Roots of Scalar Operator-valued Analytic Functions and their Functional Calculus

Constantin Apostol
(Received December 6, 1967)
(Revised March 11, 1968)*)

Introduction

Let X be a Banach space, T a linear bounded operator acting in X and f an analytic complex function defined in a neighborhood of $\sigma_{(}(T)$. Let us suppose also that f is non-constant in each connected component of its domain of definition which intersects $\sigma(T)$.

In this paper we study the spectral properties of T if $f(T)$ is a spectral operator of scalar type. The example of Stampfli (see [18]) shows that in general T is not a scalar operator.

We shall prove that T is a Φ-scalar operator in the sense of [15], where Φ is a suitable basic algebra.

1. Preliminaries

Throughout the paper we shall use the following basic notation and conventions:
N : the set of all natural numbers.
Λ : the set of all complex numbers.
$\sigma^{\prime}=\Lambda-\sigma$ for $\sigma \subset \Lambda$.
$C(K, r)=\{\lambda \in \Lambda ; \operatorname{dist}(\lambda, K) \leqq r\}$, where $K(\subset \Lambda)$ is compact and $r \geqq 0$.
$\mathcal{F}(K)$: the set of all analytic complex functions whose domains of definition are open sets containing K, where K is a compact subset of Λ.
χ : a Banach space over the complex field Λ.
$\mathcal{L}(X)$: the algebra of all linear bounded operators acting in X.
I : the unity of $\mathcal{L}(X)$.
$\sigma(T)$: the spectrum of $T \in \mathcal{L}(X)$.
Let $T \in \mathcal{L}(X)$ and $f \in \mathcal{F}(\sigma(T))$. Then $f(T)=\frac{1}{2 \pi i} \int_{\Gamma} f^{\prime}(\lambda) R(\lambda ; T) d \lambda$, where

[^0]Γ is an admissible contour in the sense of [10], VII. 3.9 and $R(\lambda ; T)$ is the resolvent of T.

Lemma 1.1. Let G be an open set and K a compact subset of G. If f is a continuous complex function on G, then for any compact subset F of $f(K)$ and for any $\varepsilon>0$ there is $\eta>0$ such that

$$
f^{-1}(C(F, r)) \cap K \subset C\left(f^{-1}(F) \cap K, \varepsilon\right)
$$

for any $r \leqq \eta$.
Proof. Let us suppose that there is $\varepsilon_{0}>0$ such that for any $n \epsilon N$ we can find $r_{n} \leqq 1 / n$ with the property $f^{-1}\left(C\left(F, r_{n}\right)\right) \cap K \not \subset C\left(f^{-1}(F) \cap K, \varepsilon_{0}\right)$. Let $\lambda_{n} \in f^{-1}\left(C\left(F, r_{n}\right)\right) \cap K, \lambda_{n} \notin C\left(f^{-1}(F) \cap K, \varepsilon_{0}\right)$ and λ_{0} be a limit point of the sequence $\left\{\lambda_{n}\right\}$. We have $\lambda_{0} \in K$ and because $\left.f\left(\lambda_{n}\right) \in C_{\{ }^{\prime} F, r_{n}\right)$, we also have $f\left(\lambda_{0}\right) \in F$. Thus $\lambda_{0} \epsilon f^{-1}(F) \cap K$, which is impossible because $\lambda_{n} \notin C\left(f^{-1}(F) \cap K, \varepsilon_{0}\right)$, and the lemma results.

2. Algebra of functions

In this section we shall use the terminology and the definitions introduced in [15], [16].

The symbols D and \bar{D} will denote the operators $\frac{1}{2}\left(\frac{\partial}{\partial s}+i \frac{\partial}{\partial t}\right)$ and $\frac{1}{2}\left(\frac{\partial}{\partial s}-i \frac{\partial}{\partial t}\right)$ respectively, where $s+i t=\lambda \subset \Lambda$.

If K is a compact set in Λ and ϕ is an n-times continuously differentiable complex function defined in a neighborhood of K, then we shall put

$$
|\phi|_{n, K}=\sum_{p+q=0}^{n} \sup _{\lambda \in K}\left|\left(\bar{D}^{p} D^{q} \phi\right)(\lambda)\right|
$$

Let f be an analytic complex function defined on an open set G. We define the function m_{f} in G as follows:

$$
m_{f}(\lambda)=\left\{\begin{array}{l}
\text { the least integer } n \text { such that } f^{(n)}(\lambda) \neq 0, \text { if it exists } \\
\infty, \text { if } f^{(n)}(\lambda)=0 \text { for any integer } n
\end{array}\right.
$$

In fact $m_{f}(\lambda)$ is the order of multiplicity of λ as root of the equation $f(\mu)=0$.
Now we can introduce some algebras of functions which will be used in the sequel.
(1) ϱ^{n} : the algebra of all n-times continuously differentiable complex functions defined in Λ with the topology given by the family of semi-norms $\left\{|\cdot|_{n, K} ; K\right.$ compact $\}$, if n is finite; by $\left\{|\cdot|_{k, K} ; k=0,1,2, \ldots, K\right.$ compact $\}$, if $n=\infty$.
(2) $\mathfrak{O}_{\lambda}^{n}=\left\{\phi \in \bigotimes^{n} ;\left(D^{j} \phi\right)(\lambda)=0\right.$ for $\left.1 \leqq j, j<n\right\}$ with the topology induced
by $@^{n}$.
(3) $\varrho^{n}(r)$: the algebra of all n-times continuously differentiable complex functions defined in $C(0, r)$ with the topology given by the norm

$$
|\phi|_{n}=\sum_{p+q=0}^{n} \sup _{\lambda \in C(0, r)}\left|\left(\bar{D}^{p} D^{q} \phi\right)(\lambda)\right| .
$$

where $n<\infty$ and $r>0$.
(4) $\mathscr{O}_{j}^{n}(r)=\left\{\phi \in \mathbb{O}^{n}(r) ;\left(D^{j} \phi\right)(0)=0\right.$ for $\left.1 \leqq j, j<n\right\}$ with the topology induced by $@^{n}(r)$.
(5) Let K be a compact set and $f \in \mathcal{F}(K)$. Then we consider the algebra

$$
\Phi(f, K)=\bigcap_{\lambda \in K} \mathbb{O}_{\lambda}^{m_{f} \prime(\lambda)}
$$

with the topology induced by $\bigotimes^{n_{0}}$, where $n_{0}=\max _{\lambda \in K} m_{f^{\prime}}(\lambda)$.
Remark 1. $\varrho_{i}^{0}=\varrho^{0}, \varrho_{\lambda}^{1}=\varrho^{1}, \varrho_{0}^{0}(r)=\varrho^{0}(r)$ and $\varrho_{0}^{1}(r)=\varrho^{1}(r)$.
Proposition 2.1. Let K be a compact set and $f \in \mathcal{F}(K)$ be non-constant in each connected component of its domain which intersects K. Then $\Phi(f, K)$ is a basic algebra and, for any n and $g \in \bigotimes_{0}^{n}(r)$ such that $g(0) \in K, 0 \leqq n \leqq m_{f}(g(0))$, the function g is $\Phi(f, K)$-proper with respect to $\mathfrak{O}_{0}^{n}(r)$. (See Def. 1.1 of [15] and Def. 1.1 of [16].)

Proof. Because f is non-constant in each connected component of its domain which intersects K, the function $\left.m_{f^{\prime}}\right|_{K}$ is different from 0 only in a finite set. Thus $\Phi(f, K)$ is a finite intersection of $\mathfrak{O}_{\lambda}^{n}$; if $f^{\prime}(\lambda) \neq 0$ for any $\lambda \in K$, then $\Phi(f, K)=\varrho^{0}$, if f^{\prime} has only simple zeros in K, then $\Phi(f, K)=\bigotimes^{1}$ and if $\mathscr{I}=\left\{\lambda \in K ; f^{\prime}(\lambda)=f^{\prime \prime}(\lambda)=0\right\} \neq \emptyset$, then $\Phi(f, K)=\bigcap_{\lambda \in \mathcal{U}^{\prime}} \mathbb{Q}^{m_{f^{\prime}}(\lambda)}$.

The non-trivial case is when $9 \neq \emptyset$. But the properties (ii) and (iii) of Def. 1.1 of [15] are evidently verified. Thus we shall prove only (i) of Def. 1.1 of [15]. For this, let $F(\subset \Lambda)$ be a compact set and G be an open set containing F. Choose $\varepsilon>0$ such that $C(F, \varepsilon) \subset G, C(F, \varepsilon) \cap \nVdash=F \cap \pi$ and let $F_{0}=$ $C(F, \varepsilon / 2), G_{0}=\operatorname{int} C(F, \varepsilon)$ and $n_{0}=\max _{\lambda \in K} m_{f^{\prime}}(\lambda)$. Taking $\phi \in \bigotimes^{n_{0}}$ such that $\phi(\lambda)=1$ for $\lambda \in F$ and $\phi(\lambda)=0$ for $\lambda \notin G_{0}$ we have evidently $\phi \in \Phi(f, K)$. Consequently $\Phi(f, K)$ is a basic algebra.

Now if $g \epsilon \bigodot_{0}^{n}(r)$ and $n \leqq n_{0}$, then it is well-known that the map $\phi \rightarrow \phi \circ g$ from $\mathbb{C}^{n_{n}}$ to $\mathbb{Q}^{n}(r)$ is continuous. By the definition of topologies in $\Phi(f, K)$ and in $\mathscr{C}_{0}^{n}(r)$, we have to prove only that, in the hypothesis of our proposition, we have $\phi \circ g \in \bigotimes_{0}^{n}(r)$ for any $\phi \in \mathscr{(}(f, K)$. But if $n=0,1$, this happens as a trivial consequence of Remark 1. In the contrary case, using the formula $D(\phi \circ g)=((\bar{D} \phi) \circ g) D g+((D \phi) \circ g) D \bar{g}$, we obtain by a simple calculus again $\phi \circ g \in \bigotimes_{0}^{n}(r)$, which proves the proposition.

Let $n \in N$ and $0 \leqq k \leqq n$. For any $\phi \in \bigotimes^{n}(r)$ we shall put

$$
\phi_{k}(\lambda)= \begin{cases}\frac{1}{(n+1) \lambda^{k}} \sum_{p=0}^{n}\left(i_{p}\right)^{-k} \phi\left(i_{p} \lambda\right) & \text { if } \lambda \neq 0 \\ 0 & \text { if } \lambda=0\end{cases}
$$

where $i_{p}=\exp [2 \pi i p /(n+1)]$.
Lemma 2.2. For any $n \in N, \phi \in \bigodot_{0}^{n}(r)$ and $0 \leqq k \leqq n$, we have

$$
\sup _{\lambda \in C(0, r)}\left|\phi_{k}(\lambda)\right| \leqq 4|\phi|_{n}
$$

Proof. If $k=0$, then the inequality becomes evident, thus we shall suppose $k \geqq 1$. By Taylor's formula, we have in this case, for any $\mu \in C(0, r)$,

$$
\phi(\mu)=\left.\sum_{j=0}^{k-1} \frac{(\mu \bar{D}+\bar{\mu} D)^{j} \phi}{j!}\right|_{\lambda=0}+\tilde{\phi}_{k}(\mu)
$$

where

$$
\tilde{\phi}_{k}(\mu)=\left.\frac{(\mu \bar{D}+\bar{\mu} D)^{k}(\phi+\bar{\phi})}{2 k!}\right|_{\lambda=\theta_{1} \mu}+\left.\frac{(\mu \bar{D}+\bar{\mu} D)^{k}(\phi+\bar{\phi})}{2 k!}\right|_{\lambda=\theta_{2} \mu}
$$

for some $\theta_{1}, \theta_{2} ; 0<\theta_{1}<1,0<\theta_{2}<1$. It follows

$$
\left|\tilde{\phi}_{k}(\mu)\right| \leqq|\mu|^{k} \frac{2^{k+1}|\phi|_{k}}{k!} \leqq 4|\mu|^{k}|\phi|_{n}
$$

Because ($\left.D^{j} \phi\right)(0)=0$ for $1 \leqq j, j<n$ we obtain

$$
\phi(\mu)=\sum_{j=0}^{k-1} \mu_{j!}^{j}\left(\bar{D}^{j} \phi\right)(0)+\tilde{\phi}_{k}(\mu)
$$

and using the equality $\sum_{p=0}^{n}\left(i_{p}\right)^{j-k}=0$ for $0 \leqq j<k$ we have, for any $\lambda \neq 0$,

$$
\phi_{k}(\lambda)=\frac{1}{n+1} \sum_{p=0}^{n} \frac{\phi_{k}\left(i_{p} \lambda\right)}{\left(i_{p} \lambda\right)^{k}} .
$$

It follows

$$
\left|\phi_{k}(\lambda)\right| \leqq \frac{1}{n+1} \sum_{p=0}^{n} \frac{\left|\phi_{k}\left(i_{p} \lambda\right)\right|}{\left|\left(i_{p} \lambda\right)^{k}\right|} \leqq 4|\phi|_{n} .
$$

Lemma 2.3. Let $\phi, \psi \in \bigotimes_{0}^{n}(r), n \in N$. Then for any $m, 0 \leqq m \leqq n$, we have

$$
(\phi \psi)_{m}(\lambda)=\sum_{k+j=m} \phi_{k}(\lambda) \psi_{j}(\lambda)+\lambda^{n+1} \sum_{\substack{k+j=m+n+1 \\ 0 \leqq k, j \leqq n}} \phi_{k}(\lambda) \psi_{j}(\lambda) .
$$

Proof. The equality is non-trivial if $\lambda \neq 0$. But if $\lambda \neq 0$ we have

$$
\begin{aligned}
& \sum_{k+j=m} \phi_{k}(\lambda) \psi_{j}(\lambda)+\lambda^{n+1} \sum_{\substack{k+j=m+n+1 \\
0 \leqq k, j \leq n}} \phi_{k}(\lambda) \psi_{j}(\lambda) \\
& \quad=\sum_{k=0}^{m} \phi_{k}(\lambda) \psi_{m-k}(\lambda)+\lambda^{n+1} \sum_{k=m+1}^{n} \phi_{k}(\lambda) \psi_{m+n+1-k}(\lambda)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{(n+1)^{2} \lambda^{m}} \sum_{p, q=0}^{n}\left\{\sum_{k=0}^{n}\left(i_{p}\right)^{-k}\left(i_{q}\right)^{k-m}\right\} \phi\left(i_{p} \lambda\right) \psi\left(i_{q} \lambda\right) \\
& =\frac{1}{(n+1) \lambda^{m}} \sum_{p=0}^{n}\left(i_{p}\right)^{-m} \phi\left(i_{p} \lambda\right) \psi\left(i_{p} \lambda\right)=(\phi \psi)_{m}(\lambda) .
\end{aligned}
$$

3. Functional calculus

Let Φ be a closed subalgebra of some \mathbb{C}^{n} and at the same time a basic algebra. If U is a Φ-spectral representation (Def. 1.3 of [15]), then it has compact support in view of the topology of Φ. Therefore we shall write $U(\lambda), U(1)$ for $U\left(\phi_{1}\right)$ and $U\left(\phi_{0}\right)$ respectively, where $\phi_{1}, \phi_{0} \in \Phi$ and $\phi_{1}(\lambda)=\lambda, \phi_{0}(\lambda)=1$ in some neighborhood of $\operatorname{supp} U$. In fact we have $\operatorname{supp} U=\sigma(U(\lambda))$ and $U(1)=I$.

Definition 3.1. A \varnothing-spectral representation U is called regular if it is valued in the bicommutant ($=$ the commutant of the commutant; see [12]) of $U(\lambda)$. An operator $T \epsilon \ell(X)$ is called a regular Φ-scalar operator if there is a regular Φ-spectral representation U such that $T=U(\lambda)$.

Proposition 3.2. Let $T \in \mathcal{L}(\chi)$ and $\left\{P_{j}\right\}_{j=1}^{m}$ be a finite set of projections in the bicommutant of T such that $P_{j} P_{k}=0$ if $j \neq k$ and $\sum_{j=1}^{m} P_{j}=I$. Let Φ be a basic closed subalgebra of some \mathbb{O}^{n}. Then T is a regular Φ-scalar operator if and only if $T \mid P_{j} \chi$ is a regular Φ-scalar operator for each j.

Proof. If T is a regular $\mathscr{\Phi}$-scalar operator, then there is a spectral representation U valued in the bicommutant of T. The map $U_{j}=U \mid P_{j} \chi$ is again a Φ-spectral representation in $\mathcal{L}\left(P_{j} \chi\right)$ and $U_{j}(\lambda)=T \mid P_{j} \chi$.

If $V_{j}\left(T \mid P_{j} X\right)=\left(T \mid P_{j} \chi\right) V_{j}$, then we have $\left(V_{j} P_{j}\right) T=T\left(V_{j} P_{j}\right)$ and because $V_{j} P_{j} \in \mathcal{L}(X)$ we obtain $U_{j} V_{j}=U_{V_{j}} P_{j}=V_{j} P_{j} U=V_{j} U P_{j}=V_{j} U_{j}$ in $P_{j} X$, which proves that U_{j} is regular.

Now if $T \mid P_{j} \chi$ is a regular \varnothing-scalar operator for each j and $U_{j}(\lambda)=T \mid P_{j} \chi$, then $U=\bigoplus_{j=1}^{m} U_{j}$ is a Φ-spectral representation, regular if U_{j} is regular for each j. Indeed, if $V \in \mathcal{L}(X), V T=T V$, then putting $V_{j}=V \mid P_{j} \chi$ we have $V_{j}\left(T \mid P_{j} \chi\right)=\left(T \mid P_{j} \chi\right) V_{j}$, thus $V U=\bigoplus_{j=1}^{m} V_{j} U_{j}=\bigoplus_{j=1}^{m} U_{j} V_{j}=U V$.

Theorem 3.3. Let $T \in \mathcal{L}(\mathcal{X})$ and suppose that for some $n \in N$ the operator $T^{n+1}=S$ is of scalar type. If T is one-to-one, then for any $r>0$ such that $\sigma(T) \subset C(0, r)$, the map U from $\bigotimes_{0}^{n}(r)$ to $\mathcal{L}(X)$ defined by the equation

$$
U(\phi)=\sum_{k=0}^{n} T^{k} \phi_{k}(\sqrt[n+1]{S})
$$

is a continuous homomorphism valued in the bicommutant of T such that $U(1)=I$ and $U(\lambda)=T$.

Proof. The operator ${ }^{n+1} \sqrt{S}$ is a scalar operator with the spectrum in $C(0, r)$ (see [9], Lemma 6) and any operator which commutes with T com-
mutes also with $\phi_{k}\left({ }^{n+1} \sqrt{S}\right)$, because such an operator commutes with S and $\phi_{k}\left({ }^{n+1} \sqrt{S}\right)$ is a function of S. Thus $U(\phi)$ is in the bicommutant of T. The linearity of U is trivial and the continuity results by [9], Lemma 6 and our Lemma 2.2.

If E is the spectral measure of ${ }^{n+1} \sqrt{S}$, then using Lemma 2.3 we have

$$
\begin{aligned}
U(\phi) U(\phi) & =\sum_{m=0}^{n} T^{m} \int\left\{\sum_{k+j=m} \phi_{k}(\lambda) \psi_{j}(\lambda)+\lambda^{n+1} \sum_{k+j=m+n+1} \phi_{k}(\lambda) \psi_{j}(\lambda)\right\} E(d \lambda) \\
& =\sum_{m=0}^{n} T^{m} \int\left(\phi \psi^{\prime}\right)_{m}(\lambda) E(d \lambda)=U(\phi \psi) .
\end{aligned}
$$

Now if $m=0,1$ and $\phi^{\prime}(\lambda)=\lambda^{m}$, then by a simple calculus we obtain $\phi_{k}(\lambda)=1$ for $k=m, \lambda \neq 0$ and $\phi_{k}(\lambda)=0$ for $k \neq m$. Because T is one-to-one, S and ${ }^{n+1} \sqrt{S}$ have the same property. Consequently $E(\{0\})=0$. Thus we have

$$
U^{\prime}(1)=\int_{i 0,} E(d \lambda)=I \quad \text { and } \quad U(\lambda)=T \int_{\{0\}^{\prime}} E(d \lambda)=T
$$

Lemma 3.4. Let K be a compact set, $f \in \mathcal{F}(K)$ be non-constant in each connected component of its domain G which intersects K. Suppose, for $\lambda_{0} \in K$ and $r>0$ such that $C\left(\lambda_{0}, r\right) \subset G, f$ is expressed as $\left.f(\lambda)=f\left(\lambda_{0}\right)+\left(\lambda-\lambda_{0}\right), h(\lambda)\right)^{n+1}(n \geqq 1)$ with a holomorphic function h in a neighborhood G^{\prime} of $C\left(\lambda_{0}, r\right)$ such that $h\left(\lambda_{0}\right) \neq 0$ and $g(\lambda)=\left(\lambda-\lambda_{0}\right) h(\lambda)$ is one-to-one in G^{\prime}. Given $T \in \mathscr{L}(X)$, if $f(T)$ is a scalar operator and $\sigma(T) \subset C\left(\lambda_{0}, r\right) \cap K$, then T is a regular $\Phi(f, K)$-scalar operator.

Proof. Let us remark first that by Proposition 2.1, $\Phi(f, K)$ is a basic algebra. If $\left.f^{\prime} T\right)-f^{\prime}\left(\lambda_{0}\right)=S$, then $\left(g^{\prime}(T)\right)^{n+1}=S$. Let E be the spectral measure of S and $E\{\{0\})=P_{1}, E\left(\{0\}^{\prime}\right)=P_{2}$. By Proposition 3.2, we have to prove that $T \mid P_{1} X$ and $T \mid P_{2} X$ are $\Phi(f, K)$-scalar operators. Because we have $S \mid P_{1} X=0$ $=\left(h\left(T \mid P_{1} X\right)\right)^{n+1}\left(\left\{T \mid P_{1} X\right)-\lambda_{0}\right)^{n+1}$ and $h(\lambda) \neq 0$ for $\lambda \epsilon C_{(}^{\prime} \lambda_{0}, r_{\ell}^{\prime}$, it results $\left(\left(T \mid P_{1} X\right)\right.$ $\left.-\lambda_{0}\right)^{n+1}=0$. Thus if $Q_{1}=\left(T \mid P_{1} \chi\right)-\lambda_{0}$ then the equation

$$
U_{1}(\phi)=\sum_{k=0}^{n} \frac{Q_{1}{ }^{k}}{k!}\left(\bar{D}^{k} \phi\right)\left(\lambda_{0}\right)
$$

defines evidently a regular $\Phi(f, K)$-spectral representation such that $U_{1}(\lambda)=$ $T \mid P_{1} X$. Now if we take $r^{\prime}>0$ such that $\left.g\left(C_{(}^{\prime} \lambda_{0}, r\right)\right) \subset$ int $C\left(0, r^{\prime}\right)$, then we have also $\sigma\left(g^{\prime}(T)\right)\left(\operatorname{int} C\left(0, r^{\prime}\right)\left([10]\right.\right.$, VII. 3.11). Let Q be the map $Q: \bigotimes_{0}^{n}\left(r^{\prime}\right) \rightarrow$ $\mathcal{L}\left(P_{2} \chi\right)$ given in Theorem 3.3 associated to $g\left(T \mid P_{2} \chi\right)$. Because g is one-to-one there is $\psi \in \mathbb{C}^{n}\left(r^{\prime}\right)$ such that $\left.(\psi) \circ g\right)^{\prime}(\lambda)=\lambda$ in a neighborhood of $C\left(\lambda_{0}, r\right)$. By Proposition 2.1, ψ is $\Phi(f, K)$-proper with respect to $\bigodot_{0}^{n}\left(r^{\prime}\right)$, because it is analytic in a neighborhood of 0 . Consequently $U_{2}(\phi)=\mathscr{Q}(\phi \circ(t)$, defines a $\Phi(f, K)$-spectral representation ($[16]$, Prop. 1.2), and $U_{2}(\lambda)=Q(\mu)=\varphi\left(g\left(T \mid P_{2} X\right)\right)=T \mid P_{2} \chi$. The regularity of U_{2} results from the properties of ϑ.

Theorem 3.5. Let $T \in \mathcal{L}(X)$ and $f \in \mathcal{F}(\sigma(T))$ be non-constant in each con-
nected component of its domain which intersects $\sigma(T)$. If $f(T)$ is a scalar operator then T is a regular $\Phi(f, \sigma(T))$-scalar operator.

Proof. We shall suppose that the set $\dddot{M}_{0}=\left\{\lambda ; \lambda \in \sigma(T), f^{\prime}(\lambda)=0\right\}$ is nonvoid, because in the contrary case the theorem is known to be true (see [3], Th. 3). M_{0} is a finite set, say $\left\{\lambda_{j}\right\}_{j=1}^{n}$. Let $\eta=\left\{\mu_{j}\right\}_{j=1}^{q}=f\left(M_{0}\right)$ and $\mathbb{M}=f^{-1}(N) \cap \sigma(T)$ $=\left\{\lambda_{j}\right\}_{j=1}^{m}, n \leqq m<\infty$. For each $j, 1 \leqq j \leqq n$, there is $\varepsilon_{j}>0$ such that $f(\lambda)=$ $f\left(\lambda_{j}\right)+\left(\left(\lambda-\lambda_{j}\right) h_{j}(\lambda)\right)^{n_{j}+1}$ with a holomorphic function h_{j} defined in a neighborhood G_{j} of $C\left(\lambda_{j}, \varepsilon_{j}\right)$ such that $h_{j}(\lambda) \neq 0$ and $g_{j}(\lambda)=\left(\lambda-\lambda_{j}\right) h_{j}(\lambda)$ is one-to-one in G_{j}, where $n_{j}=m_{f^{\prime}}\left(\lambda_{j}\right)$. Choose $\varepsilon>0$ such that $\varepsilon<\min \left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right), C\left(\lambda_{j}, \varepsilon\right) \cap C\left(\lambda_{k}, \varepsilon\right)$ $=\emptyset$ for $j \neq k$ and $C(\nVdash, \varepsilon) \cap f^{-1}(n)=\Pi$. Using Lemma 1.1, we can find $\eta>0$ such that $C\left(\mu_{j}, \eta\right) \cap C\left(\mu_{k}, \eta\right)=\emptyset$ for $j \neq k$ and $f^{-1}(C(\eta, \eta)) \cap \sigma(T) \subset C^{\prime}(\pi, \varepsilon)$.

Now if $f(T)=S$ and E is the spectral measure of S, then, denoting $\sigma_{j}=$ $C\left(\mu_{j}, \eta\right), 1 \leqq j \leqq q, \sigma_{q+1}=(C(N, \eta))^{\prime}$, we have to prove the theorem for $T \mid E^{\prime}\left(\sigma_{j}, \chi\right.$, $j=1, \ldots, q+1$ (see Proposition 3.2). Because E is in the bicommutant of T, we have $\sigma\left(T \mid E\left(\sigma_{j}\right) X\right) \subset \sigma(T)$ and by [10], VII $3.11 \sigma\left(T \mid E\left(\sigma_{j}\right) X\right) \subset f^{-1}\left(\sigma_{j}\right)$. Also we have $f\left(T\left|E\left(\sigma_{j}, \chi\right)=S\right| E\left(\sigma_{j}\right) X\right.$. Therefore, applying [3], Th. 3, T|E($\left.\sigma_{q+1}\right) \chi$ results to be scalar. If $j \leqq q$, then $\sigma\left(T \mid E\left(\sigma_{j}\right) X\right) \subset \sigma(T) \cap C^{\prime}(\eta, \varepsilon)$. Let us denote $E\left(\sigma_{j}\right) X=\chi_{j}, T \mid \chi_{j}=T_{j}$. We have $\sigma\left(T_{j}\right) \subset \bigcup_{\lambda_{k} \epsilon_{M_{1}}} C\left(\lambda_{k}, \varepsilon\right)$, where \mathbb{M}_{1} is a subset of \%. Let $P_{\lambda_{k}}$ be the spectral projection of T_{j} corresponding to $C\left(\lambda_{k}, \varepsilon\right)$ (see [10], VII 3.17). Then $\sigma\left(T_{j} \mid P_{\lambda_{k}} X_{j}\right) \subset C\left(\lambda_{k}, \varepsilon\right)$ and because $P_{\lambda_{k}}$ is in the bicommutant of T_{j}, the operator $f\left(T_{j} \mid P_{\lambda_{k}} \chi_{j}\right)=S \mid P_{\lambda_{k}} \chi_{j}$ is scalar. If $k>n$ then $f^{\prime}(\lambda) \neq 0$ for $\lambda \in \sigma\left(T_{j} \mid P_{\lambda_{k}} \chi_{j}\right)$, thus $T_{j} \mid P_{\lambda_{k}} \chi_{j}$ is a scalar operator by [3], Th. 3, and if $k \leqq n$ then $T_{j} \mid P_{\lambda_{k}} X_{j}$ is a regular $\Phi(f, \sigma(T))$-scalar operator by Lemma 3.4. It follows from Proposition 3.2 that $T \mid E\left(\sigma_{j}\right) X$ is a regular $\Phi\left(f, \sigma_{(}^{\prime} T\right)$)-scalar operator, which proves our theorem.

Corollary 3.6. In the hypothesis of Theorem 3.5, if f^{\prime} has only simple zeros in $\sigma(T)$, then T is a regular generalized scalar operator in the sense of [11] (i. e., a regular \mathbb{C}^{∞}-scalar operator).

Proof. In this case $\Phi(f, \sigma(T))=\bigotimes^{1}$ and a \bigotimes^{1}-scalar operator is a \mathscr{C}^{∞} scalar operator.

Bibliography

[1] C. Apostol, Propriétés de certains opérateurs bornés des espaces de Hilbert, Rev. Roum. Math. Pures et Appl., 10 (1965), 643-644.
[2] C. Apostol, On the roots of spectral operators, Proc. Amer. Math. Soc., 19 (1968) (to appear).
[3] C. Apostol, On the roots of spectral operator-valued analytic functions, Rev. Roum. Math. P. Appl., 13 (1968), 587-589.
[4] C. Apostol, Teorie spectrală şi calcul funç̧ional, Seminar 1966-1967, Stud. Cerc. Mat., 20 (1968) (to appear).
[5] I. Colojoarǎ, Generalized spectral operator, Rev. Roum. Math. Pures et Appl., 7 (1962), 459-465.
[6] I. Colojoarǎ and C. Foias, Quasi-nilpotent equivalence of not necessarily commuting operators, J. Math. Mech., 15 (1965), 521-540.
[7] I. Colojoară and C. Foiaş, Generalized spectral operators, Gordon and Breach, New York (to appear).
[8] H. R. Dowson, Restriction of spectral operators, Proc. London Math. Soc., 15 (1965), 437-457.
[9] N. Dunford, Spectral operators, Pacific J. Math., 4 (1954), 321-354.
[10] N. Dunford and J. T. Schwartz, Linear operators Part I, Interscience Publ., New York, 1958.
[11] C. Foias, Une application des distributions vectorielles à la théorie spectrale, Bull. Sc. Math., 84 (1960), 147-158.
[12] E. Hille and R. Phillips, Functional analysis and semi-groups, Amer. Math. Soc. Colloq. Publ., Vol. 31, Providence, 1957.
[13] S. Kurepa, Logarithms of spectral type operators, Glas. Mat. Fiz. Astr., 18 (1963), 53-57.
[14] S. Kurepa, An operator-roots of an analytic function, Glas. Mat. Fiz. Astr., 18 (1963), 49-51.
[15] F-Y. Maeda, Generalized spectral operators on locally convex spaces, Pacific J. Math., 13 (1963), 177192.
[16] F-Y. Maeda, Functions of generalized scalar operators, J. Sci. Hiroshima Univ., Ser. A-I, 26 (1962), 71-76.
[17] F-Y. Maeda, On spectral representations of generalized spectral operators, J. Sci. Hiroshima Univ., Ser. A-I, 27 (1963), 137-149.
[18] G. Stampfli, Roots of scalar operators, Proc. Amer. Math. Soc., 13 (1962), 796-798.
Institut de Mathématique
Académie de la République Socialiste de Roumanie

[^0]: *) The author wishes to express his gratitude to Professor F-Y. Maeda for detecting an error in the manuscript and for his suggestions concerning the elimination of this error.

