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Introduction

Let X be a Banach space, T a linear bounded operator acting in X and f
an analytic complex function defined in a neighborhood of 6{T). Let us sup-
pose also that f is non-constant in each connected component of its domain of
definition which intersects o(T).

In this paper we study the spectral properties of 7" if f(T) is a spectral
operator of scalar type. The example of Stampfli (see [187]) shows that in
general T is not a scalar operator.

We shall prove that T is a @-scalar operator in the sense of [157, where
@ is a suitable basic algebra.

1. Preliminaries

Throughout the paper we shall use the following basic notation and con-
ventions:

N: the set of all natural numbers.

A: the set of all complex numbers.

0'=A—o0 for 0 C A.

C(K, r)={2¢€ 4; dist (2, K)<r}, where K(C 4) is compact and r =>0.

JF(K): the set of all analytic complex functions whose domains of defini-
tion are open sets containing K, where K is a compact subset of A.

X: a Banach space over the complex field 4.

2(X): the algebra of all linear bounded operators acting in X.

I: the unity of 2(X).

o(T): the spectrum of T ¢ L(X).

Let Tc 4(X) and fc(o(T)). Then (T):?}V;S FOR(; T)da, where
bd {0 r

*)  The author wishes to express his gratitude to Professor F-Y. Macda for dstecting an error in
the manuscript and for his suggestions concerning the elimination of this error.
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I is an admissible contour in the sense of [107], VII. 3.9 and R(A; T) is the
resolvent of T.

Lemma 1.1.  Let G be an open set and K a compact subset of G. If f is a
continuous complex function on G, then for any compact subset F of f(K) and
Jor any ¢>0 there is 7>>0 such that

SHCF, MNKCO(f(F)NK, )
Sfor any r <.

Proor. Let us suppose that there is ¢,>0 such that for any nc¢ N we
can find r, <<1/n with the property f~Y(C(F, r))NK G C(f AF)NK, e). Let
o€ fHCEF, r)NK, 2, ¢ C(f~{F)NK, &) and 1, be a limit point of the se-
quence {4,}. We have 1, ¢ K and because f(1,) ¢ C{F, r,), we also have f(4,) ¢ F.
Thus 2, € f~XF)NK, which is impossible because 1, ¢ C(f~'(F)NK, &), and the
lemma results.

2. Algebra of functions

In this section we shall use the terminology and the definitions introduced
in [157, [167].

The symbols D and D will denote the operators ]—‘<~0~+i i) and
2 \ 0s 0t
1/0

.0 . 1 ¢
?(W lW) respectively, where s+it=2¢ A.
If K is a compact set in 4 and ¢ is an n-times continuously differentiable

complex function defined in a neighborhood of K, then we shall put
1lux= 3 sup|(D*D')D)|.
p+g=0 A\e€K

Let f be an analytic complex function defined on an open set G. We
define the function m, in G as follows:

the least integer n such that f™(2)=~0, if it exists;

mg(4) = ) )
oo, if £(2)=0 for any integer n.

In fact ms(2) is the order of multiplicity of 1 as root of the equation f(x)=0.

Now we can introduce some algebras of functions which will be used in
the sequel.

(1) ©": the algebra of all n-times continuously differentiable complex
functions defined in 4 with the topology given by the family of semi-norms
{|+|2x; K compact}, if n is finite; by {|:|. x; £=0,1, 2, ..., K compact}, if
n—oco

(2) Cr={¢eC"; (DIgpX)=0 for 1<j, j<n} with the topology induced
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by ©".
(8) ©@*(r): the algebra of all n-times continuously differentiable complex
functions defined in C(0, r) with the topology given by the norm

16l.= % sup [(D*D)D)].
ptg=0 AECO0,7)
where n < oo and r>0.
4) Oxr)={¢ € C"(t); (D'$)0)=0 for 1<j, j<n} with the topology in-
duced by O"(r).
(5) Let K be a compact set and f € F(K). Then we consider the algebra

m(f’ K)= [\@z,f,(x)
reK
with the topology induced by @, where n,= maxm ().
reK

Remarx 1. 09=0°, 0L=0C", 0Y(r)=0) and Ci(r)=0'(r).

Prorosition 2.1, Let K be a compact set and f € F(K) be non-constant in
each connected component of its domain which intersects K. Then O(f, K) is a
basic algebra and, for any n and ge OKr) such that g(0) € K, 0 <n <m(g(0)),
the function g is O(f, K)-proper with respect to Oir). (See Def. 1.1 of [15] and
Def. 1.1 of [167].)

Proor. Because f is non-constant in each connected component of its
domain which intersects K, the function m;-| x is different from 0 only in a
finite set. Thus @(f, K) is a finite intersection of 0%; if f(1)70 for any
A€ K, then & f, K)=0°, if {" has only simple zeros in K, then @( f, K)=0C" and
if M=4{e K; f(A)=Ff"(2)=0} =0, then O( f, K)=/\re 0"'™.

The non-trivial case is when % ==@. But the properties (ii) and (iii) of
Def. 1.1 of [157] are evidently verified. Thus we shall prove only (i) of Def.
1.1 of [157]. For this, let F(C 4) be a compact set and G be an open set con-
taining F. Choose ¢>0 such that C(F, ¢)CG, C(F, )N\ =FN and let Fy=
C(F,¢e/2), Go=int C(F,¢) and nozrxnealgi ms{(2). Taking ¢ ¢ 0" such that ¢(1)=1

for 2¢ F and ¢(2)=0 for 2 ¢ G, we have evidently ¢ ¢ &(f, K). Consequently
O(f, K) is a basic algebra.

Now if ge @i(r) and n < n,, then it is well-known that the map ¢ >gog
from @ to C@*(r) is continuous. By the definition of topologies in @(f, K)
and in @), we have to prove only that, in the hypothesis of our proposition,
we have ¢gogc Ci(r) for any ¢ € &(f, K). But if n=0, 1, this happens as a
trivial consequence of Remark 1. In the contrary case, using the formula
D{gog)=((Dg)o g)Dg+((Dp)og)Dg, we obtain by a simple calculus again
¢ o g€ Cxr), which proves the proposition.

Let n e Nand 0=k <n. For any ¢ ¢ €"(r) we shall put
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. [ B s it 240
L0 if 2=0,
where i,=exp[2rip/(n+1)].
Limma 2.2. For any nc N, ¢ ¢ Cxr) and 0k <n, we have

sup. |¢k(/l)|§4|¢ln

AEC(0

Proor. If k=0, then the inequality becomes evident, thus we shall sup-
pose k=1. By Taylor’s formula, we have in this case, for any « ¢ (0, r),

(1) = fi: (“Dt.fww f . Gu(10),

where

Gy = HD+ED 4P| | (#D+aD)G+P)|

2k! A=p,n 2k! Pam 0,1

for some 0,, 6,; 0<6,<1, 0<6.<1. It follows
Bl =1l BN a1,
Because (D’$)0)=0 for 1<j, j<n we obtain
) = ; (D)) + i)

and using the equality X7 ,(i,)’*=0 for 0<;<k we have, for any 10,

Pi(ipA)
¢k(l)_ +1 pZ: (];ﬁlp\k *
It follows
1 & |de(ipd)|
Bl= Ly B < el

Lemma 2.3, Let ¢, ¢ € Q2(r), n € N. Then for any m, 0<m <n, we have
CIOMONES , 2 ¢k(l)¢’j(l)+i"*'lk i KOP(A).
+ji=m

ti=mintl
0=k,j=n

Proor. The equality is non-trivial if 2=~0. But if 2=~0 we have
, 2 ¢k(l>¢j(l)+l”“k 2 1¢k(l)¢’j<l)
+i=m

tji=mrnt
0=k,j=n

= 5 @ s Q21 3 G 14D

=m-
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(T]i)?ﬁp; 0{ 2 ) MG R m}qﬂ(zﬂ)g&(; 2

= T o ) "R = B,

8. Functional calculus

Let @ be a closed subalgebra of some ©* and at the same time a basic
algebra. If 7/ is a @-spectral representation (Def. 1.3 of [157), then it has
compact support in view of the topology of @. Therefore we shall write
U, UQ) for U(p,) and U(p,) respectively, where ¢, ¢ € @ and ¢,(A) =2, go(A)=1
in some neighborhood of supp %. In fact we have supp%=a(7%(2)) and U(1)=1.

Dermirion 3.1. A @-spectral representation % is called regular if it is
valued in the bicommutant (=the commutant of the commutant; see [127]) of
U2). An operator T € 2(X) is called a regular @-scalar operator if there is a
regular @-spectral representation ¥ such that T'=%(2).

Prorosition 3.2. Let T € 2(X) and {P;}7-, be a finite set of projections in
the bicommutant of T such that P;P,=0 if jk and X7 ,P,=1. Let ® bea
basic closed subalgebra of some €*. Then T is a regular @-scalar operator if
and only 1f T|P;X is a regular @-scalar operator for each j.

Proor. If T is a regular @-scalar operator, then there is a spectral re-
presentation ¥ valued in the bicommutant of 7. The map ¥%,;=1|P;X is again
a @-spectral representation in A(P;X) and U;(A)= T| P;X.

If V{T|PX)=(T|PX)V,;, then we have (V;P;)T=T(V;P;) and because
V;P; € L(X) we obtain U;V,=UV,;P,=V;Pl=VUP;=VU; in P;X, which proves
that %; is regular.

Now if T|P;X is a regular @-scalar operator for each j and #%;(2)=T|P;X,
then =@ ,U; is a O-spectral representation, regular if %, is regular for
each j. Indeed, if Ve A(X), VT=TV, then putting V;=V|P;X we have
V]<T|P]X)=(TIP]X)V], thus Vﬂz@;”:leWj:EB?:lﬂjVj:WV.

Tureorem 3.3. Let T € A(X) and suppose that for some n € N the operator
T"1=S is of scalar type. If T is onme-to-one, then for any r>0 such that
a(T)C €0, r), the map U from Cy(r) to L(X) defined by the equation

W)= 5 TS

18 a continuous homomorphism valued in the bicommutant of T such that
UL)=1T and U2Q)=T.

Proor. The operator "*'JS is a scalar operator with the spectrum in
C(0, r) (see 9], Lemma 6) and any operator which commutes with 7 com-
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mutes also with ¢,(*"'/S), because such an operator commutes with S and
é("*1/S) is a function of S. Thus U(¢) is in the bicommutant of 7. The
linearity of % is trivial and the continuity results by [9], Lemma 6 and our
Lemma 2.2

If E is the spectral measure of "*'y§, then using Lemma 2.3 we have

Ul = T\ T HOB@+2T T plQe D EED

k+tj=m k+j=m+n~+1
= 3 77\ DE(dD) = Upy).

Now if m= 0, 1 and ¢{A)=2", then by a simple calculus we obtain ¢,(A)=1 for
k=m, 250 and ¢,{A)=0 for k==m. Because T is one-tc-one, Sand "*'y/§ have

the same property. Consequently E{{0})=0. Thus we have

Uy = S EdD=1 and UD= Tgko‘,E(d/l) _T
Lemva 34. Let K be a comgact set, f ¢ K ) be non-constant in each con-
nected component of its domain G which intersects K. Suppose, for A, ¢ K and
r>0 such that C(l, ) CG, f is expressed as f()=fo)+(A—2)hX)" n=1)
with a holomorphic function h in a neighborhood G’ of C(2,, 1) such that A(,)=~0
and g(2)={(2— 20 k2) is one-to-one in G'. Given T ¢ XX), if f(T) is a scalar
operator and o(T)C C(l, r)NK, then T is a regular @ f, K )-scalar operator.

Proor. Let us remark first that by Proposition 2.1, @(f, K) is a basic
algebra. If f{T)—f(2,)=S, then (g{T))""'=S. Let E be the spectral measure
of Sand E{{0})=P,, E({0}")=P,. By Proposition 3.2, we have to prove that
T|P,X and T|P,X are O f, K)-scalar operators. Because we have S|P;X=0
=(WTIPX) (T PX)— )" * and A(2) 0 for 2 ¢ C{A, r), it results ((T| P.X)
—2)"*'=0. Thus if Q,=(T|P,X)— 4, then the equation

U)=3 Ql (D))

defines evidently a regular @( f, K')-spectral representation such that %{(2)=
T|PX. Now if we take r'>0 such that g(C{2o, r))Cint €0, "), then we have
also d(g{T))C int {0, r) ([107], VII. 8.11). Let 9 be the map N: 03+ —
L(P,X) given in Theorem 3.3 associated to g(T'|P.,X). Because g is one-tc-one
there is ¢ ¢ €"(r") such that (¢o g{2)=2 in a neighborhocd of C(4, r). By Proc-
position 2.1, ¢ is @( f, K )-proper with respect to Ci(r'), because it is analytic
in a neighborhood of 0. Consequently ¥%,(¢)=¢o¢) defines a @(f, K)-spec-
tral representation ([167], Prop. 1.2), and (2} =X ¢ =¢(g{T|P,X))="T|P:X.
The regularity of 1, results from the properties of QY.

Turorem 8.5. Let T ¢ XX) and f ¢ Ha(T)) be non-constant in each con-
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nected component of its domain which intersects o(T). If f(T) is a scalar
operator then T is a regular O( f, o(T))-scalar operator.

Proor. We shall suppose that the set /7l,={1; 1€ o(T), f(2)=0} is non-
void, because in the contrary case the theorem is known to be true (see 3], Th.
8). M, is a finite set, say {1,}7_,. Let %={u;}_,=f,)and M=FXU)No(T)
={2;}",, n=<m<oco. Foreach j, 1<;j<n, there is ¢;>0 such that f()=
SN+ (@A—2)h D))" with a holomorphic function %, defined in a neighbor-
hood G; of C(4;, ¢;) such that 2 (1) 0 and g, (A)=(1—2,)h;{(2) is one-to-one in G;,
where n;=m(2;). Choose ¢>0 such that e<min{e, ..., &,), CA;, INC{, €
=@ for j=+k and C(, )N f~*U)=". Using Lemma 1.1, we can find >0
such that C(s, 7)NC{t, 7)=0 for j==k and £ (CUL, D)Mo T)YC CUIL, €.

Now if f(T)=S and E is the spectral measure of S, then, denoting 7;=
Clyj 1), 1 <j=<gq, 0,.1=(C(V, 7)), we have to prove the theorem for 7’| E{g;)X,
j=1, ..., ¢g+1 (see Proposition 3.2). Because £ is in the bicommutant of T,
we have o(T|E(6;)X)Co{(T) and by [107], VII 8.11 ¢(T | E{c)X)CfXa;). Also
we have f(T|E(6)X)=S|E(c)X. Therefore, applying [37], Th. 8, T|E{s,. )X
results to be scalar. If j <gq, then o(T|E)X)Ca(T)NC, ). Let us denote
E(@)X=%;, T|X;=T;. Wehave 6(T;)C\x,ce,C(As, ), where 1, is a subset of
. Let P, be the spectral projection of T; corresponding to C(4, ¢) {see
(107, VII 8.17). Then o{T;| P, X;)C C(4, & and because P, is in the bicom-
mutant of T;, the operator f(T;|P, X;)=S|P, X, is scalar. If &£>n then
S (B0 for 2 € o(T;| P, X)), thus T;| P, X; is a scalar operator by [37], Th. 3, and
if k< n then T;|P, X; is a regular @(f, o(T))-scalar operator by Lemma 3.4.
It follows from Proposition 8.2 that T|E(c;)X is a regular &( f, 6{T))-scalar
operator, which proves our theorem.

CoroLLARY 3.6. In the hypothesis of Theorem 3.5, if f has only simple
zeros in o(T), then T is a regular generalized scalar operator in the sense of
[117 (. e., a regular @=-scalar operator).

Proor. In this case @(f, 0(T))=0' and a @'-scalar operator is a O0~-
scalar operator.

Bibliography

[1] C. Apostol, Propriétés de certains opérateurs bornés des espaces de Hilbert, Rev. Roum. Math. Pures
et Appl., 10 (1965), 643-644.

[2] C. Apostol, On the roots of spectral operators, Proc. Amer. Math. Soc., 19 (1968) (to appear).

[3]1 C. Apostol, On the roots of spectral operator-valued analytic functions, Rev. Roum. Math. P. Appl,,
13 (1968), 587-589.

[4] C. Apostol, Teorie spectrala §i calcul functional, Seminar 1966-1967, Stud. Cerc. Mat., 20 (1968)
(to appear).

[5] I Colojoara, Generalized spectral operator, Rev. Roum. Math. Pures et Appl., 7 (1962), 459-465.

[6] I Colojoara and C. Foias, Quasi-nilpotent equivalence of not necessarily commuting operators, J. Math.
Mech., 15 (1965), 521-540.

[7] I Colojoard and C. Foias, Generalized spectral operators, Gordon and Breach, New York (to appear).



180

(8]

(9]
(10]
(1]
[12]
[13]
[14]
[15]
[16]
(17]

[18)

Constantin APOSTOL

H. R. Dowson, Restriction of spectral operators, Proc. London Math. Soc., 15 (1965), 437-457.

N. Dunford, Spectral operators, Pacific J. Math., 4 (1954), 321-354.

N. Dunford and J. T. Schwartz, Linear operators Part 1, Interscience Publ., New York, 1958.

C. Foias, Une application des distributions vectorielles d la théorie spectrale, Bull. Sc. Math., 84 (1960),
147-158.

E. Hille and R. Phillips, Functional analysis and semi-groups, Amer. Math. Soc. Collog. Publ., Vol.
31, Providence, 1957.

S. Kurepa, Logarithms of spectral type operators, Glas. Mat. Fiz. Astr., 18 (1963), 53-57.

S. Kurepa, An operator-roots of an analytic function, Glas. Mat. Fiz. Astr., 18 (1963), 49-51.

F-Y. Maeda, Generalized spectral operators on locally convex spaces, Pacific J. Math., 13 (1963), 177-
192.

F-Y. Maeda, Functions of generalized scalar operators, J. Sci. Hiroshima Univ., Ser. A-I, 26 (1962),
71-76.

F-Y. Maeda, On spectral representations of generalized spectral operators, J. Sci. Hiroshima Univ.,
Ser. A-1, 27 (1963), 137-149.

G. Stampfli, Roots of scalar operators, Proc. Amer. Math. Soc., 13 (1962), 796-798.

Institut de Mathématique
Académie de la République
Socialiste de Roumanie





