J. Sci. Hiroshima Univ. Ser. A-I 32 (1968), 55-83

On a Class of Lie Algebras

Shigeaki Tôgô (Received February 20, 1968)

Introduction

In the previous paper [4], we have given an estimate for the dimensionality of the derivation algebra of a Lie algebra L satisfying the condition that $(ad x)^2 = 0$ for $x \in L$ implies ad x=0. Such a Lie algebra will be referred to as an (A₂)-algebra in this paper according to the definition given in Jôichi [2], which investigates the (A_k)-algebras, $k \ge 2$, with intention to obtain the analogues to the (A)-algebras. He showed that the (A₂)-algebras have a different situation from the other classes of (A_k)-algebras, $k \ge 3$. But the problem of characterizing the (A₂)-algebras remains unsolved. The purpose of this paper is to make a detailed study of this class of Lie algebras.

It is known [3] that every semisimple Lie algebra over the field of complex numbers contains no non-zero element x with $(ad x)^2=0$. We shall show that every Lie algebra over a field $\boldsymbol{\vartheta}$ of characteristic $\neq 2$ whose Killing form is non-degenerate has the same property. By making use of this result we shall show that, when the basic field $\boldsymbol{\vartheta}$ is of characteristic 0, L is an (A_2) algebra if and only if every element x of the nil radical N such that $(ad x)^2=0$ belongs to the center Z(L), and if and only if L is either reductive, or $L \supset N \supset Z(N) = Z(L) \supseteq N^2 \neq (0)$ and $(ad x)^2 \neq 0$ for any $x \in N \setminus Z(L)$. This characterization will be used in classifying certain types of solvable (A_2) -algebras. A solvable (A_2) -algebra is not generally abelian. We shall show that if $\boldsymbol{\vartheta}$ is an algebraically closed field of characteristic 0, then every solvable (A_2) algebra over a field $\boldsymbol{\vartheta}$ is abelian. The latter half of the paper will be devoted to the study of solvable (A_2) -algebras, in particular, to the study of solvable (A_2) -algebras L such that dim N/Z(L) is 2 or 3 and of solvable (A_2) -algebras of low dimensionalities.

§1.

Throughout this paper we denote by L a finite dimensional Lie algebra over a field ϕ and denote by R, N and Z(L) the radical, the nil radical and the center of L respectively.

Following the terminology employed in [2], we call L to be an (A_2) -algebra provided that it satisfies the following condition:

(A₂) Every element x of L such that $(ad x)^2 = 0$ satisfies ad x = 0, that is, belongs to Z(L).

We first quote a result shown in Theorem 1 in [2] as the following

LEMMA 1. Let L be an (A_2) -algebra over a field of arbitrary characteristic. Then L is nilpotent if and only if L is abelian.

By making use of the lemma, we show a necessary condition for L to be an (A_2) -algebra in the following

PROPOSITION 1. Let L be an (A_2) -algebra over a field of arbitrary characteristic. Then either R = Z(L) or

$$L \supset N \supset Z(N) = Z(L) \supseteq N^2 \neq (0).$$

PROOF. Let L be a non-abelian (A₂)-algebra. Then by Lemma 1 L is not nilpotent, that is, $L \neq N$. For every $x \in Z(N)$, we have $[x, [x, L]] \cong [x, N]$ =(0). From the condition (A₂) it follows that $x \in Z(L)$. Hence $Z(N) \cong Z(L)$ and therefore Z(N) = Z(L).

In the case where N=Z(L), if $R \neq (0)$, choose an integer *n* such that $R^{(n)}=(0)$ but $R^{(n-1)}\neq(0)$. Suppose $n \geq 2$. Since $R^{(n-1)}$ is an abelian ideal of *L*, we have $R^{(n-1)} \subseteq N$. It follows that $(R^{(n-2)})^3 = (0)$. Hence $R^{(n-2)}$ is a nilpotent ideal of *L* and therefore $R^{(n-2)} \subseteq N$. It follows that $R^{(n-1)}=(0)$, which contradicts the choice of *n*. Thus $R^{(1)}=(0)$ and therefore R=N=Z(L).

In the case where $N \neq Z(L)$, we have $N^2 \neq (0)$, for if $N^2 = (0)$ then N = Z(N) = Z(L). The fact that $N^3 = (0)$ can be shown as in the proof of Theorem 2 in [2]. It follows that $N^2 \equiv Z(N) = Z(L)$. Thus the proof is complete.

We shall next show a sufficient condition for L to be an (A_2) -algebra. It has been observed in [3] that every semisimple Lie algebra over the field of complex numbers contains no non-zero element x with $(\operatorname{ad} x)^2 = 0$. We prove this assertion for a more general class of Lie algebras in the following

LEMMA 2. Let L be a Lie algebra over a field of characteristic $\neq 2$ and assume that the Killing form of L/R is non-degenerate. If $(\operatorname{ad} x)^2 = 0$ for $x \in L$, then $x \in R$.

PROOF. We first consider the case where L is semisimple. Suppose that $(\operatorname{ad} x)^2 = 0$ for $x \in L$. This means that [x, [x, y]] = 0 for every $y \in L$. Putting $X = \operatorname{ad} x$ and $Y = \operatorname{ad} y$, we have $X^2 = 0$ and [X, [X, Y]] = 0. Since

$$[X, [X, Y]] = X^2 Y - 2XYX + YX^2,$$

it follows that XYX=0. Hence $(XY)^2=0$. Denoting by B the Killing bilinear form of L, we see that B(x, y)=0 for every $y \in L$. Since B is non-degenerate by our hypothesis, we have x=0.

We now consider the general case. Suppose that $(\operatorname{ad} x)^2 = 0$ for $x \in L$. Put L = L/R and denote by \bar{x} the element of \bar{L} corresponding to x. Then $(\operatorname{ad} \bar{x})^2 = 0$. Since \bar{L} is semisimple, we have $\bar{x} = 0$ as shown in the first case. This means that $x \in R$, completing the proof.

PROPOSITION 2. Let L be a Lie algebra over a field of characteristic $\neq 2$.

If L is the direct sum of an ideal which has the non-degenerate Killing form and of the center, then L is an (A_2) -algebra.

PROOF. If L is such a direct sum, then the radical coincides with the center. Hence by Lemma 2 L is an (A_2) -algebra.

Now we restrict the basic field $\boldsymbol{\vartheta}$ to a field of characteristic 0. Then we can derive the following characterizations of (A_2) -algebras from the above results.

THEOREM 1. Let L be a Lie algebra over a field $\boldsymbol{\varphi}$ of characteristic 0. Then the following statements are equivalent:

- (1) L is an (A₂)-algebra.
- (2) Every element x of N such that $(ad_L x)^2 = 0$ belongs to Z(L).
- (3) L is either reductive, or

$$L \supset N \supset Z(N) = Z(L) \supseteq N^2 \neq (0)$$

and $(\operatorname{ad}_L x)^2 \neq 0$ for every $x \in N \setminus Z(L)$.

PROOF. Since the basic field \mathcal{O} is of characteristic 0, N is the set of $x \in R$ such that $\operatorname{ad}_L x$ is nilpotent. Hence Lemma 2 tells us that if $(\operatorname{ad} x)^2 = 0$ for $x \in L$ then $x \in N$. Therefore (1) and (2) are equivalent. From this equivalence and Proposition 2 it follows that (3) implies (1). The assertion that (1) implies (3) is a consequence of Proposition 1.

COROLLARY 1. Let L be a Lie algebra over a field of characteristic 0 and assume that Z(L) = Z(R). If R is an (A_2) -algebra, then L is an (A_2) -algebra.

PROOF. The statement is immediate from the equivalence of (1) and (2) in Theorem 1 and the fact that the nil radicals of L and R are identical.

COROLLARY 2. Let L be a non-nilpotent Lie algebra over a field ϕ of characteristic 0 such that

$$N = (x_1, y_1, \dots, x_n, y_n) + Z(L),$$

$$0 \neq [x_i, y_i] \in Z(L),$$

$$[x_i, x_j] = [x_i, y_j] = [y_i, y_j] = 0$$

for all $i \neq j$.

Assume that for every i=1, 2..., n, there exists an element u_i of $L \setminus N$ satisfying the following conditions:

$$\begin{bmatrix} u_i, x_i \end{bmatrix} = y_i, \quad \begin{bmatrix} u_i, y_i \end{bmatrix} = \lambda_i x_i,$$
$$\begin{bmatrix} u_i, x_j \end{bmatrix}, \quad \begin{bmatrix} u_i, y_j \end{bmatrix} \in Z(L) \quad \text{for any} \quad j \neq i,$$

where λ_i is not a square element in $\boldsymbol{\Phi}$. Then L is an (A₂)-algebra.

PROOF. Suppose that $x \in N$ and $(ad_L x)^2 = 0$. Then x is expressed as

$$x = \sum_{i=1}^{n} (\alpha_i x_i + \beta_i y_i) + z, \quad z \in Z(L).$$

By using our assumption we obtain

$$[x, [x, u_j]] = (\lambda_j \beta_j^2 - \alpha_j^2) [x_j, y_j] = 0$$

and therefore $\lambda_j \beta_j^2 = \alpha_j^2$ for j=1, 2, ..., n. Since λ_j is not a square element in $\boldsymbol{\emptyset}$, we have $\beta_j = 0$ and therefore $\alpha_j = 0$. Hence $x \in Z(L)$. Thus *L* satisfies the condition (2) in Theorem 1. By Theorem 1 *L* is an (A₂)-algebra, completing the proof.

We note that the examples of solvable (A_2) -algebras shown in [2] and [4] are those of the (A_2) -algebras formulated in Corollary 2.

§**2**.

L is called split [1] provided that it has a splitting Cartan subalgebra, that is, a Cartan subalgebra H such that the characteristic roots of every ad $x, x \in H$, are in the basic field \emptyset . It is known that every Lie algebra over an algebraically closed field is split. For split (A₂)-algebras we first show the following

LEMMA 3. Let L be a split (A₂)-algebra over a field φ of characteristic $\neq 2$. Then L² is nilpotent if and only if L is abelian.

PROOF. Assume that L^2 is nilpotent but L is not abelian. Then L is not nilpotent by Lemma 1. Since L^2 is a nilpotent ideal of L, we have $L^2 \subseteq N$. Let H be a splitting Cartan subalgebra and let $L = H + \sum_{\alpha} L_{\alpha}$ be the decomposition of L to the root spaces. Then it is immediate that $L_{\alpha} \subseteq L^2 \subseteq N$ for every root $\alpha \neq 0$. Choose a non-zero root β and let k be an integer such that $2^k\beta$ is a root but $2^{k+1}\beta$ is not a root. Put $\gamma = 2^k\beta$ and choose a non-zero element x of L_{γ} . Then

We have $N^3 = (0)$ by Proposition 1 and $[L_{\gamma}, L_{\gamma}] = (0)$ since 2γ is not a root. Hence $(\operatorname{ad} x)^2 = 0$. Since L is an (A_2) -algebra, it follows that $x \in Z(L)$ and therefore $x \in H$, which contradicts the choice of x. Thus we conclude that if L^2 is nilpotent then L is abelian.

In virtue of Lemma 3, we have now the following characterization of split (A_2) -algebras.

THEOREM 2. Let L be a split Lie algebra over a field $\boldsymbol{\Phi}$ of characteristic 0. Then L is an (A₂)-algebra if and only if L is either reductive, or

$$L \supset R \supseteq N \supset Z(N) = Z(L) \supseteq N^2 \neq (0)$$

and $(\operatorname{ad} x)^2 \neq 0$ for every $x \in N \setminus Z(L)$.

PROOF. In the case where the basic field is of characteristic 0, Lemma 3 says that a split (A_2) -algebra is solvable if and only if it is abelian. Therefore if L is a split (A_2) -algebra over a field \emptyset , then we have the statement (3) in Theorem 1, in the second case of which L is not solvable. Thus the theorem follows from Theorem 1.

§**3.**

In this and the next sections we shall study the solvable (A_2) -algebras over a field \emptyset of characteristic 0 as an application of Theorem 1. As seen from Theorem 2, if \emptyset is algebraically closed, then every solvable (A_2) -algebra is abelian. Hence, throughout these sections, we shall assume that the basic field \emptyset is of characteristic 0 and not algebraically closed unless otherwise specified.

This section is devoted to the study of solvable (A_2) -algebras L such that $\dim N/Z(L)=2$ or 3. First we prove the following

LEMMA 4. Let L be a non-abelian solvable (A₂)-algebra. If $[u, x] \notin Z(L)$ for $u \in L$ and $x \in N$, then $[u, [u, x]] \notin Z(L)$.

PROOF. Assume that $[u, [u, x]] \in Z(L)$ for $u \in L$ and $x \in N$. Put y = [u, x]. Then by using the fact that $N^2 \subseteq Z(L)$, for every $v \in L$ we have

$$(\text{ad } y)^2 v = [y, [[u, x], v]]$$
$$= [y, [u, [x, v]]] + [y, [[u, v], x]]$$
$$= [[y, u], [x, v]] + [u, [y, [x, v]]] + [y, [[u, v], x]]$$
$$\epsilon [u, N^2] + N^3$$
$$= (0).$$

Thus $(ad y)^2 = 0$ and therefore by the condition $(A_2) y \in Z(L)$. This completes the proof.

PROPOSITION 3. The solvable (A_2) -algebras L over a field Φ of characteristic 0 such that dim N/Z(L)=2 are the following Lie algebras:

$$L = (u_1, u_2, \dots, u_n) + N, \quad N = (x, y) + Z(L),$$
$$[u_i, u_j] \in Z(L),$$
$$[u_i, x] = y, \quad [u_i, y] = \lambda x,$$
$$0 \neq [x, y] \in Z(L) \quad for \quad i, j = 1, 2, \dots, n$$

where $n = \dim L/N$ and λ is not a square element in Φ .

PROOF. Since $N \supset Z(L)$ by Theorem 1, we choose x in $N \setminus Z(L)$. Then $(\operatorname{ad} x)^2 \neq 0$ and therefore there exists $u_1 \in L$ such that $(\operatorname{ad} x)^2 u_1 \neq 0$. By Theorem 1 we see that $u_1 \notin N$. Put $y = [u_1, x]$ and z = [x, y]. Then $y \in N$, $y \notin (x) + Z(L)$ and $0 \neq z \in Z(L)$. Therefore N = (x, y) + Z(L). By Lemma 4 we have $[u_1, y] \notin Z(L)$. Since

$$[x, [u_1, y]] = [[x, u_1], y] = [-y, y] = 0,$$

it follows that

$$[u_1, y] = \lambda x + z', z' \in Z(L)$$
 with $\lambda \neq 0$.

Replacing x by $x + \lambda^{-1} z'$, we see that

$$[u_1, x] = y, [u_1, y] = \lambda x, [x, y] = z$$

with $0 \neq z \in Z(L)$ and $\lambda \neq 0$.

If dim $L/N \ge 2$, choose $u_2 \in L$, $\notin (u_1) + N$. And we write

$$\begin{bmatrix} u_2, x \end{bmatrix} = \alpha_1 x + \beta_1 y + z_1,$$

$$\begin{bmatrix} u_2, y \end{bmatrix} = \alpha_2 x + \beta_2 y + z_2,$$

$$\begin{bmatrix} u_1, u_2 \end{bmatrix} = \alpha_3 x + \beta_3 y + z_3,$$

where $z_i \in Z(L)$ for i=1, 2, 3. Then from $[[u_1, u_2], x]+[[u_2, x], u_1]+$ $[[x, u_1], u_2]=0$ it follows that $z_2=\beta_3 z$, $\alpha_1=\beta_2$ and $\alpha_2=\lambda\beta_1$. From the above formula with x replaced by y it follows that $z_1=-\lambda^{-1}\alpha_3 z$. From $[[u_2, x], y] = [[u_2, y], x]$ it follows that $\alpha_1+\beta_2=0$ and therefore $\alpha_1=\beta_2=0$. Hence we obtain by changing the notations

$$\begin{bmatrix} u_2, x \end{bmatrix} = \mu_2 y + \nu_1 z,$$

$$\begin{bmatrix} u_2, y \end{bmatrix} = \lambda \mu_2 x + \nu_2 z,$$

$$\begin{bmatrix} u_1, u_2 \end{bmatrix} = -\lambda \nu_1 x + \nu_2 y + z', \qquad z' \in Z(L).$$

Replacing u_2 by $u_2 - \nu_2 x + \nu_1 y$, we have

$$\begin{bmatrix} u_2, x \end{bmatrix} = \mu_2 y, \quad \begin{bmatrix} u_2, y \end{bmatrix} = \lambda \mu_2 x,$$
$$\begin{bmatrix} u_1, u_2 \end{bmatrix} \in Z(L).$$

We continue this procedure to choose u_3, u_4, \dots, u_n with $n = \dim L/N$ in such a way that

$$L = (u_1, u_2, \dots, u_n) + N,$$

$$[u_i, x] = \mu_i y, \quad [u_i, y] = \lambda \mu_i x,$$

$$[u_1, u_i] \in Z(L) \quad \text{for} \quad i=2, 3, \dots, n.$$

Now we have $[x, [u_i, u_j]] = [y, [u_i, u_j]] = 0$ for i, j = 1, 2, ..., n, from which it follows that $[u_i, u_j] \in Z(N) = Z(L)$. Since $(\operatorname{ad} u_i)^2 \neq 0$, it follows that $\mu_i \neq 0$ for i = 2, 3, ..., n. Hence we replace u_i by $\mu_i^{-1}u_i$ to obtain

$$[u_i, x] = y, [u_i, y] = \lambda x$$
 for $i = 1, 2, ..., n$.

If $\lambda = \alpha^2$ in Φ , then $(\operatorname{ad} \alpha x + y)^2 = 0$. Therefore λ is not equal to any square element in Φ .

Conversely, let L be such a Lie algebra as indicated in the statement. Assume that $v \in N$ and $(\operatorname{ad} v)^2 = 0$. Then v is expressed as $v = \alpha x + \beta y + z'$, $z' \in Z(L)$. From $(\operatorname{ad} v)^2 u_1 = 0$, it follows that $\lambda \beta^2 = \alpha^2$. Therefore $\beta = 0$ and $\alpha = 0$. Hence $v \in Z(L)$. Thus by Theorem 1 L is an (A₂)-algebra. The proof is complete.

In the remainder of this section we shall show that there is no solvable (A_2) -algebra L such that dim N/Z(L)=3.

LEMMA 5. Let L be a solvable Lie algebra such that

$$N = (x_1, x_2, x_3) + Z(L), \quad u \in L \setminus N,$$

$$[u, x_1] = x_2, \quad [u, x_2] = \alpha^2 x_1, \quad [u, x_3] = \alpha x_3 + z,$$

$$[x_1, x_2] = z_1, \quad [x_1, x_3] = z_2, \quad [x_2, x_3] = -\alpha z_2$$

where $z, z_1, z_2 \in Z(L)$ and $\alpha \neq 0$. Then L is not an (A_2) -algebra.

PROOF. Assume that L is an (A_2) -algebra. For every $v \in L$, $\notin (u) + N$, we write

$$\begin{bmatrix} v, x_1 \end{bmatrix} = \sum_{i=1}^3 \alpha_i x_i + w_1,$$
$$\begin{bmatrix} v, x_2 \end{bmatrix} = \sum_{i=1}^3 \beta_i x_i + w_2,$$

where $w_1, w_2 \in Z(L)$. From $[[u, v], x_1] + [[v, x_1], u] + [[x_1, u], v] = 0$ it follows that

$$\alpha_1 = \beta_2, \quad \alpha^2 \alpha_2 = \beta_1 \quad \text{and} \quad \alpha \alpha_3 = \beta_3.$$

Then

$$(\mathbf{ad} - \alpha x_1 + x_2)^2 v = [-\alpha x_1 + x_2, (\alpha \alpha_1 - \beta_1) x_1 + (\alpha \alpha_2 - \beta_2) x_2]$$
$$= -\alpha (\alpha \alpha_2 - \beta_2) z_1 - (\alpha \alpha_1 - \beta_1) z_1$$
$$= 0.$$

Since it is immediate that $(ad - \alpha x_1 + x_2)^2 u = 0$, we have $(ad - \alpha x_1 + x_2)^2 = 0$, which contradicts the condition (A₂). Therefore L is not an (A₂)-algebra, completing the proof.

PROPOSITION 4. Let L be a solvable (A_2) -algebra over a field \mathcal{O} of characteristic 0. Then $\dim N/Z(L) \neq 3$. In particular, if $\dim Z(L) = 1$, then $\dim N/Z(L)$ is not odd.

PROOF. Assume that there exists a solvable (A_2) -algebra L such that $\dim N/Z(L)=3$. Take $x_1 \in N \setminus Z(L)$ and choose $u \in L$ such that $(\operatorname{ad} x_1)^2 u \neq 0$. Then $u \notin N$. Put $x_2 = [u, x_1]$ and $z_1 = [x_1, x_2]$. Then $x_2 \notin (x_1) + Z(L)$ and $0 \neq z_1 \in Z(L)$. By Lemma 4 we see that $[u, x_2] \notin Z(L)$.

Now suppose that $[u, x_2] \notin (x_1, x_2) + Z(L)$. Putting $x_3 = [u, x_2]$, we have $N = (x_1, x_2, x_3) + Z(L)$. It follows that

$$[x_1, x_3] = [x_1, [u, x_2]]$$
$$= [[x_1, u], x_2] + [u, [x_1, x_2]]$$
$$= 0.$$

By using this fact we obtain

$$\begin{bmatrix} x_2, x_3 \end{bmatrix} = \begin{bmatrix} u, x_1 \end{bmatrix}, x_3 \end{bmatrix}$$
$$= \begin{bmatrix} u, x_3 \end{bmatrix}, x_1 \end{bmatrix} + \begin{bmatrix} u, \begin{bmatrix} x_1, x_3 \end{bmatrix} \end{bmatrix}$$
$$\epsilon \begin{bmatrix} x_1, N \end{bmatrix} + \begin{bmatrix} u, N^2 \end{bmatrix}$$
$$= (z_1).$$

Put $[x_2, x_3] = \alpha z_1$ and $x'_3 = x_3 + \alpha x_1$. Then we have $[x_2, x'_3] = 0$, from which it follows that $x'_3 \in Z(N) = Z(L)$ and therefore $x_3 \in (x_1) + Z(L)$. This contradicts our supposition.

We have thus $[u, x_2] \in (x_1, x_2) + Z(L)$. Choose a basis of Z(L) so that $Z(L) = (z_1, z_2, \dots, z_m)$. Since $[x_1, [u, x_2]] = 0$, it follows that

$$[u, x_2] = \lambda x_1 + \sum_{i=1}^m \mu_i z_i$$
 with $\lambda \neq 0$.

Replacing x_1 by $x_1 + \lambda^{-1} \sum_{i=1}^m \mu_i z_i$, we have

$$\llbracket u, x_1 \rrbracket = x_2, \quad \llbracket u, x_2 \rrbracket = \lambda x_1, \quad \llbracket x_1, x_2 \rrbracket = z_1.$$

We now choose $x_3 \in N$, $\notin (x_1, x_2) + Z(N)$. Then $N = (x_1, x_2, x_3) + Z(L)$. Put

$$\begin{bmatrix} u, x_3 \end{bmatrix} = \sum_{i=1}^{3} \alpha_i x_i + \sum_{i=1}^{m} \alpha'_i z_i,$$
$$\begin{bmatrix} x_1, x_3 \end{bmatrix} = \sum_{i=1}^{m} \beta_i z_i,$$
$$\begin{bmatrix} x_2, x_3 \end{bmatrix} = \sum_{i=1}^{m} \gamma_i z_i.$$

On a Class of Lie Algebras

Then it follows from $[[u, x_3], x_i] = [[u, x_i], x_3]$ for i = 1, 2 that

$$lpha_1 - \lambda eta_1 - lpha_3 \gamma_1 = 0, \quad lpha_2 + lpha_3 eta_1 + \gamma_1 = 0, \ \lambda eta_i = -lpha_3 \gamma_i, \quad -lpha_3 eta_i = \gamma_i \quad ext{ for } \quad i \ge 2.$$

Replacing x_3 by $x_3 + \gamma_1 x_1 - \beta_1 x_2$, we have

$$\begin{bmatrix} u, x_3 \end{bmatrix} = \alpha_3 x_3 + \sum_{i=1}^m \alpha'_i z_i,$$
$$\begin{bmatrix} x_1, x_3 \end{bmatrix} = \sum_{i=2}^m \beta_i z_i,$$
$$\begin{bmatrix} x_2, x_3 \end{bmatrix} = -\alpha_3 \sum_{i=2}^m \beta_i z_i$$

and $\lambda\beta_i = \alpha_3^2\beta_i$ for $i \ge 2$. If $\lambda \ne \alpha_3^2$, then $\beta_i = 0$ for all $i \ge 2$. Hence $[x_3, N] = (0)$ and therefore $x_3 \in Z(N) = Z(L)$, which contradicts the choice of x_3 . If $\lambda = \alpha_3^2$, then $\alpha_3 \ne 0$. Hence L satisfies the hypothesis of Lemma 5 and therefore L is not an (A_2) -algebra, which contradicts our assumption. Thus the first part is proved.

We now consider the special case where dim Z(L)=1. Choose $x_1 \in N \setminus Z(L)$. Since dim $N/Z(L) \ge 2$ and $x_1 \notin Z(N)$, there exists $x_2 \in N \setminus Z(L)$ such that $[x_1, x_2] \ne 0$. Put $[x_1, x_2] = z$. Then Z(L)=(z). Assume that we have already chosen x_1, x_2, \dots, x_{2k} in N which are linearly independent over \mathcal{O} and such that

$$[x_{2h-1}, x_{2h}] = z$$
 for $h=1, 2, ..., k$,
 $[x_i, x_j] = 0$ for all other $i < j$

and furthermore assume that dim N/Z(L) > 2k. Then choose $y \in N$, $\notin (x_1, x_2, \dots, x_{2k}) + Z(L)$ and put

$$x_{2k+1} = y + (-\alpha_2 x_1 + \alpha_1 x_2) + \dots + (-\alpha_{2k} x_{2k-1} + \alpha_{2k-1} x_{2k})$$

where α_i is such that $[y, x_i] = \alpha_i z$. It follows that $[x_{2k+1}, x_i] = 0$ for i=1, 2, ..., 2k. Since $x_{2k+1} \notin Z(N)$, we have dim N/Z(L) > 2k+1 and there exists $x_{2k+2} \in N$ such that $[x_{2k+1}, x_{2k+2}] = z$. Replacing x_{2k+2} by a sum of x_{2k+2} and a suitable linear combination of $x_1, x_2, ..., x_{2k}$ as above, we may suppose that $[x_{2k+2}, x_i] = 0$ for i=1, 2, ..., 2k. Hence by using induction we can conclude that dim N/Z(L) is not odd.

Thus the proof is complete.

§**4**.

Throughout this section we use the following notations for a Lie algebra L:

 $n_1 = \dim L/N$, $n_2 = \dim N/Z(L)$ and $n_3 = \dim Z(L)$.

We shall then call L to be of type (n_1, n_2, n_3) . Owing to Theorem 1 we see that for every non-reductive (A_2) -algebra $L n_1 \ge 1, n_2 \ge 2$ and $n_3 \ge 1$. Hence every 1 dimensional and 2 dimensional (A_2) -algebra is abelian and every 3 dimensional (A_2) -algebra is abelian or simple. By making use of the propositions in the preceding section, we shall study the structures of the 4, 5 and 6 dimensional solvable (A_2) -algebras.

As for the 4 dimensional (A_2) -algebras we have the following

PROPOSITION 5. The 4 dimensional non-reductive (A_2) -algebras over a field $\boldsymbol{\Phi}$ of characteristic 0 are the following Lie algebras:

 $L_{\lambda} = (x_1, x_2, x_3, x_4)$ with the multiplication table

$$[x_1, x_2] = x_3, [x_1, x_3] = \lambda x_{23}$$

 $[x_2, x_3] = x_4, [x_i, x_4] = 0$
for $i=1, 2, 3$

where λ is not a square element in Φ .

 L_{λ_1} and L_{λ_2} are isomorphic if and only if $\lambda_1 \lambda_2^{-1}$ is a square element in Φ . When Φ is the field of real numbers, every L_{λ} is isomorphic to L_{-1} .

PROOF. Let *L* be a 4 dimensional non-reductive (A₂)-algebra. Then *L* is obviously of type (1, 2, 1). By Proposition 3 we see that *L* is equal to L_{λ} with some λ .

Assume that f is an isomorphism of L_{λ_1} onto L_{λ_2} . Then f sends the nil radical and the center of L_{λ_1} onto those of L_{λ_2} respectively. Hence, denoting $L_{\lambda_2} = (y_1, y_2, y_3, y_4)$, we have

$$f(x_1) = \sum_{j=1}^{4} \alpha_{1j} y_j,$$

$$f(x_i) = \sum_{j=2}^{4} \alpha_{ij} y_j \quad \text{for} \quad i = 2, 3,$$

$$f(x_4) = \alpha_{44} y_4.$$

Since the rank of f is 4, we have

$$lpha_{11}lpha_{44} ig| egin{matrix} lpha_{22} & lpha_{23} \ lpha_{32} & lpha_{33} \end{bmatrix}
eq 0.$$

From $[f(x_1), f(x_2)] = f(x_3)$ and $[f(x_1), f(x_3)] = \lambda_1 f(x_2)$, it follows that

$$\lambda_1 \alpha_{22} = \lambda_2 \alpha_{11} \alpha_{33}$$
$$\lambda_1 \alpha_{23} = \alpha_{11} \alpha_{32}$$
$$\alpha_{32} = \lambda_2 \alpha_{11} \alpha_{23}$$
$$\alpha_{33} = \alpha_{11} \alpha_{22}.$$

Hence we have

$$\alpha_{22}(\lambda_1 - \lambda_2 \alpha_{11}^2) = 0$$

$$\alpha_{23}(\lambda_1 - \lambda_2 \alpha_{11}^2) = 0.$$

Since we cannot have $\alpha_{22} = \alpha_{23} = 0$, it follows that $\lambda_1 = \lambda_2 \alpha_{11}^2$.

Conversely, assume that for L_{λ_1} and L_{λ_2} , $\lambda_1 \lambda_2^{-1} = \alpha^2$ with $\alpha \in \emptyset$. Then $\alpha \neq 0$. Define a linear transformation f of L_{λ_1} into L_{λ_2} in such a way that

$$f(x_1) = \alpha y_1,$$

$$f(x_2) = y_2,$$

$$f(x_3) = \alpha y_3,$$

$$f(x_4) = \alpha y_4.$$

Then it is easy to see that f is an isomorphism of L_{λ_1} onto L_{λ_2} .

When \mathcal{O} is the field of real numbers, if λ is not a square element then $\lambda < 0$. Therefore every L_{λ} is isomorphic to L_{-1} , and the proof is complete. As for the 5 dimensional (A₂)-algebras we have the following

PROPOSITION 6. The 5 dimensional non-reductive (A_2) -algebras over a field Φ of characteristic 0 are the following Lie algebras:

(1) The direct sum of a 4 dimensional non-reductive (A_2) -algebra and the 1 dimensional Lie algebra.

(2) $L_{\lambda,\mu} = (x_1, x_2, x_3, x_4, x_5)$ with the multiplication table

$$[x_{1}, x_{2}] = \lambda x_{5},$$

$$[x_{1}, x_{3}] = [x_{2}, x_{3}] = x_{4},$$

$$[x_{1}, x_{4}] = [x_{2}, x_{4}] = \mu x_{3},$$

$$[x_{3}, x_{4}] = x_{5},$$

$$[x_{i}, x_{5}] = 0 \quad for \quad i = 1, 2, 3, 4$$

where μ is not a square element in ϕ .

 L_{λ_1,μ_1} and L_{λ_2,μ_2} are isomorphic if and only if both λ_1 and λ_2 are 0 or $\neq 0$ at the same time and $\mu_1\mu_2^{-1}$ is a square element in $\boldsymbol{\Phi}$.

When Φ is the field of real numbers, every $L_{\lambda,\mu}$ is isomorphic to one of the non-isomorphic (A₂)-algebras $L_{0,-1}$ and $L_{1,-1}$.

PROOF. Let L be a 5 dimensional (A₂)-algebra. Then by Proposition 4 L is either of type (1, 2, 2) or of type (2, 2, 1). In the first case, by Proposition 3 we see that L is a Lie algebra in (1) of the statement. In the second case, by Proposition 3 we see that L is one of $L_{\lambda,\mu}$ in (2) of the statement.

Assume that f is an isomorphism of L_{λ_1,μ_1} onto L_{λ_2,μ_2} , where we write $L_{\lambda_2,\mu_2} = (y_1, y_2, y_3, y_4, y_5)$. Since f sends the nil radical and the center of L_{λ_1,μ_1} onto those of L_{λ_2,μ_2} respectively, we can express f in the following form:

$$f(x_i) = egin{cases} &\sum\limits_{j=1}^5 lpha_{ij} \, y_j & ext{ for } i = 1, 2 \ &\sum\limits_{j=3}^5 lpha_{ij} \, y_j & ext{ for } i = 3, 4 \ &lpha_{55} \, y_5 & ext{ for } i = 5, \end{cases}$$

where

$$lpha_{55} egin{pmatrix} lpha_{11} & lpha_{12} \ lpha_{21} & lpha_{22} \ lpha_{43} & lpha_{44} \
ot= 0.$$

From $[f(x_1), f(x_3)] = f(x_4)$ it follows that

$$\alpha_{33}(\alpha_{11}+\alpha_{12})=\alpha_{44}$$

$$\mu_2\alpha_{34}(\alpha_{11}+\alpha_{12})=\alpha_{43}.$$

From $[f(x_1), f(x_4)] = \mu_1 f(x_3)$ it follows that

$$\mu_1 \alpha_{33} = \mu_2 \alpha_{44} (\alpha_{11} + \alpha_{12})$$
$$\mu_1 \alpha_{34} = \alpha_{43} (\alpha_{11} + \alpha_{12}).$$

Therefore we have

$$\begin{aligned} &\alpha_{33}\{\mu_1 - \mu_2(\alpha_{11} + \alpha_{12})^2\} = 0\\ &\alpha_{34}\{\mu_1 - \mu_2(\alpha_{11} + \alpha_{12})^2\} = 0. \end{aligned}$$

Since α_{33} and α_{34} cannot be equal to 0 at the same time, it follows that

$$\mu_1 = \mu_2 (\alpha_{11} + \alpha_{12})^2.$$

By this equality together with $\mu_1 \neq 0$, we see that $\alpha_{11} + \alpha_{12} \neq 0$. On the other hand, from $[f(x_1), f(x_2)] = \lambda_1 f(x_5)$, it follows that

$$\begin{aligned} &\alpha_{23}(\alpha_{11}+\alpha_{12})-\alpha_{13}(\alpha_{21}+\alpha_{22})=0\\ &\alpha_{24}(\alpha_{11}+\alpha_{12})-\alpha_{14}(\alpha_{21}+\alpha_{22})=0\\ &\lambda_2(\alpha_{11}\alpha_{22}-\alpha_{12}\alpha_{21})+(\alpha_{13}\alpha_{24}-\alpha_{14}\alpha_{23})=\lambda_1\alpha_{55}.\end{aligned}$$

Therefore from the first two equations above we obtain

$$\alpha_{13}\alpha_{24} - \alpha_{14}\alpha_{23} = 0.$$

Then the last equation above becomes

$$\lambda_1\alpha_{55} = \lambda_2(\alpha_{11}\alpha_{22} - \alpha_{12}\alpha_{21}).$$

This shows that $\lambda_1 = 0$ if and only if $\lambda_2 = 0$.

Conversely, assume that for L_{λ_1,μ_1} and L_{λ_2,μ_2} both λ_1 and λ_2 are 0 or $\neq 0$ at the same time and $\mu_1\mu_2^{-1}=\alpha^2$ with $\alpha \in \mathcal{O}$. In the case where $\lambda_1=\lambda_2=0$, we define a linear transformation of L_{λ_1,μ_1} into L_{λ_2,μ_2} in such a way that

$$f(x_1) = \alpha y_1$$

$$f(x_2) = \alpha y_2$$

$$f(x_3) = y_3 + y_4$$

$$f(x_4) = \alpha(\mu_2 y_3 + y_4)$$

$$f(x_5) = \alpha(1 - \mu_2) y_5.$$

Then the rank of f is 5, since the coefficient matrix of f has the determinant $\alpha^4(1-\mu_2)^2 \neq 0$. In the case where $\lambda_1 \neq 0$ and $\lambda_2 \neq 0$, we define a linear transformation of L_{λ_1,μ_1} into L_{λ_2,μ_2} in such a way that

$$f(x_1) = \alpha y_1$$

$$f(x_2) = \{\alpha - \lambda_1 \lambda_2^{-1} (1 - \mu_2)\} y_1 + \lambda_1 \lambda_2^{-1} (1 - \mu_2) y_2$$

$$f(x_3) = y_3 + y_4$$

$$f(x_4) = \alpha (\mu_2 y_3 + y_4)$$

$$f(x_5) = \alpha (1 - \mu_2) y_5.$$

Then the rank of f is 5, since the coefficient matrix of f has the determinant $\alpha^3 \lambda_1 \lambda_2^{-1} (1-\mu_2)^3 \neq 0$. In each case, it is easy to see that f preserves the multiplication and therefore f is an isomorphism of L_{λ_1,μ_1} onto L_{λ_2,μ_2} .

If $\boldsymbol{\emptyset}$ is the field of real numbers, then it is immediate that every $L_{\lambda,\mu}$ is isomorphic to one of $L_{0,-1}$ and $L_{1,-1}$ which are not isomorphic.

Thus the proof is complete.

Finally we shall clarify the structure of the 6 dimensional (A_2) -algebras by restricting the basic field $\boldsymbol{0}$ to the field of real numbers. We first show the following

LEMMA 6. The 6 dimensional (A_2) -algebras of type (2, 2, 2) over a field $\boldsymbol{\Phi}$ of characteristic 0 are the following Lie algebras:

(1) The direct sum of a 5 dimensional (A_2) -algebra of type (2, 2, 1) and the 1 dimensional Lie algebra.

(2) $L_{\lambda} = (x_1, x_2, \dots, x_6)$ with the multiplication table

where λ is not a square element in $\boldsymbol{\Phi}$.

 L_{λ_1} and L_{λ_2} are isomorphic if and only if $\lambda_1 \lambda_2^{-1}$ is a square element in $\boldsymbol{\Phi}$. When $\boldsymbol{\Phi}$ is the field of real numbers, every L_{λ} is isomorphic to L_{-1} .

PROOF. Let L be a 6 dimensional (A_2) -algebra of type (2, 2, 2). Then L is solvable. Hence by Proposition 3 L is described by a basis x_1, x_2, \dots, x_6 in such a way that

$$\begin{bmatrix} x_1, x_2 \end{bmatrix} = \alpha x_5 + \beta x_6,$$

$$\begin{bmatrix} x_1, x_3 \end{bmatrix} = \begin{bmatrix} x_2, x_3 \end{bmatrix} = x_4,$$

$$\begin{bmatrix} x_1, x_4 \end{bmatrix} = \begin{bmatrix} x_2, x_4 \end{bmatrix} = \lambda x_3,$$

$$\begin{bmatrix} x_3, x_4 \end{bmatrix} = x_5,$$

$$\begin{bmatrix} x_i, x_j \end{bmatrix} = 0 \quad \text{for all other} \quad i < j$$

where λ is not a square element in \mathcal{O} . If $\beta = 0$, then L is the Lie algebra of the type indicated in (1) of the statement. If $\beta \neq 0$, then we can take $\alpha x_5 + \beta x_6$ as new x_6 and L becomes the Lie algebra indicated in (2) of the statement.

Assume that f is an isomorphism of L_{λ_1} onto L_{λ_2} . Writing $L_{\lambda_2} = (y_1, y_2, \dots, y_6)$, f can be expressed in the following form:

$$f(x_i) = \begin{cases} \sum_{j=1}^{6} \alpha_{ij} y_j & \text{for } i=1, 2\\ \sum_{j=3}^{6} \alpha_{ij} y_j & \text{for } i=3, 4\\ \sum_{j=5}^{6} \alpha_{ij} y_j & \text{for } i=5, 6. \end{cases}$$

Since the rank of f is 6, we have

$$\begin{vmatrix} lpha_{11} & lpha_{12} \ lpha_{21} & lpha_{22} \end{vmatrix} \cdot \begin{vmatrix} lpha_{33} & lpha_{34} \ lpha_{43} & lpha_{44} \end{vmatrix} \cdot \begin{vmatrix} lpha_{55} & lpha_{56} \ lpha_{66} \end{vmatrix}
eq 0.$$

From $[f(x_1), f(x_3)] = f(x_4)$ it follows that

J

$$\alpha_{33}(\alpha_{11} + \alpha_{12}) = \alpha_{44}$$
$$\lambda_2 \alpha_{34}(\alpha_{11} + \alpha_{12}) = \alpha_{43}.$$

From $[f(x_1), f(x_4)] = \lambda_1 f(x_3)$ it follows that

$$\lambda_1 \alpha_{33} = \lambda_2 \alpha_{44} (\alpha_{11} + \alpha_{12})$$

 $\lambda_1 \alpha_{34} = \alpha_{43} (\alpha_{11} + \alpha_{12}).$

Hence we obtain

$$egin{array}{lll} lpha_{33}\{\lambda_1\!-\!\lambda_2(lpha_{11}\!+\!lpha_{12})^2\} &= 0, \ lpha_{34}\{\lambda_1\!-\!\lambda_2(lpha_{11}\!+\!lpha_{12})^2\} &= 0. \end{array}$$

Since $\alpha_{33} \neq 0$ or $\alpha_{34} \neq 0$, it follows that

$$\lambda_1 = \lambda_2 (\alpha_{11} + \alpha_{12})^2.$$

Conversely, assume that for L_{λ_1} and L_{λ_2} , $\lambda_1 \lambda_2^{-1} = \alpha^2$ with $\alpha \in \emptyset$. Then we define a linear transformation f of L_{λ_1} into L_{λ_2} in such a way that

$$f(x_1) = \alpha y_1$$

$$f(x_2) = \alpha y_2$$

$$f(x_3) = y_3 + y_4$$

$$f(x_4) = \alpha(\lambda_2 y_3 + y_4)$$

$$f(x_5) = \alpha(1 - \lambda_2) y_5$$

$$f(x_6) = \alpha^2 y_6.$$

The coefficient matrix of f has the determinant $\alpha^6(1-\lambda_2)^2 \neq 0$ and it is immediate that f preserves the multiplication. Hence f is an isomorphism of L_{λ_1} onto L_{λ_2} .

When ϕ is in particular the field of real numbers, every L_{λ} is obviously isomorphic to L_{-1} . Thus the proof is complete.

LEMMA 7. The solvable (A_2) -algebras of type (3, 2, 1) over a field $\boldsymbol{\Phi}$ of characteristic 0 are the following Lie algebras:

 $L_{\lambda,\mu} = (x_1, x_2, ..., x_6)$ with the multiplication table

$$\begin{bmatrix} x_1, x_2 \end{bmatrix} = \lambda x_6, \quad \begin{bmatrix} x_1, x_3 \end{bmatrix} = \begin{bmatrix} x_2, x_3 \end{bmatrix} = 0,$$

$$\begin{bmatrix} x_1, x_4 \end{bmatrix} = \begin{bmatrix} x_2, x_4 \end{bmatrix} = \begin{bmatrix} x_3, x_4 \end{bmatrix} = x_5,$$

$$\begin{bmatrix} x_1, x_5 \end{bmatrix} = \begin{bmatrix} x_2, x_5 \end{bmatrix} = \begin{bmatrix} x_3, x_5 \end{bmatrix} = \mu x_4,$$

$$\begin{bmatrix} x_4, x_5 \end{bmatrix} = x_6,$$

$$\begin{bmatrix} x_i, x_6 \end{bmatrix} = 0 \quad for \quad i = 1, 2, ..., 5$$

where μ is not a square element in $\boldsymbol{\Phi}$.

 L_{λ_1,μ_1} and L_{λ_2,μ_2} are isomorphic if and only if both λ_1 and λ_2 are 0 or $\neq 0$ at the same time and $\mu_1\mu_2^{-1}$ is a square element in $\boldsymbol{\Phi}$.

When $\mathbf{\Phi}$ is the field of real numbers, every $L_{\lambda,\mu}$ is isomorphic to one of the non-isomorphic (A₂)-algebras $L_{0,-1}$ and $L_{1,-1}$.

PROOF. Let L be a solvable (A_2) -algebra of type (3, 2, 1). Then by Proposition 3 L can be described by a basis x_1, x_2, \dots, x_6 in such a way that

$$[x_1, x_2] = \alpha x_6, [x_1, x_3] = \beta x_6, [x_2, x_3] = \gamma x_6, [x_1, x_4] = [x_2, x_4] = [x_3, x_4] = x_5, [x_1, x_5] = [x_2, x_5] = [x_3, x_5] = \mu x_4, [x_4, x_5] = x_6, [x_i, x_6] = 0$$
for $i=1, 2, ..., 5$

where μ is not a square element in $\boldsymbol{\Phi}$.

First assume that $\alpha - \beta + \gamma = 0$. Then we assert that $\alpha = \beta = \gamma = 0$. In fact, we put

$$y = egin{cases} x_3 + lpha^{-1} \gamma x_1 - lpha^{-1} eta x_2 & ext{if} \quad lpha
eq 0 \ x_2 - eta^{-1} \gamma x_1 - lpha eta^{-1} x_3 & ext{if} \quad eta
eq 0 \ x_1 - eta \gamma^{-1} x_2 + lpha \gamma^{-1} x_3 & ext{if} \quad eta
eq 0 \ x_1 - eta \gamma^{-1} x_2 + lpha \gamma^{-1} x_3 & ext{if} \quad \gamma
eq 0.$$

Then $[y, x_1] = [y, x_2] = [y, x_3] = 0$,

$$\llbracket y, x_4
brace = \left\{egin{array}{ccc} lpha^{-1}(lpha - eta + \gamma) x_5 = 0 & ext{if} & lpha
eq 0 \ -eta^{-1}(lpha - eta + \gamma) x_5 = 0 & ext{if} & eta
eq 0 \ \gamma^{-1}(lpha - eta + \gamma) x_5 = 0 & ext{if} & \gamma
eq 0, \end{array}
ight.$$

and similarly $[\gamma, x_5]=0$. Hence $\gamma \in Z(L)$ and therefore dim $Z(L) \ge 2$, which contradicts the hypothesis that L is of type (3, 2, 1). Therefore $\alpha = \beta = \gamma = 0$, as was asserted.

Next assume that $\alpha - \beta + \gamma \neq 0$. If $\alpha \neq 0$, put

$$x'_{3} = \alpha(\alpha - \beta + \gamma)^{-1}(x_{3} + \alpha^{-1}\gamma x_{1} - \alpha^{-1}\beta x_{2}).$$

Then $[x_1, x'_3] = [x_2, x'_3] = 0$, $[x'_3, x_4] = x_5$ and $[x'_3, x_5] = \mu x_4$. If $\beta \neq 0$, put

$$x'_{2} = -\beta(\alpha - \beta + \gamma)^{-1}(x_{2} - \beta^{-1}\gamma x_{1} - \alpha\beta^{-1}x_{3}).$$

Then $[x_1, x_2'] = [x_2', x_3] = 0$, $[x_2', x_4] = x_5$ and $[x_2', x_5] = \mu x_4$. If $\gamma \neq 0$, put

$$x_{1}' = \gamma (\alpha - \beta + \gamma)^{-1} (x_{1} - \beta \gamma^{-1} x_{2} + \alpha \gamma^{-1} x_{3}).$$

Then $[x_1', x_2] = [x_1', x_3] = 0$, $[x_1', x_4] = x_5$ and $[x_1', x_5] = \mu x_4$. Thus, in any case, we can change a basis so that two of α , β and γ are 0. Finally by rearranging x_1, x_2, x_3 if necessary, we obtain $\beta = \gamma = 0$. Therefore L is one of the $L_{\lambda,\mu}$. Thus the first statement is proved.

Assume that f is an isomorphism of L_{λ_1,μ_1} onto L_{λ_2,μ_2} . Writing $L_{\lambda_2,\mu_2} = (y_1, y_2, \dots, y_6)$, we can express f in the following form:

$$f(x_i) = egin{cases} & \sum\limits_{j=1}^6 lpha_{ij}\,y_j & ext{ for } i = 1,\,2,\,3 \ & \sum\limits_{j=4}^6 lpha_{ij}\,y_j & ext{ for } i = 4,\,5 \ & lpha_{66}\,y_6 & ext{ for } i = 6. \end{cases}$$

Since the rank of f is 6, we have

$$lpha_{66} egin{array}{c|c} lpha_{11} & lpha_{12} & lpha_{13} \ lpha_{21} & lpha_{22} & lpha_{23} \ lpha_{31} & lpha_{32} & lpha_{33} \ lpha_{33} & lpha_{33} \ lpha_{54} & lpha_{55} \ \end{vmatrix}
eq 0.$$

From $[f(x_i), f(x_4)] = f(x_5)$ for i=1, 2, 3, it follows that

 $\alpha_{44}(\alpha_{i1}+\alpha_{i2}+\alpha_{i3})=\alpha_{55}$

$$\mu_2 \alpha_{45}(\alpha_{i1} + \alpha_{i2} + \alpha_{i3}) = \alpha_{54}$$
 for $i = 1, 2, 3$.

From $[f(x_i), f(x_5)] = \mu_1 f(x_4)$ for i = 1, 2, 3, it follows that

$$\mu_1 \alpha_{44} = \mu_2 \alpha_{55}(\alpha_{i1} + \alpha_{i2} + \alpha_{i3})$$

$$\mu_1 \alpha_{45} = \alpha_{54}(\alpha_{i1} + \alpha_{i2} + \alpha_{i3}) \quad \text{for} \quad i = 1, 2, 3.$$

Hence we have

$$egin{aligned} &lpha_{44}\{\mu_1\!-\!\mu_2(lpha_{i1}\!+\!lpha_{i2}\!+\!lpha_{i3})^2\}=0\ &lpha_{45}\{\mu_1\!-\!\mu_2(lpha_{i1}\!+\!lpha_{i2}\!+\!lpha_{i3})^2\}=0\ & ext{for}\quad i\!=\!1,\,2,\,3. \end{aligned}$$

Since $\alpha_{44} \neq 0$ or $\alpha_{45} \neq 0$, it follows that

$$\mu_1 = \mu_2(\alpha_{i1} + \alpha_{i2} + \alpha_{i3})^2, \quad i = 1, 2, 3.$$

We have also

$$\begin{aligned} &\alpha_{44}\{(\alpha_{11}+\alpha_{12}+\alpha_{13})-(\alpha_{21}+\alpha_{22}+\alpha_{23})\}=0\\ &\alpha_{44}\{(\alpha_{11}+\alpha_{12}+\alpha_{13})-(\alpha_{31}+\alpha_{32}+\alpha_{33})\}=0\\ &\alpha_{45}\{(\alpha_{11}+\alpha_{12}+\alpha_{13})-(\alpha_{21}+\alpha_{22}+\alpha_{23})\}=0\\ &\alpha_{45}\{(\alpha_{11}+\alpha_{12}+\alpha_{13})-(\alpha_{31}+\alpha_{32}+\alpha_{33})\}=0.\end{aligned}$$

From these and the fact that $\alpha_{44} \alpha_{55} - \alpha_{45} \alpha_{54} \neq 0$, it follows that

$$\alpha_{11} + \alpha_{12} + \alpha_{13} = \alpha_{21} + \alpha_{22} + \alpha_{23} = \alpha_{31} + \alpha_{32} + \alpha_{33}.$$

From $[f(x_1), f(x_2)] = \lambda_1 f(x_6)$ and $[f(x_1), f(x_3)] = [f(x_2), f(x_3)] = 0$, it follows that

$$\begin{aligned} \alpha_{24}(\alpha_{11}+\alpha_{12}+\alpha_{13})-\alpha_{14}(\alpha_{21}+\alpha_{22}+\alpha_{23}) &= 0\\ \alpha_{25}(\alpha_{11}+\alpha_{12}+\alpha_{13})-\alpha_{15}(\alpha_{21}+\alpha_{22}+\alpha_{23}) &= 0\\ \alpha_{34}(\alpha_{11}+\alpha_{12}+\alpha_{13})-\alpha_{14}(\alpha_{31}+\alpha_{32}+\alpha_{33}) &= 0\\ \alpha_{35}(\alpha_{11}+\alpha_{12}+\alpha_{13})-\alpha_{15}(\alpha_{31}+\alpha_{32}+\alpha_{33}) &= 0\\ \alpha_{34}(\alpha_{21}+\alpha_{22}+\alpha_{23})-\alpha_{24}(\alpha_{31}+\alpha_{32}+\alpha_{33}) &= 0 \end{aligned}$$

$$\begin{aligned} &\alpha_{35}(\alpha_{21}+\alpha_{22}+\alpha_{23})-\alpha_{25}(\alpha_{31}+\alpha_{32}+\alpha_{33})=0\\ &\lambda_2(\alpha_{11}\alpha_{22}-\alpha_{12}\alpha_{21})+(\alpha_{14}\alpha_{25}-\alpha_{15}\alpha_{24})=\lambda_1\alpha_{66}\\ &\lambda_2(\alpha_{11}\alpha_{32}-\alpha_{12}\alpha_{31})+(\alpha_{14}\alpha_{35}-\alpha_{15}\alpha_{34})=0\\ &\lambda_2(\alpha_{21}\alpha_{32}-\alpha_{22}\alpha_{31})+(\alpha_{24}\alpha_{35}-\alpha_{25}\alpha_{34})=0.\end{aligned}$$

Since $\alpha_{i1} + \alpha_{i2} + \alpha_{i3} \neq 0$ for i = 1, 2, 3, it follows that

```
lpha_{14}lpha_{25} - lpha_{15} lpha_{24} = 0 \ lpha_{14} lpha_{35} - lpha_{15} lpha_{34} = 0 \ lpha_{24} lpha_{35} - lpha_{25} lpha_{34} = 0
```

and therefore

$$egin{aligned} &\lambda_2(lpha_{11}lpha_{22}-lpha_{12}lpha_{21}) = \lambda_1lpha_{66} \ &\lambda_2(lpha_{11}lpha_{32}-lpha_{12}lpha_{31}) = 0 \ &\lambda_2(lpha_{21}lpha_{32}-lpha_{22}lpha_{31}) = 0. \end{aligned}$$

If we denote

$$D = egin{array}{c|c} lpha_{11} & lpha_{12} & lpha_{13} \ lpha_{21} & lpha_{22} & lpha_{23} \ lpha_{31} & lpha_{32} & lpha_{33} \ \end{array},$$

then

$$\begin{split} D = (\alpha_{11} + \alpha_{12} + \alpha_{13}) \{ (\alpha_{11}\alpha_{22} - \alpha_{12}\alpha_{21}) - (\alpha_{11}\alpha_{32} - \alpha_{12}\alpha_{31}) \\ + (\alpha_{21}\alpha_{32} - \alpha_{22}\alpha_{31}) \}. \end{split}$$

It follows that

$$\lambda_1 \alpha_{66} = \lambda_2 (\alpha_{11} + \alpha_{12} + \alpha_{13})^{-1} D.$$

Since $\alpha_{66}D \neq 0$, we conclude that $\lambda_1 = 0$ if and only if $\lambda_2 = 0$.

Conversely, assume that for L_{λ_1,μ_1} and L_{λ_2,μ_2} both λ_1 and λ_2 are 0 or $\neq 0$ at the same time and $\mu_1\mu_2^{-1} = \alpha^2$ with $\alpha \in \boldsymbol{\emptyset}$. In the case where $\lambda_1 = \lambda_2 = 0$, we define a linear transformation f of L_{λ_1,μ_1} into L_{λ_2,μ_2} in such a way that

$$f(x_1) = \alpha y_1$$

$$f(x_2) = \alpha y_2$$

$$f(x_3) = \alpha y_3$$

$$f(x_4) = y_4 + y_5$$

$$f(x_5) = \alpha(\mu_2 y_4 + y_5)$$

$$f(x_6) = \alpha(1 - \mu_2) y_6.$$

The rank of f is 6, since the coefficient matrix of f has the determinant $\alpha^5(1-\mu_2)^2 \neq 0$.

In the case where $\lambda_1 \neq 0$ and $\lambda_2 \neq 0$, we define a linear transformation f of L_{λ_1,μ_1} into L_{λ_2,μ_2} in such a way that

$$f(x_1) = \lambda_1 \lambda_2^{-1} (1 - \mu_2) y_1 + \{ \alpha - \lambda_1 \lambda_2^{-1} (1 - \mu_2) \} y_2$$

$$f(x_2) = \alpha y_2$$

$$f(x_3) = \alpha y_3$$

$$f(x_4) = y_4 + y_5$$

$$f(x_5) = \alpha (\mu_2 y_4 + y_5)$$

$$f(x_6) = \alpha (1 - \mu_2) y_6.$$

The rank of f is 6, since the coefficient matrix of f has the determinant $\alpha^4 \lambda_1 \lambda_2^{-1} (1-\mu_2)^3 \neq 0$. It is easy to see that in any case f preserves the multiplication. Therefore f is an isomorphism of L_{λ_1,μ_1} onto L_{λ_2,μ_2} .

When $\boldsymbol{\Phi}$ is in particular the field of real numbers, it is immediate that every $L_{\lambda,\mu}$ is isomorphic to one of the (A₂)-algebras $L_{0,-1}$ and $L_{1,-1}$, which are not isomorphic.

Thus the proof is complete.

LEMMA 8. The (A_2) -algebras of type (1, 4, 1) over the field Φ of real numbers are the following Lie algebras:

(1) $L_{\lambda,\mu} = (x_0, x_1, \dots, x_5)$ with the multiplication table

$$[x_0, x_1] = x_2, [x_0, x_2] = \lambda x_1, [x_0, x_3] = x_4, [x_0, x_4] = \mu x_3, [x_1, x_2] = [x_3, x_4] = x_5, [x_i, x_j] = 0 for all other i < j$$

where $\lambda < 0$ and $\mu < 0$.

(2) $L_{\lambda,\mu,\nu} = (x_0, x_1, \dots, x_5)$ with the multiplication table

$$egin{aligned} & [x_0, x_1] = x_2, \ & [x_0, x_2] = \lambda x_1 + x_3, \ & [x_0, x_3] = x_4, \ & [x_0, x_4] =
u x_1 + \mu x_3, \ & [x_1, x_2] = x_5, \ & [x_3, x_4] =
u x_5, \ & [x_i, x_j] = 0 & for all other \quad i < j \end{aligned}$$

where $\lambda < 0$, $\mu < 0$ and $0 < \nu < \lambda \mu$.

PROOF. Let L be an (A₂)-algebra of type (1, 4, 1). Take $x_1 \in N \setminus Z(L)$. Then there exists $x_0 \in L \setminus N$ such that $[x_1, [x_1, x_0]] \neq 0$. Put $x_2 = [x_0, x_1]$ and $x_5 = [x_1, x_2]$. Then $x_2 \in N \setminus Z(L)$ and $Z(L) = (x_5)$.

Case I. $[x_0, x_2] \epsilon (x_1, x_2, x_5)$: We write

$$[x_0, x_2] = \lambda x_1 + \mu x_2 + \nu x_5.$$

Then from $[[x_0, x_2], x_1] = [[x_0, x_1], x_2]$ it follows that $\mu = 0$. If $\lambda = 0$, then $(\operatorname{ad} x_2)^2 = 0$. Therefore $\lambda \neq 0$. Replacing x_1 by $x_1 + \lambda^{-1}\nu x_5$, we may suppose that

$$[x_0, x_2] = \lambda x_1$$

Take $y \in N \setminus (x_1, x_2, x_5)$. When $[y, x_1] = \alpha_1 x_5$ and $[y, x_2] = \alpha_2 x_5$, we put

$$x_3 = y - \alpha_2 x_1 + \alpha_1 x_2.$$

Then $[x_3, x_1] = [x_3, x_2] = 0$. Put $x_4 = [x_0, x_3]$. Since $[x_3, [x_3, x_0]] \neq 0$, we have $x_4 \in N$ and $[x_3, x_4] = \alpha x_5$ with $\alpha \neq 0$. It follows that $N = (x_1, x_2, \dots, x_5)$. We infer

$$[x_4, x_1] = [[x_0, x_3], x_1]$$

$$= [[x_0, x_1], x_3] + [x_0, [x_3, x_1]]$$

$$= [x_2, x_3]$$

$$= 0$$

and similarly $[x_4, x_2] = 0$. We write

$$[x_0, x_4] = \sum_{i=1}^5 \alpha_i x_i.$$

Then from $[[x_0, x_4], x_i] = [[x_0, x_i], x_4]$ for i=1, 2, 3, it follows that $\alpha_1 = \alpha_2 = \alpha_4 = 0$. Since $[x_4, [x_4, x_0]] \neq 0$, we see that $\alpha_3 \neq 0$. Replacing x_3 by $x_3 + \alpha_3^{-1}\alpha_5 x_5$ and α_3 by μ , we have

$$[x_0, x_4] = \mu x_3 \quad \text{with} \quad \mu \neq 0.$$

Thus the structure of L is described by a basis x_0, x_1, \dots, x_5 as follows:

$$[x_0, x_1] = x_2, \quad [x_0, x_2] = \lambda x_1,$$

 $[x_0, x_3] = x_4, \quad [x_0, x_4] = \mu x_3,$
 $[x_1, x_2] = x_5, \quad [x_3, x_4] = \alpha x_5,$
 $[x_i, x_i] = 0 \qquad \text{for all other} \quad i < j$

where $\alpha \neq 0$, $\lambda \neq 0$ and $\mu \neq 0$.

Furthermore we have $\lambda < 0$ and $\mu < 0$, for if $\lambda > 0$ then $(ad \lambda^{\frac{1}{2}} x_1 + x_2)^2 = 0$ and if $\mu > 0$ then $(ad \mu^{\frac{1}{2}} x_3 + x_4)^2 = 0$. If $\alpha < 0$, then

$$(\mathrm{ad}(-\alpha)^{\frac{1}{2}}x_1+(\alpha\mu)^{\frac{1}{2}}x_2+x_3+(-\lambda)^{\frac{1}{2}}x_4)^2=0.$$

Hence α must be >0. Now we may take $\alpha = 1$, since by replacing x_3 and x_4 by $\alpha^{-\frac{1}{2}}x_3$ and $\alpha^{-\frac{1}{2}}x_4$ respectively we have the same multiplication table with the exception that $[x_3, x_4] = x_5$. Thus L has the form indicated in (1) of the statement.

Case II. $[x_0, x_2] \notin (x_1, x_2, x_5)$: Put $y = [x_0, x_2]$. Then it is immediate that $[y, x_1] = 0$. We put $[y, x_2] = \lambda x_5$ and $x_3 = y - \lambda x_1$. Then we obtain

$$\begin{bmatrix} x_0, x_2 \end{bmatrix} = \lambda x_1 + x_3, \qquad \lambda \neq 0,$$
$$\begin{bmatrix} x_3, x_1 \end{bmatrix} = \begin{bmatrix} x_3, x_2 \end{bmatrix} = 0.$$

We next put $x_4 = [x_0, x_3]$. Then $[x_3, x_4] = \nu x_5$ with $\nu \neq 0$. It is immediate that

$$[x_4, x_1] = [x_4, x_2] = 0.$$

Now let us write

$$[x_0, x_4] = \sum_{i=1}^5 \beta_i x_i.$$

Then from $[[x_0, x_4], x_i] = [[x_0, x_i], x_4]$ for i=1, 2, 3 it follows that $\beta_1 = \nu$ and $\beta_2 = \beta_4 = 0$. Since $[x_4, [x_4, x_0]] \neq 0$, it follows that $\beta_3 \neq 0$. After replacing x_0 by $x_0 - \beta_5 \nu^{-1} x_3$, we change the notations to see that *L* is described by a basis x_0, x_1, \dots, x_5 as follows:

$$\begin{bmatrix} x_0, x_1 \end{bmatrix} = x_2, \quad \begin{bmatrix} x_0, x_2 \end{bmatrix} = \lambda x_1 + x_3,$$
$$\begin{bmatrix} x_0, x_3 \end{bmatrix} = x_4, \quad \begin{bmatrix} x_0, x_4 \end{bmatrix} = \nu x_1 + \mu x_3,$$
$$\begin{bmatrix} x_1, x_2 \end{bmatrix} = x_5, \quad \begin{bmatrix} x_3, x_4 \end{bmatrix} = \nu x_5,$$
$$\begin{bmatrix} x_i, x_j \end{bmatrix} = 0 \quad \text{for all other} \quad i < j$$

where $\lambda \neq 0$, $\mu \neq 0$ and $\nu \neq 0$.

Furthermore we have $\lambda < 0$ and $\mu < 0$, for if $\lambda > 0$ then $(\operatorname{ad} \lambda^{\frac{1}{2}} x_1 + x_2)^2 = 0$ and if $\mu > 0$ then $(\operatorname{ad} \mu^{\frac{1}{2}} x_3 + x_4)^2 = 0$. Since L is an (A₂)-algebra, $(\alpha_1, \alpha_2, \alpha_3, \alpha_4) \neq 0$ implies $(\operatorname{ad} \sum_{i=1}^{4} \alpha_i x_i)^2 \neq 0$, that is,

$$\alpha_1^2 + \nu \alpha_3^2 + (-\lambda \alpha_2^2 - 2\nu \alpha_2 \alpha_4 - \mu \nu \alpha_4^2) \neq 0.$$

Put $f(\alpha_2, \alpha_4) = -\lambda \alpha_2^2 - 2\nu \alpha_2 \alpha_4 - \mu \nu \alpha_4^2$. If $f(\alpha_2, \alpha_4) \leq 0$ for some $(\alpha_2, \alpha_4) \neq 0$, we take α_1 and α_3 so that

$$\alpha_1 = \left(-f(\alpha_2, \alpha_4)\right)^{\frac{1}{2}}$$
 and $\alpha_3 = 0$.

Then we obtain $(\alpha_1, \alpha_2, \alpha_3, \alpha_4) \neq 0$ and $\alpha_1^2 + \nu \alpha_3^2 + f(\alpha_2, \alpha_4) = 0$. Hence we have $f(\alpha_2, \alpha_4) > 0$ for every $(\alpha_2, \alpha_4) \neq 0$, that is, f is positive definite. It follows that

 $-\mu\nu > 0$ and $\lambda\mu\nu - \nu^2 > 0$,

and therefore $0 < \nu < \lambda \mu$. Thus L has the structure indicated in (2) of the statement.

Conversely, if L is $L_{\lambda,\mu}$ or $L_{\lambda,\mu,\nu}$, then it is easy to see that L is an (A₂)-algebra.

Thus the proof is complete.

LEMMA 9. Under the notations in Lemma 8, every (A_2) -algebra $L_{\lambda,\mu}$ is isomorphic to one of the non-isomorphic (A_2) -algebras $L_{-1,\theta}$ where $-1 \leq \theta < 0$.

PROOF. Assume that f is an isomorphism of L_{λ_1,μ_1} onto L_{λ_2,μ_2} . We here write $L_{\lambda_2,\mu_2} = (y_0, y_1, \dots, y_5)$. Since f sends the nil radical and the center of L_{λ_1,μ_1} onto those of L_{λ_2,μ_2} respectively, we can express f in the following form:

$$f(x_0) = \sum_{j=0}^{5} \alpha_{0j} y_j$$

$$f(x_i) = \sum_{j=1}^{5} \alpha_{ij} y_j \quad \text{for} \quad i = 1, 2, 3, 4$$

$$f(x_5) = \alpha_{55} y_5.$$

From $[f(x_0), f(x_1)] = f(x_2)$ it follows that

$$lpha_{21} = \lambda_2 lpha_{00} lpha_{12} \ lpha_{22} = lpha_{00} lpha_{11} \ lpha_{23} = \mu_2 lpha_{00} lpha_{14} \ lpha_{24} = lpha_{00} lpha_{13}.$$

From $[f(x_0), f(x_2)] = \lambda_1 f(x_1)$ it follows that

$$\lambda_1 \alpha_{11} = \lambda_2 \alpha_{00} \alpha_{22}$$
$$\lambda_1 \alpha_{12} = \alpha_{00} \alpha_{21}$$
$$\lambda_1 \alpha_{13} = \mu_2 \alpha_{00} \alpha_{24}$$
$$\lambda_1 \alpha_{14} = \alpha_{00} \alpha_{23}.$$

Hence we have

On a Class of Lie Algebras

$$\begin{aligned} &\alpha_{11}(\lambda_1 - \lambda_2 \alpha_{00}^2) = 0 \\ &\alpha_{12}(\lambda_1 - \lambda_2 \alpha_{00}^2) = 0 \\ &\alpha_{13}(\lambda_1 - \mu_2 \alpha_{00}^2) = 0 \\ &\alpha_{14}(\lambda_1 - \mu_2 \alpha_{00}^2) = 0. \end{aligned}$$

In a similar way, from $[f(x_0), f(x_3)] = f(x_4)$ and $[f(x_0), f(x_4)] = \mu_1 f(x_3)$, it follows that

 $lpha_{41}=\lambda_2lpha_{00}lpha_{32}$ $lpha_{42}=lpha_{00}lpha_{31}$ $lpha_{43}=\mu_2lpha_{00}lpha_{34}$ $lpha_{44}=lpha_{00}lpha_{33}$

and also

$$\begin{aligned} &\alpha_{31}(\mu_1 - \lambda_2 \alpha_{00}^2) = 0 \\ &\alpha_{32}(\mu_1 - \lambda_2 \alpha_{00}^2) = 0 \\ &\alpha_{33}(\mu_1 - \mu_2 \alpha_{00}^2) = 0 \\ &\alpha_{34}(\mu_1 - \mu_2 \alpha_{00}^2) = 0. \end{aligned}$$

If $\lambda_1 - \lambda_2 \alpha_{00}^2 \neq 0$ and $\lambda_1 - \mu_2 \alpha_{00}^2 \neq 0$, it follows that $\alpha_{11} = \alpha_{12} = \alpha_{13} = \alpha_{14} = 0$. If $\lambda_1 - \lambda_2 \alpha_{00}^2 \neq 0$ and $\mu_1 - \lambda_2 \alpha_{00}^2 \neq 0$, it follows that $\alpha_{11} = \alpha_{12} = \alpha_{31} = \alpha_{32} = 0$ and therefore $\alpha_{21} = \alpha_{22} = \alpha_{41} = \alpha_{42} = 0$. If $\lambda_1 - \mu_2 \alpha_{00}^2 \neq 0$ and $\mu_1 - \mu_2 \alpha_{00}^2 \neq 0$, it follows that $\alpha_{13} = \alpha_{14} = \alpha_{33} = \alpha_{34} = 0$ and therefore $\alpha_{23} = \alpha_{24} = \alpha_{43} = \alpha_{44} = 0$. If $\mu_1 - \lambda_2 \alpha_{00}^2 \neq 0$ and $\mu_1 - \mu_2 \alpha_{00}^2 \neq 0$, it follows that $\alpha_{31} = \alpha_{32} = \alpha_{33} = \alpha_{34} = 0$. Thus in any case we see that

$$egin{array}{cccccc} lpha_{11} & lpha_{12} & lpha_{13} & lpha_{14} \ lpha_{21} & lpha_{22} & lpha_{23} & lpha_{24} \ lpha_{31} & lpha_{32} & lpha_{33} & lpha_{34} \ lpha_{41} & lpha_{42} & lpha_{43} & lpha_{44} \ \end{array} = 0$$

and therefore the determinant of the coefficient matrix of f equals 0, which is impossible since f is an isomorphism. Hence, if $\lambda_1 - \lambda_2 \alpha_{00}^2 \neq 0$ or $\mu_1 - \mu_2 \alpha_{00}^2 \neq 0$, we have necessarily $\lambda_1 - \mu_2 \alpha_{00}^2 = 0$ and $\mu_1 - \lambda_2 \alpha_{00}^2 = 0$. Thus we obtain

$$\lambda_1 - \lambda_2 \alpha_{00}^2 = \mu_1 - \mu_2 \alpha_{00}^2 = 0,$$
 or
 $\lambda_1 - \mu_2 \alpha_{00}^2 = \mu_1 - \lambda_2 \alpha_{00}^2 = 0.$

Since $\alpha_{00} \neq 0$, it follows that $\lambda_1 \lambda_2^{-1} = \mu_1 \mu_2^{-1}$ or $\lambda_1 \mu_2^{-1} = \lambda_2^{-1} \mu_1$.

Conversely, assume that for L_{λ_1,μ_1} and L_{λ_2,μ_2} we have $\lambda_1\lambda_2^{-1} = \mu_1\mu_2^{-1}$ or

 $\lambda_1 \mu_2^{-1} = \lambda_2^{-1} \mu_1$. In the case where $\lambda_1 \lambda_2^{-1} = \mu_1 \mu_2^{-1}$, we put $\alpha = (\lambda_1 \lambda_2^{-1})^{\frac{1}{2}}$. Then $\lambda_1 = \alpha^2 \lambda_2$ and $\mu_1 = \alpha^2 \mu_2$. Define a linear transformation f of L_{λ_1, μ_1} into L_{λ_2, μ_2} in such a way that

$$f(x_0) = \alpha y_0$$

$$f(x_1) = y_1 + (-\mu_1)^{\frac{1}{2}} y_2$$

$$f(x_2) = \alpha \{\lambda_2 (-\mu_1)^{\frac{1}{2}} y_1 + y_2\}$$

$$f(x_3) = y_3 + (-\lambda_1)^{\frac{1}{2}} y_4$$

$$f(x_4) = \alpha \{(-\lambda_1)^{\frac{1}{2}} \mu_2 y_3 + y_4\}$$

$$f(x_5) = \alpha (1 + \lambda_1 \mu_2) y_5.$$

Then the coefficient matrix of f has the determinant $\alpha^4(1+\lambda_1\mu_2)^3>0$, and it is easy to see that f preserves the multiplication. Therefore f is an isomorphism of L_{λ_1,μ_1} onto L_{λ_2,μ_2} .

In the case where $\lambda_1 \mu_2^{-1} = \lambda_2^{-1} \mu_1$, we put $\alpha = (\lambda_1 \mu_2^{-1})^{\frac{1}{2}}$. Then $\lambda_1 = \alpha^2 \mu_2$ and $\mu_1 = \alpha^2 \lambda_2$. Define a linear transformation f of L_{λ_1,μ_1} into L_{λ_2,μ_2} in such a way that

$$f(x_0) = \alpha y_0$$

$$f(x_1) = y_3 + (-\mu_1)^{\frac{1}{2}} y_4$$

$$f(x_2) = \alpha \{(-\mu_1)^{\frac{1}{2}} \mu_2 y_3 + y_4\}$$

$$f(x_3) = y_1 + (-\lambda_1)^{\frac{1}{2}} y_2$$

$$f(x_4) = \alpha \{(-\lambda_1)^{\frac{1}{2}} \lambda_2 y_1 + y_2\}$$

$$f(x_5) = \alpha (1 + \lambda_1 \lambda_2) y_5.$$

Then it is easy to see that f is an isomorphism of L_{λ_1,μ_1} onto L_{λ_2,μ_2} .

Thus in order that L_{λ_1,μ_1} and L_{λ_2,μ_2} are isomorphic it is necessary and sufficient that $\lambda_1\lambda_2 = \mu_1\mu_2$ or $\lambda_1\mu_2 = \lambda_2\mu_1$.

We now see that $L_{\lambda,\mu}$ is isomorphic to $L_{-1,-\lambda\mu^{-1}}$ if $\lambda \ge \mu$ and to $L_{-1,-\lambda^{-1}\mu}$ if $\lambda < \mu$. Hence every $L_{\lambda,\mu}$ is isomorphic to one of $L_{-1,\theta}$ with $-1 \le \theta < 0$. It is immediate that $L_{-1,\theta}$ with $-1 \le \theta < 0$ are not isomorphic for different θ .

Thus the proof is complete.

LEMMA 10. Under the notations in Lemma 8, every (A₂)-algebra $L_{\lambda,\mu,\nu}$ is isomorphic to one of the (A₂)-algebras $L_{\lambda,\mu}$.

PROOF. Let $L_{\lambda,\mu,\nu}$ be an (A₂)-algebra in the statement (2) of Lemma 8. We consider the following equation:

$$(\lambda\mu - \nu)x^2 + (\lambda + \mu)x + 1 = 0.$$

Since $\nu > 0$, it is immediate that the equation has two different roots in \emptyset . Since $\lambda < 0$, $\mu < 0$ and $\lambda \mu - \nu > 0$, their sum and product are both positive. Let us denote by α^2 the larger one of them. Then by making use of the fact that $\lambda < 0$ and $0 < \nu < \lambda \mu$, we can show that $\alpha^2 \lambda + 1 < 0$. Put $\lambda_1 = -1$ and $\mu_1 =$ $\alpha^2(\lambda + \mu) + 1$. Then $\mu_1 < 0$. We have also $\lambda_1 \neq \mu_1$. In fact, if $\lambda_1 = \mu_1$, then $\alpha^2(\lambda + \mu) = -2$ and therefore $\alpha^2 \mu + 1 = -\alpha^2 \lambda - 1$. Hence

$$egin{aligned} &lpha^4
u = (lpha^2\lambda + 1)(lpha^2\mu + 1)\ &= -(lpha^2\lambda + 1)^2\ &< 0, \end{aligned}$$

which contradicts the fact that $\nu > 0$. By the definitions of λ_1 and μ_1 , we have obviously

$$\alpha^{4}\nu = (\alpha^{2}\lambda - \lambda_{1})(\alpha^{2}\mu - \lambda_{1})$$
$$= -(\alpha^{2}\lambda - \lambda_{1})(\alpha^{2}\lambda - \mu_{1})$$
$$= (\alpha^{2}\lambda - \mu_{1})(\alpha^{2}\mu - \mu_{1}).$$

Thus we can choose two non-zero real numbers β and γ satisfying the condition

$$\beta^2(\alpha^2\lambda - \lambda_1) = -\gamma^2(\alpha^2\lambda - \mu_1).$$

Writing $L_{\lambda,\mu,\nu} = (y_0, y_1, \dots, y_5)$, we define a linear transformation f of L_{λ_1,μ_1} into $L_{\lambda,\mu,\nu}$ in such a way that

$$f(x_0) = \alpha y_0$$

$$f(x_1) = \alpha^{-2}\beta\nu^{-1}\{\alpha^2\nu y_1 - (\alpha^2\lambda - \lambda_1)y_3\}$$

$$f(x_2) = \alpha^{-1}\beta\nu^{-1}\{\alpha^2\nu y_2 - (\alpha^2\lambda - \lambda_1)y_4\}$$

$$f(x_3) = \alpha^{-2}\gamma\nu^{-1}\{\alpha^2\nu y_1 - (\alpha^2\lambda - \mu_1)y_3\}$$

$$f(x_4) = \alpha^{-1}\gamma\nu^{-1}\{\alpha^2\nu y_2 - (\alpha^2\lambda - \mu_1)y_4\}$$

$$f(x_5) = -\alpha^{-3}\beta^2\nu^{-1}(\lambda_1 - \mu_1)(\alpha^2\lambda - \lambda_1)y_5$$

Then the coefficient matrix of this transformation has the determinant

$$-lpha^{-4}eta^4\gamma^2
u^{-3}(\lambda_1-\mu_1)^3(lpha^2\lambda-\lambda_1)
eq 0.$$

Hence the rank of f is 6. We have to show that f preserves the multiplications. By making use of the product expressions of $\alpha^4 \nu$ and the equality defining β and γ , we have the following equalities:

$$\begin{split} \left[f(x_0), f(x_1)\right] &= \alpha^{-1}\beta\nu^{-1}\left[\alpha^{2}\nu y_1 - (\alpha^{2}\lambda - \lambda_1)y_3\right] \\ &= \alpha^{-1}\beta\nu^{-1}\left\{\alpha^{2}\nu y_2 - (\alpha^{2}\lambda - \lambda_1)y_4\right\} \\ &= f(x_2), \\ \left[f(x_0), f(x_2)\right] &= \beta\nu^{-1}\left[y_0, \alpha^{2}\nu y_2 - (\alpha^{2}\lambda - \lambda_1)(y_1 + \mu y_3)\right] \\ &= \beta\nu^{-1}\left\{\alpha^{2}\lambda(y_1 + y_3) - (\alpha^{2}\lambda - \lambda_1)(y_1 + \mu y_3)\right\} \\ &= \alpha^{-2}\beta\nu^{-1}\left\{\alpha^{2}\lambda\nu y_1 + \alpha^{4}\nu y_3 - \alpha^{2}\mu(\alpha^{2}\lambda - \lambda_1)y_3\right\} \\ &= \alpha^{-2}\beta\nu^{-1}\left\{\alpha^{2}\lambda\nu y_1 - \lambda_1(\alpha^{2}\lambda - \lambda_1)y_3\right\} \\ &= \lambda_1f(x_1), \\ \left[f(x_0), f(x_3)\right] &= \alpha^{-1}\gamma\nu^{-1}\left[y_0, \alpha^{2}\nu y_1 - (\alpha^{2}\lambda - \mu_1)y_4\right] \\ &= f(x_4), \\ \left[f(x_0), f(x_4)\right] &= \gamma\nu^{-1}\left[y_0, \alpha^{2}\nu y_2 - (\alpha^{2}\lambda - \mu_1)(\nu y_1 + \mu y_3)\right] \\ &= \alpha^{-2}\gamma\nu^{-1}\left\{\alpha^{2}\mu_1\nu y_1 + \alpha^{4}\nu_3 - \alpha^{2}\mu(\alpha^{2}\lambda - \mu_1)y_3\right\} \\ &= \alpha^{-2}\gamma\nu^{-1}\left\{\alpha^{2}\mu_1\nu y_1 + \alpha^{4}\nu_3 - \alpha^{2}\mu(\alpha^{2}\lambda - \mu_1)y_3\right\} \\ &= \alpha^{-2}\gamma\nu^{-1}\left\{\alpha^{2}\mu_1\nu y_1 - \mu_1(\alpha^{2}\lambda - \mu_1)y_3\right\} \\ &= \alpha^{-2}\gamma\nu^{-1}\left\{\alpha^{2}\mu_1\nu y_1 - \mu_1(\alpha^{2}\lambda - \mu_1)y_3\right\} \\ &= \alpha^{-3}\beta^{2}\nu^{-1}\left\{\alpha^{4}\nu y_5 + (\alpha^{2}\lambda - \lambda_1)y_5\right\} \\ &= -\alpha^{-3}\beta^{2}\nu^{-1}\left\{\alpha^{4}\nu y_5 + (\alpha^{2}\lambda - \lambda_1)y_5\right\} \\ &= f(x_5), \\ \left[f(x_1), f(x_4)\right] &= \alpha^{-3}\beta\gamma\nu^{-2}\left[\alpha^{2}\nu y_1 - (\alpha^{2}\lambda - \lambda_1)y_5, \alpha^{2}\nu y_2 - (\alpha^{2}\lambda - \mu_1)y_4\right] \\ &= \alpha^{-3}\beta\gamma\nu^{-1}\left\{\alpha^{4}\nu y_5 + (\alpha^{2}\lambda - \lambda_1)(\alpha^{2}\lambda - \mu_1)y_5\right\} \\ &= 0, \\ \\ \left[f(x_2), f(x_3)\right] &= \alpha^{-3}\beta\gamma\nu^{-1}\left\{\alpha^{4}\nu y_5 + (\alpha^{2}\lambda - \lambda_1)(\alpha^{2}\lambda - \mu_1)y_5\right\} \\ &= 0, \end{aligned}$$

$$\begin{bmatrix} f(x_2), f(x_4) \end{bmatrix} = 0,$$

$$\begin{bmatrix} f(x_3), f(x_4) \end{bmatrix} = \alpha^{-3} \gamma^2 \nu^{-2} \begin{bmatrix} \alpha^2 \nu \, y_1 - (\alpha^2 \lambda - \mu_1) \, y_3, \, \alpha^2 \nu \, y_2 - (\alpha^2 \lambda - \mu_1) \, y_4 \end{bmatrix}$$

$$= \alpha^{-3} \gamma^2 \nu^{-1} \{ \alpha^4 \nu \, y_5 + (\alpha^2 \lambda - \mu_1)^2 \, y_5 \}$$

$$= \alpha^{-3} \gamma^2 \nu^{-1} (\lambda_1 - \mu_1) (\alpha^2 \lambda - \mu_1) \, y_5$$

$$= -\alpha^{-3} \beta^2 \nu^{-1} (\lambda_1 - \mu_1) (\alpha^2 \lambda - \lambda_1) \, y_5$$

$$= f(x_5),$$

$$\begin{bmatrix} f(x_i), f(x_5) \end{bmatrix} = 0 \qquad \text{for} \quad i = 0, 1, \dots, 4.$$

Thus we conclude that f is an isomorphism of L_{λ_1,μ_1} onto $L_{\lambda,\mu,\nu}$.

The proof of the lemma is complete.

REMARK. The multiplication tables of the (A_2) -algebras $L_{\lambda,\mu}$ and $L_{\lambda,\mu,\nu}$ in Lemma 8 define (A_2) -algebras over the field of rational numbers when λ, μ and ν are especially rational numbers. Let us denote them by $L^*_{\lambda,\mu}$ and $L^*_{\lambda,\mu,\nu}$ respectively. We here note that, contrary to the assertion in Lemma 10, $L^*_{\lambda,\mu,\nu}$ is not necessarily isomorphic to any one of the $L^*_{\lambda,\mu}$.

Assume that there exists an isomorphism f of $L^*_{\lambda,\mu}$ onto $L^*_{-1,-2,1}$. Writing $L^*_{-1,-2,1} = (y_0, y_1, \dots, y_5)$, we can express f in the following form:

$$f(x_0) = \sum_{j=0}^{5} \alpha_{0j} y_j$$

$$f(x_i) = \sum_{j=1}^{5} \alpha_{ij} y_j \quad \text{for} \quad i = 1, 2, 3, 4$$

$$f(x_5) = \alpha_{55} y_5.$$

From $[f(x_0), f(x_1)] = f(x_2)$ it follows that

$$lpha_{21} = lpha_{00}(-lpha_{12} + lpha_{14}) \ lpha_{22} = lpha_{00} lpha_{11} \ lpha_{23} = lpha_{00}(lpha_{12} - 2 lpha_{14}) \ lpha_{24} = lpha_{00} lpha_{13}.$$

From $[f(x_0), f(x_2)] = \lambda f(x_1)$ it follows that

$$egin{aligned} &\lambda lpha_{11} = lpha_{00}(-lpha_{22}+lpha_{24}) \ &\lambda lpha_{12} = lpha_{00} lpha_{21} \ &\lambda lpha_{13} = lpha_{00}(lpha_{22}-2lpha_{24}) \ &\lambda lpha_{14} = lpha_{00} lpha_{23}. \end{aligned}$$

Hence we obtain

$$\begin{aligned} &\alpha_{11}(\lambda + \alpha_{00}^2) - \alpha_{00}^2 \alpha_{13} = 0 \\ &\alpha_{12}(\lambda + \alpha_{00}^2) - \alpha_{00}^2 \alpha_{14} = 0 \\ &\alpha_{00}^2 \alpha_{11} - \alpha_{13}(\lambda + 2\alpha_{00}^2) = 0 \\ &\alpha_{00}^2 \alpha_{12} - \alpha_{14}(\lambda + 2\alpha_{00}^2) = 0. \end{aligned}$$

If $\alpha_{11} = \alpha_{12} = \alpha_{13} = \alpha_{14} = 0$, then the rank of f is not 6. Hence some of α_{11} , α_{12} , α_{13} and α_{14} are not equal to 0. It follows that

$$(\lambda + \alpha_{00}^2)(\lambda + 2\alpha_{00}^2) - \alpha_{00}^4 = 0$$

and therefore

$$\lambda^2 + 3\lambda \alpha_{00}^2 + \alpha_{00}^4 = 0.$$

It is however immediate that there are no rational numbers λ and α_{00} satisfying the equality above, which is a contradiction. Thus $L^*_{-1,-2,1}$ is not isomorphic to any $L^*_{\lambda,\mu}$.

Finally, by making use of the preceding propositions and lemmas, we shall determine the structure of the 6 dimensional solvable (A_2) -algebras over the field of real numbers in the following

PROPOSITION 7. The 6 dimensional non-abelian solvable (A₂)-algebras over the field of real numbers are, up to isomorphism, the Lie algebras described by a basis $x_1, x_2, ..., x_6$ with the following multiplication tables.

- (1): $[x_1, x_2] = x_3, [x_1, x_3] = -x_2,$ $[x_2, x_3] = x_4.$
- (2): $[x_1, x_2] = \lambda x_5,$ $[x_1, x_3] = [x_2, x_3] = x_4,$ $[x_1, x_4] = [x_2, x_4] = -x_3,$ $[x_3, x_4] = x_5$ with $\lambda = 0, 1.$
- (3): $[x_1, x_2] = x_6,$ $[x_1, x_3] = [x_2, x_3] = x_4,$ $[x_1, x_4] = [x_2, x_4] = -x_3,$ $[x_3, x_4] = x_5.$

(4):
$$[x_1, x_2] = \mu x_6,$$

 $[x_1, x_4] = [x_2, x_4] = [x_3, x_4] = x_5,$
 $[x_1, x_5] = [x_2, x_5] = [x_3, x_5] = -x_4,$
 $[x_4, x_5] = x_6$ with $\mu = 0, 1.$

(5):
$$[x_1, x_2] = x_3, [x_1, x_3] = -x_2,$$

 $[x_1, x_4] = x_5, [x_1, x_5] = \nu x_4,$
 $[x_2, x_3] = [x_4, x_5] = x_6 \quad with \quad -1 \leq \nu < 0.$

Here in each of the tables $[x_i, x_j] = 0$ for all i < j if it is not in the table.

PROOF. Let L be a 6 dimensional non-abelian solvable (A₂)-algebra over the field of real numbers. Then $n_1 \ge 1$, $n_2 \ge 2$ and $n_3 \ge 1$. By Proposition 4 we have the following cases:

In the first case we have the table (1) by Propositions 3 and 5. In the second case we have the tables (2) and (3) by Proposition 6 and Lemma 6. In the third case we have the table (4) by Lemma 7. In the fourth case we have the table (5) by Lemmas 8, 9 and 10. The proof is complete.

References

- [1] N. Jacobson, Lie algebras. Interscience Publishers, New York, 1962.
- [2] A. Jôichi, On certain properties of Lie algebras, J. Sci. Hiroshima Univ. Ser. A-I, 31 (1967), pp. 25-33.
- B. Kostant, The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group, Amer. J. Math., 81 (1959), pp. 973-1032.
- [4] S. Tôgô, Dimensions of the derivation algebras of Lie algebras, J. Sci. Hiroshima Univ. Ser. A-I, 31 (1967), pp. 17-23.

Department of Mathematics, Faculty of Science, Hiroshima University