On a Class of Lie Algebras

Shigeaki TôGô
(Received February 20, 1968)

Introduction

In the previous paper [4], we have given an estimate for the dimensionality of the derivation algebra of a Lie algebra L satisfying the condition that $(\operatorname{ad} x)^{2}=0$ for $x \in L$ implies ad $x=0$. Such a Lie algebra will be referred to as an $\left(\mathrm{A}_{2}\right)$-algebra in this paper according to the definition given in Jôichi [2], which investigates the (A_{k})-algebras, $k \geqq 2$, with intention to obtain the analogues to the (A)-algebras. He showed that the $\left(A_{2}\right)$-algebras have a different situation from the other classes of $\left(\mathrm{A}_{k}\right)$-algebras, $k \geqq 3$. But the problem of characterizing the $\left(\mathrm{A}_{2}\right)$-algebras remains unsolved. The purpose of this paper is to make a detailed study of this class of Lie algebras.

It is known [3] that every semisimple Lie algebra over the field of complex numbers contains no non-zero element x with $(\operatorname{ad} x)^{2}=0$. We shall show that every Lie algebra over a field Φ of characteristic $\neq 2$ whose Killing form is non-degenerate has the same property. By making use of this result we shall show that, when the basic field Φ is of characteristic $0, L$ is an $\left(\mathrm{A}_{2}\right)$ algebra if and only if every element x of the nil radical N such that $(\operatorname{ad} x)^{2}=0$ belongs to the center $Z(L)$, and if and only if L is either reductive, or $L \supset N \supset Z(N)=Z(L) \supseteqq N^{2} \neq(0)$ and $(\operatorname{ad} x)^{2} \neq 0$ for any $x \in N \backslash Z(L)$. This characterization will be used in classifying certain types of solvable (A_{2})-algebras. A solvable $\left(\mathrm{A}_{2}\right)$-algebra is not generally abelian. We shall show that if Φ is an algebraically closed field of characteristic 0 , then every solvable $\left(\mathrm{A}_{2}\right)$ algebra over a field Φ is abelian. The latter half of the paper will be devoted to the study of solvable (A_{2})-algebras, in particular, to the study of solvable (A_{2})-algebras L such that $\operatorname{dim} N / Z(L)$ is 2 or 3 and of solvable (A_{2})-algebras of low dimensionalities.

§ 1.

Throughout this paper we denote by L a finite dimensional Lie algebra over a field Φ and denote by R, N and $Z(L)$ the radical, the nil radical and the center of L respectively.

Following the terminology employed in [2], we call L to be an $\left(\mathrm{A}_{2}\right)$-algebra provided that it satisfies the following condition:
$\left(\mathrm{A}_{2}\right) \quad$ Every element x of L such that $(\operatorname{ad} x)^{2}=0$ satisfies ad $x=0$, that is, belongs to $Z(L)$.

We first quote a result shown in Theorem 1 in [2] as the following

Lemma 1. Let L be an $\left(\mathrm{A}_{2}\right)$-algebra over a field of arbitrary characteristic. Then L is nilpotent if and only if L is abelian.

By making use of the lemma, we show a néessary condition for L to be an $\left(\mathrm{A}_{2}\right)$-algebra in the following

Proposition 1. Let L be an (A_{2})-algebra over a field of arbitrary characteristic. Then either $R=Z(L)$ or

$$
L \supset N \supset Z(N)=Z(L) \supseteqq N^{2} \neq(0)
$$

Proof. Let L be a non-abelian (A_{2})-algebra. Then by Lemma $1 L$ is not nilpotent, that is, $L \neq N$. For every $x \in Z(N)$, we have $[x,[x, L]] \cong[x, N]$ $=(0)$. From the condition $\left(\mathrm{A}_{2}\right)$ it follows that $x \in Z(L)$. Hence $Z(N) \cong Z(L)$ and therefore $Z(N)=Z(L)$.

In the case where $N=Z(L)$, if $R \neq(0)$, choose an integer n such that $R^{(n)}=(0)$ but $R^{(n-1)} \neq(0)$. Suppose $n \geqq 2$. Since $R^{(n-1)}$ is an abelian ideal of L, we have $R^{(n-1)} \leqq N$. It follows that $\left(R^{(n-2)}\right)^{3}=(0)$. Hence $R^{(n-2)}$ is a nilpotent ideal of L and therefore $R^{(n-2)} \leqq N$. It follows that $R^{(n-1)}=(0)$, which contradicts the choice of n. Thus $R^{(1)}=(0)$ and therefore $R=N=Z(L)$.

In the case where $N \neq Z(L)$, we have $N^{2} \neq(0)$, for if $N^{2}=(0)$ then $N=Z(N)$ $=Z(L)$. The fact that $N^{3}=(0)$ can be shown as in the proof of Theorem 2 in [2]. It follows that $N^{2} \equiv Z(N)=Z(L)$. Thus the proof is complete.

We shall next show a sufficient condition for L to be an $\left(\mathrm{A}_{2}\right)$-algebra. It has been observed in [3] that every semisimple Lie algebra over the field of complex numbers contains no non-zero element x with $(\operatorname{ad} x)^{2}=0$. We prove this assertion for a more general class of Lie algebras in the following

Lemma 2. Let L be a Lie algebra over a field of characteristic $\neq 2$ and assume that the Killing form of L / R is non-degenerate. If $(\operatorname{ad} x)^{2}=0$ for $x \in L$, then $x \in R$.

Proof. We first consider the case where L is semisimple. Suppose that $(\operatorname{ad} x)^{2}=0$ for $x \in L$. This means that $[x,[x, y]]=0$ for every $y \in L$. Putting $X=\operatorname{ad} x$ and $Y=\operatorname{ad} y$, we have $X^{2}=0$ and $[X,[X, Y]]=0$. Since

$$
[X,[X, Y]]=X^{2} Y-2 X Y X+Y X^{2}
$$

it follows that $X Y X=0$. Hence $(X Y)^{2}=0$. Denoting by B the Killing bilinear form of L, we see that $B(x, y)=0$ for every $y \in L$. Since B is nondegenerate by our hypothesis, we have $x=0$.

We now consider the general case. Suppose that $(\operatorname{ad} x)^{2}=0$ for $x \in L$. Put $L=L / R$ and denote by \bar{x} the element of \bar{L} corresponding to x. Then $(\operatorname{ad} \bar{x})^{2}=0$. Since \bar{L} is semisimple, we have $\bar{x}=0$ as shown in the first case. This means that $x \in R$, completing the proof.

Proposition 2. Let L be a Lie algebra over a field of characteristic $\neq 2$.

If L is the direct sum of an ideal which has the non-degenerate Killing form and of the center, then L is an $\left(\mathrm{A}_{2}\right)$-algebra.

Proof. If L is such a direct sum, then the radical coincides with the center. Hence by Lemma $2 L$ is an $\left(\mathrm{A}_{2}\right)$-algebra.

Now we restrict the basic field Φ to a field of characteristic 0 . Then we can derive the following characterizations of $\left(\mathrm{A}_{2}\right)$-algebras from the above results.

Theorem 1. Let Lbe a Lie algebra over a field Φ of characteristic 0 . Then the following statements are equivalent:
(1) L is an $\left(\mathrm{A}_{2}\right)$-algebra.
(2) Every element x of N such that $\left(\operatorname{ad}_{L} x\right)^{2}=0$ belongs to $Z(L)$.
(3) L is either reductive, or

$$
L \supset N \supset Z(N)=Z(L) \supseteqq N^{2} \neq(0)
$$

and $\left(\operatorname{ad}_{L} x\right)^{2} \neq 0$ for every $x \in N \backslash Z(L)$.
Proof. Since the basic field Φ is of characteristic $0, N$ is the set of $x \in R$ such that $\operatorname{ad}_{L} x$ is nilpotent. Hence Lemma 2 tells us that if $(\operatorname{ad} x)^{2}=0$ for $x \in L$ then $x \in N$. Therefore (1) and (2) are equivalent. From this equivalence and Proposition 2 it follows that (3) implies (1). The assertion that (1) implies (3) is a consequence of Proposition 1.

Corollary 1. Let L be a Lie algebra over a field of characteristic 0 and assume that $Z(L)=Z(R)$. If R is an $\left(\mathrm{A}_{2}\right)$-algebra, then L is an $\left(\mathrm{A}_{2}\right)$-algebra.

Proof. The statement is immediate from the equivalence of (1) and (2) in Theorem 1 and the fact that the nil radicals of L and R are identical.

Corollary 2. Let L be a non-nilpotent Lie algebra over a field Φ of characteristic 0 such that

$$
\begin{gathered}
N=\left(x_{1}, y_{1}, \cdots, x_{n}, y_{n}\right)+Z(L), \\
0 \neq\left[x_{i}, y_{i}\right] \in Z(L), \\
{\left[x_{i}, x_{j}\right]=\left[x_{i}, y_{j}\right]=\left[y_{i}, y_{j}\right]=0} \\
\text { for all } i \neq j .
\end{gathered}
$$

Assume that for every $i=1,2 \ldots, n$, there exists an element u_{i} of $L \backslash N$ satisfying the following conditions:

$$
\begin{aligned}
& {\left[u_{i}, x_{i}\right]=y_{i}, \quad\left[u_{i}, y_{i}\right]=\lambda_{i} x_{i}} \\
& {\left[u_{i}, x_{j}\right], \quad\left[u_{i}, y_{j}\right] \in Z(L) \quad \text { for any } \quad j \neq i}
\end{aligned}
$$

where λ_{i} is not a square element in Φ. Then L is an $\left(\mathrm{A}_{2}\right)$-algebra.

Proof. Suppose that $x \in N$ and $\left(\operatorname{ad}_{L} x\right)^{2}=0$. Then x is expressed as

$$
x=\sum_{i=1}^{n}\left(\alpha_{i} x_{i}+\beta_{i} y_{i}\right)+z, \quad z \in Z(L)
$$

By using our assumption we obtain

$$
\left[x,\left[x, u_{j}\right]\right]=\left(\lambda_{j} \beta_{j}^{2}-\alpha_{j}^{2}\right)\left[x_{j}, y_{j}\right]=0
$$

and therefore $\lambda_{j} \beta_{j}^{2}=\alpha_{j}^{2}$ for $j=1,2, \ldots, n$. Since λ_{j} is not a square element in Φ, we have $\beta_{j}=0$ and therefore $\alpha_{j}=0$. Hence $x \in Z(L)$. Thus L satisfies the condition (2) in Theorem 1. By Theorem $1 L$ is an (A_{2})-algebra, completing the proof.

We note that the examples of solvable (A_{2})-algebras shown in [2] and [4] are those of the $\left(\mathrm{A}_{2}\right)$-algebras formulated in Corollary 2.

§2.

L is called split [1] provided that it has a splitting Cartan subalgebra, that is, a Cartan subalgebra H such that the characteristic roots of every $\operatorname{ad} x, x \in H$, are in the basic field \varnothing. It is known that every Lie algebra over an algebraically closed field is split. For split (A_{2})-algebras we first show the following

Lemma 3. Let L be a split (A_{2})-algebra over a field Φ of characteristic $\neq 2$. Then L^{2} is nilpotent if and only if L is abelian.

Proof. Assume that L^{2} is nilpotent but L is not abelian. Then L is not nilpotent by Lemma 1 . Since L^{2} is a nilpotent ideal of L, we have $L^{2} \subseteq N$. Let H be a splitting Cartan subalgebra and let $L=H+\sum_{\alpha} L_{\alpha}$ be the decomposition of L to the root spaces. Then it is immediate that $L_{\alpha} \subseteq L^{2} \subseteq N$ for every $\operatorname{root} \alpha \neq 0$. Choose a non-zero root β and let k be an integer such that $2^{k} \beta$ is a root but $2^{k+1} \beta$ is not a root. Put $\gamma=2^{k} \beta$ and choose a non-zero element x of L_{γ}. Then

$$
\begin{aligned}
{[x,[x, L]] } & =[x,[x, H]]+\left[x,\left[x, \sum_{\alpha \neq 0} L_{\alpha}\right]\right] \\
& \cong\left[L_{\gamma}, L_{\gamma}\right]+N^{3} .
\end{aligned}
$$

We have $N^{3}=(0)$ by Proposition 1 and $\left[L_{\gamma}, L_{\gamma}\right]=(0)$ since 2γ is not a root. Hence $(\operatorname{ad} x)^{2}=0$. Since L is an $\left(\mathrm{A}_{2}\right)$-algebra, it follows that $x \in Z(L)$ and therefore $x \in H$, which contradicts the choice of x. Thus we conclude that if L^{2} is nilpotent then L is abelian.

In virtue of Lemma 3, we have now the following characterization of split (A_{2})-algebras.

Theorem 2. Let L be a split Lie algebra over a field Φ of characteristic 0 . Then L is an $\left(\mathrm{A}_{2}\right)$-algebra if and only if L is either reductive, or

$$
L \supset R \supseteqq N \supset Z(N)=Z(L) \supseteqq N^{2} \neq(0)
$$

and $(\operatorname{ad} x)^{2} \neq 0$ for every $x \in N \backslash Z(L)$.
Proof. In the case where the basic field is of characteristic 0 , Lemma 3 says that a split $\left(\mathrm{A}_{2}\right)$-algebra is solvable if and only if it is abelian. Therefore if L is a split $\left(\mathrm{A}_{2}\right)$-algebra over a field Φ, then we have the statement (3) in Theorem 1, in the second case of which L is not solvable. Thus the theorem follows from Theorem 1.
§3.
In this and the next sections we shall study the solvable (A_{2})-algebras over a field Φ of characteristic 0 as an application of Theorem 1 . As seen from Theorem 2 , if Φ is algebraically closed, then every solvable (A_{2})-algebra is abelian. Hence, throughout these sections, we shall assume that the basic field Φ is of characteristic 0 and not algebraically closed unless otherwise specified.

This section is devoted to the study of solvable $\left(\mathrm{A}_{2}\right)$-algebras L such that $\operatorname{dim} N / Z(L)=2$ or 3 . First we prove the following

Lemma 4. Let L be a non-abelian solvable $\left(\mathrm{A}_{2}\right)$-algebra. \quad If $[u, x] \notin Z(L)$ for $u \in L$ and $x \in N$, then $[u,[u, x]] \notin Z(L)$.

Proof. Assume that $[u,[u, x]] \in Z(L)$ for $u \in L$ and $x \in N$. Put $y=$ $[u, x]$. Then by using the fact that $N^{2} \cong Z(L)$, for every $v \in L$ we have

$$
\begin{aligned}
(\operatorname{ad} y)^{2} v & =[y,[[u, x], v]] \\
& =[y,[u,[x, v]]]+[y,[[u, v], x]] \\
& =[[y, u],[x, v]]+[u,[y,[x, v]]]+[y,[[u, v], x]] \\
& \epsilon\left[u, N^{2}\right]+N^{3} \\
& =(0) .
\end{aligned}
$$

Thus $(\operatorname{ad} y)^{2}=0$ and therefore by the condition $\left(\mathrm{A}_{2}\right) y \in Z(L)$. This completes the proof.

Proposition 3. The solvable (A_{2})-algebras L over a field Φ of characteristic 0 such that $\operatorname{dim} N / Z(L)=2$ are the following Lie algebras:

$$
\begin{aligned}
& L=\left(u_{1}, u_{2}, \cdots, u_{n}\right)+N, \quad N=(x, y)+Z(L), \\
& {\left[u_{i}, u_{j}\right] \in Z(L),} \\
& {\left[u_{i}, x\right]=y, \quad\left[u_{i}, y\right]=\lambda x} \\
& 0 \neq[x, y] \in Z(L) \quad \text { for } \quad i, j=1,2, \cdots, n
\end{aligned}
$$

where $n=\operatorname{dim} L / N$ and λ is not a square element in \varnothing.
Proof. Since $N \supset Z(L)$ by Theorem 1, we choose x in $N \backslash Z(L)$. Then $(\operatorname{ad} x)^{2} \neq 0$ and therefore there exists $u_{1} \in L$ such that $(\operatorname{ad} x)^{2} u_{1} \neq 0$. By Theorem 1 we see that $u_{1} \notin N$. Put $y=\left[u_{1}, x\right]$ and $z=[x, y]$. Then $y \in N$, $y \notin(x)+Z(L)$ and $0 \neq z \in Z(L)$. Therefore $N=(x, y)+Z(L)$. By Lemma 4 we have $\left[u_{1}, y\right] \notin Z(L)$. Since

$$
\left[x,\left[u_{1}, y\right]\right]=\left[\left[x, u_{1}\right], y\right]=[-y, y]=0
$$

it follows that

$$
\left[u_{1}, y\right]=\lambda x+z^{\prime}, z^{\prime} \in Z(L) \quad \text { with } \quad \lambda \neq 0
$$

Replacing x by $x+\lambda^{-1} z^{\prime}$, we see that

$$
\begin{gathered}
{\left[u_{1}, x\right]=y,\left[u_{1}, y\right]=\lambda x,[x, y]=z} \\
\text { with } \quad 0 \neq z \in Z(L) \text { and } \lambda \neq 0 .
\end{gathered}
$$

If $\operatorname{dim} L / N \geqq 2$, choose $u_{2} \in L, \notin\left(u_{1}\right)+N$. And we write

$$
\begin{aligned}
& {\left[u_{2}, x\right]=\alpha_{1} x+\beta_{1} y+z_{1},} \\
& {\left[u_{2}, y\right]=\alpha_{2} x+\beta_{2} y+z_{2},} \\
& {\left[u_{1}, u_{2}\right]=\alpha_{3} x+\beta_{3} y+z_{3},}
\end{aligned}
$$

where $z_{i} \in Z(L)$ for $i=1,2,3$. Then from $\left[\left[u_{1}, u_{2}\right], x\right]+\left[\left[u_{2}, x\right], u_{1}\right]+$ $\left[\left[x, u_{1}\right], u_{2}\right]=0$ it follows that $z_{2}=\beta_{3} z, \alpha_{1}=\beta_{2}$ and $\alpha_{2}=\lambda \beta_{1}$. From the above formula with x replaced by y it follows that $z_{1}=-\lambda^{-1} \alpha_{3} z$. From [$\left.\left[u_{2}, x\right], y\right]$ $=\left[\left[u_{2}, y\right], x\right]$ it follows that $\alpha_{1}+\beta_{2}=0$ and therefore $\alpha_{1}=\beta_{2}=0$. Hence we obtain by changing the notations

$$
\begin{aligned}
& {\left[u_{2}, x\right]=\mu_{2} y+\nu_{1} z} \\
& {\left[u_{2}, y\right]=\lambda \mu_{2} x+\nu_{2} z} \\
& {\left[u_{1}, u_{2}\right]=-\lambda \nu_{1} x+\nu_{2} y+z^{\prime}, \quad z^{\prime} \in Z(L)}
\end{aligned}
$$

Replacing u_{2} by $u_{2}-\nu_{2} x+\nu_{1} y$, we have

$$
\begin{gathered}
{\left[u_{2}, x\right]=\mu_{2} y, \quad\left[u_{2}, y\right]=\lambda \mu_{2} x,} \\
{\left[u_{1}, u_{2}\right] \in Z(L) .}
\end{gathered}
$$

We continue this procedure to choose $u_{3}, u_{4}, \ldots, u_{n}$ with $n=\operatorname{dim} L / N$ in such a way that

$$
\begin{aligned}
& L=\left(u_{1}, u_{2}, \ldots, u_{n}\right)+N \\
& {\left[u_{i}, x\right]=\mu_{i} y, \quad\left[u_{i}, y\right]=\lambda \mu_{i} x} \\
& {\left[u_{1}, u_{i}\right] \in Z(L) \quad \text { for } \quad i=2,3, \cdots, n .}
\end{aligned}
$$

Now we have $\left[x,\left[u_{i}, u_{j}\right]\right]=\left[y,\left[u_{i}, u_{j}\right]\right]=0$ for $i, j=1,2, \ldots, n$, from which it follows that $\left[u_{i}, u_{j}\right] \in Z(N)=Z(L)$. Since $\left(\operatorname{ad} u_{i}\right)^{2} \neq 0$, it follows that $\mu_{i} \neq 0$ for $i=2,3, \cdots, n$. Hence we replace u_{i} by $\mu_{i}^{-1} u_{i}$ to obtain

$$
\left[u_{i}, x\right]=y, \quad\left[u_{i}, y\right]=\lambda x \quad \text { for } \quad i=1,2, \ldots, n .
$$

If $\lambda=\alpha^{2}$ in Φ, then $(\operatorname{ad} \alpha x+y)^{2}=0$. Therefore λ is not equal to any square element in Φ.

Conversely, let L be such a Lie algebra as indicated in the statement. Assume that $v \in N$ and $(\operatorname{ad} v)^{2}=0$. Then v is expressed as $v=\alpha x+\beta y+z^{\prime}$, $z^{\prime} \in Z(L)$. From $(\operatorname{ad} v)^{2} u_{1}=0$, it follows that $\lambda \beta^{2}=\alpha^{2}$. Therefore $\beta=0$ and $\alpha=0$. Hence $v \in Z(L)$. Thus by Theorem $1 L$ is an (A_{2})-algebra. The proof is complete.

In the remainder of this section we shall show that there is no solvable $\left(\mathrm{A}_{2}\right)$-algebra L such that $\operatorname{dim} N / Z(L)=3$.

Lemma 5. Let L be a solvable Lie algebra such that

$$
\begin{aligned}
& N=\left(x_{1}, x_{2}, x_{3}\right)+Z(L), \quad u \in L \backslash N, \\
& {\left[u, x_{1}\right]=x_{2}, \quad\left[u, x_{2}\right]=\alpha^{2} x_{1}, \quad\left[u, x_{3}\right]=\alpha x_{3}+z,} \\
& {\left[x_{1}, x_{2}\right]=z_{1}, \quad\left[x_{1}, x_{3}\right]=z_{2}, \quad\left[x_{2}, x_{3}\right]=-\alpha z_{2}}
\end{aligned}
$$

where $z, z_{1}, z_{2} \in Z(L)$ and $\alpha \neq 0$. Then L is not an $\left(\mathrm{A}_{2}\right)$-algebra.
Proof. Assume that L is an $\left(\mathrm{A}_{2}\right)$-algebra. For every $v \in L, \notin(u)+N$, we write

$$
\begin{aligned}
& {\left[v, x_{1}\right]=\sum_{i=1}^{3} \alpha_{i} x_{i}+w_{1}} \\
& {\left[v, x_{2}\right]=\sum_{i=1}^{3} \beta_{i} x_{i}+w_{2}}
\end{aligned}
$$

where $w_{1}, w_{2} \in Z(L)$. From $\left[[u, v], x_{1}\right]+\left[\left[v, x_{1}\right], u\right]+\left[\left[x_{1}, u\right], v\right]=0$ it follows that

$$
\alpha_{1}=\beta_{2}, \quad \alpha^{2} \alpha_{2}=\beta_{1} \quad \text { and } \quad \alpha \alpha_{3}=\beta_{3} .
$$

Then

$$
\begin{aligned}
\left(\mathrm{ad}-\alpha x_{1}+x_{2}\right)^{2} v & =\left[-\alpha x_{1}+x_{2},\left(\alpha \alpha_{1}-\beta_{1}\right) x_{1}+\left(\alpha \alpha_{2}-\beta_{2}\right) x_{2}\right] \\
& =-\alpha\left(\alpha \alpha_{2}-\beta_{2}\right) z_{1}-\left(\alpha \alpha_{1}-\beta_{1}\right) z_{1} \\
& =0 .
\end{aligned}
$$

Since it is immediate that $\left(\operatorname{ad}-\alpha x_{1}+x_{2}\right)^{2} u=0$, we have $\left(\operatorname{ad}-\alpha x_{1}+x_{2}\right)^{2}=0$, which contradicts the condition $\left(\mathrm{A}_{2}\right)$. Therefore L is not an $\left(\mathrm{A}_{2}\right)$-algebra, completing the proof.

Proposition 4. Let L be a solvable (A_{2})-algebra over a field Φ of characteristic 0. Then $\operatorname{dim} N / Z(L) \neq 3$. In particular, if $\operatorname{dim} Z(L)=1$, then $\operatorname{dim} N / Z(L)$ is not odd.

Proof. Assume that there exists a solvable (A_{2})-algebra L such that $\operatorname{dim} N / Z(L)=3$. Take $x_{1} \in N \backslash Z(L)$ and choose $u \in L$ such that $\left(\operatorname{ad} x_{1}\right)^{2} u \neq 0$. Then $u \notin N$. Put $x_{2}=\left[u, x_{1}\right]$ and $z_{1}=\left[x_{1}, x_{2}\right]$. Then $x_{2} \notin\left(x_{1}\right)+Z(L)$ and $0 \neq z_{1} \in Z(L)$. By Lemma 4 we see that $\left[u, x_{2}\right] \notin Z(L)$.

Now suppose that $\left[u, x_{2}\right] \notin\left(x_{1}, x_{2}\right)+Z(L)$. Putting $x_{3}=\left[u, x_{2}\right]$, we have $N=\left(x_{1}, x_{2}, x_{3}\right)+Z(L)$. It follows that

$$
\begin{aligned}
{\left[x_{1}, x_{3}\right] } & =\left[x_{1},\left[u, x_{2}\right]\right] \\
& =\left[\left[x_{1}, u\right], x_{2}\right]+\left[u,\left[x_{1}, x_{2}\right]\right] \\
& =0 .
\end{aligned}
$$

By using this fact we obtain

$$
\begin{aligned}
{\left[x_{2}, x_{3}\right] } & =\left[\left[u, x_{1}\right], x_{3}\right] \\
& =\left[\left[u, x_{3}\right], x_{1}\right]+\left[u,\left[x_{1}, x_{3}\right]\right] \\
& \epsilon\left[x_{1}, N\right]+\left[u, N^{2}\right] \\
& =\left(z_{1}\right) .
\end{aligned}
$$

Put $\left[x_{2}, x_{3}\right]=\alpha z_{1}$ and $x^{\prime}{ }_{3}=x_{3}+\alpha x_{1}$. Then we have $\left[x_{2}, x^{\prime}{ }_{3}\right]=0$, from which it follows that $x^{\prime}{ }_{3} \in Z(N)=Z(L)$ and therefore $x_{3} \epsilon\left(x_{1}\right)+Z(L)$. This contradicts our supposition.

We have thus $\left[u, x_{2}\right] \epsilon\left(x_{1}, x_{2}\right)+Z(L)$. Choose a basis of $Z(L)$ so that $Z(L)=\left(z_{1}, z_{2}, \ldots, z_{m}\right)$. Since $\left[x_{1},\left[u, x_{2}\right]\right]=0$, it follows that

$$
\left[u, x_{2}\right]=\lambda x_{1}+\sum_{i=1}^{m} \mu_{i} z_{i} \quad \text { with } \quad \lambda \neq 0 .
$$

Replacing x_{1} by $x_{1}+\lambda^{-1} \sum_{i=1}^{m} \mu_{i} z_{i}$, we have

$$
\left[u, x_{1}\right]=x_{2}, \quad\left[u, x_{2}\right]=\lambda x_{1}, \quad\left[x_{1}, x_{2}\right]=z_{1} .
$$

We now choose $x_{3} \in N, \notin\left(x_{1}, x_{2}\right)+Z(N)$. Then $N=\left(x_{1}, x_{2}, x_{3}\right)+Z(L)$. Put

$$
\begin{aligned}
& {\left[u, x_{3}\right]=\sum_{i=1}^{3} \alpha_{i} x_{i}+\sum_{i=1}^{m} \alpha_{i}^{\prime} z_{i}} \\
& {\left[x_{1}, x_{3}\right]=\sum_{i=1}^{m} \beta_{i} z_{i}} \\
& {\left[x_{2}, x_{3}\right]=\sum_{i=1}^{m} \gamma_{i} z_{i} .}
\end{aligned}
$$

Then it follows from $\left[\left[u, x_{3}\right], x_{i}\right]=\left[\left[u, x_{i}\right], x_{3}\right]$ for $i=1,2$ that

$$
\begin{aligned}
& \alpha_{1}-\lambda \beta_{1}-\alpha_{3} \gamma_{1}=0, \quad \alpha_{2}+\alpha_{3} \beta_{1}+\gamma_{1}=0 \\
& \lambda \beta_{i}=-\alpha_{3} \gamma_{i}, \quad-\alpha_{3} \beta_{i}=\gamma_{i} \quad \text { for } \quad i \geqq 2
\end{aligned}
$$

Replacing x_{3} by $x_{3}+\gamma_{1} x_{1}-\beta_{1} x_{2}$, we have

$$
\begin{aligned}
& {\left[u, x_{3}\right]=\alpha_{3} x_{3}+\sum_{i=1}^{m} \alpha^{\prime} z_{i}} \\
& {\left[x_{1}, x_{3}\right]=\sum_{i=2}^{m} \beta_{i} z_{i}} \\
& {\left[x_{2}, x_{3}\right]=-\alpha_{3} \sum_{i=2}^{m} \beta_{i} z_{i}}
\end{aligned}
$$

and $\lambda \beta_{i}=\alpha_{3}^{2} \beta_{i}$ for $i \geqq 2$. If $\lambda \neq \alpha_{3}^{2}$, then $\beta_{i}=0$ for all $i \geqq 2$. Hence $\left[x_{3}, N\right]$ $=(0)$ and therefore $x_{3} \subset Z(N)=Z(L)$, which contradicts the choice of x_{3}. If $\lambda=\alpha_{3}^{2}$, then $\alpha_{3} \neq 0$. Hence L satisfies the hypothesis of Lemma 5 and therefore L is not an (A_{2})-algebra, which contradicts our assumption. Thus the first part is proved.

We now consider the special case where $\operatorname{dim} Z(L)=1$. Choose $x_{1} \in N \backslash Z(L)$. Since $\operatorname{dim} N / Z(L) \geqq 2$ and $x_{1} \notin Z(N)$, there exists $x_{2} \in N \backslash Z(L)$ such that $\left[x_{1}, x_{2}\right] \neq 0$. Put $\left[x_{1}, x_{2}\right]=z$. Then $Z(L)=(z)$. Assume that we have already chosen $x_{1}, x_{2}, \ldots, x_{2 k}$ in N which are linearly independent over Φ and such that

$$
\begin{array}{ll}
{\left[x_{2 h-1}, x_{2 h}\right]=z} & \text { for } h=1,2, \ldots, k \\
{\left[x_{i}, x_{j}\right]=0} & \text { for all other } \quad i<j
\end{array}
$$

and furthermore assume that $\operatorname{dim} N / Z(L)>2 k$. Then choose $y \in N$, $\measuredangle\left(x_{1}, x_{2}, \ldots, x_{2 k}\right)+Z(L)$ and put

$$
x_{2 k+1}=y+\left(-\alpha_{2} x_{1}+\alpha_{1} x_{2}\right)+\cdots+\left(-\alpha_{2 k} x_{2 k-1}+\alpha_{2 k-1} x_{2 k}\right)
$$

where α_{i} is such that $\left[y, x_{i}\right]=\alpha_{i} z$. It follows that $\left[x_{2 k+1}, x_{i}\right]=0$ for $i=1$, $2, \ldots, 2 k$. Since $x_{2 k+1} \in Z(N)$, we have $\operatorname{dim} N / Z(L)>2 k+1$ and there exists $x_{2 k+2} \in N$ such that $\left[x_{2 k+1}, x_{2 k+2}\right]=z$. Replacing $x_{2 k+2}$ by a sum of $x_{2 k+2}$ and a suitable linear combination of $x_{1}, x_{2}, \ldots, x_{2 k}$ as above, we may suppose that $\left[x_{2 k+2}, x_{i}\right]=0$ for $i=1,2, \ldots, 2 k$. Hence by using induction we can conclude that $\operatorname{dim} N / Z(L)$ is not odd.

Thus the proof is complete.
$\$ 4$.
Throughout this section we use the following notations for a Lie algebra L :

$$
n_{1}=\operatorname{dim} L / N, \quad n_{2}=\operatorname{dim} N / Z(L) \quad \text { and } \quad n_{3}=\operatorname{dim} Z(L)
$$

We shall then call L to be of type $\left(n_{1}, n_{2}, n_{3}\right)$. Owing to Theorem 1 we see that for every non-reductive (A_{2})-algebra $L n_{1} \geqq 1, n_{2} \geqq 2$ and $n_{3} \geqq 1$. Hence every 1 dimensional and 2 dimensional (A_{2})-algebra is abelian and every 3 dimensional $\left(\mathrm{A}_{2}\right)$-algebra is abelian or simple. By making use of the propositions in the preceding section, we shall study the structures of the 4,5 and 6 dimensional solvable (A_{2})-algebras.

As for the 4 dimensional (A_{2})-algebras we have the following
Proposition 5. The 4 dimensional non-reductive $\left(\mathrm{A}_{2}\right)$-algebras over a field Φ of characteristic 0 are the following Lie algebras:
$L_{\lambda}=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ with the multiplication table

$$
\begin{gathered}
{\left[x_{1}, x_{2}\right]=x_{3}, \quad\left[x_{1}, x_{3}\right]=\lambda x_{2},} \\
{\left[x_{2}, x_{3}\right]=x_{4}, \quad\left[x_{i}, x_{4}\right]=0} \\
\text { for } \quad i=1,2,3
\end{gathered}
$$

where λ is not a square element in Φ.
$L_{\lambda_{1}}$ and $L_{\lambda_{2}}$ are isomorphic if and only if $\lambda_{1} \lambda_{2}^{-1}$ is a square element in Φ.
When Φ is the field of real numbers, every L_{λ} is isomorphic to L_{-1}.
Proof. Let L be a 4 dimensional non-reductive (A_{2})-algebra. Then L is obviously of type ($1,2,1$). By Proposition 3 we see that L is equal to L_{λ} with some λ.

Assume that f is an isomorphism of $L_{\lambda_{1}}$ onto $L_{\lambda_{2}}$. Then f sends the nil radical and the center of $L_{\lambda_{1}}$ onto those of $L_{\lambda_{2}}$ respectively. Hence, denoting $L_{\lambda_{2}}=\left(y_{1}, y_{2}, y_{3}, y_{4}\right)$, we have

$$
\begin{aligned}
& f\left(x_{1}\right)=\sum_{j=1}^{4} \alpha_{1 j} y_{j} \\
& f\left(x_{i}\right)=\sum_{j=2}^{4} \alpha_{i j} y_{j} \quad \text { for } \quad i=2,3 \\
& f\left(x_{4}\right)=\alpha_{44} y_{4}
\end{aligned}
$$

Since the rank of f is 4 , we have

$$
\alpha_{11} \alpha_{44}\left|\begin{array}{cc}
\alpha_{22} & \alpha_{23} \\
\alpha_{32} & \alpha_{33}
\end{array}\right| \neq 0
$$

From $\left[f\left(x_{1}\right), f\left(x_{2}\right)\right]=f\left(x_{3}\right)$ and $\left[f\left(x_{1}\right), f\left(x_{3}\right)\right]=\lambda_{1} f\left(x_{2}\right)$, it follows that

$$
\begin{aligned}
\lambda_{1} \alpha_{22} & =\lambda_{2} \alpha_{11} \alpha_{33} \\
\lambda_{1} \alpha_{23} & =\alpha_{11} \alpha_{32} \\
\alpha_{32} & =\lambda_{2} \alpha_{11} \alpha_{23} \\
\alpha_{33} & =\alpha_{11} \alpha_{22} .
\end{aligned}
$$

Hence we have

$$
\begin{aligned}
& \alpha_{22}\left(\lambda_{1}-\lambda_{2} \alpha_{11}^{2}\right)=0 \\
& \alpha_{23}\left(\lambda_{1}-\lambda_{2} \alpha_{11}^{2}\right)=0 .
\end{aligned}
$$

Since we cannot have $\alpha_{22}=\alpha_{23}=0$, it follows that $\lambda_{1}=\lambda_{2} \alpha_{11}^{2}$.
Conversely, assume that for $L_{\lambda_{1}}$ and $L_{\lambda_{2}}, \lambda_{1} \lambda_{2}^{-1}=\alpha^{2}$ with $\alpha \in \Phi$. Then $\alpha \neq 0$. Define a linear transformation f of $L_{\lambda_{1}}$ into $L_{\lambda_{2}}$ in such a way that

$$
\begin{aligned}
& f\left(x_{1}\right)=\alpha y_{1}, \\
& f\left(x_{2}\right)=y_{2}, \\
& f\left(x_{3}\right)=\alpha y_{3}, \\
& f\left(x_{4}\right)=\alpha y_{4} .
\end{aligned}
$$

Then it is easy to see that f is an isomorphism of $L_{\lambda_{1}}$ onto $L_{\lambda_{2}}$.
When Φ is the field of real numbers, if λ is not a square element then $\lambda<0$. Therefore every L_{λ} is isomorphic to L_{-1}, and the proof is complete.

As for the 5 dimensional (A_{2})-algebras we have the following
Proposition 6. The 5 dimensional non-reductive $\left(\mathrm{A}_{2}\right)$-algebras over a field D of characteristic 0 are the following Lie algebras:
(1) The direct sum of a 4 dimensional non-reductive $\left(\mathrm{A}_{2}\right)$-algebra and the 1 dimensional Lie algebra.
(2) $L_{\lambda, \mu}=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)$ with the multiplication table

$$
\begin{aligned}
& {\left[x_{1}, x_{2}\right]=\lambda x_{5},} \\
& {\left[x_{1}, x_{3}\right]=\left[x_{2}, x_{3}\right]=x_{4},} \\
& {\left[x_{1}, x_{4}\right]=\left[x_{2}, x_{4}\right]=\mu x_{3},} \\
& {\left[x_{3}, x_{4}\right]=x_{5},} \\
& {\left[x_{i}, x_{5}\right]=0 \quad \text { for } \quad i=1,2,3,4}
\end{aligned}
$$

where μ is not a square element in Φ.
$L_{\lambda_{1}, \mu_{1}}$ and $L_{\lambda_{2}, \mu_{2}}$ are isomorphic if and only if both λ_{1} and λ_{2} are 0 or $\neq 0$ at the same time and $\mu_{1} \mu_{2}^{-1}$ is a square element in \varnothing.

When Φ is the field of real numbers, every $L_{\lambda, \mu}$ is isomorphic to one of the non-isomorphic $\left(\mathrm{A}_{2}\right)$-algebras $L_{0,-1}$ and $L_{1,-1}$.

Proof. Let L be a 5 dimensional (A_{2})-algebra. Then by Proposition 4 L is either of type ($1,2,2$) or of type ($2,2,1$). In the first case, by Proposition 3 we see that L is a Lie algebra in (1) of the statement. In the second case, by Proposition 3 we see that L is one of $L_{\lambda, \mu}$ in (2) of the statement.

Assume that f is an isomorphism of $L_{\lambda_{1}, \mu_{1}}$ onto $L_{\lambda_{2}, \mu_{2}}$, where we write $L_{\lambda_{2}, \mu_{2}}=\left(y_{1}, y_{2}, y_{3}, y_{4}, y_{5}\right)$. Since f sends the nil radical and the center of $L_{\lambda_{1}, \mu_{1}}$ onto those of $L_{\lambda_{2}, \mu_{2}}$ respectively, we can express f in the following form:

$$
f\left(x_{i}\right)=\left\{\begin{aligned}
\sum_{j=1}^{5} \alpha_{i j} y_{j} & \text { for } i=1,2 \\
\sum_{j=3}^{5} \alpha_{i j} y_{j} & \text { for } \quad i=3,4 \\
\alpha_{55} y_{5} & \text { for } \quad i=5,
\end{aligned}\right.
$$

where

$$
\alpha_{55}\left|\begin{array}{ll}
\alpha_{11} & \alpha_{12} \\
\alpha_{21} & \alpha_{22}
\end{array}\right|\left|\begin{array}{ll}
\alpha_{33} & \alpha_{34} \\
\alpha_{43} & \alpha_{44}
\end{array}\right| \neq 0
$$

From $\left[f\left(x_{1}\right), f\left(x_{3}\right)\right]=f\left(x_{4}\right)$ it follows that

$$
\begin{gathered}
\alpha_{33}\left(\alpha_{11}+\alpha_{12}\right)=\alpha_{44} \\
\mu_{2} \alpha_{34}\left(\alpha_{11}+\alpha_{12}\right)=\alpha_{43}
\end{gathered}
$$

From $\left[f\left(x_{1}\right), f\left(x_{4}\right)\right]=\mu_{1} f\left(x_{3}\right)$ it follows that

$$
\begin{aligned}
& \mu_{1} \alpha_{33}=\mu_{2} \alpha_{44}\left(\alpha_{11}+\alpha_{12}\right) \\
& \mu_{1} \alpha_{34}=\alpha_{43}\left(\alpha_{11}+\alpha_{12}\right) .
\end{aligned}
$$

Therefore we have

$$
\begin{aligned}
& \alpha_{33}\left\{\mu_{1}-\mu_{2}\left(\alpha_{11}+\alpha_{12}\right)^{2}\right\}=0 \\
& \alpha_{34}\left\{\mu_{1}-\mu_{2}\left(\alpha_{11}+\alpha_{12}\right)^{2}\right\}=0 .
\end{aligned}
$$

Since α_{33} and α_{34} cannot be equal to 0 at the same time, it follows that

$$
\mu_{1}=\mu_{2}\left(\alpha_{11}+\alpha_{12}\right)^{2} .
$$

By this equality together with $\mu_{1} \neq 0$, we see that $\alpha_{11}+\alpha_{12} \neq 0$. On the other hand, from $\left[f\left(x_{1}\right), f\left(x_{2}\right)\right]=\lambda_{1} f\left(x_{5}\right)$, it follows that

$$
\begin{aligned}
& \alpha_{23}\left(\alpha_{11}+\alpha_{12}\right)-\alpha_{13}\left(\alpha_{21}+\alpha_{22}\right)=0 \\
& \alpha_{24}\left(\alpha_{11}+\alpha_{12}\right)-\alpha_{14}\left(\alpha_{21}+\alpha_{22}\right)=0 \\
& \lambda_{2}\left(\alpha_{11} \alpha_{22}-\alpha_{12} \alpha_{21}\right)+\left(\alpha_{13} \alpha_{24}-\alpha_{14} \alpha_{23}\right)=\lambda_{1} \alpha_{55}
\end{aligned}
$$

Therefore from the first two equations above we obtain

$$
\alpha_{13} \alpha_{24}-\alpha_{14} \alpha_{23}=0
$$

Then the last equation above becomes

$$
\lambda_{1} \alpha_{55}=\lambda_{2}\left(\alpha_{11} \alpha_{22}-\alpha_{12} \alpha_{21}\right) .
$$

This shows that $\lambda_{1}=0$ if and only if $\lambda_{2}=0$.
Conversely, assume that for $L_{\lambda_{1}, \mu_{1}}$ and $L_{\lambda_{2}, \mu_{2}}$ both λ_{1} and λ_{2} are 0 or $\neq 0$ at the same time and $\mu_{1} \mu_{2}^{-1}=\alpha^{2}$ with $\alpha \in \Phi$. In the case where $\lambda_{1}=\lambda_{2}=0$, we define a linear transformation of $L_{\lambda_{1}, \mu_{1}}$ into $L_{\lambda_{2}, \mu_{2}}$ in such a way that

$$
\begin{aligned}
& f\left(x_{1}\right)=\alpha y_{1} \\
& f\left(x_{2}\right)=\alpha y_{2} \\
& f\left(x_{3}\right)=y_{3}+y_{4} \\
& f\left(x_{4}\right)=\alpha\left(\mu_{2} y_{3}+y_{4}\right) \\
& f\left(x_{5}\right)=\alpha\left(1-\mu_{2}\right) y_{5} .
\end{aligned}
$$

Then the rank of f is 5 , since the coefficient matrix of f has the determinant $\alpha^{4}\left(1-\mu_{2}\right)^{2} \neq 0$. In the case where $\lambda_{1} \neq 0$ and $\lambda_{2} \neq 0$, we define a linear transformation of $L_{\lambda_{1}, \mu_{1}}$ into $L_{\lambda_{2}, \mu_{2}}$ in such a way that

$$
\begin{aligned}
& f\left(x_{1}\right)=\alpha y_{1} \\
& f\left(x_{2}\right)=\left\{\alpha-\lambda_{1} \lambda_{2}^{-1}\left(1-\mu_{2}\right)\right\} y_{1}+\lambda_{1} \lambda_{2}^{-1}\left(1-\mu_{2}\right) y_{2} \\
& f\left(x_{3}\right)=y_{3}+y_{4} \\
& f\left(x_{4}\right)=\alpha\left(\mu_{2} y_{3}+y_{4}\right) \\
& f\left(x_{5}\right)=\alpha\left(1-\mu_{2}\right) y_{5} .
\end{aligned}
$$

Then the rank of f is 5 , since the coefficient matrix of f has the determinant $\alpha^{3} \lambda_{1} \lambda_{2}^{-1}\left(1-\mu_{2}\right)^{3} \neq 0$. In each case, it is easy to see that f preserves the multiplication and therefore f is an isomorphism of $L_{\lambda_{1}, \mu_{1}}$ onto $L_{\lambda_{2}, \mu_{2}}$.

If Φ is the field of real numbers, then it is immediate that every $L_{\lambda, \mu}$ is isomorphic to one of $L_{0,-1}$ and $L_{1,-1}$ which are not isomorphic.

Thus the proof is complete.
Finally we shall clarify the structure of the 6 dimensional $\left(\mathrm{A}_{2}\right)$-algebras by restricting the basic field Φ to the field of real numbers. We first show the following

Lemma 6. The 6 dimensional (A_{2})-algebras of type (2, 2, 2) over a field Φ of characteristic 0 are the following Lie algebras:
(1) The direct sum of a 5 dimensional (A_{2})-algebra of type $(2,2,1)$ and the 1 dimensional Lie algebra.
(2) $L_{\lambda}=\left(x_{1}, x_{2}, \ldots, x_{6}\right)$ with the multiplication table

$$
\begin{aligned}
& {\left[x_{1}, x_{2}\right]=x_{6},} \\
& {\left[x_{1}, x_{3}\right]=\left[x_{2}, x_{3}\right]=x_{4},} \\
& {\left[x_{1}, x_{4}\right]=\left[x_{2}, x_{4}\right]=\lambda x_{3},} \\
& {\left[x_{3}, x_{4}\right]=x_{5},} \\
& {\left[x_{i}, x_{j}\right]=0 \quad \text { for all other } \quad i<j,}
\end{aligned}
$$

where λ is not a square element in Φ.
$L_{\lambda_{1}}$ and $L_{\lambda_{2}}$ are isomorphic if and only if $\lambda_{1} \lambda_{2}^{-1}$ is a square element in Φ.
When Φ is the field of real numbers, every L_{λ} is isomorphic to L_{-1}.
Proof. Let L be a 6 dimensional (A_{2})-algebra of type (2,2,2). Then L is solvable. Hence by Proposition $3 L$ is described by a basis $x_{1}, x_{2}, \ldots, x_{6}$ in such a way that

$$
\begin{aligned}
& {\left[x_{1}, x_{2}\right]=\alpha x_{5}+\beta x_{6},} \\
& {\left[x_{1}, x_{3}\right]=\left[x_{2}, x_{3}\right]=x_{4},} \\
& {\left[x_{1}, x_{4}\right]=\left[x_{2}, x_{4}\right]=\lambda x_{3},} \\
& {\left[x_{3}, x_{4}\right]=x_{5},} \\
& {\left[x_{i}, x_{j}\right]=0 \quad \text { for all other } \quad i<j}
\end{aligned}
$$

where λ is not a square element in \varnothing. If $\beta=0$, then L is the Lie algebra of the type indicated in (1) of the statement. If $\beta \neq 0$, then we can take $\alpha x_{5}+$ βx_{6} as new x_{6} and L becomes the Lie algebra indicated in (2) of the statement.

Assume that f is an isomorphism of $L_{\lambda_{1}}$ onto $L_{\lambda_{2}}$. Writing $L_{\lambda_{2}}=\left(y_{1}, y_{2}\right.$, $\left.\ldots, y_{6}\right), f$ can be expressed in the following form:

$$
f\left(x_{i}\right)= \begin{cases}\sum_{j=1}^{6} \alpha_{i j} y_{j} & \text { for } \quad i=1,2 \\ \sum_{j=3}^{6} \alpha_{i j} y_{j} & \text { for } \quad i=3,4 \\ \sum_{j=5}^{6} \alpha_{i j} y_{j} & \text { for } \quad i=5,6\end{cases}
$$

Since the rank of f is 6 , we have

$$
\left|\begin{array}{ll}
\alpha_{11} & \alpha_{12} \\
\alpha_{21} & \alpha_{22}
\end{array}\right| \cdot\left|\begin{array}{ll}
\alpha_{33} & \alpha_{34} \\
\alpha_{43} & \alpha_{44}
\end{array}\right| \cdot\left|\begin{array}{ll}
\alpha_{55} & \alpha_{56} \\
\alpha_{65} & \alpha_{66}
\end{array}\right| \neq 0
$$

From $\left[f\left(x_{1}\right), f\left(x_{3}\right)\right]=f\left(x_{4}\right)$ it follows that

$$
\begin{aligned}
\alpha_{33}\left(\alpha_{11}+\alpha_{12}\right) & =\alpha_{44} \\
\lambda_{2} \alpha_{34}\left(\alpha_{11}+\alpha_{12}\right) & =\alpha_{43}
\end{aligned}
$$

From $\left[f\left(x_{1}\right), f\left(x_{4}\right)\right]=\lambda_{1} f\left(x_{3}\right)$ it follows that

$$
\begin{aligned}
& \lambda_{1} \alpha_{33}=\lambda_{2} \alpha_{44}\left(\alpha_{11}+\alpha_{12}\right) \\
& \lambda_{1} \alpha_{34}=\alpha_{43}\left(\alpha_{11}+\alpha_{12}\right) .
\end{aligned}
$$

Hence we obtain

$$
\begin{aligned}
& \alpha_{33}\left\{\lambda_{1}-\lambda_{2}\left(\alpha_{11}+\alpha_{12}\right)^{2}\right\}=0, \\
& \alpha_{34}\left\{\lambda_{1}-\lambda_{2}\left(\alpha_{11}+\alpha_{12}\right)^{2}\right\}=0 .
\end{aligned}
$$

Since $\alpha_{33} \neq 0$ or $\alpha_{34} \neq 0$, it follows that

$$
\lambda_{1}=\lambda_{2}\left(\alpha_{11}+\alpha_{12}\right)^{2}
$$

Conversely, assume that for $L_{\lambda_{1}}$ and $L_{\lambda_{2}}, \lambda_{1} \lambda_{2}^{-1}=\alpha^{2}$ with $\alpha \epsilon \Phi$. Then we define a linear transformation f of $L_{\lambda_{1}}$ into $L_{\lambda_{2}}$ in such a way that

$$
\begin{aligned}
& f\left(x_{1}\right)=\alpha y_{1} \\
& f\left(x_{2}\right)=\alpha y_{2} \\
& f\left(x_{3}\right)=y_{3}+y_{4} \\
& f\left(x_{4}\right)=\alpha\left(\lambda_{2} y_{3}+y_{4}\right) \\
& f\left(x_{5}\right)=\alpha\left(1-\lambda_{2}\right) y_{5} \\
& f\left(x_{6}\right)=\alpha^{2} y_{6} .
\end{aligned}
$$

The coefficient matrix of f has the determinant $\alpha^{6}\left(1-\lambda_{2}\right)^{2} \neq 0$ and it is immediate that f preserves the multiplication. Hence f is an isomorphism of $L_{\lambda_{1}}$ onto $L_{\lambda_{2}}$.

When Φ is in particular the field of real numbers, every L_{λ} is obviously isomorphic to L_{-1}. Thus the proof is complete.

Lemma 7. The solvable $\left(\mathrm{A}_{2}\right)$-algebras of type $(3,2,1)$ over a field Φ of characteristic 0 are the following Lie algebras:
$L_{\lambda, \mu}=\left(x_{1}, x_{2}, \cdots, x_{6}\right)$ with the multiplication table

$$
\begin{aligned}
& {\left[x_{1}, x_{2}\right]=\lambda x_{6}, \quad\left[x_{1}, x_{3}\right]=\left[x_{2}, x_{3}\right]=0,} \\
& {\left[x_{1}, x_{4}\right]=\left[x_{2}, x_{4}\right]=\left[x_{3}, x_{4}\right]=x_{5},} \\
& {\left[x_{1}, x_{5}\right]=\left[x_{2}, x_{5}\right]=\left[x_{3}, x_{5}\right]=\mu x_{4},} \\
& {\left[x_{4}, x_{5}\right]=x_{6},} \\
& {\left[x_{i}, x_{6}\right]=0 \quad \text { for } \quad i=1,2, \ldots, 5}
\end{aligned}
$$

where μ is not a square element in Φ.
$L_{\lambda_{1}, \mu_{1}}$ and $L_{\lambda_{2}, \mu_{2}}$ are isomorphic if and only if both λ_{1} and λ_{2} are 0 or $\neq 0$ at the same time and $\mu_{1} \mu_{2}^{-1}$ is a square element in Φ.

When Φ is the field of real numbers, every $L_{\lambda, \mu}$ is isomorphic to one of the non-isomorphic (A_{2})-algebras $L_{0,-1}$ and $L_{1,-1}$.

Proof. Let L be a solvable (A_{2})-algebra of type $(3,2,1)$. Then by Proposition $3 L$ can be described by a basis $x_{1}, x_{2}, \ldots, x_{6}$ in such a way that

$$
\begin{aligned}
& {\left[x_{1}, x_{2}\right]=\alpha x_{6}, \quad\left[x_{1}, x_{3}\right]=\beta x_{6}, \quad\left[x_{2}, x_{3}\right]=\gamma x_{6},} \\
& {\left[x_{1}, x_{4}\right]=\left[x_{2}, x_{4}\right]=\left[x_{3}, x_{4}\right]=x_{5},} \\
& {\left[x_{1}, x_{5}\right]=\left[x_{2}, x_{5}\right]=\left[x_{3}, x_{5}\right]=\mu x_{4},} \\
& {\left[x_{4}, x_{5}\right]=x_{6}, \quad\left[x_{i}, x_{6}\right]=0 \quad \text { for } \quad i=1,2, \ldots, 5}
\end{aligned}
$$

where μ is not a square element in \varnothing.
First assume that $\alpha-\beta+\gamma=0$. Then we assert that $\alpha=\beta=\gamma=0$. In fact, we put

$$
y= \begin{cases}x_{3}+\alpha^{-1} \gamma x_{1}-\alpha^{-1} \beta x_{2} & \text { if } \alpha \neq 0 \\ x_{2}-\beta^{-1} \gamma x_{1}-\alpha \beta^{-1} x_{3} & \text { if } \beta \neq 0 \\ x_{1}-\beta \gamma^{-1} x_{2}+\alpha \gamma^{-1} x_{3} & \text { if } \gamma \neq 0\end{cases}
$$

Then $\left[y, x_{1}\right]=\left[y, x_{2}\right]=\left[y, x_{3}\right]=0$,

$$
\left[y, x_{4}\right]=\left\{\begin{aligned}
\alpha^{-1}(\alpha-\beta+\gamma) x_{5}=0 & \text { if } \alpha \neq 0 \\
-\beta^{-1}(\alpha-\beta+\gamma) x_{5}=0 & \text { if } \beta \neq 0 \\
\gamma^{-1}(\alpha-\beta+\gamma) x_{5}=0 & \text { if } \gamma \neq 0
\end{aligned}\right.
$$

and similarly $\left[y, x_{5}\right]=0$. Hence $y \in Z(L)$ and therefore $\operatorname{dim} Z(L) \geqq 2$, which contradicts the hypothesis that L is of type ($3,2,1$). Therefore $\alpha=\beta=\gamma=0$, as was asserted.

Next assume that $\alpha-\beta+\gamma \neq 0$. If $\alpha \neq 0$, put

$$
x_{3}^{\prime}=\alpha(\alpha-\beta+\gamma)^{-1}\left(x_{3}+\alpha^{-1} \gamma x_{1}-\alpha^{-1} \beta x_{2}\right)
$$

Then $\left[x_{1}, x_{3}^{\prime}\right]=\left[x_{2}, x_{3}^{\prime}\right]=0,\left[x_{3}^{\prime}, x_{4}\right]=x_{5}$ and $\left[x_{3}^{\prime}, x_{5}\right]=\mu x_{4}$. If $\beta \neq 0$, put

$$
x_{2}^{\prime}=-\beta(\alpha-\beta+\gamma)^{-1}\left(x_{2}-\beta^{-1} \gamma x_{1}-\alpha \beta^{-1} x_{3}\right)
$$

Then $\left[x_{1}, x_{2}^{\prime}\right]=\left[x_{2}^{\prime}, x_{3}\right]=0,\left[x_{2}^{\prime}, x_{4}\right]=x_{5}$ and $\left[x_{2}^{\prime}, x_{5}\right]=\mu x_{4}$. If $\gamma \neq 0$, put

$$
x_{1}^{\prime}=\gamma(\alpha-\beta+\gamma)^{-1}\left(x_{1}-\beta \gamma^{-1} x_{2}+\alpha \gamma^{-1} x_{3}\right) .
$$

Then $\left[x_{1}^{\prime}, x_{2}\right]=\left[x_{1}^{\prime}, x_{3}\right]=0,\left[x_{1}^{\prime}, x_{4}\right]=x_{5}$ and $\left[x_{1}^{\prime}, x_{5}\right]=\mu x_{4}$. Thus, in any case, we can change a basis so that two of α, β and γ are 0 . Finally by rearranging x_{1}, x_{2}, x_{3} if necessary, we obtain $\beta=\gamma=0$. Therefore L is one of the $L_{\lambda, \mu}$. Thus the first statement is proved.

Assume that f is an isomorphism of $L_{\lambda_{1}, \mu_{1}}$ onto $L_{\lambda_{2}, \mu_{2}}$. Writing $L_{\lambda_{2}, \mu_{2}}=$ ($y_{1}, y_{2}, \ldots, y_{6}$), we can express f in the following form:

$$
f\left(x_{i}\right)=\left\{\begin{array}{cc}
\sum_{j=1}^{6} \alpha_{i j} y_{j} & \text { for } \quad i=1,2,3 \\
\sum_{j=4}^{6} \alpha_{i j} y_{j} & \text { for } \quad i=4,5 \\
\alpha_{66} y_{6} & \text { for } \quad i=6 .
\end{array}\right.
$$

Since the rank of f is 6 , we have

$$
\alpha_{66}\left|\begin{array}{lll}
\alpha_{11} & \alpha_{12} & \alpha_{13} \\
\alpha_{21} & \alpha_{22} & \alpha_{23} \\
\alpha_{31} & \alpha_{32} & \alpha_{33}
\end{array}\right|\left|\begin{array}{ll}
\alpha_{44} & \alpha_{45} \\
\alpha_{54} & \alpha_{55}
\end{array}\right| \neq 0
$$

From $\left[f\left(x_{i}\right), f\left(x_{4}\right)\right]=f\left(x_{5}\right)$ for $i=1,2,3$, it follows that

$$
\begin{aligned}
\alpha_{44}\left(\alpha_{i 1}+\alpha_{i 2}+\alpha_{i 3}\right) & =\alpha_{55} \\
\mu_{2} \alpha_{45}\left(\alpha_{i 1}+\alpha_{i 2}+\alpha_{i 3}\right) & =\alpha_{54} \quad \text { for } \quad i=1,2,3
\end{aligned}
$$

From $\left[f\left(x_{i}\right), f\left(x_{5}\right)\right]=\mu_{1} f\left(x_{4}\right)$ for $i=1,2,3$, it follows that

$$
\begin{aligned}
& \mu_{1} \alpha_{44}=\mu_{2} \alpha_{55}\left(\alpha_{i 1}+\alpha_{i 2}+\alpha_{i 3}\right) \\
& \mu_{1} \alpha_{45}=\alpha_{54}\left(\alpha_{i 1}+\alpha_{i 2}+\alpha_{i 3}\right) \quad \text { for } \quad i=1,2,3 .
\end{aligned}
$$

Hence we have

$$
\begin{gathered}
\alpha_{44}\left\{\mu_{1}-\mu_{2}\left(\alpha_{i 1}+\alpha_{i 2}+\alpha_{i 3}\right)^{2}\right\}=0 \\
\alpha_{45}\left\{\mu_{1}-\mu_{2}\left(\alpha_{i 1}+\alpha_{i 2}+\alpha_{i 3}\right)^{2}\right\}=0 \\
\text { for } \quad i=1,2,3 .
\end{gathered}
$$

Since $\alpha_{44} \neq 0$ or $\alpha_{45} \neq 0$, it follows that

$$
\mu_{1}=\mu_{2}\left(\alpha_{i 1}+\alpha_{i 2}+\alpha_{i 3}\right)^{2}, \quad i=1,2,3
$$

We have also

$$
\begin{aligned}
& \alpha_{44}\left\{\left(\alpha_{11}+\alpha_{12}+\alpha_{13}\right)-\left(\alpha_{21}+\alpha_{22}+\alpha_{23}\right)\right\}=0 \\
& \alpha_{44}\left\{\left(\alpha_{11}+\alpha_{12}+\alpha_{13}\right)-\left(\alpha_{31}+\alpha_{32}+\alpha_{33}\right)\right\}=0 \\
& \alpha_{45}\left\{\left(\alpha_{11}+\alpha_{12}+\alpha_{13}\right)-\left(\alpha_{21}+\alpha_{22}+\alpha_{23}\right)\right\}=0 \\
& \alpha_{45}\left\{\left(\alpha_{11}+\alpha_{12}+\alpha_{13}\right)-\left(\alpha_{31}+\alpha_{32}+\alpha_{33}\right)\right\}=0 .
\end{aligned}
$$

From these and the fact that $\alpha_{44} \alpha_{55}-\alpha_{45} \alpha_{54} \neq 0$, it follows that

$$
\alpha_{11}+\alpha_{12}+\alpha_{13}=\alpha_{21}+\alpha_{22}+\alpha_{23}=\alpha_{31}+\alpha_{32}+\alpha_{33} .
$$

From $\left[f\left(x_{1}\right), f\left(x_{2}\right)\right]=\lambda_{1} f\left(x_{6}\right)$ and $\left[f\left(x_{1}\right), f\left(x_{3}\right)\right]=\left[f\left(x_{2}\right), f\left(x_{3}\right)\right]=0$, it follows that

$$
\begin{aligned}
& \alpha_{24}\left(\alpha_{11}+\alpha_{12}+\alpha_{13}\right)-\alpha_{14}\left(\alpha_{21}+\alpha_{22}+\alpha_{23}\right)=0 \\
& \alpha_{25}\left(\alpha_{11}+\alpha_{12}+\alpha_{13}\right)-\alpha_{15}\left(\alpha_{21}+\alpha_{22}+\alpha_{23}\right)=0 \\
& \alpha_{34}\left(\alpha_{11}+\alpha_{12}+\alpha_{13}\right)-\alpha_{14}\left(\alpha_{31}+\alpha_{32}+\alpha_{33}\right)=0 \\
& \alpha_{35}\left(\alpha_{11}+\alpha_{12}+\alpha_{13}\right)-\alpha_{15}\left(\alpha_{31}+\alpha_{32}+\alpha_{33}\right)=0 \\
& \alpha_{34}\left(\alpha_{21}+\alpha_{22}+\alpha_{23}\right)-\alpha_{24}\left(\alpha_{31}+\alpha_{32}+\alpha_{33}\right)=0
\end{aligned}
$$

$$
\begin{aligned}
& \alpha_{35}\left(\alpha_{21}+\alpha_{22}+\alpha_{23}\right)-\alpha_{25}\left(\alpha_{31}+\alpha_{32}+\alpha_{33}\right)=0 \\
& \lambda_{2}\left(\alpha_{11} \alpha_{22}-\alpha_{12} \alpha_{21}\right)+\left(\alpha_{14} \alpha_{25}-\alpha_{15} \alpha_{24}\right)=\lambda_{1} \alpha_{66} \\
& \lambda_{2}\left(\alpha_{11} \alpha_{32}-\alpha_{12} \alpha_{31}\right)+\left(\alpha_{14} \alpha_{35}-\alpha_{15} \alpha_{34}\right)=0 \\
& \lambda_{2}\left(\alpha_{21} \alpha_{32}-\alpha_{22} \alpha_{31}\right)+\left(\alpha_{24} \alpha_{35}-\alpha_{25} \alpha_{34}\right)=0 .
\end{aligned}
$$

Since $\alpha_{i 1}+\alpha_{i 2}+\alpha_{i 3} \neq 0$ for $i=1,2,3$, it follows that

$$
\begin{aligned}
& \alpha_{14} \alpha_{25}-\alpha_{15} \alpha_{24}=0 \\
& \alpha_{14} \alpha_{35}-\alpha_{15} \alpha_{34}=0 \\
& \alpha_{24} \alpha_{35}-\alpha_{25} \alpha_{34}=0
\end{aligned}
$$

and therefore

$$
\begin{aligned}
& \lambda_{2}\left(\alpha_{11} \alpha_{22}-\alpha_{12} \alpha_{21}\right)=\lambda_{1} \alpha_{66} \\
& \lambda_{2}\left(\alpha_{11} \alpha_{32}-\alpha_{12} \alpha_{31}\right)=0 \\
& \lambda_{2}\left(\alpha_{21} \alpha_{32}-\alpha_{22} \alpha_{31}\right)=0
\end{aligned}
$$

If we denote

$$
D=\left|\begin{array}{lll}
\alpha_{11} & \alpha_{12} & \alpha_{13} \\
\alpha_{21} & \alpha_{22} & \alpha_{23} \\
\alpha_{31} & \alpha_{32} & \alpha_{33}
\end{array}\right|,
$$

then

$$
\begin{array}{r}
D=\left(\alpha_{11}+\alpha_{12}+\alpha_{13}\right)\left\{\left(\alpha_{11} \alpha_{22}-\alpha_{12} \alpha_{21}\right)-\left(\alpha_{11} \alpha_{32}-\alpha_{12} \alpha_{31}\right)\right. \\
\left.+\left(\alpha_{21} \alpha_{32}-\alpha_{22} \alpha_{31}\right)\right\} .
\end{array}
$$

It follows that

$$
\lambda_{1} \alpha_{66}=\lambda_{2}\left(\alpha_{11}+\alpha_{12}+\alpha_{13}\right)^{-1} D
$$

Since $\alpha_{66} D \neq 0$, we conclude that $\lambda_{1}=0$ if and only if $\lambda_{2}=0$.
Conversely, assume that for $L_{\lambda_{1}, \mu_{1}}$ and $L_{\lambda_{2}, \mu_{2}}$ both λ_{1} and λ_{2} are 0 or $\neq 0$ at the same time and $\mu_{1} \mu_{2}^{-1}=\alpha^{2}$ with $\alpha \epsilon \Phi$. In the case where $\lambda_{1}=\lambda_{2}=0$, we define a linear transformation f of $L_{\lambda_{1}, \mu_{1}}$ into $L_{\lambda_{2}, \mu_{2}}$ in such a way that

$$
\begin{aligned}
& f\left(x_{1}\right)=\alpha y_{1} \\
& f\left(x_{2}\right)=\alpha y_{2} \\
& f\left(x_{3}\right)=\alpha y_{3} \\
& f\left(x_{4}\right)=y_{4}+y_{5} \\
& f\left(x_{5}\right)=\alpha\left(\mu_{2} y_{4}+y_{5}\right) \\
& f\left(x_{6}\right)=\alpha\left(1-\mu_{2}\right) y_{6} .
\end{aligned}
$$

The rank of f is 6 , since the coefficient matrix of f has the determinant $\alpha^{5}\left(1-\mu_{2}\right)^{2} \neq 0$.

In the case where $\lambda_{1} \neq 0$ and $\lambda_{2} \neq 0$, we define a linear transformation f of $L_{\lambda_{1}, \mu_{1}}$ into $L_{\lambda_{2}, \mu_{2}}$ in such a way that

$$
\begin{aligned}
& f\left(x_{1}\right)=\lambda_{1} \lambda_{2}^{-1}\left(1-\mu_{2}\right) y_{1}+\left\{\alpha-\lambda_{1} \lambda_{2}^{-1}\left(1-\mu_{2}\right)\right\} y_{2} \\
& f\left(x_{2}\right)=\alpha y_{2} \\
& f\left(x_{3}\right)=\alpha y_{3} \\
& f\left(x_{4}\right)=y_{4}+y_{5} \\
& f\left(x_{5}\right)=\alpha\left(\mu_{2} y_{4}+y_{5}\right) \\
& f\left(x_{6}\right)=\alpha\left(1-\mu_{2}\right) y_{6} .
\end{aligned}
$$

The rank of f is 6 , since the coefficient matrix of f has the determinant $\alpha^{4} \lambda_{1} \lambda_{2}^{-1}\left(1-\mu_{2}\right)^{3} \neq 0$. It is easy to see that in any case f preserves the multiplication. Therefore f is an isomorphism of $L_{\lambda_{1}, \mu_{1}}$ onto $L_{\lambda_{2}, \mu_{2}}$.

When Φ is in particular the field of real numbers, it is immediate that every $L_{\lambda, \mu}$ is isomorphic to one of the (A_{2})-algebras $L_{0,-1}$ and $L_{1,-1}$, which are not isomorphic.

Thus the proof is complete.
Lemma 8. The $\left(\mathrm{A}_{2}\right)$-algebras of type $(1,4,1)$ over the field Φ of real numbers are the following Lie algebras:
(1) $L_{\lambda, \mu}=\left(x_{0}, x_{1}, \cdots, x_{5}\right)$ with the multiplication table

$$
\begin{aligned}
& {\left[x_{0}, x_{1}\right]=x_{2},} \\
& {\left[x_{0}, x_{2}\right]=\lambda x_{1},} \\
& {\left[x_{0}, x_{3}\right]=x_{4},} \\
& {\left[x_{0}, x_{4}\right]=\mu x_{3}} \\
& {\left[x_{1}, x_{2}\right]=\left[x_{3}, x_{4}\right]=x_{5}} \\
& {\left[x_{i}, x_{j}\right]=0 \quad \text { for all other } \quad i<j}
\end{aligned}
$$

where $\lambda<0$ and $\mu<0$.
(2) $L_{\lambda, \mu, \nu}=\left(x_{0}, x_{1}, \cdots, x_{5}\right)$ with the multiplication table

$$
\begin{aligned}
& {\left[x_{0}, x_{1}\right]=x_{2},} \\
& {\left[x_{0}, x_{2}\right]=\lambda x_{1}+x_{3},} \\
& {\left[x_{0}, x_{3}\right]=x_{4},} \\
& {\left[x_{0}, x_{4}\right]=\nu x_{1}+\mu x_{3},} \\
& {\left[x_{1}, x_{2}\right]=x_{5}, \quad\left[x_{3}, x_{4}\right]=\nu x_{5},} \\
& {\left[x_{i}, x_{j}\right]=0 \quad \text { for all other } \quad i<j}
\end{aligned}
$$

where $\lambda<0, \mu<0$ and $0<\nu<\lambda \mu$.
Proof. Let L be an (A_{2})-algebra of type (1, 4, 1). Take $x_{1} \in N \backslash Z(L)$. Then there exists $x_{0} \in L \backslash N$ such that $\left[x_{1},\left[x_{1}, x_{0}\right]\right] \neq 0$. Put $x_{2}=\left[x_{0}, x_{1}\right]$ and $x_{5}=\left[x_{1}, x_{2}\right]$. Then $x_{2} \in N \backslash Z(L)$ and $Z(L)=\left(x_{5}\right)$.

Case I. $\left[x_{0}, x_{2}\right] \epsilon\left(x_{1}, x_{2}, x_{5}\right)$: We write

$$
\left[x_{0}, x_{2}\right]=\lambda x_{1}+\mu x_{2}+\nu x_{5} .
$$

Then from $\left[\left[x_{0}, x_{2}\right], x_{1}\right]=\left[\left[x_{0}, x_{1}\right], x_{2}\right]$ it follows that $\mu=0$. If $\lambda=0$, then $\left(\operatorname{ad} x_{2}\right)^{2}=0$. Therefore $\lambda \neq 0$. Replacing x_{1} by $x_{1}+\lambda^{-1} \nu x_{5}$, we may suppose that

$$
\left[x_{0}, x_{2}\right]=\lambda x_{1} .
$$

Take $y \in N \backslash\left(x_{1}, x_{2}, x_{5}\right)$. When $\left[y, x_{1}\right]=\alpha_{1} x_{5}$ and $\left[y, x_{2}\right]=\alpha_{2} x_{5}$, we put

$$
x_{3}=y-\alpha_{2} x_{1}+\alpha_{1} x_{2}
$$

Then $\left[x_{3}, x_{1}\right]=\left[x_{3}, x_{2}\right]=0$. Put $x_{4}=\left[x_{0}, x_{3}\right]$. Since $\left[x_{3},\left[x_{3}, x_{0}\right]\right] \neq 0$, we have $x_{4} \in N$ and $\left[x_{3}, x_{4}\right]=\alpha x_{5}$ with $\alpha \neq 0$. It follows that $N=\left(x_{1}, x_{2}, \ldots, x_{5}\right)$. We infer

$$
\begin{aligned}
{\left[x_{4}, x_{1}\right] } & =\left[\left[x_{0}, x_{3}\right], x_{1}\right] \\
& =\left[\left[x_{0}, x_{1}\right], x_{3}\right]+\left[x_{0},\left[x_{3}, x_{1}\right]\right] \\
& =\left[x_{2}, x_{3}\right] \\
& =0
\end{aligned}
$$

and similarly $\left[x_{4}, x_{2}\right]=0$. We write

$$
\left[x_{0}, x_{4}\right]=\sum_{i=1}^{5} \alpha_{i} x_{i} .
$$

Then from $\left[\left[x_{0}, x_{4}\right], x_{i}\right]=\left[\left[x_{0}, x_{i}\right], x_{4}\right]$ for $i=1,2,3$, it follows that $\alpha_{1}=\alpha_{2}$ $=\alpha_{4}=0$. Since $\left[x_{4},\left[x_{4}, x_{0}\right]\right] \neq 0$, we see that $\alpha_{3} \neq 0$. Replacing x_{3} by $x_{3}+\alpha_{3}^{-1} \alpha_{5} x_{5}$ and α_{3} by μ, we have

$$
\left[x_{0}, x_{4}\right]=\mu x_{3} \quad \text { with } \quad \mu \neq 0 .
$$

Thus the structure of L is described by a basis $x_{0}, x_{1}, \ldots, x_{5}$ as follows:

$$
\begin{aligned}
& {\left[x_{0}, x_{1}\right]=x_{2}, \quad\left[x_{0}, x_{2}\right]=\lambda x_{1},} \\
& {\left[x_{0}, x_{3}\right]=x_{4}, \quad\left[x_{0}, x_{4}\right]=\mu x_{3},} \\
& {\left[x_{1}, x_{2}\right]=x_{5}, \quad\left[x_{3}, x_{4}\right]=\alpha x_{5},} \\
& {\left[x_{i}, x_{j}\right]=0 \quad \text { for all other } \quad i<j}
\end{aligned}
$$

where $\alpha \neq 0, \lambda \neq 0$ and $\mu \neq 0$.
Furthermore we have $\lambda<0$ and $\mu<0$, for if $\lambda>0$ then $\left(\operatorname{ad} \lambda^{\frac{1}{2}} x_{1}+x_{2}\right)^{2}=0$ and if $\mu>0$ then $\left(\operatorname{ad} \mu^{\frac{1}{2}} x_{3}+x_{4}\right)^{2}=0$. If $\alpha<0$, then

$$
\left(\operatorname{ad}(-\alpha)^{\frac{1}{2}} x_{1}+(\alpha \mu)^{\frac{1}{2}} x_{2}+x_{3}+(-\lambda)^{\frac{1}{2}} x_{4}\right)^{2}=0
$$

Hence α must be >0. Now we may take $\alpha=1$, since by replacing x_{3} and x_{4} by $\alpha^{-\frac{1}{2}} x_{3}$ and $\alpha^{-\frac{1}{2}} x_{4}$ respectively we have the same multiplication table with the exception that $\left[x_{3}, x_{4}\right]=x_{5}$. Thus L has the form indicated in (1) of the statement.

Case II. $\left[x_{0}, x_{2}\right] \notin\left(x_{1}, x_{2}, x_{5}\right)$: Put $y=\left[x_{0}, x_{2}\right]$. Then it is immediate that $\left[y, x_{1}\right]=0$. We put $\left[y, x_{2}\right]=\lambda x_{5}$ and $x_{3}=y-\lambda x_{1}$. Then we obtain

$$
\begin{aligned}
& {\left[x_{0}, x_{2}\right]=\lambda x_{1}+x_{3}, \quad \lambda \neq 0,} \\
& {\left[x_{3}, x_{1}\right]=\left[x_{3}, x_{2}\right]=0 .}
\end{aligned}
$$

We next put $x_{4}=\left[x_{0}, x_{3}\right]$. Then $\left[x_{3}, x_{4}\right]=\nu x_{5}$ with $\nu \neq 0$. It is immediate that

$$
\left[x_{4}, x_{1}\right]=\left[x_{4}, x_{2}\right]=0 .
$$

Now let us write

$$
\left[x_{0}, x_{4}\right]=\sum_{i=1}^{5} \beta_{i} x_{i} .
$$

Then from $\left[\left[x_{0}, x_{4}\right], x_{i}\right]=\left[\left[x_{0}, x_{i}\right], x_{4}\right]$ for $i=1,2,3$ it follows that $\beta_{1}=\nu$ and $\beta_{2}=\beta_{4}=0$. Since $\left[x_{4},\left[x_{4}, x_{0}\right]\right] \neq 0$, it follows that $\beta_{3} \neq 0$. After replacing x_{0} by $x_{0}-\beta_{5} \nu^{-1} x_{3}$, we change the notations to see that L is described by a basis $x_{0}, x_{1}, \ldots, x_{5}$ as follows:

$$
\begin{array}{ll}
{\left[x_{0}, x_{1}\right]=x_{2},} & {\left[x_{0}, x_{2}\right]=\lambda x_{1}+x_{3},} \\
{\left[x_{0}, x_{3}\right]=x_{4},} & {\left[x_{0}, x_{4}\right]=\nu x_{1}+\mu x_{3},} \\
{\left[x_{1}, x_{2}\right]=x_{5},} & {\left[x_{3}, x_{4}\right]=\nu x_{5},} \\
{\left[x_{i}, x_{j}\right]=0} & \text { for all other } \quad i<j
\end{array}
$$

where $\lambda \neq 0, \mu \neq 0$ and $\nu \neq 0$.
Furthermore we have $\lambda<0$ and $\mu<0$, for if $\lambda>0$ then $\left(\operatorname{ad} \lambda^{\frac{1}{2}} x_{1}+x_{2}\right)^{2}=0$ and if $\mu>0$ then $\left(\operatorname{ad} \mu^{\frac{1}{2}} x_{3}+x_{4}\right)^{2}=0$. Since L is an $\left(\mathrm{A}_{2}\right)$-algebra, $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right)$ $\neq 0$ implies $\left(\operatorname{ad} \sum_{i=1}^{4} \alpha_{i} x_{i}\right)^{2} \neq 0$, that is,

$$
\alpha_{1}^{2}+\nu \alpha_{3}^{2}+\left(-\lambda \alpha_{2}^{2}-2 \nu \alpha_{2} \alpha_{4}-\mu \nu \alpha_{4}^{2}\right) \neq 0 .
$$

Put $f\left(\alpha_{2}, \alpha_{4}\right)=-\lambda \alpha_{2}^{2}-2 \nu \alpha_{2} \alpha_{4}-\mu \nu \alpha_{4}^{2}$. If $f\left(\alpha_{2}, \alpha_{4}\right) \leqq 0$ for some $\left(\alpha_{2}, \alpha_{4}\right) \neq 0$, we take α_{1} and α_{3} so that

$$
\alpha_{1}=\left(-f\left(\alpha_{2}, \alpha_{4}\right)\right)^{\frac{1}{2}} \quad \text { and } \quad \alpha_{3}=0
$$

Then we obtain $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right) \neq 0$ and $\alpha_{1}^{2}+\nu \alpha_{3}^{2}+f\left(\alpha_{2}, \alpha_{4}\right)=0$. Hence we have $f\left(\alpha_{2}, \alpha_{4}\right)>0$ for every $\left(\alpha_{2}, \alpha_{4}\right) \neq 0$, that is, f is positive definite. It follows that

$$
-\mu \nu>0 \quad \text { and } \quad \lambda \mu \nu-\nu^{2}>0,
$$

and therefore $0<\nu<\lambda \mu$. Thus L has the structure indicated in (2) of the statement.

Conversely, if L is $L_{\lambda, \mu}$ or $L_{\lambda, \mu, \nu}$, then it is easy to see that L is an $\left(\mathrm{A}_{2}\right)$ algebra.

Thus the proof is complete.
Lemma 9. Under the notations in Lemma 8, every $\left(\mathrm{A}_{2}\right)$-algebra $L_{\lambda, \mu}$ is isomorphic to one of the non-isomorphic $\left(\mathrm{A}_{2}\right)$-algebras $L_{-1, \theta}$ where $-1 \leqq \theta<0$.

Proof. Assume that f is an isomorphism of $L_{\lambda_{1}, \mu_{1}}$ onto $L_{\lambda_{2}, \mu_{2}}$. We here write $L_{\lambda_{2}, \mu_{2}}=\left(y_{0}, y_{1}, \ldots, y_{5}\right)$. Since f sends the nil radical and the center of $L_{\lambda_{1}, \mu_{1}}$ onto those of $L_{\lambda_{2}, \mu_{2}}$ respectively, we can express f in the following form:

$$
\begin{aligned}
& f\left(x_{0}\right)=\sum_{j=0}^{5} \alpha_{0 j} y_{j} \\
& f\left(x_{i}\right)=\sum_{j=1}^{5} \alpha_{i j} y_{j} \quad \text { for } \quad i=1,2,3,4 \\
& f\left(x_{5}\right)=\alpha_{55} y_{5} .
\end{aligned}
$$

From $\left[f\left(x_{0}\right), f\left(x_{1}\right)\right]=f\left(x_{2}\right)$ it follows that

$$
\begin{aligned}
& \alpha_{21}=\lambda_{2} \alpha_{00} \alpha_{12} \\
& \alpha_{22}=\alpha_{00} \alpha_{11} \\
& \alpha_{23}=\mu_{2} \alpha_{00} \alpha_{14} \\
& \alpha_{24}=\alpha_{00} \alpha_{13} .
\end{aligned}
$$

From $\left[f\left(x_{0}\right), f\left(x_{2}\right)\right]=\lambda_{1} f\left(x_{1}\right)$ it follows that

$$
\begin{aligned}
& \lambda_{1} \alpha_{11}=\lambda_{2} \alpha_{00} \alpha_{22} \\
& \lambda_{1} \alpha_{12}=\alpha_{00} \alpha_{21} \\
& \lambda_{1} \alpha_{13}=\mu_{2} \alpha_{00} \alpha_{24} \\
& \lambda_{1} \alpha_{14}=\alpha_{00} \alpha_{23}
\end{aligned}
$$

Hence we have

$$
\begin{aligned}
& \alpha_{11}\left(\lambda_{1}-\lambda_{2} \alpha_{00}^{2}\right)=0 \\
& \alpha_{12}\left(\lambda_{1}-\lambda_{2} \alpha_{00}^{2}\right)=0 \\
& \alpha_{13}\left(\lambda_{1}-\mu_{2} \alpha_{00}^{2}\right)=0 \\
& \alpha_{14}\left(\lambda_{1}-\mu_{2} \alpha_{00}^{2}\right)=0 .
\end{aligned}
$$

In a similar way, from $\left[f\left(x_{0}\right), f\left(x_{3}\right)\right]=f\left(x_{4}\right)$ and $\left[f\left(x_{0}\right), f\left(x_{4}\right)\right]=\mu_{1} f\left(x_{3}\right)$, it follows that

$$
\begin{aligned}
& \alpha_{41}=\lambda_{2} \alpha_{00} \alpha_{32} \\
& \alpha_{42}=\alpha_{00} \alpha_{31} \\
& \alpha_{43}=\mu_{2} \alpha_{00} \alpha_{34} \\
& \alpha_{44}=\alpha_{00} \alpha_{33}
\end{aligned}
$$

and also

$$
\begin{aligned}
& \alpha_{31}\left(\mu_{1}-\lambda_{2} \alpha_{00}^{2}\right)=0 \\
& \alpha_{32}\left(\mu_{1}-\lambda_{2} \alpha_{00}^{2}\right)=0 \\
& \alpha_{33}\left(\mu_{1}-\mu_{2} \alpha_{00}^{2}\right)=0 \\
& \alpha_{34}\left(\mu_{1}-\mu_{2} \alpha_{00}^{2}\right)=0 .
\end{aligned}
$$

If $\lambda_{1}-\lambda_{2} \alpha_{00}^{2} \neq 0$ and $\lambda_{1}-\mu_{2} \alpha_{00}^{2} \neq 0$, it follows that $\alpha_{11}=\alpha_{12}=\alpha_{13}=\alpha_{14}=0$. If $\lambda_{1}-\lambda_{2} \alpha_{00}^{2} \neq 0$ and $\mu_{1}-\lambda_{2} \alpha_{00}^{2} \neq 0$, it follows that $\alpha_{11}=\alpha_{12}=\alpha_{31}=\alpha_{32}=0$ and therefore $\alpha_{21}=\alpha_{22}=\alpha_{41}=\alpha_{42}=0$. If $\lambda_{1}-\mu_{2} \alpha_{00}^{2} \neq 0$ and $\mu_{1}-\mu_{2} \alpha_{00}^{2} \neq 0$, it follows that $\alpha_{13}=\alpha_{14}=\alpha_{33}=\alpha_{34}=0$ and therefore $\alpha_{23}=\alpha_{24}=\alpha_{43}=\alpha_{44}=0$. If $\mu_{1}-\lambda_{2} \alpha_{00}^{2} \neq 0$ and $\mu_{1}-\mu_{2} \alpha_{00}^{2} \neq 0$, it follows that $\alpha_{31}=\alpha_{32}=\alpha_{33}=\alpha_{34}=0$. Thus in any case we see that

$$
\left|\begin{array}{llll}
\alpha_{11} & \alpha_{12} & \alpha_{13} & \alpha_{14} \\
\alpha_{21} & \alpha_{22} & \alpha_{23} & \alpha_{24} \\
\alpha_{31} & \alpha_{32} & \alpha_{33} & \alpha_{34} \\
\alpha_{41} & \alpha_{42} & \alpha_{43} & \alpha_{44}
\end{array}\right|=0
$$

and therefore the determinant of the coefficient matrix of f equals 0 , which is impossible since f is an isomorphism. Hence, if $\lambda_{1}-\lambda_{2} \alpha_{00}^{2} \neq 0$ or $\mu_{1}-\mu_{2} \alpha_{00}^{2}$ $\neq 0$, we have necessarily $\lambda_{1}-\mu_{2} \alpha_{00}^{2}=0$ and $\mu_{1}-\lambda_{2} \alpha_{00}^{2}=0$. Thus we obtain

$$
\begin{aligned}
& \lambda_{1}-\lambda_{2} \alpha_{00}^{2}=\mu_{1}-\mu_{2} \alpha_{00}^{2}=0, \quad \text { or } \\
& \lambda_{1}-\mu_{2} \alpha_{00}^{2}=\mu_{1}-\lambda_{2} \alpha_{00}^{2}=0 .
\end{aligned}
$$

Since $\alpha_{00} \neq 0$, it follows that $\lambda_{1} \lambda_{2}^{-1}=\mu_{1} \mu_{2}^{-1}$ or $\lambda_{1} \mu_{2}^{-1}=\lambda_{2}^{-1} \mu_{1}$.
Conversely, assume that for $L_{\lambda_{1}, \mu_{1}}$ and $L_{\lambda_{2}, \mu_{2}}$ we have $\lambda_{1} \lambda_{2}^{-1}=\mu_{1} \mu_{2}^{-1}$ or
$\lambda_{1} \mu_{2}^{-1}=\lambda_{2}^{-1} \mu_{1}$. In the case where $\lambda_{1} \lambda_{2}^{-1}=\mu_{1} \mu_{2}^{-1}$, we put $\alpha=\left(\lambda_{1} \lambda_{2}^{-1}\right)^{\frac{1}{2}}$. Then $\lambda_{1}=$ $\alpha^{2} \lambda_{2}$ and $\mu_{1}=\alpha^{2} \mu_{2}$. Define a linear transformation f of $L_{\lambda_{1}, \mu_{1}}$ into $L_{\lambda_{2}, \mu_{2}}$ in such a way that

$$
\begin{aligned}
& f\left(x_{0}\right)=\alpha y_{0} \\
& f\left(x_{1}\right)=y_{1}+\left(-\mu_{1}\right)^{\frac{1}{3}} y_{2} \\
& f\left(x_{2}\right)=\alpha\left\{\lambda_{2}\left(-\mu_{1}\right)^{\frac{1}{2}} y_{1}+y_{2}\right\} \\
& f\left(x_{3}\right)=y_{3}+\left(-\lambda_{1}\right)^{\frac{1}{2}} y_{4} \\
& f\left(x_{4}\right)=\alpha\left\{\left(-\lambda_{1}\right)^{\frac{1}{2}} \mu_{2} y_{3}+y_{4}\right\} \\
& f\left(x_{5}\right)=\alpha\left(1+\lambda_{1} \mu_{2}\right) y_{5} .
\end{aligned}
$$

Then the coefficient matrix of f has the determinant $\alpha^{4}\left(1+\lambda_{1} \mu_{2}\right)^{3}>0$, and it is easy to see that f preserves the multiplication. Therefore f is an isomorphism of $L_{\lambda_{1}, \mu_{1}}$ onto $L_{\lambda_{2}, \mu_{2}}$.

In the case where $\lambda_{1} \mu_{2}^{-1}=\lambda_{2}^{-1} \mu_{1}$, we put $\alpha=\left(\lambda_{1} \mu_{2}^{-1}\right)^{\frac{1}{2}}$. Then $\lambda_{1}=\alpha^{2} \mu_{2}$ and $\mu_{1}=\alpha^{2} \lambda_{2}$. Define a linear transformation f of $L_{\lambda_{1}, \mu_{1}}$ into $L_{\lambda_{2}, \mu_{2}}$ in such a way that

$$
\begin{aligned}
& f\left(x_{0}\right)=\alpha y_{0} \\
& f\left(x_{1}\right)=y_{3}+\left(-\mu_{1}\right)^{\frac{1}{2}} y_{4} \\
& f\left(x_{2}\right)=\alpha\left\{\left(-\mu_{1}\right)^{\frac{1}{2}} \mu_{2} y_{3}+y_{4}\right\} \\
& f\left(x_{3}\right)=y_{1}+\left(-\lambda_{1}\right)^{\frac{1}{2}} y_{2} \\
& f\left(x_{4}\right)=\alpha\left\{\left(-\lambda_{1}\right)^{\frac{2}{2}} \lambda_{2} y_{1}+y_{2}\right\} \\
& f\left(x_{5}\right)=\alpha\left(1+\lambda_{1} \lambda_{2}\right) y_{5} .
\end{aligned}
$$

Then it is easy to see that f is an isomorphism of $L_{\lambda_{1}, \mu_{1}}$ onto $L_{\lambda_{2}, \mu_{2}}$.
Thus in order that $L_{\lambda_{1}, \mu_{1}}$ and $L_{\lambda_{2}, \mu_{2}}$ are isomorphic it is necessary and sufficient that $\lambda_{1} \lambda_{2}=\mu_{1} \mu_{2}$ or $\lambda_{1} \mu_{2}=\lambda_{2} \mu_{1}$.

We now see that $L_{\lambda, \mu}$ is isomorphic to $L_{-1,-\lambda_{\mu}-1}$ if $\lambda \geqq \mu$ and to $L_{-1,-\lambda^{-1} \mu}$ if $\lambda<\mu$. Hence every $L_{\lambda, \mu}$ is isomorphic to one of $L_{-1, \theta}$ with $-1 \leqq \theta<0$. It is immediate that $L_{-1, \theta}$ with $-1 \leqq \theta<0$ are not isomorphic for different θ.

Thus the proof is complete.
Lemma 10. Under the notations in Lemma 8, every $\left(\mathrm{A}_{2}\right)$-algebra $L_{\lambda, \mu, \nu}$ is isomorphic to one of the $\left(\mathrm{A}_{2}\right)$-algebras $L_{\lambda, \mu}$.

Proof. Let $L_{\lambda, \mu, \nu}$ be an (A_{2})-algebra in the statement (2) of Lemma 8. We consider the following equation:

$$
(\lambda \mu-\nu) x^{2}+(\lambda+\mu) x+1=0 .
$$

Since $\nu>0$, it is immediate that the equation has two different roots in \varnothing. Since $\lambda<0, \mu<0$ and $\lambda \mu-\nu>0$, their sum and product are both positive. Let us denote by α^{2} the larger one of them. Then by making use of the fact that $\lambda<0$ and $0<\nu<\lambda \mu$, we can show that $\alpha^{2} \lambda+1<0$. Put $\lambda_{1}=-1$ and $\mu_{1}=$ $\alpha^{2}(\lambda+\mu)+1$. Then $\mu_{1}<0$. We have also $\lambda_{1} \neq \mu_{1}$. In fact, if $\lambda_{1}=\mu_{1}$, then $\alpha^{2}(\lambda+\mu)=-2$ and therefore $\alpha^{2} \mu+1=-\alpha^{2} \lambda-1$. Hence

$$
\begin{aligned}
\alpha^{4} \nu & =\left(\alpha^{2} \lambda+1\right)\left(\alpha^{2} \mu+1\right) \\
& =-\left(\alpha^{2} \lambda+1\right)^{2} \\
& <0,
\end{aligned}
$$

which contradicts the fact that $\nu>0$. By the definitions of λ_{1} and μ_{1}, we have obviously

$$
\begin{aligned}
\alpha^{4} \nu & =\left(\alpha^{2} \lambda-\lambda_{1}\right)\left(\alpha^{2} \mu-\lambda_{1}\right) \\
& =-\left(\alpha^{2} \lambda-\lambda_{1}\right)\left(\alpha^{2} \lambda-\mu_{1}\right) \\
& =\left(\alpha^{2} \lambda-\mu_{1}\right)\left(\alpha^{2} \mu-\mu_{1}\right) .
\end{aligned}
$$

Thus we can choose two non-zero real numbers β and γ satisfying the condition

$$
\beta^{2}\left(\alpha^{2} \lambda-\lambda_{1}\right)=-\gamma^{2}\left(\alpha^{2} \lambda-\mu_{1}\right) .
$$

Writing $L_{\lambda, \mu, \nu}=\left(y_{0}, y_{1}, \cdots, y_{5}\right)$, we define a linear transformation f of $L_{\lambda_{1}, \mu_{1}}$ into $L_{\lambda, \mu, \nu}$ in such a way that

$$
\begin{aligned}
& f\left(x_{0}\right)=\alpha y_{0} \\
& f\left(x_{1}\right)=\alpha^{-2} \beta \nu^{-1}\left\{\alpha^{2} \nu y_{1}-\left(\alpha^{2} \lambda-\lambda_{1}\right) y_{3}\right\} \\
& f\left(x_{2}\right)=\alpha^{-1} \beta \nu^{-1}\left\{\alpha^{2} \nu y_{2}-\left(\alpha^{2} \lambda-\lambda_{1}\right) y_{4}\right\} \\
& f\left(x_{3}\right)=\alpha^{-2} \gamma \nu^{-1}\left\{\alpha^{2} \nu y_{1}-\left(\alpha^{2} \lambda-\mu_{1}\right) y_{3}\right\} \\
& f\left(x_{4}\right)=\alpha^{-1} \gamma \nu^{-1}\left\{\alpha^{2} \nu y_{2}-\left(\alpha^{2} \lambda-\mu_{1}\right) y_{4}\right\} \\
& f\left(x_{5}\right)=-\alpha^{-3} \beta^{2} \nu^{-1}\left(\lambda_{1}-\mu_{1}\right)\left(\alpha^{2} \lambda-\lambda_{1}\right) y_{5} .
\end{aligned}
$$

Then the coefficient matrix of this transformation has the determinant

$$
-\alpha^{-4} \beta^{4} \gamma^{2} \nu^{-3}\left(\lambda_{1}-\mu_{1}\right)^{3}\left(\alpha^{2} \lambda-\lambda_{1}\right) \neq 0
$$

Hence the rank of f is 6 . We have to show that f preserves the multiplications. By making use of the product expressions of $\alpha^{4} \nu$ and the equality defining β and γ, we have the following equalities:

$$
\begin{aligned}
& {\left[f\left(x_{0}\right), f\left(x_{1}\right)\right]=\alpha^{-1} \beta \nu^{-1}\left[y_{0}, \alpha^{2} \nu y_{1}-\left(\alpha^{2} \lambda-\lambda_{1}\right) y_{3}\right]} \\
& =\alpha^{-1} \beta \nu^{-1}\left\{\alpha^{2} \nu y_{2}-\left(\alpha^{2} \lambda-\lambda_{1}\right) y_{4}\right\} \\
& =f\left(x_{2}\right), \\
& {\left[f\left(x_{0}\right), f\left(x_{2}\right)\right]=\beta \nu^{-1}\left[y_{0}, \alpha^{2} \nu y_{2}-\left(\alpha^{2} \lambda-\lambda_{1}\right) y_{4}\right]} \\
& =\beta \nu^{-1}\left\{\alpha^{2} \nu\left(\lambda y_{1}+y_{3}\right)-\left(\alpha^{2} \lambda-\lambda_{1}\right)\left(\nu y_{1}+\mu y_{3}\right)\right\} \\
& =\alpha^{-2} \beta \nu^{-1}\left\{\alpha^{2} \lambda_{1} \nu y_{1}+\alpha^{4} \nu y_{3}-\alpha^{2} \mu\left(\alpha^{2} \lambda-\lambda_{1}\right) y_{3}\right\} \\
& =\alpha^{-2} \beta \nu^{-1}\left\{\alpha^{2} \lambda_{1} \nu y_{1}-\lambda_{1}\left(\alpha^{2} \lambda-\lambda_{1}\right) y_{3}\right\} \\
& =\lambda_{1} f\left(x_{1}\right), \\
& {\left[f\left(x_{0}\right), f\left(x_{3}\right)\right]=\alpha^{-1} \gamma \nu^{-1}\left[y_{0}, \alpha^{2} \nu y_{1}-\left(\alpha^{2} \lambda-\mu_{1}\right) y_{3}\right]} \\
& =\alpha^{-1} \gamma \nu^{-1}\left\{\alpha^{2} \nu y_{2}-\left(\alpha^{2} \lambda-\mu_{1}\right) y_{4}\right\} \\
& =f\left(x_{4}\right), \\
& {\left[f\left(x_{0}\right), f\left(x_{4}\right)\right]=\gamma \nu^{-1}\left[y_{0}, \alpha^{2} \nu y_{2}-\left(\alpha^{2} \lambda-\mu_{1}\right) y_{4}\right]} \\
& =\gamma \nu^{-1}\left\{\alpha^{2} \nu\left(\lambda y_{1}+y_{3}\right)-\left(\alpha^{2} \lambda-\mu_{1}\right)\left(\nu y_{1}+\mu y_{3}\right)\right\} \\
& =\alpha^{-2} \gamma \nu^{-1}\left\{\alpha^{2} \mu_{1} \nu y_{1}+\alpha^{4} \nu y_{3}-\alpha^{2} \mu\left(\alpha^{2} \lambda-\mu_{1}\right) y_{3}\right\} \\
& =\alpha^{-2} \gamma \nu^{-1}\left\{\alpha^{2} \mu_{1} \nu y_{1}-\mu_{1}\left(\alpha^{2} \lambda-\mu_{1}\right) y_{3}\right\} \\
& =\mu_{1} f\left(x_{3}\right), \\
& {\left[f\left(x_{1}\right), f\left(x_{2}\right)\right]=\alpha^{-3} \beta^{2} \nu^{-2}\left[\alpha^{2} \nu y_{1}-\left(\alpha^{2} \lambda-\lambda_{1}\right) y_{3}, \alpha^{2} \nu y_{2}-\left(\alpha^{2} \lambda-\lambda_{1}\right) y_{4}\right]} \\
& =\alpha^{-3} \beta^{2} \nu^{-1}\left\{\alpha^{4} \nu y_{5}+\left(\alpha^{2} \lambda-\lambda_{1}\right)^{2} y_{5}\right\} \\
& =-\alpha^{-3} \beta^{2} \nu^{-1}\left(\lambda_{1}-\mu_{1}\right)\left(\alpha^{2} \lambda-\lambda_{1}\right) y_{5} \\
& =f\left(x_{5}\right), \\
& {\left[f\left(x_{1}\right), f\left(x_{3}\right)\right]=0,} \\
& {\left[f\left(x_{1}\right), f\left(x_{4}\right)\right]=\alpha^{-3} \beta \gamma \nu^{-2}\left[\alpha^{2} \nu y_{1}-\left(\alpha^{2} \lambda-\lambda_{1}\right) y_{3}, \alpha^{2} \nu y_{2}-\left(\alpha^{2} \lambda-\mu_{1}\right) y_{4}{ }^{-}\right]} \\
& =\alpha^{-3} \beta \gamma \nu^{-1}\left\{\alpha^{4} \nu y_{5}+\left(\alpha^{2} \lambda-\lambda_{1}\right)\left(\alpha^{2} \lambda-\mu_{1}\right) y_{5}\right\} \\
& =0, \\
& {\left[f\left(x_{2}\right), f\left(x_{3}\right)\right]=\alpha^{-3} \beta \gamma \nu^{-2}\left[\alpha^{2} \nu y_{2}-\left(\alpha^{2} \lambda-\lambda_{1}\right) y_{4}, \alpha^{2} \nu y_{1}-\left(\alpha^{2} \lambda-\mu_{1}\right) y_{3}\right]} \\
& =-\alpha^{-3} \beta \gamma \nu^{-1}\left\{\alpha^{4} \nu y_{5}+\left(\alpha^{2} \lambda-\lambda_{1}\right)\left(\alpha^{2} \lambda-\mu_{1}\right) y_{5}\right\} \\
& =0,
\end{aligned}
$$

$$
\begin{aligned}
{\left[f\left(x_{2}\right), f\left(x_{4}\right)\right] } & =0, \\
{\left[f\left(x_{3}\right), f\left(x_{4}\right)\right] } & =\alpha^{-3} \gamma^{2} \nu^{-2}\left[\alpha^{2} \nu y_{1}-\left(\alpha^{2} \lambda-\mu_{1}\right) y_{3}, \alpha^{2} \nu y_{2}-\left(\alpha^{2} \lambda-\mu_{1}\right) y_{4}\right] \\
& =\alpha^{-3} \gamma^{2} \nu^{-1}\left\{\alpha^{4} \nu y_{5}+\left(\alpha^{2} \lambda-\mu_{1}\right)^{2} y_{5}\right\} \\
& =\alpha^{-3} \gamma^{2} \nu^{-1}\left(\lambda_{1}-\mu_{1}\right)\left(\alpha^{2} \lambda-\mu_{1}\right) y_{5} \\
& =-\alpha^{-3} \beta^{2} \nu^{-1}\left(\lambda_{1}-\mu_{1}\right)\left(\alpha^{2} \lambda-\lambda_{1}\right) y_{5} \\
& =f\left(x_{5}\right), \\
{\left[f\left(x_{i}\right), f\left(x_{5}\right)\right] } & =0 \quad \text { for } \quad i=0,1, \cdots, 4 .
\end{aligned}
$$

Thus we conclude that f is an isomorphism of $L_{\lambda_{1}, \mu_{1}}$ onto $L_{\lambda, \mu, \nu}$.
The proof of the lemma is complete.
Remark. The multiplication tables of the (A_{2})-algebras $L_{\lambda, \mu}$ and $L_{\lambda, \mu, \nu}$ in Lemma 8 define $\left(\mathrm{A}_{2}\right)$-algebras over the field of rational numbers when λ, μ and ν are especially rational numbers. Let us denote them by $L_{\lambda, \mu}^{*}$ and $L_{\lambda, \mu, \nu}^{*}$ respectively. We here note that, contrary to the assertion in Lemma 10, $L_{\lambda, \mu, \nu}^{*}$ is not necessarily isomorphic to any one of the $L_{\lambda, \mu}^{*}$.

Assume that there exists an isomorphism f of $L_{\lambda, \mu}^{*}$ onto $L_{-1,-2,1}^{*}$. Writing $L_{-1,-2,1}^{*}=\left(y_{0}, y_{1}, \cdots, y_{5}\right)$, we can express f in the following form:

$$
\begin{aligned}
& f\left(x_{0}\right)=\sum_{j=0}^{5} \alpha_{0 j} y_{j} \\
& f\left(x_{i}\right)=\sum_{j=1}^{5} \alpha_{i j} y_{j} \quad \text { for } \quad i=1,2,3,4 \\
& f\left(x_{5}\right)=\alpha_{55} y_{5}
\end{aligned}
$$

From $\left[f\left(x_{0}\right), f\left(x_{1}\right)\right]=f\left(x_{2}\right)$ it follows that

$$
\begin{aligned}
& \alpha_{21}=\alpha_{00}\left(-\alpha_{12}+\alpha_{14}\right) \\
& \alpha_{22}=\alpha_{00} \alpha_{11} \\
& \alpha_{23}=\alpha_{00}\left(\alpha_{12}-2 \alpha_{14}\right) \\
& \alpha_{24}=\alpha_{00} \alpha_{13} .
\end{aligned}
$$

From $\left[f\left(x_{0}\right), f\left(x_{2}\right)\right]=\lambda f\left(x_{1}\right)$ it follows that

$$
\begin{aligned}
& \lambda \alpha_{11}=\alpha_{00}\left(-\alpha_{22}+\alpha_{24}\right) \\
& \lambda \alpha_{12}=\alpha_{00} \alpha_{21} \\
& \lambda \alpha_{13}=\alpha_{00}\left(\alpha_{22}-2 \alpha_{24}\right) \\
& \lambda \alpha_{14}=\alpha_{00} \alpha_{23} .
\end{aligned}
$$

Hence we obtain

$$
\begin{aligned}
& \alpha_{11}\left(\lambda+\alpha_{00}^{2}\right)-\alpha_{00}^{2} \alpha_{13}=0 \\
& \alpha_{12}\left(\lambda+\alpha_{00}^{2}\right)-\alpha_{00}^{2} \alpha_{14}=0 \\
& \alpha_{00}^{2} \alpha_{11}-\alpha_{13}\left(\lambda+2 \alpha_{00}^{2}\right)=0 \\
& \alpha_{00}^{2} \alpha_{12}-\alpha_{14}\left(\lambda+2 \alpha_{00}^{2}\right)=0 .
\end{aligned}
$$

If $\alpha_{11}=\alpha_{12}=\alpha_{13}=\alpha_{14}=0$, then the rank of f is not 6. Hence some of α_{11}, α_{12}, α_{13} and α_{14} are not equal to 0 . It follows that

$$
\left(\lambda+\alpha_{00}^{2}\right)\left(\lambda+2 \alpha_{00}^{2}\right)-\alpha_{00}^{4}=0
$$

and therefore

$$
\lambda^{2}+3 \lambda \alpha_{00}^{2}+\alpha_{00}^{4}=0 .
$$

It is however immediate that there are no rational numbers λ and α_{00} satisfying the equality above, which is a contradiction. Thus $L_{-1,-2,1}^{*}$ is not isomorphic to any $L_{\lambda, \mu}^{*}$.

Finally, by making use of the preceding propositions and lemmas, we shall determine the structure of the 6 dimensional solvable $\left(\mathrm{A}_{2}\right)$-algebras over the field of real numbers in the following

Proposition 7. The 6 dimensional non-abelian solvable $\left(\mathrm{A}_{2}\right)$-algebras over the field of real numbers are, up to isomorphism, the Lie algebras described by a basis $x_{1}, x_{2}, \ldots, x_{6}$ with the following multiplication tables.
(1): $\left[x_{1}, x_{2}\right]=x_{3}, \quad\left[x_{1}, x_{3}\right]=-x_{2}$,

$$
\left[x_{2}, x_{3}\right]=x_{4}
$$

(2): $\left[x_{1}, x_{2}\right]=\lambda x_{5}$,

$$
\left[x_{1}, x_{3}\right]=\left[x_{2}, x_{3}\right]=x_{4},
$$

$$
\left[x_{1}, x_{4}\right]=\left[x_{2}, x_{4}\right]=-x_{3},
$$

$$
\left[x_{3}, x_{4}\right]=x_{5} \quad \text { with } \quad \lambda=0,1 .
$$

(3): $\left[x_{1}, x_{2}\right]=x_{6}$,
$\left[x_{1}, x_{3}\right]=\left[x_{2}, x_{3}\right]=x_{4}$,
$\left[x_{1}, x_{4}\right]=\left[x_{2}, x_{4}\right]=-x_{3}$, $\left[x_{3}, x_{4}\right]=x_{5}$.
(4): $\left[x_{1}, x_{2}\right]=\mu x_{6}$,
$\left[x_{1}, x_{4}\right]=\left[x_{2}, x_{4}\right]=\left[x_{3}, x_{4}\right]=x_{5}$,
$\left[x_{1}, x_{5}\right]=\left[x_{2}, x_{5}\right]=\left[x_{3}, x_{5}\right]=-x_{4}$,
$\left[x_{4}, x_{5}\right]=x_{6} \quad$ with $\quad \mu=0,1$.
(5): $\left[x_{1}, x_{2}\right]=x_{3}, \quad\left[x_{1}, x_{3}\right]=-x_{2}$,

$$
\begin{aligned}
& {\left[x_{1}, x_{4}\right]=x_{5}, \quad\left[x_{1}, x_{5}\right]=\nu x_{4},} \\
& {\left[x_{2}, x_{3}\right]=\left[x_{4}, x_{5}\right]=x_{6} \quad \text { with } \quad-1 \leqq \nu<0 .}
\end{aligned}
$$

Here in each of the tables $\left[x_{i}, x_{j}\right]=0$ for all $i<j$ if it is not in the table.
Proof. Let L be a 6 dimensional non-abelian solvable (A_{2})-algebra over the field of real numbers. Then $n_{1} \geqq 1, n_{2} \geqq 2$ and $n_{3} \geqq 1$. By Proposition 4 we have the following cases:

$$
\begin{array}{lll}
n_{1}=1, & n_{2}=2, & n_{3}=3 ; \\
n_{1}=2, & n_{2}=2, & n_{3}=2 ; \\
n_{1}=3, & n_{2}=2, & n_{3}=1 ; \\
n_{1}=1, & n_{2}=4, & n_{3}=1 .
\end{array}
$$

In the first case we have the table (1) by Propositions 3 and 5. In the second case we have the tables (2) and (3) by Proposition 6 and Lemma 6. In the third case we have the table (4) by Lemma 7. In the fourth case we have the table (5) by Lemmas 8,9 and 10 . The proof is complete.

References

[1] N. Jacobson, Lie algebras. Interscience Publishers, New York, 1962.
[2] A. Jôichi, On certain properties of Lie algebras, J. Sci. Hiroshima Univ. Ser. A-I, 31 (1967), pp. 2533.
[3] B. Kostant, The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group, Amer. J. Math., 81 (1959), pp. 973-1032.
[4] S. Tôgô, Dimensions of the derivation algebras of Lie algebras, J. Sci. Hiroshima Univ. Ser. A-I, 31 (1967), pp. 17-23.

Department of Mathematics,
Faculty of Science, Hiroshima University

