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Introduction

Let X be a Banach space, T a linear bounded operator acting in X and /
an analytic complex function defined in a neighborhood of σ(Γ). Let us sup-
pose also that / is non-constant in each connected component of its domain of
definition which intersects ύ{T).

In this paper we study the spectral properties of T if f(T) is a spectral
operator of scalar type. The example of Stampfli (see [18]) shows that in
general T is not a scalar operator.

We shall prove that T is a 0-scalar operator in the sense of [15], where
Φ is a suitable basic algebra.

1. Preliminaries

Throughout the paper we shall use the following basic notation and con-
ventions :

TV: the set of all natural numbers.

A: the set of all complex numbers.

β' — A — ΰ for ΰQA.

C(K, r)={λe A; dist (λ, K)<ir}, where K(CA) is compact and r^>0.

d-(K): the set of all analytic complex functions whose domains of defini-

tion are open sets containing K, where K is a compact subset of A.

X: a Banach space over the complex field A.

M(%): the algebra of all linear bounded operators acting in X.

I: the unity of J2(%).

σ(T): the spectrum of T a £(X).

Let TaJKX) and fc9(σ(T)). Then f(T)= o—\ f(λ)R(λ; T)dλ, where
ΔTCIJΓ

*) The author wishes to express his gratitude to Professor F-Y. Masda for detecting an error in
the manuscript and for his suggestions concerning the elimination of this error.
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Γ is an admissible contour in the sense of Γ10], VII. 3.9 and R(λ; T) is the
resolvent of Γ.

LEMMA 1.1. Let G be an open set and K a compact subset of G. If f is a
continuous complex function on G, then for any compact subset F of f(K) and
for any ε > 0 there is τ/>0 such that

f-\C(F, r))ΓλKC C(f-\F)Γ\K, e)

for any r<.-η.

PROOF. Let us suppose that there is ε0 > 0 such that for any n c N we
can find rn<,l/n with the property f~\C(F, rn))r\K ςtC(f-\F)Γ\K, ε0). Let
λn ef-\C(F, rn))ΓΛK, λn ί C{f~\F)r\K, ε0) and λ0 be a limit point of the se-
quence {λn}. We have λ0 c K and because f(λn) € C(F, rn\ we also have f(λ0) c F.
Thus Λo ef-\F)ΓΛK, which is impossible because λn i C(f-\F)ΓΛK, ε0), and the
lemma results.

2. Algebra of functions

In this section we shall use the terminology and the definitions introduced
in [15], [16].

The symbols D and D will denote the operators -^-ί —-

-o~(-^— ~*"^~) respectively, where s + ΐ£ = λ c Λ.
^ \ (/5 Ot /

If /^ is a compact set in A and 0 is an π-times continuously differentiable
complex function defined in a neighborhood of K, then we shall put

n

\Φ\n,K= Σ S U P I (DPDqφ)(λ) I .

Let / be an analytic complex function defined on an open set G. We
define the function mf in G as follows:

Ithe least integer n such t h a t / ^ O O ^ O , if it exists;

oo, if f(n\λ) = O for any integer n.

In fact πif(λ) is the order of multiplicity of λ as root of the equation f(/x) — 0.
Now we can introduce some algebras of functions which will be used in

the sequel.
(1) ©n: the algebra of all zi-times continuously differentiate complex

functions defined in A with the topology given by the family of semi-norms
{\Λn,κ\ .£ compact}, if n is finite; by {\-\k,κ\ & = 0, 1, 2, ..., K compact}, if
n = oo,

(2) @%={φ€©n; (Djφ)(λ) = 0 for l<Lj,j<n} with the topology induced
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by &".
(3) §"(r): the algebra of all re-times continuously differentiable complex

functions defined in C(0, r) with the topology given by the norm

\Φ\n= Σ SUP \(D>D'φXλ)\.
p + q = 0 λeCCO,r)

where n<oo and r>0.
(4) <g»(r) = {φ e @n(r); (£y0)(O) = 0 for 1 <:/, j< n) with the topology in-

duced by &n(r).
(5) Let K be a compact set and / e &(K). Then we consider the algebra

with the topology induced by &n°, where no= max7?i/'(Λ).

REMARK 1. &°κ = &°, &l = ©1

9 (§g(r) = (S°(r) and βj(r) = β

PROPOSITION 2.1. Lei Kbe a compact set and f e 3(X) 6e non-constant in
each connected component of its domain which intersects K. Then Φ(f, K) is a
basic algebra and, for any n and g e @g(r) such that g (O) 6 K, 0<.n<, τnf'(g(0)),
the function g is Φ(f, K)-proper with respect to &l(r). (See Def. 1.1 of Q15] and
Def. 1.1 of [16].)

PROOF. Because / is non-constant in each connected component of its
domain which intersects K, the function mf\κ is different from 0 only in a
finite set. Thus Φ(f9 K) is a finite intersection of &l\ if f(λ)φθ for any
λ e K, then Φ(f, K) = &\ if/ has only simple zeros in K, then Φ(f, K) = &1 and
if m= {λ e K; fXλ)=f'(λ) = O}φ09 then 0(/, K) = f\X€jr@

m''™
The non-trivial case is when (ϊίlφ0. But the properties (ii) and (iii) of

Def. 1.1 of [15] are evidently verified. Thus we shall prove only (i) of Def.
1.1 of [15]. For this, let F(CΛ) be a compact set and G be an open set con-
taining F. Choose ε>0 such that C(F, ε)CG, C(F, ε)r\flfί = Fr\9ΐί and let Fo =
C(F, ε/2), G0 = intC(F, ε) and no = ma.xmf'(λ). Taking φ c @n° such that φ(λ) = l

for λ ζ F and φ(λ) = O for λ $ Go we have evidently φ c Φ(f, K). Consequently
Φ(/, K) is a basic algebra.

Now if gc ©g(r) and n^n0, then it is well-known that the map φ^>φ°g
from (8W° to βn(r) is continuous. By the definition of topologies in Φ(f, K)
and in βg(r), we have to prove only that, in the hypothesis of our proposition,
we have φ° gα ©ξ(r) for any φ e Φ(f, K). But if n = 0, 1, this happens as a
trivial consequence of Remark 1. In the contrary case, using the formula

g) = ((Dφ)og>)Dg+((Dφ)og)Dg, we obtain by a simple calculus again
gc (§g(r), which proves the proposition.

Let n e N and 0 <Ξ k <; n. For any φ e &n(r) we shall put
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J^fΐyλk-Σ(ipykΦ(ipλ) if

lo if λ = 0,

where ip = exp[2π ip/(n + Ϊ)J.

LEMMA 2.2. For any n c TV, φ c (Sg(r) and 0<,k<:n, we have

sup \φk(λ)\^4\φ\n
λeC(O.r)

PROOF. If k = 0, then the inequality becomes evident, thus we shall sup-
pose &;>!. By Taylor's formula, we have in this case, for any β c C(0, r),

!

where

, = (βD+_flP)%Φ+_Ψ)I , κβD + fiD)k(Φ±φ)

for some θu θ2; 0 < θ1 < 1, 0 < θ2 < 1. It follows

-, ..,k2k+1\φl

Because (Djψ)(0) = 0 for l^y, j<n we obtain

and using the equality S?=o(^)y"* = O f° r O^j<k we have, for any

It follows

LEMMA 2.3. Let φ, ψ e (8g(r), n e N. Then for any m, O^m^n, we have

(ΦΦUλ)= Σ Φk(λ)Ψj(V+^+1 ΣΣ Φk(λ)Ψj(V+^ Σ
j=m k+j=m+

PROOF. The equality is non-trivial if λ φ 0. But if λ φ 0 we have

Σ Φka)Φ3{λ)+λn+1 Σ
j k^ j +
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(n -\- i)Δ λmp,q=o U=o 3p,q=o U=o

Σ (i
p=o

3. Functional calculus

Let Φ be a closed subalgebra of some (δw and at the same time a basic
algebra. If U is a 0-spectral representation (Def. 1.3 of [15]), then it has
compact support in view of the topology of Φ. Therefore we shall write
<U(λ\ ί /( l ) f o r U(Φ0 a n d <ll(φ0) r e s p e c t i v e l y , w h e r e φ l 9 φoeΦ a n d φi(λ)=λ9 φo(λ)=l
in some neighborhood of supp %. In fact we have suppί/ = σ(ί/(A)) and ί/(l) = /.

DEFINITION 3.1. A ^-spectral representation U is called regular if it is
valued in the bicommutant ( = the commutant of the commutant; see [12]) of
Ϊ/(Λ) An operator T e M(X) is called a regular Φ-scalar operator if there is a
regular 0-spectral representation U such that T=1l(λ).

PROPOSITION 3.2. Lei T e M(X) and {Pj}f=1 be a finite set of projections in
the bicommutant of T such that PjPk = 0 if jφk and Σ?=iPj = I- Let Φ be a
basic closed subalgebra of some ©n. Then T is a regular Φ-scalar operator if
and only if T | PjX is a regular Φ-scalar operator for each j .

PROOF. If T is a regular ^-scalar operator, then there is a spectral re-
presentation 'U valued in the bicommutant of T. The map (Uj =

 {U\ PjX is again
a 0-spectral representation in M(PjX) and fUJ{λ)= T\PjX.

If Fj(T\PjX)=(T\PjX)Vh then we have (VjPj)T=T(VjPj) and because
VJPJ c M(X) we obtain UjVj=%VjPj= VjPj

ίU= Vj

ίUPj= Vβ5 in Py%, which proves
that Uj is regular.

Now if T\PjX is a regular Φ-scalar operator for each j and ίUj(λ)= T\PjX,
then ί/ = ®7=1ϊ/y is a Φ-spectral representation, regular if ί/y is regular for
each j . Indeed, if V a J?(X), VT=TF, then putting VJ=V\PJX we have
Vj(T\PjX)=(T\PjX)Vh thus Vfll = ®?=1VJMj = ®J=1UjVJ = ίUV.

THEOREM 3.3. Let T c M(X) and suppose that for some n e N the operator
Tn+1 = S is of scalar type. If T is one-to-one, then for any r > 0 such that
(ϊ(T)C C(0, r), the map % from (§g(r) to M(X) defined by the equation

is a continuous homomorphism valued in the bicommutant of T such that
ίU(l)=IandίU(λ)=T.

PROOF. The operator n+l\>~S is a scalar operator with the spectrum in

C(0, r) (see [9], Lemma 6) and any operator which commutes with T com-
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mutes also with φk(
n+ι4s), because such an operator commutes with S and

Φk(n+1\llS) is a function of S. Thus ftt(φ) is in the bicommutant of T. The
linearity of U is trivial and the continuity results by [9], Lemma 6 and our
Lemma 2.2.

If E is the spectral measure of n+1\j~S, then using Lemma 2.3 we have

Σ[mΦk(λMX) + λn+\+ ,Σ^ Φk(λ)Ψj(λ^E(dλ)

= Σ τm\(φψ)M)E{dλ) = <U(φψ).
m = 0 J

Now if 77i = 0, 1 and φ(λ) = λm, then by a simple calculus we obtain φk(λ) = l for

k — m, λφO and φk(X) = 0 for kφm. Because T is one-to-one, Sand n+1\Js have

the same property. Consequently E({0}) = 0. Thus we have

ί/(l) = [ E{dλ) = I and %{λ)= τ[ E(dλ) = T.
J{o/ ){oy

LEMMA 3.4. Let K be a compact set, f c 3~(K) be non-constant in each con-
nected component of its domain G which intersects K. Suppose, for λ0 c K and
r > 0 such that C(λ0, r)CG, f is expressed as f(λ)=f(λo)-\-((λ — λo)h(λ))n+1(n^>l)
with a holomorphic function h in a neighborhood G; of C(λ0, r) such that h(λo)φθ
and g(λ) = (λ — λo)h(λ) is one-to-one in G'. Given Tc M(X), if f(T) is a scalar
operator and σ(T)CC(λ0, r)Γ\K, then T is a regular Φ(f, K)-scalar operator.

PROOF. Let us remark first that by Proposition 2.1, $(/, K) is a basic
algebra. If f/

yT)-f(λ0) = S, then (g(T))n+1 = S. Let E be the spectral measure
of S and E({0}) = Pu E({0}') = P2: By Proposition 3.2, we have to prove that
T\PλX and T\P2X are Φ(f, A>scalar operators. Because we have S\P1% = 0
= (h(T\P1X))n+1((T\P1X)-λo)n-il and h(λ)φθ for λ e C(λθ9 r), it results
-Λ0)

w+1 = 0. Thus if Qi = (T\P1X)-λ0 then the equation

=ttK(DφXλ0)
k = o k\

defines evidently a regular Φ(f, X')-spectral representation such that ίUι(λ) =
T\P1X. Now if we take r>0 such that g(C(λ0, r))C int C(0, r\ then we have
also σ(g(T))C intC(0, f) ([10], VII. 3.11). Let 09 be the map 09: <es(r')->
M(P2X) given in Theorem 3.3 associated to g(T\P2X). Because g is one-to-one
there is φ c &n(/) such that 0/>°g)(λ) = λ in a neighborhood of C(λo> r). By Pro-
position 2.1, φ is Φ(f, i^)-proper with respect to &l{f), because it is analytic
in a neighborhood of 0. Consequently rU2(Φ) = c&(.Φo</0 defines a $(/, i^)-spec-
tral representation ([16], Prop. 1.2), and fU2(λ) = c$(ψ) = ψ(gίT\P2X))=T\P2X.
The regularity of %2 results from the properties of 09.

THEOREM 3.5. Let T c J2{X) and f e 9(σ(Γ)) be non-constant in each con-
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nected component of its domain which intersects σ(Γ). If f(T) is a scalar
operator then T is a regular Φ(f, 6(T))-scalar operator.

PROOF. We shall suppose that the set ()ΐlo={λ; λ a <r(Γ), /'(;t)=0} is non-
void, because in the contrary case the theorem is known to be true (see (ΊΓ], Th.
3). Vflo is a finite set, say {λj}»J=ι. Let %= {^}J= 1=/(0βo) and 9ίL=f-\%)r\σ(T)
— {λj}f=u n<[πi<oo. For each y, 1 < ^ < ^ , there is ε ; >0 such that /GO —

/(Λ/) + ((λ--A/)λ/OO)n'+1 with a holomorphic function Ay defined in a neighbor-
hood Gj of C(Λ/, ε, ) such that hj{λ)φθ and gj{λ) = (λ — λj)hj{λ) is one-to-one in G;,
where nj=mf'(λj). Choose ε>0 such that ε<min(εi, ••-, εn\ C(λj, ε)Γ\C(λk, ε)
= 0 for jφk and C(% ε)Γ\f-\%) = crti. Using Lemma 1.1, we can find 7?>0
such that C(μh τj)Γ\C(βk, τ/) = 0 for jφk a n d / " 1 ^ , ^))πσ(Γ)C C(W, e).

Now if f{T)— S and E is the spectral measure of 5, then, denoting <Xy =
CCty, ^), l ^ y ^ y , σq+ι = (C(N, η))\ we have to prove the theorem for T\E(σj)X,
y = l, ..., gr + 1 (see Proposition 3.2). Because £ is in the bicommutant of T,
we have σ(T\E(σj)X)C(ϊ(T) and by [10], VII 3.11 σ(T\E(σj)X)Cf'K^ Also
we hzγefiτ\E((?j)X)=S\E(σj)X. Therefore, applying [3], Th. 3, T\E(σq+1)X
results to be scalar. I f/<;?, then σ{T\E{6j)X)C<y{T)r\C{(rfί, ε). Let us denote
E(σj)X = XJ9 T\XJ=TJ. Wehave (T(Γy)C W x ^ ^ α , , ε), where ^ is a subset of
(ϊίl. Let Pλ/, be the spectral projection of Tj corresponding to C(λk, e) (see
[10], VII 3.17). Then σ(Tj\Pλ}Xj)CC(λk, ε) and because Pλft is in the bicom-
mutant of Th the operator f{Tj\PXkXj)^S\PxXj is scalar. If k>n then
f{λ) φ 0 f or λ e σ( Tj \ PχkXj\ thus 7> | PλfcXy is a scalar operator by [3], Th. 33 and
if k<,n then Tj\PλkXj is a regular Φ(f, σ(Γ))-scalar operator by Lemma 3.4.
It follows from Proposition 3.2 that T\E(σ/)X is a regular Φ(f, σ(Γ))-scalar
operator, which proves our theorem.

COROLLARY 3.6. In the hypothesis of Theorem 3.5, if f has only simple
zeros in σ(Γ), then T is a regular generalized scalar operator in the sense of
[11] (i. e., a regular (§°°-scalar operator).

PROOF. In this case Φ(f, σ(T)) = ©1 and a (^-scalar operator is a &°°-
scalar operator.
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