

It follows from (1) that p~^q<^z implies p<^z. Hence z e Z(L) by Lemma
4.1. Since a = \J(p p <ί α) <L z, we have e(a) <?z. If p ^ α, then since p ^ e(α)
e Z(L) we havep^e(α). Therefore e(a) = z. This completes the proof of (i)

and (ii).
If e(p) = e(q\ then by (i) we have p^>q, whence p~q. Conversely, if

p~q then it is evident that e(p)=e(q).

THEOREM 4.1. Let L be a complete atomistic lattice with property (P).
(i) L is a direct sum of irreducible sublattices L(0, za) of L. For every

element ae L^

a = \J(aa oce I) with aa 6" Z(05 za)

and the elements aa are uniquely determined.
(ii) Two atoms p, q e L are contained in the same 1,(0, za) if and only if

p~q.

PROOF, (i) follows from Lemmas 4.2 and 4.3, and (ii) follows from
Lemma 4.4 (iii).

COROLLARY 1. If L is a complete D AC-lattice of a matroid lattice, then
(i) of Theorem 4.1 holds and two atoms p, q e L are contained in the same
1,(0, za) if and only if p and q are perspective.

PROOF. This follows from Theorem 4.1 since p ~ q is equivalent to p~~q
by Theorem 3.1 (ii).

REMARK. The result of this corollary was proved in CIO], Theorem 2
and [14], Theorem 2 on a complete DAC-lattice and on a matroid lattice res-
pectively. These theorems are unified by Theorem 4.1.

COROLLARY 2. Let L be a complete DAC-lattice or a matroid lattice. L is
irreducible if and only if all atoms are perspective.

THEOREM 4.2. Let L be a complete DAC-lattice (or a matroid lattice). For
two elements a and b of L,ayb holds if and only if e(a)Γ\e(b) = 0.
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PROOF, (i) If e(o)Λe(i)=^0, then taking an atomp withp<,e(a)Γ\e(b),
we have p %a and p ^ b by Lemma 4.4 (i). Then it follows from Theorem 3.1
(ii) and Theorem 3.2 that a\/b does not hold.

(ii) If a v b does not hold, then it follows from Theorem 3.2 that there
exist atoms p and q such that p^-q, p^a and q^b. Then e(a)Γ\e(b)^>

Finally we add the following result.

LEMMA 4.5. A complete DAC-lattice L is v-continuous, that is, if as\/b
and a8 ^ a then a\/b.

PROOF. Let αδ v b and αδ t α Assume that a v b does not hold. It follows
from Theorem 3.2 that there exist atoms p and q such that p~~q, p<^a and
q<,b. Since

\J8a8 = \Js(\J(τ I r 5^ α*)),

by property (P) there exists an atom r such that r ̂ p and r ̂  as for some 5.
Then it follows from Theorem 3.1 (ii) and Theorem 3.2 that a8 \/b does not
hold, a contradiction.

REMARK. The v -continuity of a matroid lattice L follows directly from
the upper continuity of L.

§5. Finite-modular AC-lattices and projective lattices

First we shall construct a complete finite-modular AC-lattice from a pro-
jective lattice.

THEOREM 5.1. Let A be a projective lattice with the lattice operations v
and A. If a subset L of A satisfies the following three conditions:

(1) 0 , 1 * L,
(2) if p is an atom of A and a e L then a Vp e L,
(3) if aae L for every a then Λaaa 6 L,

then the subset L with the same order as A is a complete finite-modular AC-
lattice.

PROOF, (i) It follows from (3) that, in Z, the meet f\aaa of elements aa

exists and is equal to Λααα Hence the join \Jaaa also exists (in fact, it is
Λ(χ e L; aa<:X for every a)). Thus L is a complete lattice.

(ii) It follows from (1) and (2) that if p is an atom of A then pe L and
hence p is an atom of L. Since A is atomistic, for every a e L we have

Hence L is atomistic. Moreover, any atom p of L is an atom of A. Because,
since A is atomistic there exists an atom q of A with q <^p, and since q e L,
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we have q—p.
(iii) Let a c L and p be an atom with p ĝ a. Since A has the covering

property, we have a<ia\Jp in A. Since aVp = a\Jp by (2), we have a<ia\Jp
in Z. Thus L has the covering property. Moreover, since A is modular, it
has the property (ί) of Lemma 2.2. Hence by (2) L has the same property
and hence L is finite-modular.

Note that this theorem also holds when A is not a projective lattice but
only a complete finite-modular AC-lattice.

Next, we shall construct a projective lattice from a finite-modular AC-
lattice.

DEFINITION. A projective space Ω is a set of points with a system of sub-
sets, called lines, satisfying the following two conditions:

(PG 1) Every line contains at least two points. Two different points p
and q are in one and only one line, which is denoted by pq.

(PG 2) Let p, q and r be different points which are not contained in one
line. If s and t are different points such that s e pq and t e ψ then there
exists a point u such that u e pr and u e~st.

A subset 5 of Ω is called a linear set if p, q e S implies pqCS. The set
L(Ω) of all linear set of Ω forms a projective lattice, ordered by set-inclusion,
where the meet ΛaSa is the intersection of linear sets Sa and the join Si v 52

of two linear sets is equal to the set {r e Ω; r e pq, p e Su qe 52}. (Cf. [6],
Kap. Ill, §3.)

LEMMA 5.1. Let L be an atomic lattice and assume that (p, q\jr)M and
(pyjq, r\js)M hold for all atoms p, q, r and s of L. Then the set Ω(L) of all
atoms of L forms a projective space where pq={r e Ω(L) r <=p\Jq}. Moreover
for every ae L the set ω(a)= {p e Ω(L); p<,a} is a linear set of Ω.

PROOF. First we shall show that

(*) if jo, q and r are atoms such that r<Lp\jq and p^r then q<,p\Jr and

Since (q,p\Jr)M holds, we have

( ) ( ) = p\Jr>p.

Hence qΓ\(pVJr)^ψQ. Then q<,p\Jr andp\Jq=p\Jr.
Next we shall show that

(**) if p, q, r and s are atoms such that p<,q\Jr\js then there exists an
atom t such thatp<,q\Jt and t<^r\js.

Whenp = q, t — τ may be used, and when q<,r\Js, t—p may be used. When
and q^rVJs, it follows from (r\Js,p\Jq)M that

q\j{(r\Js)Γ\(pVJq)} =
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Hence (rWs)Λ(pWςr)=^= 0, and since L is atomic there exists an atom t such
that t <L(r\js)ΓΛ(p\Jq). Since ^igrWs, we have t^ψq. Hence it follows from
(*) that p<^ q\jt. Thus (**) has been proved.

In the set Ω(L) of atoms, let the set pq={r e Ω(L); r<,p\jq} be a line for
every pair of different atoms p and q. We shall show that (PG 1) holds.
Let p and q are different atoms contained in a line Ts (r\s). When r=p, we
have q<;p\Js. Hence it follows from (*) that p\Js=p\Jq, which implies
pq=^. When r^ψp,p<^r\Js implies r\Jp=r\Js by (*). Hence g<rW/?, and
by (*) again we have p\jq = r\Jp. Hence pq=rs. Thus (PG 1) holds.

Next we shall show that (PG 2) holds. Let 5 e pq, t e~qr and s^ψt. When
s=p, u—p may be used. When s^p, by (*) we have #<ΞpWs, whence t<,q\Jr
<,s\Jp\Jr. It follows from (**) that there exists an atom u such that t^s\Ju
and u <^pyjr. Then u e p?, and by (*) u est. Thus we have proved that Ω(L)
is a projective space. It is obvious that ω(a) is a linear set.

THEOREM 5.2. Let L be a finite-modular AC-lattice. The set Ω(L) of all
atoms of L forms a projective space and there exists a one-to-one, order-pre-
serving mapping ω of L into the projective lattice L{Ω{Vj) of linear sets of Ω(L),
with the following four properties:

(1) <o(0) = 0, and if L has 1 then α>(l)=l.
(2) ω(aΓ\b) = ω(a)Λ ω(b) for every a,beL. Moreover ω(f\aaa) = Λ α ω(α α )

if Γ\aCLa exists.
(3) ω(a\Jb) Ξ> ω(a) v ω(b) for every a, b e L, and equality holds if and only

if (α, δ)M* holds in L.
(4) If ae F(L) then ω(a \Jb) = ω(a) V ω(b).

If L is a complete finite-modular AC-lattice induced from a projective lattice
A by the method of Theorem 5.1, then L(Ω(Lj) is isomorphic to A.

PROOF. It follows from Lemma 5.1 that Ω(L) forms a projective space
and that ω(a) e L(Ω(Lj) for every ae L. ω is evidently order-preserving and
is one-to-one since L is atomistic. Statement (1) evidently holds. (2) holdes
since Λ a^iβa) is the intersection of linear sets ω(aa). Next it is evident that

(*) ω(a KJb)^> ω(a) V ω(b).

Since ω(a) v ω(b) = {p e Ω(L);p e qr, qe ω(a), r e ω(b)}

it follows from Lemma 2.3 (i) that equality holds in (*) if and only if (α, ft)Λf *
holds. Thus (3) has been proved. (4) follows from (3) and Lemma 2.2 (ii).

If L is a complete finite-modular AC-lattice induced from a projective
lattice A then Ω(L) = Ω(A). It follows from [6], Kap. Ill, Satz 3.2 that A is
isomorphic to L(Ω(L)).
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REMARK. If L is a DAC-lattice then property (4) may be replaced by the
following property:

(40 If a e F(L) then ω(a\Jb) = ω(a) v ω(b).

This theorem is a generalization of Cll], Theoreme XVIII.

§6. The lattice of closed subspaces

Let E be a vector space over a field K, where K is not necessarily com-
mutative. It is easy to see that the set L(E) of all subspaces of E forms an
irreducible protective lattice, ordered by set-inclusion, where the meet of
subspaces is equal to their intersection (see [2], p. 367).

Let E (resp. F) be a left (resp. right) vector space over a field K. Assume
that there exists a bilinear mapping / of ExF onto K; precisely/ satisfies
the following two conditions for all ξ9 η e E, ξ\ ηf e F and λ, β e K.

(2) f(ξ,ξ'λ + η'β) = /(£, ξ')λ +/(£, η')β.

For any subset A of E we put

A°={$'eF;f(ξ^') = 0 for every ξ e A}

and for any subset B of F we put

B° = {ζ 6 E; /(£, £') = 0 for every $'e B}.

By (1) and (2), A0 and B° are subspaces of F and E respectively, and we have
AC A00 and BCB00. A subspace A of E is called F-closed if ^ 0 0 = ^, and a
subspace 5 of F is called E-closed if B00 = B. E is the largest F-closed sub-
space and F° is the smallest one. F is the largest E-closed subspace and E°
is the smallest one.

REMARK. In the above definitions, if the field K has an involutive anti-
automorphism λ -> λr then the space F may be a left vector space replacing
the element ξ'λ by Λ'f'. Then the mapping / is sesquilinear.

LEMMA 6.1. (1) // Aa(a e I) are F-closed subspaces of E, then the inter-
section of Aa is also F-closed.

(ii) If A is an F-closed subspace and a ί A then the sum A + Ka is also
F-closed. (Aι + A2={ξJrΎj\ ξ e Au η e A2})

The corresponding statements for E-closed subspaces also hold.

PROOF. It is easy to prove (i). We shall prove (ii). Let ξ 6 (A + Ka)00.
Since a <r A = A00, there exists a' e A0 such that /(α,α:') =¥ 0. We may assume
/(α,α ;) = 1, replacing a' by a'fiajx'Y1. Then for any ξ' e A0 we have
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since ξr — aff(a, ξr) e A0 and since

/(α, ξ'-a'fia, £')) = /(α, £')-/(«, " '

Hence

0 = /(£, ξ'-a'fia, £'))=/(£, £')-/(£,

=/(£-/(£,«'to £')•

This means f-/(f, α')<* e ^ 0 0 = ^ 5 whence f e Jl + Kα. Therefore ^-f i£α is in-
closed.

THEOREM 6.1. // E (resp. F) is a left (resp. right) vector space over afield
K and if there exists a bilinear mapping f of Ex F onto K, then both the set
LF(E) of all F-closed subspaces of E and the set LE(F) of all E-closed subspaces
of F form irreducible complete DAC-lattices, ordered by set-inclusion.

PROOF. The set Λ={Ae L(E); F° C A} is a protective sublattice of L(E\
where every atom has the form FOjrKa (a <r F°). The set LF(E) is a subset
of A and, putting L = LF(E\ it follows from Lemma 6.1 that L satisfies the
conditions of Theorem 5.1. Hence LF(E) is a complete AC-lattice and LE(F)
is also. Since LF(E) and LE(F) are dual-isomorphic by the mapping A —• A0,
they are DAC-lattices. Next, for two different atoms F° + Ka and
of LF(E) there exists a third atom F° + K(a + β) included in
Hence F° + Ka arid F° + Kβ are perspective. It follows from Corollary 2 of
Theorem 4.1 that LF(E) is irreducible.

REMARK. McLaughlin [10] shows that if L is an irreducible complete
DAC-lattice whose length is at least 4 then there exists a pair of vector spaces
E and F with a bilinear mapping / such that L is isomorphic to LF(E). Note
that this representation theorem may be implied from the well-known repre-
sentation theorem of protective lattices and Theorem 5.2.

COROLLARY 1. The set LC(E) of all closed subspaces of a locally convex
space E (in particular a normed space) forms an irreducible complete DAC-
lattice.

PROOF. Let E* be the set of all continuous linear forms on E and let
/(f, ξ') be the value of ξ! e £ * at ξ e E. Then it follows from the theorem
that LE*(E) is an irreducible complete DAC-lattice. By the Hahn-Banach
theorem, a subspace of E is closed if and only if it is 2?*-closed. Hence LC(E)
coincides with LE*(E).

COROLLARY 2. If a field K has an involutive anti-automorphism and if a
left vector space E over K has a sesquilinear mapping f: ExE-+K which satis-
fies the following condition:
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(*) f(ξ9ξ) = 0 implies ξ = 0

(for instance if E is a prehilbert space), then LE(E) forms an irreducible com-
plete orthocomplemented AC-lattίce.

PROOF. It follows from (*) that the mapping A-> A0 is an orthocomple-
mentation in LE(E). Hence this corollary is a consequence of the theorem.

Finally we add two remarks on the theorems of Piron [1Γ]. Theoreme
XXI of Ull] can be reformed as follows without changing the proof.

THEOREM 6.2. // L is an irreducible complete orthocomplemented AC-
lattice whose length is at least 4, then there exists a field K with an involutive
anti-automorphism and exists a left vector space E over K with a sesquilinear
mapping f: Ex E-+K such that L is isomorphic to LE(E).

Theoreme XXII of [11] c a n be reformed as follows:

THEOREM 6.3. When E is a prehilbert space, the lattice LE(E) is ortho-
modular if and only if E is complete.

The proof of this theorem is given in
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