Roots of Scalar Operator-valued Analytic Functions and their Functional Calculus

Constantin Apostol

(Received December 6, 1967) (Revised March 11, 1968)*)

Introduction

Let X be a Banach space, T a linear bounded operator acting in X and f an analytic complex function defined in a neighborhood of $\sigma(T)$. Let us suppose also that f is non-constant in each connected component of its domain of definition which intersects $\sigma(T)$.

In this paper we study the spectral properties of T if f(T) is a spectral operator of scalar type. The example of Stampfli (see [18]) shows that in general T is not a scalar operator.

We shall prove that T is a \emptyset -scalar operator in the sense of [15], where \emptyset is a suitable basic algebra.

1. Preliminaries

Throughout the paper we shall use the following basic notation and conventions:

N: the set of all natural numbers.

 Λ : the set of all complex numbers.

 $\sigma' = \Lambda - \sigma$ for $\sigma \subset \Lambda$.

 $C(K, r) = \{\lambda \in \Lambda; \text{ dist } (\lambda, K) \leq r\}, \text{ where } K(\subset \Lambda) \text{ is compact and } r \geq 0.$

 $\mathcal{F}(K)$: the set of all analytic complex functions whose domains of defini-

tion are open sets containing K, where K is a compact subset of Λ .

 $\mathbb{X}:$ a Banach space over the complex field $\varDelta.$

 $\mathcal{L}(X)$: the algebra of all linear bounded operators acting in X.

I: the unity of $\mathcal{L}(X)$.

 $\sigma(T)$: the spectrum of $T \in \mathcal{L}(X)$.

Let $T \in \mathcal{L}(X)$ and $f \in \mathcal{F}(\sigma(T))$. Then $f(T) = \frac{1}{2\pi i} \int_{\Gamma} f(\lambda) R(\lambda; T) d\lambda$, where

^{*)} The author wishes to express his gratitude to Professor F-Y. Maeda for detecting an error in the manuscript and for his suggestions concerning the elimination of this error.

 Γ is an admissible contour in the sense of [10], VII. 3.9 and $R(\lambda; T)$ is the resolvent of T.

LEMMA 1.1. Let G be an open set and K a compact subset of G. If f is a continuous complex function on G, then for any compact subset F of f(K) and for any $\varepsilon > 0$ there is $\eta > 0$ such that

$$f^{-1}(C(F,r)) \cap K \subset C(f^{-1}(F) \cap K, \varepsilon)$$

for any $r \leq \eta$.

PROOF. Let us suppose that there is $\varepsilon_0 > 0$ such that for any $n \in N$ we can find $r_n \leq 1/n$ with the property $f^{-1}(C(F, r_n)) \cap K \subset C(f^{-1}(F) \cap K, \varepsilon_0)$. Let $\lambda_n \in f^{-1}(C(F, r_n)) \cap K$, $\lambda_n \notin C(f^{-1}(F) \cap K, \varepsilon_0)$ and λ_0 be a limit point of the sequence $\{\lambda_n\}$. We have $\lambda_0 \in K$ and because $f(\lambda_n) \in C(F, r_n)$, we also have $f(\lambda_0) \in F$. Thus $\lambda_0 \in f^{-1}(F) \cap K$, which is impossible because $\lambda_n \notin C(f^{-1}(F) \cap K, \varepsilon_0)$, and the lemma results.

2. Algebra of functions

In this section we shall use the terminology and the definitions introduced in [15], [16].

The symbols D and \overline{D} will denote the operators $\frac{1}{2}\left(\frac{\partial}{\partial s}+i\frac{\partial}{\partial t}\right)$ and $\frac{1}{2}\left(\frac{\partial}{\partial s}-i\frac{\partial}{\partial t}\right)$ respectively, where $s+it=\lambda \in \Lambda$.

If K is a compact set in Λ and ϕ is an *n*-times continuously differentiable complex function defined in a neighborhood of K, then we shall put

$$|\phi|_{n,K} = \sum_{p+q=0}^{n} \sup_{\lambda \in K} |(\bar{D}^{p} D^{q} \phi)(\lambda)|.$$

Let f be an analytic complex function defined on an open set G. We define the function m_f in G as follows:

$$m_f(\lambda) = egin{cases} ext{the least integer n such that $f^{(n)}(\lambda) \neq 0$, if it exists } \ &\infty, ext{ if $f^{(n)}(\lambda) = 0$ for any integer n.} \end{cases}$$

In fact $m_f(\lambda)$ is the order of multiplicity of λ as root of the equation $f(\mu)=0$.

Now we can introduce some algebras of functions which will be used in the sequel.

(1) \mathcal{Q}^n : the algebra of all *n*-times continuously differentiable complex functions defined in Λ with the topology given by the family of semi-norms $\{|\cdot|_{n,K}; K \text{ compact}\}, \text{ if } n \text{ is finite}; \text{ by } \{|\cdot|_{k,K}; k=0, 1, 2, ..., K \text{ compact}\}, \text{ if } n = \infty.$

(2) $\mathcal{Q}_{\lambda}^{n} = \{\phi \in \mathcal{Q}^{n}; (D^{j}\phi)(\lambda) = 0 \text{ for } 1 \leq j, j < n\}$ with the topology induced

by \mathbb{Q}^n .

(3) $\mathcal{O}^n(r)$: the algebra of all *n*-times continuously differentiable complex functions defined in C(0, r) with the topology given by the norm

$$|\phi|_n = \sum_{p+q=0}^n \sup_{\lambda \in C(0,r)} |(\bar{D}^p D^q \phi)(\lambda)|.$$

where $n < \infty$ and r > 0.

(4) $\mathcal{Q}_{u}^{n}(r) = \{\phi \in \mathcal{Q}^{n}(r); (D^{j}\phi)(0) = 0 \text{ for } 1 \leq j, j < n\}$ with the topology induced by $\mathcal{Q}^{n}(r)$.

(5) Let K be a compact set and $f \in \mathcal{F}(K)$. Then we consider the algebra

$$\boldsymbol{\Phi}(f,K) = \bigcap_{\lambda \in K} \mathcal{Q}_{\lambda}^{m_{f},(\lambda)}$$

with the topology induced by \mathcal{Q}^{n_0} , where $n_0 = \max_{\lambda \in \mathcal{T}} m_{f'}(\lambda)$.

REMARK 1. $\mathcal{Q}_{\lambda}^{0} = \mathcal{Q}^{0}, \ \mathcal{Q}_{\lambda}^{1} = \mathcal{Q}^{1}, \ \mathcal{Q}_{0}^{0}(r) = \mathcal{Q}^{0}(r) \text{ and } \mathcal{Q}_{0}^{1}(r) = \mathcal{Q}^{1}(r).$

PROPOSITION 2.1. Let K be a compact set and $f \in \mathcal{F}(K)$ be non-constant in each connected component of its domain which intersects K. Then $\mathcal{O}(f, K)$ is a basic algebra and, for any n and $g \in \mathcal{O}_0^n(r)$ such that $g(0) \in K$, $0 \leq n \leq m_f(g(0))$, the function g is $\mathcal{O}(f, K)$ -proper with respect to $\mathcal{O}_0^n(r)$. (See Def. 1.1 of [15] and Def. 1.1 of [16].)

PROOF. Because f is non-constant in each connected component of its domain which intersects K, the function $m_{f'}|_{K}$ is different from 0 only in a finite set. Thus $\mathcal{O}(f, K)$ is a finite intersection of $\mathcal{O}_{\lambda}^{n}$; if $f'(\lambda) \neq 0$ for any $\lambda \in K$, then $\mathcal{O}(f, K) = \mathcal{O}^{0}$, if f' has only simple zeros in K, then $\mathcal{O}(f, K) = \mathcal{O}^{1}$ and if $\mathcal{M} = \{\lambda \in K; f'(\lambda) = f''(\lambda) = 0\} \neq \emptyset$, then $\mathcal{O}(f, K) = \bigcap_{\lambda \in \mathcal{M}} \mathcal{O}_{f'}^{m_{f'}(\lambda)}$.

The non-trivial case is when $\mathcal{M} \neq \emptyset$. But the properties (ii) and (iii) of Def. 1.1 of [15] are evidently verified. Thus we shall prove only (i) of Def. 1.1 of [15]. For this, let $F(\subset \Lambda)$ be a compact set and G be an open set containing F. Choose $\varepsilon > 0$ such that $C(F, \varepsilon) \subset G$, $C(F, \varepsilon) \cap \mathcal{M} = F \cap \mathcal{M}$ and let $F_0 = C(F, \varepsilon/2)$, $G_0 = \operatorname{int} C(F, \varepsilon)$ and $n_0 = \max_{\lambda \in K} m_{f'}(\lambda)$. Taking $\phi \in \mathcal{O}^{n_0}$ such that $\phi(\lambda) = 1$ for $\lambda \in F$ and $\phi(\lambda) = 0$ for $\lambda \notin G_0$ we have evidently $\phi \in \Phi(f, K)$. Consequently $\Phi(f, K)$ is a basic algebra.

Now if $g \in \mathcal{Q}_0^n(r)$ and $n \leq n_0$, then it is well-known that the map $\phi \to \phi \circ g$ from \mathcal{Q}^{n_0} to $\mathcal{Q}^n(r)$ is continuous. By the definition of topologies in $\mathcal{O}(f, K)$ and in $\mathcal{Q}_0^n(r)$, we have to prove only that, in the hypothesis of our proposition, we have $\phi \circ g \in \mathcal{Q}_0^n(r)$ for any $\phi \in \mathcal{O}(f, K)$. But if n = 0, 1, this happens as a trivial consequence of Remark 1. In the contrary case, using the formula $D(\phi \circ g) = ((\overline{D}\phi) \circ g)Dg + ((D\phi) \circ g)D\overline{g}$, we obtain by a simple calculus again $\phi \circ g \in \mathcal{Q}_0^n(r)$, which proves the proposition.

Let $n \in N$ and $0 \leq k \leq n$. For any $\phi \in \mathcal{O}^n(r)$ we shall put

$$\phi_k(\lambda) = egin{cases} rac{1}{(n+1)\lambda^k} \sum\limits_{p=0}^n (i_p)^{-k} \phi(i_p\lambda) & ext{ if } \lambda
eq 0 \ 0 & ext{ if } \lambda = 0, \end{cases}$$

where $i_p = \exp[2\pi i p/(n+1)]$.

LEMMA 2.2. For any $n \in N$, $\phi \in \mathcal{O}_0^n(r)$ and $0 \leq k \leq n$, we have

$$\sup_{\lambda \in C(0,r)} |\phi_k(\lambda)| \leq 4 |\phi|_n$$

PROOF. If k=0, then the inequality becomes evident, thus we shall suppose $k \ge 1$. By Taylor's formula, we have in this case, for any $\mu \in C(0, r)$,

$$\phi(\mu) = \sum_{j=0}^{k-1} \frac{(\mu \bar{D} + \bar{\mu} D)^j \phi}{j!} \Big|_{\lambda=0} + \tilde{\phi}_k(\mu),$$

where

$$\tilde{\phi}_{k}(\mu) = \frac{(\mu \overline{D} + \overline{\mu} D)^{k} (\phi + \overline{\phi})}{2k!} \Big|_{\lambda = \theta_{1} \mu} + \frac{(\mu \overline{D} + \overline{\mu} D)^{k} (\phi + \overline{\phi})}{2k!} \Big|_{\lambda = \theta_{2} \mu}$$

for some $\theta_1, \theta_2; 0 < \theta_1 < 1, 0 < \theta_2 < 1$. It follows

$$|\tilde{\phi}_{k}(\mu)| \leq |\mu|^{k} \frac{2^{k+1}}{k!} |\phi|_{k} \leq 4 |\mu|^{k} |\phi|_{n}.$$

Because $(D^{j}\phi)(0)=0$ for $1 \leq j, j < n$ we obtain

$$\phi(\mu) = \sum_{j=0}^{k-1} \frac{\mu^{j}}{j!} (\bar{D}^{j} \phi)(0) + \tilde{\phi}_{k}(\mu)$$

and using the equality $\sum_{p=0}^{n}(i_p)^{j-k}=0$ for $0\leq j < k$ we have, for any $\lambda \neq 0$,

$$\phi_k(\lambda) = \frac{1}{n+1} \sum_{p=0}^n \frac{\phi_k(i_p \lambda)}{(i_p \lambda)^k}.$$

It follows

$$|\phi_k(\lambda)| \leq \frac{1}{n+1} \sum_{p=0}^n \frac{|\phi_k(i_p\lambda)|}{|(i_p\lambda)^k|} \leq 4 |\phi|_n.$$

LEMMA 2.3. Let ϕ , $\psi \in \mathcal{Q}_0^n(r)$, $n \in N$. Then for any m, $0 \leq m \leq n$, we have

$$(\phi\psi)_m(\lambda) = \sum_{\substack{k+j=m\\ 0 \leq k, j \leq n}} \phi_k(\lambda)\psi_j(\lambda) + \lambda^{n+1} \sum_{\substack{k+j=m+n+1\\ 0 \leq k, j \leq n}} \phi_k(\lambda)\psi_j(\lambda).$$

PROOF. The equality is non-trivial if $\lambda \neq 0$. But if $\lambda \neq 0$ we have

$$\sum_{\substack{k+j=m\\ 0\leq k,j\leq n}} \phi_k(\lambda)\psi_j(\lambda) + \lambda^{n+1} \sum_{\substack{k+j=m+n+1\\ 0\leq k,j\leq n}} \phi_k(\lambda)\psi_j(\lambda)$$
$$= \sum_{\substack{k=0\\ k=0}}^m \phi_k(\lambda)\psi_{m-k}(\lambda) + \lambda^{n+1} \sum_{\substack{k=m+1\\ k=m+1}}^n \phi_k(\lambda)\psi_{m+n+1-k}(\lambda)$$

$$= \frac{1}{(n+1)^2 \lambda^m} \sum_{p,q=0}^n \left\{ \sum_{k=0}^n (i_p)^{-k} (i_q)^{k-m} \right\} \phi(i_p \lambda) \psi(i_q \lambda)$$
$$= \frac{1}{(n+1)\lambda^m} \sum_{p=0}^n (i_p)^{-m} \phi(i_p \lambda) \psi(i_p \lambda) = (\phi \psi)_m(\lambda).$$

3. Functional calculus

Let $\boldsymbol{\emptyset}$ be a closed subalgebra of some \mathcal{Q}^n and at the same time a basic algebra. If \mathcal{U} is a $\boldsymbol{\emptyset}$ -spectral representation (Def. 1.3 of [15]), then it has compact support in view of the topology of $\boldsymbol{\emptyset}$. Therefore we shall write $\mathcal{U}(\lambda)$, $\mathcal{U}(1)$ for $\mathcal{U}(\phi_1)$ and $\mathcal{U}(\phi_0)$ respectively, where $\phi_1, \phi_0 \in \boldsymbol{\emptyset}$ and $\phi_1(\lambda) = \lambda, \phi_0(\lambda) = 1$ in some neighborhood of supp \mathcal{U} . In fact we have supp $\mathcal{U} = \sigma(\mathcal{U}(\lambda))$ and $\mathcal{U}(1) = I$.

DEFINITION 3.1. A \mathcal{O} -spectral representation \mathcal{U} is called *regular* if it is valued in the bicommutant (=the commutant of the commutant; see [12]) of $\mathcal{U}(\lambda)$. An operator $T \in \mathcal{L}(X)$ is called a *regular* \mathcal{O} -scalar operator if there is a regular \mathcal{O} -spectral representation \mathcal{U} such that $T = \mathcal{U}(\lambda)$.

PROPOSITION 3.2. Let $T \in \mathcal{L}(X)$ and $\{P_j\}_{j=1}^m$ be a finite set of projections in the bicommutant of T such that $P_jP_k=0$ if $j \neq k$ and $\sum_{j=1}^m P_j=I$. Let $\boldsymbol{\varphi}$ be a basic closed subalgebra of some \mathcal{Q}^n . Then T is a regular $\boldsymbol{\varphi}$ -scalar operator if and only if $T \mid P_j X$ is a regular $\boldsymbol{\varphi}$ -scalar operator for each j.

PROOF. If T is a regular $\boldsymbol{\Phi}$ -scalar operator, then there is a spectral representation \mathcal{U} valued in the bicommutant of T. The map $\mathcal{U}_j = \mathcal{U} \mid P_j X$ is again a $\boldsymbol{\Phi}$ -spectral representation in $\mathcal{L}(P_j X)$ and $\mathcal{U}_j(\lambda) = T \mid P_j X$.

If $V_j(T|P_jX) = (T|P_jX)V_j$, then we have $(V_jP_j)T = T(V_jP_j)$ and because $V_jP_j \in \mathcal{L}(X)$ we obtain $\mathcal{U}_jV_j = \mathcal{U}V_jP_j = V_jP_j\mathcal{U} = V_j\mathcal{U}P_j = V_j\mathcal{U}_j$ in P_jX , which proves that \mathcal{U}_j is regular.

Now if $T | P_j X$ is a regular $\boldsymbol{0}$ -scalar operator for each j and $\mathcal{U}_j(\lambda) = T | P_j X$, then $\mathcal{U} = \bigoplus_{j=1}^m \mathcal{U}_j$ is a $\boldsymbol{0}$ -spectral representation, regular if \mathcal{U}_j is regular for each j. Indeed, if $V \in \mathcal{L}(X)$, VT = TV, then putting $V_j = V | P_j X$ we have $V_j(T | P_j X) = (T | P_j X) V_j$, thus $V \mathcal{U} = \bigoplus_{j=1}^m V_j \mathcal{U}_j = \bigoplus_{j=1}^m \mathcal{U}_j V_j = \mathcal{U} V$.

THEOREM 3.3. Let $T \in \mathcal{L}(X)$ and suppose that for some $n \in N$ the operator $T^{n+1} = S$ is of scalar type. If T is one-to-one, then for any r > 0 such that $\sigma(T) \subset C(0, r)$, the map \mathcal{U} from $\mathcal{O}_0^n(r)$ to $\mathcal{L}(X)$ defined by the equation

$$\mathcal{U}(\phi) = \sum_{k=0}^{n} T^{k} \phi_{k}(^{n+1}\sqrt{S})$$

is a continuous homomorphism valued in the bicommutant of T such that $\mathcal{U}(1) = I$ and $\mathcal{U}(\lambda) = T$.

PROOF. The operator ${}^{n+1}\sqrt{S}$ is a scalar operator with the spectrum in C(0, r) (see [9], Lemma 6) and any operator which commutes with T com-

mutes also with $\phi_k({}^{n+1}\sqrt{S})$, because such an operator commutes with S and $\phi_k({}^{n+1}\sqrt{S})$ is a function of S. Thus $\mathcal{U}(\phi)$ is in the bicommutant of T. The linearity of \mathcal{U} is trivial and the continuity results by [9], Lemma 6 and our Lemma 2.2.

If E is the spectral measure of ${}^{n+1}\sqrt{S}$, then using Lemma 2.3 we have

$$\begin{aligned} \mathcal{U}(\phi)\mathcal{U}(\psi) &= \sum_{m=0}^{n} T^{m} \int \left\{ \sum_{k+j=m} \phi_{k}(\lambda)\psi_{j}(\lambda) + \lambda^{n+1} \sum_{k+j=m+n+1} \phi_{k}(\lambda)\psi_{j}(\lambda) \right\} E(d\lambda) \\ &= \sum_{m=0}^{n} T^{m} \int (\phi\psi)_{m}(\lambda) E(d\lambda) = \mathcal{U}(\phi\psi). \end{aligned}$$

Now if m=0, 1 and $\phi(\lambda)=\lambda^m$, then by a simple calculus we obtain $\phi_k(\lambda)=1$ for $k=m, \lambda\neq 0$ and $\phi_k(\lambda)=0$ for $k\neq m$. Because T is one-to-one, S and $^{n+1}\sqrt{S}$ have the same property. Consequently $E(\{0\})=0$. Thus we have

$$\mathcal{U}(1) = \int_{\{0\}'} E(d\lambda) = I \text{ and } \mathcal{U}(\lambda) = T \int_{\{0\}'} E(d\lambda) = T.$$

LEMMA 3.4. Let K be a compact set, $f \in \mathcal{F}(K)$ be non-constant in each connected component of its domain G which intersects K. Suppose, for $\lambda_0 \in K$ and r > 0 such that $C(\lambda_0, r) \subset G$, f is expressed as $f(\lambda) = f(\lambda_0) + ((\lambda - \lambda_0)h(\lambda))^{n+1}(n \ge 1)$ with a holomorphic function h in a neighborhood G' of $C(\lambda_0, r)$ such that $h(\lambda_0) \neq 0$ and $g(\lambda) = (\lambda - \lambda_0)h(\lambda)$ is one-to-one in G'. Given $T \in \mathcal{L}(X)$, if f(T) is a scalar operator and $\sigma(T) \subset C(\lambda_0, r) \cap K$, then T is a regular $\mathfrak{O}(f, K)$ -scalar operator.

PROOF. Let us remark first that by Proposition 2.1, $\mathcal{O}(f, K)$ is a basic algebra. If $f(T)-f(\lambda_0)=S$, then $(g(T))^{n+1}=S$. Let *E* be the spectral measure of *S* and $E(\{0\})=P_1$, $E(\{0\}')=P_2$. By Proposition 3.2, we have to prove that $T | P_1 X$ and $T | P_2 X$ are $\mathcal{O}(f, K)$ -scalar operators. Because we have $S | P_1 X = 0 = (h(T | P_1 X))^{n+1} ((T | P_1 X) - \lambda_0)^{n+1}$ and $h(\lambda) \neq 0$ for $\lambda \in C(\lambda_0, r)$, it results $((T | P_1 X) - \lambda_0)^{n+1} = 0$. Thus if $Q_1 = (T | P_1 X) - \lambda_0$ then the equation

$$\mathcal{U}_1(\phi) = \sum_{k=0}^n \frac{Q_1^k}{k!} (\bar{D}^k \phi)(\lambda_0)$$

defines evidently a regular $\emptyset(f, K)$ -spectral representation such that $\mathcal{U}_1(\lambda) = T | P_1 X$. Now if we take r' > 0 such that $g(C(\lambda_0, r)) \subset \operatorname{int} C(0, r')$, then we have also $\sigma(g(T)) \subset \operatorname{int} C(0, r')$ ([10], VII. 3.11). Let \mathfrak{Q} be the map $\mathfrak{Q}: \mathcal{Q}_0^n(r') \to \mathcal{L}(P_2 X)$ given in Theorem 3.3 associated to $g(T | P_2 X)$. Because g is one-to-one there is $\psi \in \mathcal{Q}^n(r')$ such that $(\psi \circ g)(\lambda) = \lambda$ in a neighborhood of $C(\lambda_0, r)$. By Proposition 2.1, ψ is $\emptyset(f, K)$ -proper with respect to $\mathcal{Q}_0^n(r')$, because it is analytic in a neighborhood of 0. Consequently $\mathcal{U}_2(\phi) = \mathfrak{Q}(\phi \circ \psi)$ defines a $\emptyset(f, K)$ -spectral representation ([16], Prop. 1.2), and $\mathcal{U}_2(\lambda) = \mathfrak{Q}(\phi) = \psi(g(T | P_2 X)) = T | P_2 X$. The regularity of \mathcal{U}_2 results from the properties of \mathfrak{Q} .

THEOREM 3.5. Let $T \in \mathcal{L}(X)$ and $f \in \mathcal{F}(\sigma(T))$ be non-constant in each con-

nected component of its domain which intersects $\sigma(T)$. If f(T) is a scalar operator then T is a regular $\Phi(f, \sigma(T))$ -scalar operator.

PROOF. We shall suppose that the set $\mathcal{M}_0 = \{\lambda; \lambda \in \sigma(T), f'(\lambda)=0\}$ is nonvoid, because in the contrary case the theorem is known to be true (see [3], Th. 3). \mathcal{M}_0 is a finite set, say $\{\lambda_j\}_{j=1}^n$. Let $\mathcal{M} = \{\mu_j\}_{j=1}^q = f(\mathcal{M}_0)$ and $\mathcal{M} = f^{-1}(\mathcal{M}) \cap \sigma(T)$ $= \{\lambda_j\}_{j=1}^m$, $n \leq m < \infty$. For each j, $1 \leq j \leq n$, there is $\varepsilon_j > 0$ such that $f(\lambda) = f(\lambda_j) + ((\lambda - \lambda_j)h_j(\lambda))^{n_j+1}$ with a holomorphic function h_j defined in a neighborhood G_j of $C(\lambda_j, \varepsilon_j)$ such that $h_j(\lambda) \neq 0$ and $g_j(\lambda) = (\lambda - \lambda_j)h_j(\lambda)$ is one-to-one in G_j , where $n_j = m_{f'}(\lambda_j)$. Choose $\varepsilon > 0$ such that $\varepsilon < \min(\varepsilon_1, \dots, \varepsilon_n)$, $C(\lambda_j, \varepsilon) \cap C(\lambda_k, \varepsilon)$ $= \emptyset$ for $j \neq k$ and $C(\mathcal{M}, \varepsilon) \cap f^{-1}(\mathcal{M}) = \mathcal{M}$. Using Lemma 1.1, we can find $\eta > 0$ such that $C(\mu_j, \eta) \cap C(\mu_k, \eta) = \emptyset$ for $j \neq k$ and $f^{-1}(C(\mathcal{M}, \eta)) \cap \sigma(T) \subset C(\mathcal{M}, \varepsilon)$.

Now if f(T) = S and E is the spectral measure of S, then, denoting $\sigma_j = C(\mu_j, \eta), 1 \leq j \leq q, \sigma_{q+1} = (C(N, \eta))'$, we have to prove the theorem for $T \mid E(\sigma_j) X$, $j=1, \ldots, q+1$ (see Proposition 3.2). Because E is in the bicommutant of T, we have $\sigma(T \mid E(\sigma_j) X) \subset \sigma(T)$ and by [10], VII 3.11 $\sigma(T \mid E(\sigma_j) X) \subset f^{-1}(\sigma_j)$. Also we have $f(T \mid E(\sigma_j) X) = S \mid E(\sigma_j) X$. Therefore, applying [3], Th. 3, $T \mid E(\sigma_{q+1}) X$ results to be scalar. If $j \leq q$, then $\sigma(T \mid E(\sigma_j) X) \subset \sigma(T) \cap C(\mathcal{M}, \varepsilon)$. Let us denote $E(\sigma_j) X = X_j, T \mid X_j = T_j$. We have $\sigma(T_j) \subset \bigvee_{\lambda_k \in \mathcal{A}_1} C(\lambda_k, \varepsilon)$, where \mathcal{M}_1 is a subset of \mathcal{M} . Let P_{λ_k} be the spectral projection of T_j corresponding to $C(\lambda_k, \varepsilon)$ (see [10], VII 3.17). Then $\sigma(T_j \mid P_{\lambda_k} X_j) \subset C(\lambda_k, \varepsilon)$ and because P_{λ_k} is in the bicommutant of T_j , the operator $f(T_j \mid P_{\lambda_k} X_j) = S \mid P_{\lambda_k} X_j$ is scalar. If k > n then $f'(\lambda) \neq 0$ for $\lambda \in \sigma(T_j \mid P_{\lambda_k} X_j)$, thus $T_j \mid P_{\lambda_k} X_j$ is a scalar operator by [3], Th. 3, and if $k \leq n$ then $T_j \mid P_{\lambda_k} X_j$ is a regular $\mathcal{O}(f, \sigma(T))$ -scalar operator by Lemma 3.4. It follows from Proposition 3.2 that $T \mid E(\sigma_j) X$ is a regular $\mathcal{O}(f, \sigma(T))$ -scalar operator, which proves our theorem.

COROLLARY 3.6. In the hypothesis of Theorem 3.5, if f' has only simple zeros in $\sigma(T)$, then T is a regular generalized scalar operator in the sense of [11] (i. e., a regular \mathcal{Q}^{∞} -scalar operator).

PROOF. In this case $\mathcal{O}(f, \sigma(T)) = \mathcal{O}^1$ and a \mathcal{O}^1 -scalar operator is a \mathcal{O}^{∞} -scalar operator.

Bibliography

- [1] C. Apostol, Propriétés de certains opérateurs bornés des espaces de Hilbert, Rev. Roum. Math. Pures et Appl., 10 (1965), 643-644.
- [2] C. Apostol, On the roots of spectral operators, Proc. Amer. Math. Soc., 19 (1968) (to appear).
- C. Apostol, On the roots of spectral operator-valued analytic functions, Rev. Roum. Math. P. Appl., 13 (1968), 587-589.
- [4] C. Apostol, Teorie spectrală și calcul funcțional, Seminar 1966-1967, Stud. Cerc. Mat., 20 (1968) (to appear).
- [5] I. Colojoară, Generalized spectral operator, Rev. Roum. Math. Pures et Appl., 7 (1962), 459-465.
- [6] I. Colojoară and C. Foiaș, Quasi-nilpotent equivalence of not necessarily commuting operators, J. Math. Mech., 15 (1965), 521-540.
- [7] I. Colojoară and C. Foiaș, Generalized spectral operators, Gordon and Breach, New York (to appear).

- [8] H. R. Dowson, Restriction of spectral operators, Proc. London Math. Soc., 15 (1965), 437-457.
- [9] N. Dunford, Spectral operators, Pacific J. Math., 4 (1954), 321-354.
- [10] N. Dunford and J. T. Schwartz, Linear operators Part I, Interscience Publ., New York, 1958.
- [11] C. Foias, Une application des distributions vectorielles à la théorie spectrale, Bull. Sc. Math., 84 (1960), 147-158.
- [12] E. Hille and R. Phillips, Functional analysis and semi-groups, Amer. Math. Soc. Colloq. Publ., Vol. 31, Providence, 1957.
- [13] S. Kurepa, Logarithms of spectral type operators, Glas. Mat. Fiz. Astr., 18 (1963), 53-57.
- [14] S. Kurepa, An operator-roots of an analytic function, Glas. Mat. Fiz. Astr., 18 (1963), 49-51.
- [15] F-Y. Maeda, Generalized spectral operators on locally convex spaces, Pacific J. Math., 13 (1963), 177-192.
- [16] F-Y. Maeda, Functions of generalized scalar operators, J. Sci. Hiroshima Univ., Ser. A-I, 26 (1962), 71-76.
- [17] F-Y. Maeda, On spectral representations of generalized spectral operators, J. Sci. Hiroshima Univ., Ser. A-I, 27 (1963), 137-149.
- [18] G. Stampfli, Roots of scalar operators, Proc. Amer. Math. Soc., 13 (1962), 796-798.

Institut de Mathématique Académie de la République Socialiste de Roumanie