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In the investigations of lattices in geometries, a matroid lattice is de-
fined as an upper continuous atomistic lattice with the covering property.
(See [6] and [3]. A matroid lattice is called a geometric lattice in [27].)
On the other hand, there exist atomistic lattices of another type with the
covering property, for instance, the lattice of all closed subspaces of a normed
space or a Hilbert space. Such a lattice L has the following property:

(*) Both L and its dual are atomistic and have the covering property.

In this paper, a lattice with the property (*) is called a DAC-lattice.
Since it can be proved that the dual of a matroid lattice is atomistic, the def-
ference between a matroid lattice and a DAC-lattice is that the former is
upper continuous and the latter has the dual covering property.

In the literature, the properties of matroid lattices are well investigated.
The main purpose of this paper is to investigate the properties of DAC-lattices
compared with those of matroid lattices.

An important common property is that the modular relation is symmetric
(see §2). Other common properties appear in the arguments on the perspec-
tivity of atoms and on irreducible decomposability (see §3 and §4).

An important difference between them is that the atoms of a DAC-
lattice form a projective space but those of a non-modular matroid lattice do
not. For this reason, in the theory of matroid lattices parallelism is very
important but in a DAC-lattice there exists only trivial parallelism, and we
have an embedding theorem of DAC-lattices into projective lattice (see §5).

In the last section of this paper, we give some examples of DAC-lattices:
the lattices of closed subspaces of some vector spaces, and discuss representa-
tion theorems.

§1. DAC-lattices and matroid lattices

Derinition. (i) Let @ and b be elements of a lattice L. We say that b
covers a and write a<:b if a<b and there does not exist ¢ € L with a<c¢<5b.

(i) Let L be a lattice with 0. An element p of L is called an atom (or
a point) if 0<p. L is called atomic if every non-zero element of L contains an
atom. L is called atomistic if every element of L is the join of some set
(which may be empty) of atoms. It is easy to show that L is atomistic if
and only if L is relatively atomic, that is, a<b implies a<a\Up <54 for some
atom p.
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(iii) Let L be a lattice with 1. An element % of L is called a dual-atom
(or a hyperplane) if h<<1. L is called dual-atomic (resp. dual-atomistic) if the
dual L* of L is atomic (resp. atomistic).

(iv) Let a and b be elements of a lattice L. We say that (e, d) is a
modular pair and write (e, 5)M if

(c\Va)Mb = c\U(aNb) for every c¢<b.
We say that (a, b) is a dual-modular pair and write (a, b)M* if
(a\Uub)Nec =a\J(bNc) for every c¢—>a.

Evidently, (a, 5)M* holds in L if and only if (b, a)M holds in L*. L is called
M-symmetric if (a, b)M implies (b, )M in L.

(v) The following property of a lattice L with 0 is called the covering
property.

(C) If pis an atom and p X a then a<<a\Up.

When L is atomistic, (C) is equivalent to each of the following statements (see
[8], Lemma 1).

(Cy) 1If pis an atom then (p, a)M holds for every a.

(Cz) 1If p and ¢ are atoms and p X a then p <a\Uq implies g <a\Up.
(Exchange property)
(C3) If anb<a then b<Ca\Ub.

It follows from (C,) that if L is M-symmetric then it has the covering prop-
erty. For brevity, an atomistic lattice with the covering property is called
an AC-lattice.

(vi) An upper continuous AC-lattice is called a matroid lattice. An
upper continuous atomistic modular lattice, that is, a modular matroid lattice
is called a projective lattice (see [ 3]).

(vii) A lattice L with 0 and 1 is called a DAC-lattice if both L and its
dual L* are AC-lattices. It follows from (C;) that L is a DAC-lattice if and
only if L satisfies the following two conditions:

(D)) L is atomistic and dual-atomistic,
(Dy) anb<a is equivalent to b<<a\Ub.

If L is a DAC-lattice then so is L* evidently. (In [10], McLaughlin called a
complete DAC-lattice a C-lattice.)

Lemma 1.1.  If an AC-lattice L is relatively complemented then L is dual-
atomistic.

Proor. Let a<b in L. It suffices to show the existence of a dual-atom
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h such that e <<h and bxh. Since L is relatively atomic, there exists an
atom p such that p<<a and pXb. Since the sublattice L(a, 1) is comple-
mented, there exists an element % such that

(@Up)Nh=a and (a\Up)\Jh=1.
Since p X a and a <h, we have
hnp=hN(aJp)Np=anp=0 and AUp=hUaUp=1.

Hence, by the covering property, we have A<h\Up =1, that is, A is a dual-
atom. Since px % we have b6 X h. This completes the proof.

LemMma 1.2. Let L be a matroid lattice.
(i) L s relatively complemented.
(ii) L is dual-atomistic.

Proor. (i) follows from [57], Lemma 9. (ii) follows from (i) and Lemma
1.1.

ReMArRk. Both a matroid lattice and a DAC-lattice are dual-atomistic
AC-lattices. The difference between them is that the former is upper con-
tinuous and the latter has the dual covering property.

Tuaeorem 1.1. (i) Any complemented modular atomic lattice is a DAC-

lattice.
(ii) A projective lattice is an upper continuous DAC-lattice and conversely.

Proor. (i) Let L be a complemented modular atomic lattice. Since a
complemented modular lattice is relatively complemented, L is relatively
atomic and hence is atomistic. Since L and L* are modular, they have the
covering property. It follows from Lemma 1.1 that L is dual-atomistic. Thus
L is a DAC-lattice.

(i) A projective lattice is complemented by Lemma 1.2 (i) and hence it
is a DAC-lattice by (i). Conversely, if L is an upper continuous DAC-lattice
then L is a matroid lattice satisfying (D;). Hence L is modular by [ 8], Corol-
lary of Theorem 1.

Remark. The above theorem gives some examples of modular DAC-
lattices. Here we shall give those of non-modular DAC-lattices.

(i) An orthocomplemented AC-lattice is a DAC-lattice since it is self-
dual. This lattice is closely related to the quantum theory. In [117, Piron
shows that a system of propositions forms a complete orthocomplemented
(moreover orthomodular) AC-lattice.

(ii) The set of all closed subspaces of a normed space forms a DAC-lattice
which we shall discuss in §6.
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§2. Modularity in AC-lattices

Derinition. (i) In a lattice L with 0, an element is called finite if it is
the join of a finite set (which may be empty) of atoms. The set of all finite
elements of L is denoted by F(L).

(i) An element a of a lattice L is called modular if (b, a)M holds for
every b e L. A lattice L with 0 is called finite-modular if every finite element
of L is modular.

Lemma 2.1. If L is an AC-lattice then F(L) is an ideal of L.
Proor. [47], Theorem 4.1. (Cf. [8], Lemma 3.)

Lemma 2.2. (i) Let Lbean AC-lattice. The following five statements are
equivalent.

(a) L 1s finite-modular.

(B) If 1 1s the join of two different atoms then I is modular.

(r) If [ is the join of two different atoms then a<<a\Ul implies aNl<:1.

(0) If pand q are atoms and p<q\Ja(a=x0), then there exists an atom r
such that p<q\Ur and r <a.

(&) If pisan atom, if a or b is finite and if pa\Ub(a=x0, b=x0), then
there exist two atoms q and r such that pq\Ur, g <a and r <b.

(i) In a finite-modular AC-lattice, if a is a finite element then (a, b)M,
(b, a)M, (a, b)YM* and (b, a)M* hold for every b.

Proor. This lemma is a consequence of [ 8], Theorem 1.

LemMa 2.3. Let L be a finite-modular AC-lattice.

(i) (a, b)M* 1is equivalent to the following: if p is an atom and p<a\Ub
then there exist atoms g and r such that p<q\Ur, g=a and r <b.

(ii) The dual of L is M-symmetric.

Proor. [8], Lemma 4.

Tueorem 2.1. (i) Any DAC-lattice is finite-modular. Lf a finite-modular
AC-lattice is dual-atomistic then it is a DAC-lattice.
(i) Any DAC-lattice is M-symmetric.

Proor. (i) if L is a DAC-lattice, then it follows from (D,) that L satis-
fies (y) of Lemma 2.2, whence L is finite-modular. Next, if L is a dual-atomis-
tic finite-modular AC-lattice, then by Lemma 2.3 L* is M-symmetric, whence
L* has the covering property. Thus L is a DAC-lattice.

Statement (ii) is a consequence of (i) and Lemma 2.3. (Cf. (87, Lemma 5.)

Remark. Any matroid lattice is also M-symmetric. (This can be proved
using the upper continuity. Cf.[13].) But, except for projective lattices,
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matroid lattices are not finite-modular. Because if L is a matroid lattice,
then by the upper continuity, (¢) of Lemma 2.2 implies the mcdularity (cf. [8],
Corollary of Theorem 1).

Next we give a theorem for a DAC-lattice L, which does not hold when
L is a non-modular matroid lattice.

Dermnition. In a lattice L with 1, an element is called dual-finite if it is
finite in the dual L*. In a lattice L with 0 and 1, the set of all finite elements
and all dual-finite elements is denoted by F(L). That is,

F(L) = F(L)\UF(L*).

Tureorem 2.2. Let L be a DAC-lattice.

(i) If a € K(L) then (a, b)M, (b, a)M, (a, b)M* and (b, a)M* hold for every
belL.

(i) F(L) is @ DAC-sublattice of L which is complemented and modular.

Proor. (i) If a € F(L), then it follows from Theorem 2.1 and Lemma 2.2
(ii) that the four modular relations for a and 4 hold. If a € F(L*), then since
L* is a DAC-lattice the four modular relations for a and 4 hold in L*, whence
they hold in L also.

(ii) Leta, b€ F(L). We shall show anbe€ F(L). Since F(L) is an ideal
by Lemma 2.1, anb € F(L) when either a or b is finite. When both « and 5
are dual-finite, aN\b is dual-finite by the dual statement of Lemma 2.1. Thus
we have an\b e F(L). Similarly we have a\Ub € F(L). Hence F(L) is a sub-
lattice of L. F(L) is modular by (i). Since F(L) contains all atoms and all
dual-atoms of L, F(L) is atomistic and dual-atomistic. Hence F(L) is a modu-
lar DAC-lattice. Finally we shall prove that it is complemented. By the
duality, it suffices to show that if a € F(L*) then a has a complement which
belongs to F(L). When a € F(L*), by the dual covering property there exists
a finite chain

a=ap<<lar<--<ap=1,
and hence there exist atoms py, ---, p, such that
ip[\ai—lzo, _Piuai—lzai (l—__l) B n)'

For each i with 2<i=n, since (pi, a; 1)M by (C,) and p;\...Up;_1 <a; ., we
have

an(pi\J---Upi) =an(pi\V---\U pi1\Up)Naiy
=an{(p\V---Upi DU(piNnai-)} = an(pi\J---Upi_1).

Hence an(pi\V---\Upy) =an(pi\J---Upy_1)=-.-=aNp;=0. It is evident that
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a\J(p1\J---Up,)=1. Therefore the element p,\U...\Up, of F(L) is a com-
plement of a.

§3. Perspectivity of atoms in AC-lattices

DeriniTioN.  Let ¢ and b be elements of a lattice L with 0. If there exists
x € L such that

aJx=bUx and anx=bNx=0,

then we say that « and b5 are perspective and write a~ b (or simply a~b).
It is evident that a ~ a.

We write a v b if (x\Ua)N\b=2xNb for every x € L. It is easily seen that
if a~bandavb then a=56=0 and that if e v b, a; <a and b; <b then a;Vb;.

LemMa 3.1.  Let a lattice L with 0 have the covering property, and let p
and g be atoms of L. ‘

() Ifq=pUx and gNx=0 (p is subperspective to q) then p~ .q.

(i) If p=cqandif p\uq contains a third atom r then p~ .q.

(iii) p~q holds 1f and only if p vV q does not hold.

Proor. (i) Letg<p\Uxand ¢nx=0. If p<"x then ¢ <p\Ux=2x which
contradicts g x=0. Hence pnx=0. Since x<<p\Ux by the covering pro-
perty and since x<q\Ux <p\Ux, we have ¢Ux=p\Ux. Therefore p~ .q.

(i) If p=rq and if r is an atom such that r <p\Ugq, r=cp and r=c¢, then
by the covering property we have p\Uur=p\Uq and ¢\Uur=p\Uq. Hence p~ ,q.

(iii) If p~q holds then p v ¢ does not hold since p=¢0. Conversely, if
p V g does not hold then there exists x € L such that (x\Up)"Ng>x"gq. Then
g=<p\Ux and gNx=0; because, if ¢ X p\Ux then (x\Up)Ng=0=x"g, a con-
tradiction, and if ¢ < x then (x\Up)Ng=¢g=xgq, a contradiction. Hence we
have p~ .q by (i). '

LemMma 3.2. Let L be an AC-lattice. L 1s finite-modular if and only if L
has the following property:

(*) If p and q are different atoms of L such that p~.q then p\Uq con-
tains a third atom r with r < x.

Proor. (i) Assume that L is finite-modular. If p=¢¢ and p~.gq, then
since p < qUx« it follows from (0) of Lemma 2.2 that there exists an atom r
such that p<{q\Ur and r<x. By (C,) we have r<p\Uq. Moreover r=p
since pN\r <pNx=0; and similarly r=¢gq.

(ii) Assume that L has the property (*). We shall show that (0) of
Lemma 2.2 holds. Let p<q\Ua. When p=gq, any atom r with r <a satisfies
(). When p<{a, r=p satisfies (0). When p2x¢ and pXa, since p~,q by
Lemma 3.1 (i), it follows from (*) that there exists an atom r such that r=g,
r<p\Ugqand r<a. By (C;) we have p<_q\Ur. Therefore L is finite-modular
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by Lemma 2.2.

Taeorem 3.1. Let L be a finite-modular AC-lattice (in particular a DAC-
lattice).

(i) Two different atoms p and g of L are perspective if and only if p\Uq
contains a third atom.

di) If p,qandrareatomsof Lthen p~q and g~r imply p~r. (Transi-
tivity of perspectivity)

Proor. (i) If p~gq then it follows from Lemma 3.2 that p\Uq contains
a third atom. The converse follows from Lemma 3.1 (ii).

(ii) Let p~g and g~r. We shall prove p~r. We may assume p=¢g,
g=r and p=¢r. It follows from (i) that there exist atoms s and ¢ such that

s<puUq and :1<q\Ur with s=cp, s=¢q, t35¢q and t=¢r.
By the covering property we have
pUs=¢qUs=pUq and qUt=rUt=q\Ur.

Since ¢ < q\Ur <s\Up\Ur, by (0) of Lemma 2.2 there exists an atom u such
that t <s\Uu and u <p\ur. When u=¢p and u=xr, we have p~,r by Lemma
3.1 (ii). When u=p, we have

r<qUt<q\UsJu = puUq.
Hence p~,r by Lemma 3.1 (i). When u=r, we have
grUt<rUs\Ju=ruUs.

By (C;) we have s<¢q\Ur and then p < ¢\Us<{¢q\Ur. Hence p~,r by Lemma
3.1 (). This completes the proof.

Remark. (i) When L is a non-modular matroid lattice, the statement
(*) of Lemma, 3.2 does not hold, since L is not finite-modular.

(i) If L is the lattice of all affine subspaces of a vector space E, then L
is a non-modular matroid lattice, but for any different atoms p and ¢ (points
of E) the element p\Uq is a line in E and contains infinitely many atoms.
Hence in this lattice statement (i) of Theorem 3.1 holds. On the contrary,
the following figure shows a non-modular matroid lattice where statement (i)
of Theorem 3.1 does not hold; because in this lattice p~,q but p\uq does not
contain a third atom.
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(iii) It was proved in [147], Theorem 1 that in any matroid lattice state-
ment (ii) of Theorem 3.1 holds.

Lemma 33. Let p and g, (o € I) be atoms of a DAC-lattice L, and assume
that \ J(qa; a € I) exists. If for some x

p=\J@Ga;xe DN\Ux and pNnx=0
(in particular if p<<\J(qa; a € I)), then p is perspective to q. for some .

Proor. Since p % x and L is dual-atomistic, there exists a dual-atom &
such that h—=x and h £p. Put

a=\J({ga;a€I) and b=hrN(a\Ux).

We have h£a\Ux since hZp<a\Ux. Hence b<a\Ux by the dual-covering
property. -If g, <b for every a € I, then a <<b <h and then h>a\Ux, a con-
tradiction. Hence there exists ¢, such that ¢, % 6. Since pN\b <pN\h=0and
b<a\Ux, we have p\Ub=a\Ux =q.. Hence p~;q, by Lemma 3.1 (i).

THEOREM 3.2. For elements a and b of a DAC-lattice L, the following three
statements are equivalent.

(@) avb.

(B) There do not exist atoms p and q such that

p~¢q, p=<a and ¢q=<b.
() There do not exist non-zero elements a; and b, such that
alf\«bl, alga and blgb

Proor. (@)=(y). If 0=xa;<a, 0b;<b and a;~ b;, then a;Vb; does
not hold, whence a7b does not hold. (7)=(B). This is trivial. (B)= (). If
a7 b does not hold, then there exists x such that (e\Ux)N\b>xNb. Since L
is relatively atomic, there exists an atom g such that

g<=(aUx)Nb and g¢gXxxNb.



On Atomistic Lattices with the Covering Property 113

Since ¢ <a\Ux and gNx=¢gNbNx=0, it follows from Lemma 3.3 that there
exists an atom p<_a such that p~g¢. Hence (8) does not hold. This com-
pletes the proof.

We get from this proof the following

CoroLrARry. In a DAC-lattice, if a~b and q is an atom with ¢ b, then
there exists an atom p such that p~q and p <a.

Remark. We can prove that Lemma 3.3 holds when L is a matroid lat-
tice. Because by the upper continuity of L, if p <<\ /(¢g.; @ € I)\Ux then there
exist ay, ---, a, € I such that P=qa,\J - Uqanulx (cf.[7], Lemmas 3.2 and 3.3).
Therefore Theorem 3.2 also holds when L is a matroid lattice.

§4. Irreducible decompositions and central covers in complete atomistic
lattices

We have seen in §3 that both matroid lattices and complete DAC-lattices
are complete atomistic lattices with the following property:

P®P) If p<\J(ga; @€ I)\Ux and pNx=0 (p and g, are atoms), then p is
perspective to ¢, for some a.

In this section, we shall give the irreducible decomposition of such a lat-
tice.

Lemma 4.1.  An element z of a complete atomistic lattice L with the pro-
perty (P) is a central element i f and only ©1f

©) p~q=<z implies p=<z,

where p and g are atoms of L.

Proor. It is evident that (*) holds if z is central. To prove the con-
verse, we remark that z is central if z has a complement z’ satisfying the
following two conditions (see [67], Kap. I, Proof of Satz 8.3, (8= («)):

) z2vz and z'vaz,

(2) a=(aNnz)J(laNz’) for every ac€ L.

Let z satisfy (*) and put z'=\J(p; pX z). Evidently z\Uz'=1. If there exist
atoms p and ¢ such that p~g¢, p<<z and ¢=<_z’, then by (P) there exists an
atom r such that g~r and rX£z. From (*),r~¢g~p=<=z implies r <z, a con-
tradiction. Hence it follows from the proof ()= (@) of Theorem 3.2 that (1)
holds, and then z’ is a complement of z. Next, since for any atom p either
p=zorp=z', we have
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a=\J(p; p=a)=Z(anz)UleaNz)<Za.
Hence (2) holds. This completes the proof.

Lemma 4.2.  If a complete atomistic lattice L has property (P), then L is a
Z-lattice (see [ 97)), that 1is,

(1) the center Z(L) of L is a complete sublattice of L, and
(2) if z,€ Z(L) for every « € I then

\J(zo; @€ DNa=\J(zoNa; a€ I).

In particular, any complete DAC-lattice or any matroid lattice s a Z-lattice.

Proor. It follows from [ 97, Corollary 3 that (2) is implied by (1). We
shall prove (1). Let zo€ Z(L). If p~qg=</\azas then by Lemma 4.1 we have
p=z, for every « and then p</\.z,. Hence N\.z,€ Z(L) by Lemma 4.1.
Next, if p~¢=<\J.zq, then by (P) there exists an atom r such that ¢~r and
r<z, for some a € I. Then ¢ <<z, and p<z,<\Jaz.. Hence \ .z, € Z(L).

Derinition. For any element o of a Z-lattice, there exists the least
central element z with a <<z. We denote it by e(a).

Lemma 4.3. If a complete atomistic lattice L is a Z-lattice, then L is the
direct sum of 1rreducible sublattices L(0,z,) of L. For every element a € L,

a=\Jlag; x€ I) with a,e€ L0, z,)
and the elements a, are uniquely determined.

Proor. We shall show that the center Z(L) is atomistic. It is easily
seen that if p is an atom of L then e(p) is an atom of Z(L). For every z € Z(L)
we have

e(p); p=2)=e(\J(p; p=2) =e(z)=z.

Hence Z(L) is atomistic.

Let {z4; € I} be the set of all atoms of Z(L). We have z,N\zz=0 if
a>pB,and \ J(zo; € I)=1. Hence, by [97], Theorem 2, L is a direct sum of
L(0,z,) and the expression given above for a € L is unique. L(0,z,) is irredu-
cible since z, is an atom of Z(L).

DeriniTION.  For atoms p and ¢ in a lattice L with 0, we write p~gq if
there exist atoms r; (i=0, 1, ..., n) such that

ro=p, n=4gq and ri_i~r; @=1, .., n).

We write p < a(p is an atom) if there exists an atom ¢ such that p~¢<a.
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LemMma 4.4. Let L be a complete atomistic lattice with property (P). Let
p and g be atoms of L and let a € 1.

(i) p=Zela)ifandonlyif p=a.

(i)  e(@=\J(p;p=a.

(iii) e(p)=e(q) tf and only if p~q.

Proor. Put z=\/J(p;p=<a). If ¢ is an atom with ¢<z, then by (P)
there exists p such that g~p and p <a. Hence g<a. Thus

Q) ¢g<z ifandonlyif ¢=a.

It follows from (1) that p~¢ <z implies p=2z. Hence z € Z(L) by Lemma
4.1. Since a=\J(p; p<a)=z, we have e(a) <z. If p<a, then since p <e(a)
€ Z(L) wehave p=<e(a). Therefore e(a)=2z. This completes the proof of (i)
and (ii).

If e(p)=e(q), then by (i) we have p<gq, whence p~q. Conversely, if
p=~q then it is evident that e(p)=e(q).

Tueorem 4.1. Let L be a complete atomistic lattice with property (P).
(i) L s a direct sum of irreducible sublattices L(0, z,) of L. For every
element a e L,

a=\Jflaq; € I) with aq€ L0, z,)

and the elements a, are uniquely determined.

(ii) Two atoms p, q € L are contained in the same L(0, z,) if and only +f
P=q.

Proor. (i) follows from Lemmas 4.2 and 4.3, and (ii) follows from
Lemma 4.4 (iii).

CororLrarY 1. If L is a complete DAC-lattice of a matroid lattice, then
() of Theorem 4.1 holds and two atoms p, g€ L are contained in the same
L(0, z,) ©f and only if p and g are perspective.

Proor. This follows from Theorem 4.1 since p~gq is equivalent to p~¢q
by Theorem 3.1 (ii).

Remark. The result of this corollary was proved in [10], Theorem 2
and [14 ], Theorem 2 on a complete DAC-lattice and on a matroid lattice res-
pectively. These theorems are unified by Theorem 4.1.

CorOLLARY 2. Let L be a complete DAC-lattice or a matroid lattice. L is
irreducidble 1f and only if all atoms are perspective.

Tureorem 4.2. Let L be a complete DAC-lattice (or a matroid lattice). For
two elements a and b of L, a~7 b holds if and only if e(a)MNe(d)=0.
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Proor. (i) If e(a)Me(b)=¢0, then taking an atom p with p <e(a)Ne(b),
we have p<a and p < b by Lemma 4.4 (i). Then it follows from Theorem 3.1
(ii) and Theorem 3.2 that a7 does not hold.

(i) If e b does not hold, then it follows from Theorem 3.2 that there
exist atoms p and ¢ such that p~gq, p<ae and ¢=<<b. Then e(a)Ne(b)=
e(p)Ne(g)=e(p)=x0.

Finally we add the following result.

Lemma 4.5. A complete DAC-lattice L is <7-continuous, that 1s, if as;7/ b
and as 1 a then a<7b.

Proor. Letas;vband a; 1 a. Assume that a</ b does not hold. It follows
from Theorem 3.2 that there exist atoms p and ¢ such that p~g¢, p<a and
g=b. Since

p=a=\Jsa; =\Js(\J(r; r <as)),

by property (P) there exists an atom r such that r~p and r<a; for some 9.
Then it follows from Theorem 3.1 (ii) and Theorem 3.2 that a;7 6 does not
hold, a contradiction.

Remark. The v/-continuity of a matroid lattice L follows directly from
the upper continuity of L.

§5. Finite-modular AC-lattices and projective lattices

First we shall construct a complete finite-modular AC-lattice from a pro-
jective lattice.

Tuaeorem 5.1. Let A be a projective lattice with the lattice operations v
and A. If a subset L of A satisfies the following three conditions:

(1 0,1€lL,

(2) tfpisanatomof Aand a€ Lthenavpel,

B) tf a.€ L for every o then N,a,€ L,
then the subset L with the same order as A is a complete finite-modular AC-
lattice.

Proor. (i) It follows from (3) that, in L, the meet N\,a, of elements a,
exists and is equal to A.a,. Hence the join \ J.a. also exists (in fact, it is
A(x € L; a, < x for every «)). Thus L is a complete lattice.

(i) It follows from (1) and (2) that if p is an atom of 4 then pe L and
hence p is an atom of L. Since 4 is atomistic, for every « € L we have

a=V(p;p=a)=\J(p; p=Za)<a.

Hence L is atomistic. Moreover, any atom p of L is an atom of 4. Because,
since 4 is atomistic there exists an atom ¢ of 4 with ¢<p, and since g€ L,
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we have g=p.

(iii) Let a¢ L and p be an atom with pXa. Since 4 has the covering
property, we have a<<a\Up in 4. Since aVp=a\Up by (2), we have a<a\Up
in L. Thus L has the covering property. Moreover, since A4 i3 modular, it
has the property (0) of Lemma 2.2. Hence by {(2) L has the same property
and hence L is finite-modular.

Note that this theorem also holds when 4 is not a projective lattice but
only a complete finite-modular AC-lattice.

Next, we shall construct a projective lattice from a finite-modular AC-
lattice.

DerFINITION. A projective space 2 is a set of points with a system of sub-
sets, called lines, satisfying the following two conditions:

(PG 1) Every line contains at least two points. Two different points p
and ¢ are in one and only one line, which is denoted by pq.

(PG 2) Let p, ¢ and r be different points which are not contained in one
line. If s and ¢ are different points such that s€ pg and ¢ € gr then there
exists a point u such that u € pr and u € sz.

A subset S of 2 is called a linear set if p, g € S implies pgCS. The set
L(®2) of all linear set of 2 forms a projective lattice, ordered by set-inclusion,
where the meet A.S, is the intersection of linear sets S, and the join S;Vv S,
of two linear sets is equal to the set {re 2; re pq, p€ S, ge S}. (Cf. [6],
Kap. III, §3.)

Lemma 5.1.  Let L be an atomic lattice and assume that (p, g\Jr)M and
(p\Ug, r'\Us)M hold for all atoms p, q, r and s of L. Then the set 2(L) of all
atoms of L forms a projective space where pg={r € 2(L); r <p\Uq}. Moreover
Sfor every a € L the set w(a)={p € 2L); p=a} is a linear set of L.

Proor. First we shall show that
(*) if p, g and r are atoms such that r<p\Ugq and p=¢r then ¢=<p\Ur and

pAJg=p\r. '
Since (¢, p\Ur)M holds, we have

pVAgN(pUn} =(pugn(p\ur) =pUr>p.

Hence ¢N\(p\Ur)=c0. Then ¢<p\Ur and p\ug=p\Ur.
Next we shall show that

(**) if p, g, r and s are atoms such that p<"q\Ur\Us then there exists an
atom ¢ such that p<<q\Ur and t <ruUs.

When p=g, t=r may be used, and when ¢=<_r\Us, t=p may be used. When
p>xqand ¢XrUs, it follows from (r\Us, p\Ug)M that

g AT UHIN (PP} = (guUrUus)N(p\Jq) = p.
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Hence (r'Us)N(p\Uq)=0, and since L is atomic there exists an atom ¢ such
that : <(rUs)M(p\Ugq). Since g Xr\Us, we have t2c¢. Hence it follows from
(*) that p<"q\Ut. Thus (**) has been proved.

In the set 2(L) of atoms, let the set pg={r € (L); r <p\Uq} be a line for
every pair of different atoms p and ¢q. We shall show that (PG 1) holds.
Let p and ¢ are different atoms contained in a line rs (r=¢s). When r=p, we
have ¢ <p\Us. Hence it follows from (*) that p\Us=p\Ug, which implies
pq=rs. When r=cp, p<rUs implies rUp=r\Us by (*). Hence ¢=r\Up, and
by (*) again we have p\Uug=rUp. Hence pg=rs. Thus (PG 1) holds.

Next we shall show that (PG 2) holds. Let s€ pg, ¢t € gr and s=¢¢. When
s=p, u=p may be used. When s=¢p, by (*) we have ¢<p\Us, whence :=q\Ur
<suUp\r. It follows from (**) that there exists an atom « such that :<<s\u
and u <p\Ur. Then u € pr, and by (*) u € sz. Thus we have proved that 2(L)
is a projective space. It is obvious that w(e) is a linear set.

TuroreM 5.2. Let L be a finite-modular AC-lattice. The set 2(L) of all
atoms of L forms a projective space and there exists a one-to-one, order-pre-
serving mapping o of L into the projective lattice L(2(L)) of linear sets of 2(L),
with the following four properties:

1) w(0)=0, and 1f L has 1 then o(1)=1.

2) wlenb)=w(a)Aw(d) for every a, be L. Moreover o([\ az) = N o0(as)
1f Nata exists.

B)  wla\ub)=w(a) Vv o(b) for every a, b € L, and equality holds if and only
if (a, b)M* holds in L.

(4) If ae F(L) then w(a\Ub)=w(a)V w(b).

If L is a complete finite-modular AC-lattice induced from a projective lattice
A by the method of Theorem 5.1, then L(2(L)) is isomorphic to A.

Proor. It follows from Lemma 5.1 that 2(L) forms a projective space
and that w(e) € L(2(L)) for every a€ L. w is evidently order-preserving and
is one-to-one since L is atomistic. Statement (1) evidently holds. (2) holdes
since A .0(a,) is the intersection of linear sets w(a,). Next it is evident that

*) w(a\Ub) = w(a) v o(b).
Since w(a)Vvo(b)={peAL); pe qgr, g€ w(a), r€wd)}
=1pe«L); p=q\Ir,q=a,r =0},
it follows from Lemma 2.3 (i) that equality holds in (*) if and only if (a, b))M*
holds. Thus (3) has been proved. (4) follows from (3) and Lemma 2.2 (ii).
If L is a complete finite-modular AC-lattice induced from a projective

lattice 4 then 2(L)=82(A). 1t follows from [67], Kap. III, Satz 3.2 that 4 is
isomorphic to L(2(L)).
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Remark. If L is a DAC-lattice then property (4) may be replaced by the
following property:

(4) If a € F(L) then w(a\Ub)=w(a)V w(b).

This theorem is a generalization of [llj, Théoréme X VIII.

§6. The lattice of closed subspaces

Let E be a vector space over a field K, where K is not necessarily com-
mutative. It is easy to see that the set L(E) of all subspaces of E forms an
irreducible projective lattice, ordered by set-inclusion, where the meet of
subspaces is equal to their intersection (see [27], p. 367).

Let E (resp. F) be a left (resp. right) vector space over a field K. Assume
that there exists a bilinear mapping f of ExF onto K; precisely f satisfies
the following two conditions for all &, y€ E, &,7’ € Fand 1, #z€ K.

Q) fQAg+un, &)= A (EE)+ uf(r, €.
(2) fEE2+7"m) = (&, EN+ (&, 1)e.

For any subset 4 of E we put

A={cF; f&35)=0 for every &e A}
and for any subset B of F we put

B°={¢€E; f(¢&,8)=0  for every ¢& € B}.

By (1) and (2), 4° and B° are subspaces of F and E respectively, and we have
AC A and BCB®. A subspace 4 of E is called F-closed if A°= A4, and a
subspace B of F is called E-closed if B®=B. E is the largest F-closed sub-
space and F° is the smallest one. F is the largest E-closed subspace and E°
is the smallest one.

Remarx. In the above definitions, if the field K has an involutive anti-
automorphism 41— 2’ then the space F may be a left vector space replacing
the element £'2 by 2’¢’.  Then the mapping f is sesquilinear.

Lemma 6.1. (1) If A (e I) are F-closed subspaces of E, then the inter-
section of A, s also F-closed.
(i1) If A is an F-closed subspace and o ¢ A then the sum A+ Ka s also

F-closed. (A1+ Ax=4{&+7; £ € 4y, 1€ As})
The corresponding statements for E-closed subspaces also hold.

Proor. It is easy to prove (i). We shall prove (ii). Let & ¢ (4+ Ka)™.
Since a ¢ A=A, there exists a’ € 4° such that f(a,a’)20. We may assume
fla,a) =1, replacing a’ by a’f(a,a’)"". Then for any & € 4° we have

¢ —dfla, &) e (4+Ka),
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since &' —a'f(a, &) € A° and since
fla, & —a'fla, &) = fla, )~ fla, a)f(a, £)=0.
Hence
0=f(¢ & —a'fla, €))=F )= f(& a)f(a, &)
=f(E—f(¢, a)a, &)

This means §—f(¢, a")a € A=A, whence ¢ € A+ Ka. Therefore 4+ Ko is F-
closed.

Tuarorem 6.1. If E (resp. F) is a left (resp. right) vector space over a field
K and if there exists a bilinear mapping f of ExF onto K, then both the set
Lz(E) of all F-closed subspaces of E and the set Lg(F) of all E-closed subspaces
of F form irreducible complete DAC-lattices, ordered by set-inclusion.

Proor. The set A={A4 € L(E); F*C A4} is a projective sublattice of L(E),
where every atom has the form F°+Ka (a ¢ F°). The set Lp(E) is a subset
of 4 and, putting L=Lz(E), it follows from Lemma 6.1 that L satisfies the
conditions of Theorem 5.1. Hence Lz(E) is a complete AC-lattice and Lg(F)
is also. Since Lp(E) and Lx(F) are dual-isomorphic by the mapping A4 A°,
they are DAC-lattices. Next, for two different atoms F°+ Ka and F°+ K@
of Ly(E) there exists a third atom F°+ K(a+p8) included in F°+ Ka+KB.
Hence F°+ Ka and F°+ KB are perspective. It follows from Corollary 2 of
Theorem 4.1 that Lz(E) is irreducible.

Remark. McLaughlin [107] shows that if L is an irreducible complete
DAC-lattice whose length is at least 4 then there exists a pair of vector spaces
E and F with a bilinear mapping f such that L is isomorphic to Lr(E). Note
that this representation theorem may be implied from the well-known repre-
sentation theorem of projective lattices and Theorem 5.2.

CoroLLARY 1. The set Lc(E) of all closed subspaces of a locally convex
space E (in particular a mormed space) forms an irreducible complete DAC-
lattice.

Proor. Let E* be the set of all continuous linear forms on E and let
f(&, &) be the value of ¢ € E* at £¢ E. Then it follows from the theorem
that Lgzx(E) is an irreducible complete DAC-lattice. By the Hahn-Banach
theorem, a subspace of E is closed if and only if it is E*-closed. Hence L(E)
coincides with Lpx(E).

CoroLLARY 2. If a field K has an tnvolutive anti-automorphism and 1f a
left vector space E over K has a sesquilinear mapping f: Ex E— K which satis-
fies the following condition:
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@) f(&,6)=0 implies £=0

( for instance if E is a prehilbert space), then Lg(E) forms an irreducible com-
plete orthocomplemented AC-lattice.

Proor. It follows from (*) that the mapping 4 — 4° is an orthocomple-
mentation in Lz(E). Hence this corollary is a consequence of the theorem.

Finally we add two remarks on the theorems of Piron [11]. Théoréme
XXI of [117] can be reformed as follows without changing the proof.

TueoreMm 6.2. If L is an irreducible complete orthocomplemented AC-
lattice whose length is at least 4, then there exists a field K with an involutive
anti-automorphism and exists a left vector space E over K with a sesquilinear
mapping f: Ex E— K such that L is isomorphic to Lg(E).

Théoreme XXII of [117] can be reformed as follows:

TuaeoreM 6.3. When E is a prehilbert space, the lattice Lr(E) is ortho-
modular ©f and only 1f E is complete.

The proof of this theorem is given in [17].
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