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In this short note we give a generalization of an approximation theorem
on iterated higher derivations given by F. K. Schmidt in a paper [ 2] (see Satz
14). Our generalization is done by determining all the iterated higher deriva-
tions of finite rank in any field K of a positive characteristic p. The follow-
ing result on a derivation d in K will play an essential role in the proof: if
we have d?=0, then d”~'(a)=0 if and only if a=d(B) for some 8 in K*¥. We
shall give a proof of this fact using the Jacobson-Bourbaki’s theorem which
asserts the existence of a 1—1 correspondence between subfields of finite
codimension in a field K and certain subrings of the ring 4(K) of endomor-
phisms of the additive group (K, +). Lastly we shall be concerned with condi-
tions for a purely inseparable extension K of finite degree over a field £ to be
a tensor product of simple extensions over &. These conditions will be given
in terms of higher derivations in K.

§1. Let K be a field and 2(K) the set of additive homomorphisms of K
into itself. /J(K) is considered naturally as a vector space over K. Then a
sequence {d;}i—o1...» of elements in A(K) is called a higher derivation in K of
rank m if the following conditions are satisfied: (i) d, 1s the identity of K, (ii)

di(ab)= Zj}d,'(a)dj_,-(b), j=0,1, ..., m, holds for any elements a, b im K. A
i=0

higher derivation {d;} is called iterated if it satisfies one more condition (iii)
d;d;=C{Nd;.; for i+j<mand d;d;=0 for i+j>m. Let k be the subset of
the elements « in K such that d;(@)=0 for i—=1. Then £ is a subfield of K
and we call it the constant field of {d;}. In the following we treat only
iterated higher derivations in a field of a positive characteristic p. In this
case we can easily see that a section {d:}i_o1,. -1 0f {d;} for p°—1<m is
also an iterated higher derivation of rank p®—1 in K, since we have (?;7)=0
(mod p) for 0=i, j<p°—1, i+j=p°. The following three lemmas are
known.

Levma 1. Let {d;}i-0.1,..m be a higher derivation in K such that d,=0.
Then we have d; =0 for any i and these m+1 elements d,, -, d, are linearly
independent over K.

*) F. K. Schmidt proved this result in a special case where K is an algebraic function field of one
variable. The method of his proof is function theoretical.
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This is Excercise 7 of §9, Chapter IV in [17] and is proved, using the
above equality (ii), in the exactly same way as the Dedekind’s Theorem
(Theorem 3 of §3, Chapter Iin [17).

Lemma 2. Let {d;} be an iterated higher derivation of finite rank m in a
field K of a positive characteristic p such that d,=~0, and let k be the constant
field of {d;}. Then K 1s a simple and purely inseparable extension of degree
m+1 over k and hence m is equal to p°—1 for some integer e.

Proor. By Theorem 20 of Chapter IV in [17, K is a purely inseparable
extension of exponent e where p~' <m<p‘ and an element x in K has ex-
ponent e over k if and only if d;(x)=~0. On the other hand, the subspace
Kdy+ - +Kd, of Z(K) is a subring satisfying the condition of the Jacobson-
Bourbaki Theorem (Theorem 2 of Chapter I in [17]) since {d;} is iterated.
This means, by Lemma, 1, that K is of degree m+1 over k£ and hence K is a
simple extension of degree p*=m+1.

Lemma 8. Let K be a stmple and purely inseparable extension of degree p°
over k and let x be a primitive element of K over k. Then there exists exactly
one iterated higher derivation {d;} of rank p*—1 in K with constant field k
such that di(x)=1 and di(x)=0 for i =2.

For the proof, see §9 of Chapter IV in [17].

We denote by {d,;} this uniquely determined derivation by a primitive
element ». Then it is easy to see that d,;(x™)=(")x""" if m=i and d,;(x™)=0
if m<i.

§2. Now we show that every iterated higher derivation of finite rank in
K with constant field k is {d.;} for some primitive element x» of K over k.
Let K be a simple and purely inseparable extension of degree p° over £k and
{d;} an iterated higher derivation of rank p‘—1 in K over % such that d,=¢0.
Then we have

Levmva 4. Let K; be the set of elements « in K such that d;{a)=0 for i=1,
2, ..., p’—1. Then K; 1s equal to kK"’

Proor. It is clear that K; contains kK?”'. Let x be a primitive element
of K over k. Then x” is in K; but x* ' is not in K, since dy-i(x* )=
(di(x))” " +0, and hence we have K, 2K; for e—j=1. On the other hand
we have k(x”)=kK" and hence [kK”: k]=p’. This means that K;,=kK".

For our purpose the following proposition is basic.

Prorosition 1. Let d be a derivation in a field of a positive characteristic
p such that d’=0. Then the set of the elements y in K such that d’~'(y)=0
coincides with the set of all elements d(x) for x € K.
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Proor. Put d;= T d' for i=1,2, ..., p—1and let d, be the identity mapping

of K. Then we can easily see that {d;} is an iterated higher derivation of
rank p—1. Let K, be the constant field of {d;}. Then K is of degree p over
K; by Lemma 2. Let 7 be the set of elements d,(x) for x ¢ K. It is easy to
see that 7 is a linear subspace of K over K; and K, is the kernel of the map-
ping d; of K onto V, since « is in K, if and only if d(a)=d,(a)=0. Hence V
is of dimension p—1 over K;. Let I be the set of the elements » in K such
that d* '(x)=(p—1!d, 1(x)=0. Then W is a linear subspace of K over K;
and contains ¥ by the assumption d’=0. Therefore W is equal to K or to V,
since dimg¥V=dimgK—1. By Lemma 1, dy, di, ---, d,_; are linearly inde-
pendent over K; as vectors in /(K) and hence there exists an element 7y in K
such that d, (y)=0. This means that V'=W.

Now we can show the following Theorem from Proposition 1 in the same
way as Satz 12 from Satz 11 in [2].

Tueorem. Let K be a field of a positive characteristic p and {d;} an iter-
ated higher deritvation of finite rank in K with constant field K such that d,=c0.
Then there exists a primitive element x of K over k such that {d;} is equal to
14
1yif.

An outline of our proof is as follows: it is sufficient to find x in K such
that di{x)=1 and d{(x)=0 for i=>2, since we have K=k(x) for such x by
Lemma 2. We can find «; such that di(x;,)=1 and di(x;)=0 for 2<i <p’ by
induction on j. In fact this is trivial for j=1. We put r= —d,«(x;) if there
exists an x; satisfying the condition. Then we can see that r is in K;=kK?
and put r=r"c,+ - +ryp’c, where ¢y, -+, ¢, are in k and linearly independent
over K. Then we can see d,i+1 ,(r)=(dp-1(r))" c1+ - +(dp-1(r))"c,=0 for
j=e—1. This means that d,_,(r;)=0 and hence we have di(«;)=r; for some
ai, -, ay in K by Proposition 1. Put x;,,=x;+alc,+- +ab’c, and we see
that «;., satisfies di(x;.1)=1 and di(x;.1)=0 for 2<i<p’*.

Remark 1. Tt is easy to see that Satz 14 in [ 2] follows from the above
theorem.

Remark 2. Let {d;} be an iterated higher derivation of infinite rank in

a field K and let K; be the constant field of the section {d;};<,7 ;1 of {d;}.

Then the constant field & of {d;} is /\K;. If K is an algebraic function field
7j=1

of one variable over £, we know that the constant field K; of {d,};<pi 1 is kK?
(cf. Satz 10 in [27]). In general cases, using the idea of the proof of Theorem,
we see that K;=kK” for all j if Ky=kK”. In fact assume that K;= kK" for
some j=>2. Let x be an element in K; but in kK”. If x is in kK*" " but not
in kK (+ =), we have x=c,;r{" '+ +ci" " for some ry, ..., r, in K where
¢y, ---, ¢, are in k and linearly independent over K*'. Since x is in K, we
have dy—1(x)=ci(dir))" "+ + ci(di(rr))’ =0 and hence d,(r;))=0 for all i.
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This means that r; is in K;=%kK? and hence x is in kK?'. This is a contradic-
tion.

As a consequence of Theorem we have the following

ProrosiTion 2. Let K be a field of a positive characteristic p and E a sub-
field of K. Suppose that there exists an iterated higher derivation {d.} of
finite rank p°—1 in E with constant field k. Then {d;} can be extended to an
iterated higher derivation in K 1f and only if there exists a subfield F of K
containing k such that K is the tensor product of E and F over k.

Proor. We may assume that d,=~0. Then there exists an element «x in
F such that di(x)=1 and d,(x)=0 for i =2 by Theorem. If {d;} is extended
to {d;} in K, let F be the constant field of {d;}. Then we have [ K: F]=[E: k]
=p°, K=F(x) and E=k(x) by Lemma 2. This means that K=EF, and that
E and F are linearly disjoint over k. Conversely assume that K= EF and that
E and F are linearly disjoint over k. Since E=k(x), K=F{x) is purely in-
separable extension of degree p° over F and hence there exists an iterated
higher derivation {d;} of rank p*—1 in K with constant field F such that
di(x)=1 and di(x)=0 for i >2 by Lemma 3. It is easy to see that {d;} is an
extension of {d;}.

$38. Let K be a purely inseparable extension of finite degree over a field
k. Then it is known that if K is a tensor product of simple extensions over £,
then £ is an intersection of constant fields of iterated higher derivations in
K (cf. §9 of Chapter IV in [17]), but in general % is not an intersection of con-
stant fields of iterated higher derivations in K. For an example let K be a
purely inseparable extension of degree p® over k such that K is not a tensor
product of simple extensions over k. There exists such an extension. (See
Exercise 6 of §9, Chapter IV in[1].) Then K has exponent 2 and contains
only one subfield ¥ of K over k which is of degree p over k. Then F is con-
tained in the constant field of any iterated higher derivation in K over £, since
the exponent of K over k is two.

Now we give a sufficient condition for an extension K over k to be a tensor
product of simple, purely inseparable extensions over k.

Prorosition 3.  Let K be a purely inseparakle extension of exponent e over
k which is an intersection of constant fields of iterated higher derivations in K.
Then K 1is a tensor product of a simple extension k(x) of degree p* and a sut-
field E over k.

Proor. Let x be an element of K whose exponent over % is e. Since
x” " is not in k, there exists an iterated higher derivation {d;} in K whose
constant field £ contains & but not »*”'. Then K is a simple extension over
E whose degree is at most p°. Hence we have K=E(x)=k(x)E and [K: E]
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=p°. This means that K is the tensor product of 4(x) and E over k.

CoroLLARY. Assume that K/k satisfies the same condition as Proposition
3. Then K 1s a tensor product of simple extensions over k if the degree of K

over k is at most of p°*.

Proor. Since a purely inseparable extension of degree p? is a simple ex-
tension or a tensor product of two simple extensions of degree p over £, this
is a direct consequence of Proposition 3.

Remark 8. Assume that [K: #]<p’ Then £ is an intersection of con-
stant fields of iterated higher derivations in K if and only if K is a tensor
product of simple purely inseparable extensions over k. However the author
does not know any example for [K: £]=p° such that K is not a tensor pro-
duct of simple extensions over & which is an intersection of constant fields of

iterated higher derivations in K.

Remark 4. Let K be a purely inseparable extensions of finite degree.
If K and any subfield of K containing % satisfy the assumptios in Proposition
3, K is a tensor product of simple extensions over k.

Added in Proof. After this paper was completed, Prof. E. Abe kindly
communicated to me that M. E. Sweedler obtained the following result: a
purely inseparable extension K of finite exponent over a field % is a tensar
product of simple extensions over k if and only if there are higher derivations
of K over k relative to which % is the field of constants. (Annals of Math. vol.

87, No. 3).
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