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The representations of distributions as distributional boundary values
of holomorphic functions have been discussed by many authors. As for a
distribution on a unit circle, G. Kδthe [10] developed the theory of holomor-
phic representations through the Cauchy integral along the unit circle of the
given distribution. On the other hand, for a distribution on the real axis,
H. G. Tillmann [25] constructed its holomorphic representation by making
use of a technique similar to the method of G. Mittag-Leffler. There the
representation is not unique and we may add an entire function to obtain
another representing function. Recently, in his article [12] motivated by
the works of M. Sato [16, 17], A. Martineau has developed the theory of the
distributional boundary values of holomorphic functions, and reduced the
problem of representing a distribution to solving a non-homogeneous Cauchy-
Riemann equation. The solution is a distribution which is holomorphic except
on the line where the original distribution is given.

For a vector-valued distribution on the real axis, H. G. Tillmann [26] has
shown that the Cauchy integral along the real axis gives rise to a holomor-
phic representation if the distribution happens to be of almost compact sup-
port, while the method of G. Mittag-Leffler just referred to cannot be applied
to an arbitrary vector-valued distribution. We are naturally led to the ques-
tion whether it is possible to give holomorphic representations of an arbit-
rary vector-valued distribution on the real axis. We can show that the
answer is negative. This is because the space of entire functions has no
topological supplement in the space of the solutions of the Cauchy-Riemann
equations mentioned above. On the contrary, any vector-valued distribution
on a unit circle is holomorphically represented by the Cauchy integral.

The main purpose of the present paper is to develop a general theory on
holomorphic representations of the vector-valued distributions so that we may
be able to answer the question raised above even in a Riemann surface M.
Here a vector-valued distribution is given on a real analytic 1-dimensional
oriented closed submanifold Γ which need not be connected. The problem
will be reduced to solving a non-homogeneous Cauchy-Riemann equation in
accordance with the idea of A. Martineau. Naturally his method requires a
modification in its treatment of the subject.

Special attention will be paid to the cases where the original distribution
is given on the real axis or on a unit circle.
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Throughout this paper E will stand for a quasi-complete locally convex
Hausdorff topological vector space.

The presentation of the material is arranged as follows: Section 1 is
devoted to some preliminary discussions needed for our later purpose. In
particular, the well-known fact that a distribution is locally a finite order
derivative of a continuous function will be proved by modifying a technique
due to A. Pietsch [14] so that we may obtain a clear-cut method of represent-
ing a bounded set of distributions in a similar form. In Section 2 the notions
of the value of a distribution introduced by S. Lojasiewicz [11]] will be ex-
tended to an £-valued distribution. Section 3 deals with the extension of the
method of A. Martineau to i?-valued distributions. As an analogue of Pro-
position 4 in A. Martineau [12, p. 204] it is shown that if an unvalued dis-
tribution f(x) is given on an open interval of the real axis, then any holomor-
phic representation is obtained as a solution g(z) of the differential equation

—&- =4y(f(S)δy)' I n Section 4 the distributional boundary value of an E-
ύ z Δ

valued holomorphic function is investigated from a viewpoint of the Carle-
man's extension principle. The main result of this section is the theorem
showing that if hι(z) and h2(z) are ^-valued holomorphic functions on the
upper and the lower half planes respectively and if, for each e' e E\
<(hi(xJrie)—h2(x — ie)), e'> converges to a distribution as ε-> +0, then hu h2

have the distributional boundary values on the real axis R.
Section 5 is devoted to a general theory on holomorphic representations

of ^-valued distributions. Let M and Γ be the same as described before.
The main result of this section is as follows. If E is taken arbitrary, the
representation is only possible according to the cases

(a) when M is open, Γ is compact,
(b) when Mis compact, the £-valued distribution given on Γ satisfies

certain conditions.
On the other hand, when M is open, the holomorphic representation is always
possible if E is an (F)-space.

Section 6 is concerned with the distributional boundary value of holo-
morphic functions on a unit open disc D. We introduce the space of slowly
increasing holomorphic functions on D, of which the boundary behaviors are
investigated. Applying a theorem of N. A. Davydov, we can construct a
boundary distribution which has no value at any point. We show that any
two boundary distributions have the multiplicative product in a sense des-
cribed in [21]. The result will be generalized by a conformal map to the
boundary distributions on the same side of an analytic arc. In the final
section we shall study the y'-boundary value of holomorphic function on a
half plane belonging to the class H+. Improvements are given for the results
of E. J. Beltrami-M. R. Wohlers [1] related to the Hubert transform pairs.
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1. Preliminaries

Let Ω be a non-empty open subset of an TV-dimensional Euclidean space
RN. If x = (xu • •-, χN\ y=(yu •••> VN) e ^ a n d Λ is a real number, we write

* + y = (xi+ j i , •••, Λ iv+Jiv), A* = (A*i, •••, AΛ TV) and | x | = ( Σ | * y | 2)*. If p is
TV

an iV-tuple (pu • •-, />#) of non-negative integers, the sum Σpj will be denoted

by I jo I and with Dx = (Dh ..., Z^), Dj=-£-, we put DP

X = D{* -••Dfy. In addition,
we shall use the notation Dm = D^ ... Z>̂  for an integer m^>0.

A distribution Γ e ζb'(Ω) is locally a distributional derivative of a continu-
ous function F. A. Pietsch [14] has devised an interesting method of con-
structing such a function F. In our treatment we shall need an analogue for
a vector-valued distribution. In the following we shall modify his method of
construction so that it may be convenient for our later discussions.

N

Let Q= Π(α/> bj)C CΩ. T is said to be of order at most m on Q if there

exists a constant C such that

for any φ 6 Q)Q. Then, 2>δ being dense in 2)|, Γ will be uniquely extended to
a continuous linear form on ©| .

PROPOSITION 1. Given QCCΩ, there exists a function G(x, y) —
N

ΠGyOy, y/) defined on R2N such that each Gj e @fα>δ.]χ[α fft.: α^d ŝ c/z, that for
j = l _ J > 3~

any T e Q)'(Ω) with order at most m on Q we can write τ=D2m+2F on Q, where
F(x)=<Ty,G(x,

PROOF. For each /, l<I/<IiV, we consider the ordinary differential
equation

j ( 2 w + 2 )(O - dr (l)

with boundary conditions

where ίτ, aj<r<bj, is the Dirac measure concentrated at r. The general
solution of (1) is given by

7 = (2 J + l ) Γ + Co + Clt + ' 2 1
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with constants c0, ci, , c2m+u which should be chosen to satisfy the boundary
conditions (2). Then c0, cu • ••, c2m+i will be uniquely determined and will be
polynomials of r. Put

/(*/> yi) = for (xh yj) € [ah bj~l x [>/, bjj,

0 otherwise.

Clearly Gy c © f α . ^ * ^ . ^ and if we restrict the domain of G to [_aj, bjjx
[αy, όy], Gj will be of class C2w and satisfy Gj(xh yj) = Gj(yh xj) [4, p. 193].

Tv-
G(x, y)= ΠGj(xh yj), and put

Then we have for any φ e Q)Q

<D2m+2F, φ> = <F, D2m+2φ>

= < Ty, fax, y)D2m+2φ(x)dx> = <T,φ>,

which completes the proof.

Let S b e a bounded subset of 2)'(ώ). Since S3 is equicontinuous, there
exist for any QC CΩ a constant C=C(Q) and a non-negative integer m = m(Q)
such that

for any φe Q)Q and T e S3. Every distribution T e S3 can be written on Q

T = D2m+2Fτ, Fτ{x) - < Ty9 G(x

where GO, y) is the function considered in Proposition 1.
The set {G(x, )}X€Q forms a compact subset of ©^ since the map Qϊx^

G(x, •) e ©^ is continuous. From this and the fact that the strong and weak
topologies on any equicontinuous subset of 3)^ coincide, it follows from the
Banach-Steinhaus theorem that a directed set {Tλ} of S3 converges to 0 in
ζb'(Ω) if and only if for any QCC&<> {^τλ} converges uniformly to 0.

Let L and Mbe any two locally convex Hausdorίf topological vector spaces.
The ε-product LeM is the linear space of bilinear forms on L'c x M'c hypo-
continuous with respect to the equicontinuous subsets of L\ M\ which is
equipped with the topology of uniform convergence on the products of equi-
continuous subsets of I/, M [18, p. 18]. Let J2ε(L'c M) be the space of con-
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tinuous linear maps of L'c into M with the topology of uniform convergence
on the equicontinuous subsets of L'. There exist the algebraic and topologi-
cal isomorphisms among LεM, M6(L'C M) and M€(M'C L) [18, p. 34]. Hence
we shall identify LεM with Aa{L'c M) or with £S(M'C L). The map %: L'c x
(LεM) 3 (χ\ ύ) -• 2(£') e M is hypocontinuous with respect to any equicontinu-
ous subset of L'c. This implies that if i? is a relatively compact subset of
LsM and A is an equicontinuous subset of L\ then the set {u(xf): ύ e J2, x' e A}
is a relatively compact subset of M.

Let i2 be a non-empty open subset of RN and E a locally convex Hausdorff
topological vector space. We write Q)f

Ω(E) instead of Q)'(Ω)eE, a space of un-
valued distributions. We shall assume that E is quasi-complete unless other-
wise stated.

Let J2 be a relatively compact subset of Q)f

Ω(E) and V° the polar of a 0-
neighbourhood Γ of E. Then the set {< f, e r > 6 2)'(fi): Tel.e'e V°} is re-
latively compact and a fortiori bounded in Q)\Ω). From the preceding dis-
cussions we have immediately

PROPOSITION 2. Let M be α relatively compact subset of Q)r

Ω(E). Given
QC CΩ, we can write with the notations used before

< f, e'>=DkFf,y, Ff,Λx)=<<t e '>, (%x, y)> y,

where f e M, ef e V° and the map x: £x V° B (f, &)-+Ffχ e CQ is continuous
in the topology induced on £x V° by the product S)'Ω(E) x E'c.

In accordance with S. Lojasiewicz [11, p. 18] we shall show

PROPOSITION 3. We assume that N=2. Let Q= Ix/C CΩ with /=(α, b\
7=(c, d) and let XeQ)Ω(E). If Dp

xD
q

yX=0 on Q with positive integers p, q,
then X may be written in the form

on Q with distributions Sμ(y) and ϊv(x) independent of x and y respectively.

PROOF. Since the functions 1, x, •-, xp~ι are linearly independent in
©'(/), we have the functions aμ(x) e ©(/) such that

<aμ(x\ x v > = -δμv; β , v = 0, 1, ...,p — l.

Let φ be any element of ©(/). If we put

then%(x)=T ^~^]Λ, Ψ(r)dt belongs to ©(/) and φ = D*x. Similarly we
J-oo {p L).
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have bXy) e ©(/) satisfying

<yμ, K(y)> = ~ δ ^ A ^ = ° > i > •••>

For any f (y) e ©(/), the function

q<f, i(y)>bχγ)
0

can be written as τ](y)=Dq

yζ(γ) with ζ( y) e ©(/). Since X has the property
D%Dq

yX=0 on Q, we have

( ) x , (g)ζ>=0

and therefore

y

+ *Σ< y, ?><X, ψ(x)<g)bXy)>

+ PΣ *Σ
μ=0 v = 0

where

xμ, ΦXf, i><X, aμ(x)<S>bXy)>,

<x", ΨXX, aμ(x)®ζ(y)> = <x", φ><<Xt>y, aμ(t)>, ξ(y)>

= <x"<Xt,y, aμ(t)>, ψ<g)ξ>,

<f, ξ><X, φ(x)<S>bXy)> = < <XX,T,

<x», φ><f, ί><X, aμ(x)<S>bXy)> =

We have therefore the relation

,y μ χ , r , b£τ)>f

+ PΣ "Σ<Xt,r, aμ(t)<g>bXτ)>xμy\

Putting

Sμ(y)=<Xt>y, -aμ(t)>,

TXx)=<XXτ, -bXτ)> + Σ<Xt,τ, -aμ(t)(g)bXτ)>xμ,
μ=o

then Sμ(y\ ίχ%) are independent of x and y respectively and we have X=
PΣxμSXy) + QΣyv TXx) on Q, completing the proof.
μ=0 v = 0



On the Distributional Boundary Values of Vector-Valued Holomorphic Functions 403

2. Some remarks on fixation of vector-valued distributions

The notions of the value of a distribution at a point of RN and of the
section of a distribution will be extended to the vector-valued distributions.

Let T be an unvalued distribution defined on a neighbourhood U of
xoeRN. T is said to have the value f(xo)=e€E&t x = χ0, if f(xo + λx\ A being
a positive real number, converges to e in ζΰr(E) as A-> +0, namely, for any

ψeQ), < T(xQ + λx\ 00*0> = < f(x\ * </-^^iΛ> converges to e[φ{x)dx

as Λ-> +0. If f is given on U\{x0}, limf will be defined similarly.

With the aid of Proposition 2 we can show after the proof of Proposition
1 in S. Lojasiewicz [11, p. 17] the following

PROPOSITION 4. Let U be a neighbourhood of x0 e RN and f an E-valued
distribution defined on U\{x0}. Then l imΓ=e if and only if for any equi-

χ-+xo

continuous subset V° of E' and any neighbourhood PC CU of x0, there exists a
continuous function Fy e C(RN\ e' e E'v°, such that for a non-negative integer k
we have

< f,e'> = <e,ef>+DkFy

on P\{xo}9 where Fy = o(\x — x0\
kN) uniformly on V° as \x — ΛJO|-»O.

Let us consider a restricted (^-sequence {pw}, that is, a sequence of non-
negative function pn e Q)(RN) with the following properties:

(i) suppQn converges to {0}asτι->oo;

(ii) \ pn(x)dx converges to 1 as n -• oo

ιkι \Dkpn(x)\ dx<,Mk (Mk being independent of n\(iϋ) \

where the integral is extended over the whole TV-dimensional space [22, p. 91].
Along the same line as in the proof of Proposition 3 in R. Shiraishi [22, p. 93]
we can show

PROPOSITION 5. Let T be an E-valued distribution defined on a neighbour-
hood of XQ e RN. f has the value T{xo)—e e E if and only if

f, pn(x-χo)> =e
W ->OO

for every restricted δ-sequence {pn}.

By proceeding in the same way as in the proof of Lemma 3 in our previ-
ous paper [8, p. 156] we can show

PROPOSITION 6. Let f be an E-valued distribution defined on a neighbour-
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hood of 0 in R
N
. If the values ^-(0)=e

y
 e E exist for j= 1, 2, , JV, then the

υXj

same is also true of f.

Let Ω be a non-empty open subset of RN = R^xR^2 and TeQ)f

Ω(E).
For xo e Rξi we put

and assume that Ωx is not empty. If \imT(xQ + λx, y)=lx®S(γ) then we

shall say that x = x0 can be fixed in ϊ(x9 y) and that S e Q)r

βχo(E) is the section
of f for χ — χQ which will be denoted by f(x0, y). If f is defined on Ω\ΩXQ,

one can define lim T(x, γ) in obvious fashion.
χ->x0

The following Propositions 4/ and 5' are the analogues of Propositions 4
and 5 and will be proved in a similar way.

PROPOSITION 4'. Lei f 6e an E-valued distribution defined on Ω\ΩXQ. Then
limΓ(Λ;, y)=S(y) if and only if for any equicontinuous subset V° of Ef and
χ-^xo

any non-empty open subset GC CΩXQ, there exist non-negative integers k, Z, a
neighbourhood Δ of x0 and a continuous function Fγ(x, y)eC(RN), ef e E'v°,
such that

on(J\{x0})xG, where Fy=o(\x — x0\
kN) uniformly onGand V° as \x — A;0| —>0.

PROPOSITION 5'. f has the section f(x0, y)= S(y) e Q)f

Ωχo(E) for x = x0 if
and only if

l im<f, pn(x-x0)>=lx<g)S(y)

for every restricted d-sequence {pn}.

We assume that JV=2. Let Ω+ = (a, δ)x(0, c) and /=(α, b).

DEFINITION 1. Let f e Q)r

Ω+(E). If there exists a distribution S 6 Q)j(E)
such that

lim f(x,λy)=S(x)®Y(y)
λ-^ + 0

in Q)'IxR+(E), Y denoting the Heaviside function, then S(x) will be called the
limit of f as y—• +0 and denoted by lim f(x, y). This means that

+ 0

lim<f5 -±-<Kx)φ(-£-)> = <3, φ>[φ(y)dy

for any φ e ©(/) and ψ e 2)(Λ+).



On the Distributional Boundary Values of Vector-Valued Holomorphic Functions 405

In the same way as in the proof of Proposition 4 we have

PROPOSITION 7. Let T eQ)'Ω (E). Then limf(x, y)= S(x) if and only

if for any open intervals JiC C I and Λ = (05 cι) with 0<ci<c and any equi-
continuous subset V° of Er there exists a function Fy e C(R2), e' e Ev°, such that
for some positive integer k we can write

<f,e'> = < S(*)(g) Y(y\ e' )

on Λ x/2, where Fy=o(yk) uniformly on Λ and V° as y-+ +0.

PROPOSITION 8. Let T e Q)r

ΩXE). If lim ^=- = S(x) exists, then lim T(x, y)
+ y-^+o σγ y->+o

also exists.

PROOF. Let V° be any equicontinuous subset of E'. Take Λ and J2 as
in Proposition 7. Then there exist a positive integer k and a function
Fy 6 C(R2\ e' e Fvo, for which

on /i x/2, where Fy = o(γk) uniformly on Jλ and V° as y-> +0. We have for
any φ e ®(Λ) and e' e V°

= <<S\ φ>, e'>+(-l)^*V(*, y)φ{k\x)dx

and therefore

where cφχ is a constant depending on φ and e\
This implies that for any given ε > 0 and φ e 2)(/2) we can choose δ > 0

so that

I < < f(*, Ay)- f(x, λ'y\ φ®ψ>, r > I <ε

for any ^ and λ' with 0<^? ^ < ί . Since Q)'Ω(E) is quasi-complete, we can
conclude that the limit lim ?(#, 7) exists, completing the proof.

3. Boundary values of vector-valued holomorphic functions

Let C be a complex plane and z a complex variable with z — x~\-iy.
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For any non-empty open subset ΩCC we denote by dt(Ω) the space of holo-
morphic functions on Ω with the compact convergence topology. 9ta{E) —
dC{Ω)eE will stand for the space of E-valued holomorphic functions defined
on Ω.

Let £+ = Jx(0, b) with / = ( - α , a) and 6>0. In his paper [12, p. 200],
A. Martineau has shown some equivalent conditions for the existence of the
distributional boundary value of h e 3t(Ω+). There the distributional bound-
ary value problem is reduced to solving a differential equation [12, p. 204].
In accordance with his idea we shall first study the analogues for vector-
valued holomorphic functions.

PROPOSITION 9. Let h e dtΩ (E). Then the following conditions are equi-
valent :

(a) h can be extended over / = ( —α, a) as an E-valued distribution.
(b) h is a slowly increasing function near each point of /, namely, for

any JC C I crnd any continuous semi-norm p of E, there exists a positive
number k0 such that

€ J

is bounded for sufficiently small γ.
(c) The distributional limit \imh(x + ίe) exists.

(d) The distributional limit limh(x-\-iγ) exists.
y-^ + 0

PROOF. (α)->(ό). Let Vbe an absolutely convex neighbourhood of 0 in
E such that p coincides with the gauge of V. Suppose h can be extended
over / = ( —α, a) to an I?-valued distribution which we shall denote by the
same symbol h for the sake of simplicity. Let Ω be the domain of the ex-
tended h. Choose positive numbers ah bλ so that ω = ( — au ai)x( — bu bι)CCΩ
and JC C( —«i, «i). Then, by Proposition 2, there exists a continuous func-
tion gr(z) defined on the plane C such that for some positive integer k we
can write

<h(z\ ef>= Dk

xD
k

ygy(z) for any er e V°

on ω. The map V° B e'-> gv e C(βί) is continuous, where V° has the topology
induced by E'c.

Let r(z) be an £-valued holomorphic function on Ω+ such that

If we put niz)= <K*X ef>, then

gϊ' — ry) = 0 for any ef e V°
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on Ω+Γ\ω. Consequently we can find by Proposition 3 continuous functions
Sμ>y(y\ Tvy(x) on (0, bλ) and on ( — au aλ) respectively with the properties:

(i) gy(z)-niz)=kΣxfίSμχ(γ) + kΣγvTv-ix) on Ω

(iί) Sμχ(y)= <gi<*)-π<z), ~aμ(x)>, M = 0,l,
(iii) TVt%ix)=<g%>(z)-n>{z), -bXy)>

where aμ, bu have been chosen as in Proposition 3.
(ii) implies that the map e'-> Sμy(y) e C((0, bj) is continuous where

C((0, bj) has the compact convergence topology, (iii) implies that each Tvy(x)
is a continuous function on Q — ah α j and the map e/->Γy ^ e C(Q —αi5 αj) is
continuous.

If we put

g g μ y j
μ=0 v=0

it is a continuous function on ώ and the map er-+ly(z) 6 C(ώ) is also continu-
ous. Now we can write

n<z)+*Σxμ<n', aμ(x)> = l+iz). (1)

Taking any distinct points xh y = l, 2, ••-, A;, in ( — α l5 αi), we consider the sys-
tem of equations

k - l

i ) Σ xμ<n', aμ(x)> = ly(
μ=0

Since det | Λ;̂ | =^0, it follows that each of <ry, aμ(x)>, β = l, 2, , k — 1, is
uniquely extended to a continuous function on Q0, b{] and the map e'—•
<r^ ? aμ(x)> 6 C([Ό, ό J ) is continuous. From this we see that if we put

μ=l
, aμ(x)>, (2)

then ly(z) is uniquely extended to a continuous function on Q—αl3 α J x Q0, δ j
and that the map e'-*ly(z)e C(Q — au αJxQO, όj) is continuous. From (1)
and (2) we have

niz) + < ry, ao(x) > = ΐy(z). (3)

Let Γ(y) be the positively oriented boundary of the rectangle ( — au ax)x
(y, h) with 0<y<bι. If we put 5j<y)= <ry, ao(x)>9 then since r̂ <z) is
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holomorphic on i?+5 we have

Consequently sy(y)—sϊ'(γ') tends to 0 uniformly on V° as y— y'->0. This
together with (3) implies that rγ(x + ίέ) converges uniformly for x e Q—au a{]
and er e Γ a s s - ^ + 0 . We can write for z e Jx (0, ji) with 0< j i<όi and for
any S' e F°

* > - ( 2 A ; ) !

where Γ o = limΓ( y). It follows that

s u p s u p I y 2 k + 1 < h ( z \ e f > I
0<y<yi xej

is bounded. Thus (a) implies (b).
(b)-*(c). Let V be any neighbourhood of 0 in E. Consider any interval

JCCI and a positive number j o < b. Put Ωι = Jx(0, γ0). Then, by our hypo-
thesis, there exist a positive integer k and a positive constant M such that

I γk<h(z\ ef> |<;Λf for any ^ e ^ i and e ' e Γ .

If we consider an unvalued holomorphic function g(z) such that k+2S =

a z
h(z\ then a simple calculation will show that there exists a constant M
satisfying

for z, z' € Ωι and e' e Γ°. Consequently <^(^ + iε), ex> converges in C(J)
uniformly for e' e V° as e-> +0. Using the fact that

<h(x + ίε\ ef>=Dk

x

+2<g(x + ίε\ ef>,

we can conclude that the distributional limit of %(x + ie) for ε-> +0 exists.
Thus (b) implies (c).

(c)->(d). Suppose (c) holds. Let S3i be any bounded subset of ©(/) and
V any neighbourhood of 0 in E. Given any η > 0, there exists an eη > 0 such
that 0<ε^ε^ implies that

\ e/>φ(x)dx-<<S, er>, φ{x)>\<η

for any φ e S5i and any e' e V°.
Let S52 be any bounded subset of 2)(Λ+) and let c > l be chosen so that

every 0 e S 2 vanishes identically for j > c . We have then with ε<Ξ^- and

0<y<c
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), ef>φ(x)dx-<<S, e'>, φ> \<η.

Consequently, for any φ e S3i and any φ e 232 we have

\ e/>φ(x)φ(y)dxdy-<<S, e>, φ>{jψ(y)dy\

which means that

= <S(x)<g)Yy,
£-> + 0

Thus (c) implies (d).
The implication (d)->(a) is an immediate consequence of the following

Proposition 10.
Thus the proof is complete.

Let Λ2_ be the domain symmetric to Ω+ with respect to the real axis and

put Ω = Ω+\J I\j Ω _.

PROPOSITION 10. If f e Q)'Ω+(E) has the distributional limit lim f(x, y) =

S(x\ then there exists a We Q)'Ω(E) such that W coincides with f on Ω+ and

vanishes on Ω_. Moreover Wis unique under the condition that W— S<g)Y(y)
has the section 0 for y— 0.

PROOF. Let p e &(R) be equal to 1 on (2, oo) and 0 on (— oo? 1). Put

p ( £ )(y)=ρ(-^A for 0 < ε <; 1. We consider the distribution Ws e Q)Ω(E) defined

by
— > _>

- < T(x, y\ P(6)(y)<K%> y)>> Φ £ 2)(-β). (4)

φ 6 Q)(Ω) has a compact support and so we can find an interval JCCI and
a positive bλ<b such that supp0C/x( — bu bx). Let Vbe any neighbourhood
of 0 in E. Then there exist by Proposition 7 a positive integer k and a con-
tinuous function Fy e C(/?2), e' 6 F°, such that we can write

on ω = /x(0, &i), where F r = o(y*) uniformly on / and V° as j ^ + 0 and
F r = 0 for y<0.

If supp^C/x( — δi, δi), then using (4) we can write

<Dk

xD
k

yFy, p

S(x\ ?>, \p(£)(y)φ(x, y)dy> + <Fy, DxD
k
yp(€)(y)φ(x,
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which converges uniformly on V° to < < S , e ' χ g ) F , φ> + <Dk

xD
k

yFy, φ> as

ε-> + 0. This means, since Q)'Ω{E) is quasi-complete, that lim Wε=W e Q)r

Ω(E)

exists and we have

= lim < f
6-^ + 0

= lim < f-
£-> + 0

— > •

As a result, we see that ΪF satisfies the conditions stated in our proposition.
Let W\ be another .E-valued distribution belonging to Q)r

Ω(E) with all the
properties stated in Proposition 10. If we put φ(y)=l — p(y)—p(— y\ then
using Lemma 4 in our previous paper Q8, p. 166] we have

lim < J
ε-^ + o

Consequently we can write

< Wu Φ> = lim < Wλ-

= lim < T- S(g>Y, p(6)(y)φ(x, y)> + <S(g>Y,φ>,

which completes the proof.

—>
The uniquely determined W e Q)f

Ω{E) in the preceding proposition will be
called in this paper a canonical extension of T. We see that f e ζb'Ω+{E) has
the canonical extension if and only if the distributional limit lim p(£)(y)f

exists in Q)'Ω(E). The limit will be the canonical extension of f.

REMARK 1. Let hedtΩ+(E). If <Λ, e'> edt(Ω+) is slowly increasing
for each e' e E\ then h is slowly increasing in the sense of (b) in Proposition
9. Indeed, this follows from Baire's category theorem.

PROPOSITION 11. Let heQ)f

Ω (E). If the distributional limit h+=limh(x + iε)
ε^ + o

exists, then the canonical extension g e Q)'Ω(E) of h satisfies the following equa-
tion :

PROOF. By Proposition 10 we have g— \imp(€)(γ)h. Consequently
£ - + 0



On the Distributional Boundary Values of Vector-Valued Holomorphic Functions 411

όz

Now, for any φ e Q)(Ω)

lim < %>/*, φ> = lim
OZ

Δ ε

= γ<K, φ(x,0)[)p
/(y)dy>

therefore we obtain

which completes the proof.

h+ in the preceding proposition will also be called the distributional
boundary value of h. For f e Q)r

Ω_(E) we define similarly the canonical ex-
tension, h 6 dtajβ) has the distributional limit (boundary value) /L =
lim^(Λ; — iέ) if and only if the distributional limit g = lim p(£)(γ)h exists. In

this case we can show that

dz Z

Using this fact we shall show

THEOREM 1. Let fe Q)'j(E). In order that f can be represented in the
form f—fi — f2, where /Ί and f2 are the distributional boundary values of holo-
morphic functions hιedtΩ+(E) and h2edCΩ_(E) respectively, it is necessary
and sufficient that there exists a distribution g e Q)'Ω(E) satisfying the equation

on Ω.

PROOF. Suppose that/=/i—f2 with fτ = limhι(x+ίe) and f2 = \imh2(x—ίε).
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If we put g = gι+ g2, where gj, y = l , 2, is the canonical extension of hj, then
by Proposition 11 we obtain

dz dz dz

Conversely, suppose that there exists a distribution g e Q)'Ω(E) such that

As - ^ = 0on Ω+\jβ-, g is holomorphic on Ω+\jΩ— If we put hι=g\Ω+,

h2= g\Ω-, then geQ)r

Ω(E) is the extension of both hx and h2. By virtue of
Proposition 9 the distributional limits f\— Ximh^x + iz) and f2 — Iimh2(x — is)

exist. Let gj, y = l, 2, be chosen as before. Then we have

and supp(^— (gi+ g2))CL Owing to a lemma of A. Martineau [12, p. 208],
we can conclude that f=f1—f2.

Thus the proof is complete.

4. A version of Carleman's extension principle and its applications to

vector-valued holomorphic functions

Let Gi be a domain in the complex plane C. Suppose the boundary dG±
contains an open line segment / such that for any z^e I there exists a neigh-
bourhood U of zo such that U does not intersect dGι\L Let G2 be the domain
symmetric to Gi with respect to /, and let us assume that d and G2 are dis-
joint. If two holomorphic functions hλ on d and h2 on G2 take on the same
boundary values on this line segment from within each domain, then hx and
h2 are analytic continuations of each other. The result will be generalized
in this section to the vector-valued holomorphic functions.

For the sake of simplicity, we shall take Gι = Ω+ = (α9 δ)x(0, c) and / =
(α, b). Put Ω = Ω+\JI\JΩ-.

Let u be a real- or complex-valued harmonic function on Ω+. First we

note that lim u(x + i γ) and lim Jίiξ_±llz exist in the distributional sense if

and only if one of these exists in the same sense. This is because we can
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apply Proposition 8 since -~—2~~ £Γ~2 Suppose a = lim u(x + ίy), β =
a Ύ ax 3'~>+o

lim uyχιl2l exist. Consider the canonical extension ΐί which was defined by
^ + 0 dy
the distributional limit limpi€)u. We know that limp\6)u = a®δy and

d
I IY. . . 7 / 1 - 4 - / ) ' . - .

dy'
to the limit that

lim ρ'(e)1r-=/?(g)<ϊJ,. Since A(p{€)u) = -^— (p'(€)U) + p'{e)^—, it follows by passing
£ + 0 oy J dy ay

Define Hi(# + iJ)=W(Λ; — ίy) for j < 0 . MI is harmonic on i2_. Then in a
similar way we have

where 2i is the canonical extension of uι. Consequently

Δ(δ - 2i) = 2α(8)ίί, Δ(2 + 2i) = 2β(g)dy.

Therefore u — ux (resp. 2 + 2i) is harmonic on Ω if a (resp. /?) vanishes on /.
This means that the Schwarz reflection principle for harmonic functions
remains valid under a weaker assumption than usual. The reasoning shows
that the result holds also for the harmonic function u(xu ••-, xm y\ n^l.

PROPOSITION 12. Let h e dt(Ω+) and let u, v be the real and the imaginary
parts of h.

(a) // lim u(x + ί y) = 0 in the distributional sense, then h can be continued
y^+o

analytically across I into Ω_.
(b) If the distributional limit lim^(^ + ij) exists, then the distributional

y-^+o

limit limh(x + ίε) exists.
ε-^ + o

(c) The distributional limit lim u(x + ίέ) exists if and only if the distribu-
tional limit lim u(x + iy) exists.

y-^+o

PROOF, (a) In virtue of the Schwarz reflection principle just described,
u can be continued to a harmonic function m on Ω. Let i i b e a conjugate
harmonic function of u\. hι = uι + ίvι is holomorphic on Ω and we can take
vι = v on Ω+, and therefore h = hι on ΩΛ.

(b) Since —ίί- = -— we see that lim -^-(x + ίy) exists, and so does
dx dy y^+o dy J

limv(x + iy). This implies that limh(x + iy) exists. Owing to Proposition 9
y-^+o y-++o

we can conclude that limh(x + ίέ) exists.
6-+ + 0

(c) Suppose lim u(x + is) exists. We see that lim u(x + ίy) exists by the
€+o y+Q
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same reasoning as in the proof of the implication (c) -• (d) in Proposition 9.
Conversely, suppose limu(x + iγ) exists, then (b) implies that \imh(x + ie)

exists and so does lim u(x + is).
6-^ + 0

Following the proof of Theorem 1 in T. Carleman Q3, p. 38] we shall show

PROPOSITION 13 (Carleman's extension principle). Let hi e dC(Ω+) and
h2edt(ΩS). If the distributional limit \im(hι(x + ίε) —h2(x — ie)) exists and

equals 0, then hλ and h2 are analytic continuations of each other.

PROOF. Consider the function Φ(z) = hι(z) + h2(z) e 3ί(Ω+). From the
assumption it follows that the imaginary part of Φ(z) converges to 0 in the
sense of distribution as y->+0, and therefore, by Proposition 12, Φ(z) can
be continued analytically to ψ e dC(Ω). Similarly the function H(z) =

ί{hι(z) — h2(z))e dC(Ω+) can be continued analytically to ω e 3t(Ω). We can
write for z e Ω+

h1(z) = ^r(ψ(z)-ίω(z)) and h2(=z) = ^{ψ(z)+iω(z)). (1)

Combining (1) with the fact that φ(z) and ω(z) are real on the real axis, we
see that the analytic continuation of hi into Ω- is equal to h2. Thus the proof
is complete.

PROPOSITION 14. Let hi e dt(Ω+) and h2 e dC(Ω-). If the distributional
limit

lim Qn(x + iέ) - h2(x - is)) =feQ)χ /),

exists, then the distributional limits \imhι(x + ίe)—fι and \imh2(χ — ίε)=f2

exist and f—fι —fi-

PROOF. For any interval /C C / we shall consider a distribution af e
Q)f(R\ where a belongs to ©(/) and takes the value 1 on /. There exists a
holomorphic function h defined on C\supp(α/) such that the distributional
limits \imh(x-}-ίe), \imh(x — ίe) exist and

ε-^ + o 6-^ + o

lim h(x + iέ) — lim h(x — iέ) = /,
£-• + 0 ε-*+o

and therefore we have

\im((hι-h)(x + ίe)-(h2-h)(x- is)) = (l-a)f.
£-»+0

Proposition 13 implies that the functions hx — h and h2 — h have the same analy-
tic continuation h0 in Ω+\JJ\JΩ_. Since both h and h0 have the distributional
boundary values on / from within each domain Ω+ and J2_, if follows that hi
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and h2 have the distributional boundary values /i and f2 respectively and
f1—f2=f as / can be chosen arbitrarily. Thus the proof is complete.

We are now in a position to generalize these results for the vector-valued
holomorphic functions.

THEOREM 2. Let hx e dCΩ+{E) and h2 e dCΩ_(E). If for each e' e Er the dis-
tributional limit

exists, then the distributional limits \imhι(χ + ίε)=fι e Q)j(E) and \imh2(x — ίέ)
£— + 0 6-^ + 0

—f2 6 Q)j(E) exist and <fι—f2, e '>=/y, and therefore fγ can be written in
the form fy= <f, er > with / e ©}(£).

PROOF. By Proposition 14 the distributional limits lim <Λ(:*; + iε)5e
/>,

ε^ + o

lim < h(x — ίe\ e' > exist and therefore by Proposition 9 and Remark 1 we can
£ ^ + 0

conclude that the distributional limits lim£(a; + te)=/i e Q>ί(E\ limh(χ — ίε) =
f2 e Q)ί(E) exist. We have moreover </i-/ 2 , ef>=fy for each e1 e E' and
hence we can write fv— <f, e'> with fe Q)j(E). Thus the proof is complete.

As an immediate consequence of Theorem 2 we have

COROLLARY. Let hi e dtΩ+(E). If for each e' e E' the distributional limit
lim <hι(χ + ίέ), er > = fy e ©'(/) exists, then the distributional limit

Iimh1(x + ίε)=f1 e Q)j(E) exists andfy= <fh ef>.
δ + 0

THEOREM 3 (Carleman's extension principle for vector-valued holomorphic
functions). Let hi e 9ίΩj{E) and h2 e dίΩ_(E). If for each e' e E' the distribu-
tional limit

lim < (hι(x + is) - h2(x - iέ)\ ef > = 0
ε^ + o

exists, then hi and h2 are analytic continuations of each other.

PROOF. Owing to Theorem 2 there exist the distributional limits

fι = lim hι(x + is), f2 = lim h2{x — ίε),

and/i=/ 2 . It follows then from the proof of the first part of Theorem 1
that hi and h2 are analytic continuations of each other.

Let H(Ω) be the space of harmonic functions on Ω, with the compact con-
vergence topology. We shall denote by HΩ(E) the ε-tensor product H(Ω)εE,
the space of ^-valued harmonic functions on Ω.
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PROPOSITION 15. Let ύ e HΩ+(E). If for each er e E' the distributional
limit lim <ύ(x + ίe), e ' > = 0 exists, then ύ(z) can be extended to an E-valued

harmonic function across I into Ω_.

PROOF. Let z0 be any fixed point of Ω+ and consider the line integral

evaluated along any rectifίable curve LCΩ+ joining the point z0 to the vari-
able point z e Ω+. Then v is harmonic and satisfies the equations:

dv_=_duL dv _ dύ
dx dγ' dy dx '

If we put f(z)=ύ(z)+iv(z)> then/wi l l be holomorphic on Ω+. Similarly we
define g(z) — — ύ(z)+iv(z\ z e i2_, which is holomorphic on £_.

Owing to our hypothesis, we have for each er e Er

lim <f(x + is)- g(x - ίε\ e' > = 2 lim <(ύ(x + iέ)\ e' > = 0.
6-^ + 0 £-> + 0

In virtue of Theorem 3 there exists an h e 9ίΩ{E) such that h is the analytic
continuation of b o t h / a n d g. The E-valued function h(z)—h(z) is harmonic
on Ω and we have for z e Ω+

which completes the proof.

5. General discussions on representation of vector-valued distributions as

the boundary values

The distributional boundary value problem of holomorphic functions has
been developed by many authors. Recently A. Martineau [12] has reduced
the problem to solving a non-homogeneous Cauchy-Riemann equation. Bas-
ing on this line of thought we shall discuss in this section the problem for
vector-valued distributions, especially in a Riemann surface. To this end we
shall first introduce the notion of the distributional boundary value of a cur-
rent on a manifold according to the method described in our previous paper
[9]. Here a distribution is understood as a current of degree 0 and of even
kind.

Let Ω be a non-empty open subset of RN = Rxx R^'1 and assume that
Ωoz={γe RN1: (0, y) e Ω} is not empty. We denote by i2_ the open subset
{(x, y) 6 Ω: x<0}. Consider a diffeomorphism
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\
x:

{ y'=7](x, y)

of Ω onto an open subset Ω''CRX'XR$~\ which maps Ωo to Ω'o and J2_ to ΩL.
Then the map ηo = η(O, y) is a diffeomorphism of Ωo onto Ω'o. The Jacobians
of the maps x and τj0 will be denoted by Jx and JVQ respectively. For any
Γ e 2y(β_) and SeQ)'(Ω0)the direct images T' = xT and S' = y0S are defined
by the equations:

< T'(x', y'\ φ(χ\ yf)> = < T(x, y\ \Jx\φ(ξ(χ, y\ ?(*,

and

<S'(y'\ φ(y')> = <S(y),\JJφ(Uy))>, Φ

Then we can show the following lemma in the same way as in the proof of
Lemma 1 in our previous paper [9, p. 175].

LEMMA 1. Let T e ©'(#_).
(a) // there exists a distribution S e ζb'(Ωo) such that lim T(λx, γ) =

λ ^ + o

Y(x)<S>S(y), then lim T'(λx', y ')= Y(x')(g)S'(γ').
λ-^ + 0

(b) // there exists a distribution SeQ)XΩ0) such that KmΛΓ(ΛΛ;5 y)=
λ-* + 0

Ϋ(x)<g)S(y), then S(y)=0.

Let T, 0 <,p^N, be a ̂ -current on i2_. If lim T(λx, y)= Ϋ(x)®S(y) exists,
λ + 0λ ^ + 0

P P P

then 5 will be called the boundary value of T on Ωo and we write S(y) =
P

lim T(x, y). By making use of Lemma 1 we can also show that the statement

(a) of the same lemma remains valid with distributions replaced by currents.
Let M be a differentiate manifold of dimension JV, and let Ω be an open

subset with regular boundary. Owing to the preceding discussions, if we
follow the same process as done in [_9~] for the section of currents, we can in
an obvious way define the notion of the boundary value on dΩ of currents
defined on Ω. The details are omitted.

Let Ω be an open subset in the z-plane intersecting an open interval /
with the real axis. Let Ω+ = {z = x + iy6 Ω: y>0} and Ω-={z = x + ίy€ Ω:
y<0}. Given an / e 2)7(J), to find out hx e 3C(Ω+) and h2 e 3t(ΩS) such that /
is the difference of the boundary values of hi and h2 is tantamount to solving
the differential equation:

Let w=Φ(z) be a holomorphic isomorphism of Ω onto an open subset Ωr

in the w-plane. Let /', Ω'+, Ω'_ be the images of /, Ω+, Ω_ respectively. Ω+
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and ΩL are open subsets with regular boundary I\ so that we can speak of
the boundary values of holomorphic functions on Ω+ or on Ω'_. Let Hbe the

0,1

injection of /into Ω. If we denote by H(f) the direct image of Q)\I) into

°ώ'°ώ'(Ω) defined by

<H(f\ φ(z)dz> = <f,φ(x)dx>, φe Q)(Ω\

0,1 1

then, by a simple calculation, we have H{f)=-^{f^>dy)dz, so that we can

write (1) in the form

dg=-H(f), (2)

where d means the coboundary operator: dg—^^dz. By the conformal map
U Z

Φ the equation (1) is transformed into the same form, where H should be
understood as the injection /' into Ωf. The solutions of the equation will
give rise to holomorphic representations of a given distribution on /' in the
sense described above.

Let Ω be any open subset in the *-plane. We consider a real analytic
1-dimensional closed submanifold Γ of Ω which is oriented. Ω is assumed to
have the orientation induced by the z-plane. The conformal map allows us
to speak of the positive and the negative sides of Γ. As a result, given a
distribution / e 2X(T), there exists a holomorphic representation of /, that is,
/ is represented by the difference of the boundary values of a holomorphic
function on Ω\Γ from the positive and the negative sides of Γ if and only if
the equation of the form (2) admits a solution, where His the injection Γ->Ω

0,1

and H(f) means the direct image of/ in the sense just described.
The foregoing discussions lead us naturally to the consideration of the

problem in a Riemann surface. Let Mbea Riemann surface, that is, a con-
nected complex analytic manifold of complex dimension 1. It is orientable
and oriented by its complex analytic structure. Let Γ be a real analytic 1-
dimensional closed submanifold which is oriented. The positive and the nega-
tive sides of Γ will be defined in an obvious fashion. By reducing the dis-
cussions to each coordinate neighbourhood of M, we have, as an immediate
consequence of the preceding discussions, the following

PROPOSITION 16. Let M be a Riemann surface, in which a submanifold Γ
with the properties just described is given. A distribution f on Γ is holomor-
phically representable if and only if the equation

Bg= -H(f) (3)

0,1 0,1

admits a solution g e Q)r(M), where H(f) e Q)'(M) denotes the direct image
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induced by the injection Γ->M.

_̂  0,1

As regards the vector-valued distribution / e Q)r

Γ(E), the map H: Q)r{Γ)->

2)'(Λf) being continuous, the tensor product Hζ&l:Q)f

Γ(E)->ύ)f

M(E) has a
meaning. Taking into account Theorem 1 together with our preceding dis-
cussions we shall obviously reach

PROPOSITION 17. Let M and Γ be as before. An fe 2>'Γ(2?) is holomorphi-
cally representable if and only if the equation

dg= -(!ff®l)(/) (4)

admits a solution g in ζD'M(E).

Let ^9ί{M) stand for the sheaf of the germs of holomorphic functions
in M. An analogous notation prefixed with φ should be understood in a like
sense.

Case (i), where M is open. Then the q-t\ι cohomology group
Hq{M, &gC(M)) = 0 for q^l since M is a Stein manifold. This together with
the exact sheaf sequence

0 -> §9t(M) •*> £>2)'(M) ^ £>Qy(M) -> 0

implies that the sequence

0 -> 9L{M) ^ Q)\M) ^ 2)'(M) -^ 0

0,1

is exact, so that the map Q)'(M)-+Q)r(M) is onto. Consequently any / e 2)'(Γ)
0,1

is holomorphically representable. We note that the map 9: Q)'(M) -• Q)'(M)
is an epimorphism by a theorem of L. Schwartz Q20, p. 604J.

0,1

Case (ii), where M is compact. The image dQ)\M) is closed in Q)'(M)

[19, p. 88], and therefore the polar of the kernel of the map 9: ®(M)->©(M)
0,1 1,0

with respect to the scalar product between ζD'(M) and 2)(M), while the kernel
consists of the holomorphic forms which generate a ^--dimensional linear sub-
space, g being the genus of M. Let φu φ2, •••, φg be the linearly independent
holomorphic forms. As a result, the equation (3) admits a solution if and
only if < / , H*(φj)>=0, y = l, 2, ..., g , where H*(φj) denotes the reciprocal

_ 1 . 0 1 » 1

image of φjm We note that the map 9: Q)(M) -• ®(M) is a quasi-monomor-
phism.

THEOREM 4. Lei E be an arbitrary quasi-complete locally convex Hausdΰrff
topological vector space. Then the equation (4) admits & solution for any
fe QyΓ(E) if and only if the following conditions are satisfied according to the
cases
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(a) when M is open, the space of holomorphic functions 9t(M) has a topo-
0,1

logical supplement in the preimage d~\H(Q)χΓ)y) which is a closed linear sub-
space of Q)\M\

(b) when M is compact, /satisfies the relations

</,H*(φj)>=0, j=l,2,...,g.

0,1

PROOF, (a) Necessity. It is not difficult to verify that H is a monomor-
0,1 0,1

phism so that Jl, the image H(β)'(Γ)), is a closed linear subspace of 2X(M).
0,1

Let 3ί be the pre-image of H(Q)XΓ)) by the map d. Then di is a closed linear
subspace of Q)'(M) since the map d is continuous. Let dκ denote the map
di^ H. If we let E=M\ the strong dual of J2, we can choose an / so that

0 , 1 _> _>

— H(f) may denote the identical map of M. A solution g of (4) for such an /
denotes a continuous linear map u: H^£K» Then the equation (4) implies
that dκou is the identical map of M. Consequently 9t(M\ the kernel of dK9

has a topological supplement in 9i.
Sufficiency. Suppose 9ί{M) has a topological supplement 3ίx in £C. As

noted in the proof of case (i), d is an epimorphism so that dκ is also an epi-
morphism and, in turn, the map 9i\ ^* J2 has the continuous inverse π. We
consider 9i\{E) to be a closed linear subspace of ζb'M{E). Consequently if we

put, for any / e Q)'Γ{E\ g= -(π<g>l)H(f), then g will satisfy the equation (4).
(b). We shall continue to use the same notations. 3ί(M) is 1-dimensional

and therefore has a topological supplement in 3i. Then in virtue of case (ii)
considered above, the same reasoning as in (a) will show that the statement
of (b) holds true.

REMARK 2. In case the right-hand side of the equation (4) is taken arbit-
0,1

rarily from Q)f

u{E\ we shall have an analogue of Theorem 4. When M is
open, however, we can show that the space of holomorphic functions has no
topological supplement in ©'(Af). In fact, suppose 9ί(M) has a topological
supplement in 2)'(Λf). There exists then a projection u: ζbf(M)-+dt(M). u is

also considered a ©(ikf)-valued holomorphic function h on M. Let U be a
compact neighbourhood of a point of M. suppΛ(p), p e U, is contained in a

0,1

fixed compact set KCM. If g e Q)'(M) vanishes on a neighbourhood of K,
then u(g)=0 since u(g) is holomorphic and vanishes on U. Let Ω be a re-
latively compact open neighbourhood of K. Choose a e 2)(i2) such that a—\
onia neighbourhood of K. Let us consider a Banach space C(Ω) of continuous
functions on Ω, and define a continuous map v: C(Ω) -• 9i(M) by the relation
v(φ)* u(aφ\ φ e C(Ω). If g e 3C{M\ then g e C(Ω) and u maps (l — ά)g into 0,
which implies v(g) = g. Thus t> is onto, and therefore an epimorphism. Con-
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sequently 9ί{M) is isomorphic with a Banach space. Since 9i(M) is nuclear,
so 9ί{M) must be finite-dimensional, which is a contradiction.

PROPOSITION 18. Let E be an (F)-space. Suppose M is open. The equation
(4) admits a solution for any fe Q)'Γ(E).

0,1

PROOF. We have only to show the map d: QyM^E-> Q)'M(g)E is onto. The
sheaves §(SM^E) and $(QyM^E) are fine, so from the exact sheaf sequences

0 -* ̂ diu^E) -** £>(gM® E) ̂  U&M&E) -+ 0

we have the exact sequences of cohomology groups [6, p. 34]

0 -• 9ίu®E-1^ 8M^E-^-+ SM^E-^ H1 (M, WM^E)) -• 0

0 -• 9tiME-^> Q)f

M^E^^ °U)>M®E^U H1 (M, ^9tu®E)) -> 0.

0,1

Since E is an (F)-space, the map d* : &M^E-> SM^E is onto [5, p. 38],
whence Hι{M, &(£6M(g)E))=0. This together with the last exact sequence
implies that the map d* = d: QyM^E-*QyM'®E is onto. Thus the proof is com-
plete.

Hitherto we have considered the holomorphic representations for distri-
butions. However, the same reasoning will be applied to the representations
for currents of degree 1. In the beginning of this section we have discussed
the boundary values of currents on an open subset with regular boundary in
a differentiable manifold. From these considerations, given a current

γ e Q)XΓ), the statement that γ is representable by a holomorphic form on
M\Γ will have a definite meaning. In the following we shall enumerate the
analogues of Propositions 16, 17, 18 and Theorem 4 without proofs.

PROPOSITION 16'. A current γ e Q)'(Γ) is holomorphically representable if
and only if the equation

dω=-H(γ) (5)

1,0 1,1 1.1

admits a solution ω c ζb'(M\ where H(γ) e Q)'(M) denotes the direct image in-
duced by the injection Γ-+M.

PROPOSITION 17'. A γ e Q)f

Γ(E) is holomorphically representable if and
only if the equation

b (6)
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1,0

admits a solution ω in ζύr

M(E).

THEOREM 4'. Let E be an arbitrary quasi-complete locally convex Haus-
dorff topological vector space. Then the equation (6) admits a solution for any

1

f 6 Q)'Γ(E) if and only if the following conditions are satisfied according to the
cases

(a) when M is open, the space of holomorphic forms has a topological sup-

plement in the preimage d~\H(Q)χry)) which is a closed linear subspace of

2)0/(M).

(b) when M is compact, γ satisfies the relation

PROPOSITION 18'. Let Ebe an (F)-space. Suppose M is open. The equation

(6) admits a solution for any f e ΦΓ(E).

The rest of this section is devoted to the considerations in the *-place C,
the simplest example of an open Riemann surface.

Given I e <8'(C), we consider the equation: dg—ldz or -^-—L If we use
(y z

1 9 . 1a fundamental solution — for -=—, we obtain a solution β — *Z, which
πz dz ° πz

can be written in the form:

where the symbol *i means the ^-convolution considered in R. Shiraishi [23,
p. 148]. In fact, by the definition of *i we have

dz*ιldz = (• *Z )*~X*dzΛ*dz)

= (-λ-*l)*-\idz Λ(-ίdz))

We shall first consider the holomorphic representation of a distribution
/ on a unit circle Γ. Owing to Proposition 16, we are led to solve the equa-

0,1

tion (3). suppi/(/)C^, so we see that
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is a solution. A precise interpretation can be given to this expression in ac-
cordance with the idea of F. Norguet [13, p. 15]. Let u be the map:
CxΓ 3 (z, θ)->z + eiθ e C. From the definition of ^-convolution, a simple

calculation shows that the expression is the direct image of ^-^~dzAf(θ) by

the map u and written u(=——dzΛf(θ)λ in notation. If we decompose u
\£iTCT/Z J

into v and w:

CxΓ^CxΓ^C,

where v maps (z, θ) into (z + eiθ, θ) and w is a projection, then we can write

from which, after a calculation, we can conclude the following

PROPOSITION 19. Let f be any distribution on a unit circle Γ. If we put

\ i ^ dζ, (Cauchy integral)
b 2πί )rζ-z

where the integral means the partial integration in the sense of L. Schwartz
[18, p. 130], then g satisfies the equation

dg=-H(f\

and therefore f is holomorphically representable by the holomorphic function g
restricted to C\Γ.

If we consider any vector-valued distribution / on a unit circle Γ, we
have an analogue of Proposition 19. Theorem 4 implies then that the space

0,1

of entire functions has a topological supplement in the space d~\H(Q)χΓ))).

Next we consider the case where Γ is the real axis R. Let QyL\ be the
space of summable distributions on R.

DEFINITION 2. Let k be a positive integer. A distribution f e Q)'(R) is

called to be of class k if f e(x — i)kQ)'Lu We denote by 9i'k the set of distribu-

tions of class k.

3i'k is assumed to have the image topology by the map Q)'L\ 9 g->(x — ί)kg
e di'k. The dual space iβi'^)r

c with the compact convergence topology is

7 ^7^ with the image topology defined by the map £cBφ-+?—^—^ e

^&. We can show that di'k is the strong dual of (cX'kχ so that the space
l)(

{X l
3ί'k is essentially the space 0^k introduced by H. J. Bremermann [2, p. 54J.
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In the following, for the sake of simplicity, we shall write — for pv-
X X

PROPOSITION 20. Let f e Q)\R). Then the following conditions are equi-
valent :

(1) / and are composable.

(2) /<•&[.

(3) f*φ ζ(x- ί)Lι for any φeQ).

(4) f*φ e (x — ΐ)Lι for any φ e y.

(5) / and are yr-composable.
x

(6) fx<g>δy and -— are composable.

(7) fr 6" Q)ί,y,t (the multiplicative product) is partially summable
Z L

with respect to t.

PROOF. (l)->(2). Since / and are composable, we have

x

Consequently

If we choose φ e Q) so that 01> 0, but not identically vanishes, then -—*0 e <β
X

and for sufficiently large \x\ there exists a positive constant C with

;> C, and hence / e 9i'λ.

(2)->(4)-^(3). / i s written in the form f=(x-i)g, geO)^. Then we
have for any φ e Sf

= x(g*φ)— g*xφ—ίg*φ

= (x — iXg* Φ) — g* xφ,

where xφ 6 Sf and g*φ, g*χφ e L1, and therefore f*φe (x — i)Lι. (4)->(3) is
trivial.

(4)->(5). For any 0 6®, (x — ί)f—*0 j e £, therefore for any φ e s? we
\ x J



On the Distributional Boundary Values of Vector-Valued Holomorphic Functions 425

have

(f*Φ)(—*φ)eL\

which shows that f and — are 5^-composable.
J X

(5)->(l) is trivial.
(3)-K2). Let JSΓ=[I —1, 1]. The linear map ψ-+h=f*ψ of Q)κ into the

dx is continuous, and hence itBanach space (x — ί)Lι with norm ||A|| = \ .
)\x — ι

is continuous in the topology of ζbκ induced by 2)f for some positive integer
7π. We can find u e Q)\ and ξ e Q)κ such that

Then

/ = / * * = Dm+\f*u)+f*ξ.

Since /*u, /*£ €(# — i)^1 and Dm+2(f*u) e (x — ί)ζD'Lι, consequently we see
that / € ^ ί .

Therefore we have shown that the conditions (1) through (5) are equivalent.
Before proving the equivalence of conditions (6) and (7), we note that a

distribution g e Q)f(Rx) is summable if and only if g(χ)®dy e Q)'x>y is sum-
mable. In fact, g(χ)<g>δy e (Q)r

Lι)x,y means that (^(^)(g)iy)*(^)®0(y)) e L\>y

for any φeQ)x and φ e Q)y9 that is, (g*φ)ψ(y) e L1, which is equivalent to the
condition that g*φeL1 for any φ e 2), and, in turn, to the condition that

(6) ^±(7). The condition (6) means that

( Λ ^ ) ^ ^ ) ^ ® ^ ) , , , for any φ e ©,,„

that is,

which is equivalent from the above remark to saying that

which means that ft c Q)x>y>t is partially summable with respect to t.
z t

(2)^±(7). For any φeQ)xy, if we put ζ(χ)={{ }—^-dtds, then
)J x — (t + ιs)

(x-ί)ζ(x) 6 01, so we see that (2) implies (7). If we take φ^>0, but ^ 0 , then
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for sufficiently large | x | there exists a positive constant C with | (x — ί)ζ(χ) |
JΞ> C, so we see that (7) implies (2).

Thus the proof is complete.

Now let f e £ί[. Then we have

H(f)

0,1 1 f(f\

Proposition 20 implies that H( f) and — are ^-composable and that -J-±-J-
z z — t

is partially summable with respect to t. With some modifications, we can
follow the process given for the preceding case where Γ is a unit circle. And
we obtain the following

PROPOSITION 19'. Let f be a distribution of class 1. // we put

g = ^— \ -^-^ dt, (Cauchy integral)
Δτtι ) — oo t — z

where the integral means the partial integration in the sense of L. Schwartz
Q18, p. 130], then g satisfies the equation

dg= -H(f\

and therefore f is holomorphically representable by the holomorphic function g
restricted to C\R.

For our later purpose we show

PROPOSITION 21. Let f e 3ί[m Then the holomorphic function h(z) =

-— \ ——- dt. z e C\R, has the boundary values h+ and Λ_:
2πι j-^t — z

where δ+= — s—. lim — and δ-= — s — : lim -, the limits being taken in
Zπi+o χ-\-ιε Δ π i o x ιe

the distributional sense.

PROOF. We define the Fourier transform $ = &($), φ£5?, by $(£) =

φ(x)eiξxdx and therefore the Fourier transform ύ, u e <f\ is given by <ύ,φ>

= <u, ψ>, φ e Sf. Since / and are y'-composable, it follows from [21,
X



On the Distributional Boundary Values of Vector-Valued Holomorphic Functions 427

p. 233] that the multiplicative product of 3-\f) and 9~\δ+)= -^-Y(ξ) exists,
LiTC

Y being the Heaviside function.
Let Imz>0. We can write for any ε>0

and therefore

Consequently

Since, for ε-> +0, e-
£ξ(3-\f)Y) converges to 9--\f)Y in se\ so that h£ con-

verges to h+ = 3-(£-Xf)Y) = d+*f in S? as ε-> +0.
Similarly we can show that Λ_ exists and equals /*#_. Thus the proof is

complete.

Every / e Q)'(R) is holomorphically representable by holomorphic func-

tions on C\R since there exists a solution geQ)'(C) of the equation -Jh- =
(J Z

-s-(/^8)^) But this is not true of E-valued distributions if E is taken to be
Lt

an arbitrary quasi-complete locally convex Hausdorff topological vector space.
Otherwise, by Theorem 4 the space 9ί{C) of entire functions would have a

0,1

topological supplement 09 in PC=d~1(H(Q)χR))), a closed linear subspace of

2X(C), which consists of the solutions of the equation -A-=-ηk-(f®δy) for
O z A

arbitrary / e Q)'{R). We note that any solution g is holomorphic on C\R.
0,1

The map 9: £K^>JI=H(ζDr(Rs)) being an epimorphism, we see that the map

Q)f(R) Bf^»weQ& with -^- = -4-(/®ί^) is an isomorphism. Let z0 be a point
0 z &

in C+. The linear form w^w(z0) is a continuous one since on dl(C+) the com-
pact convergence topology coincides with the topology induced by 2)/(C+).
Then we can write with a unique φZQ e Q)(R)

w(zo)=<f,φZo>. (7)

Let ô run through a compact neighbourhood UCC+ Then the set {φZQ 6 Q)(R):
ZQ e U} is compact and therefore contained in some ©(/), / being a finite
open interval. If / vanishes on 7, but not on R, then by (7) we have w(zo) = O
for every zoe U, and therefore w=0 on (C\R)\J 7, where w is holomorphic.
Since/= lim(w(x + iε) — w(x — is)) in the distributional sense, we must have

6-^ + 0

f=0, a contradiction.
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Let us return to an open Riemann surface M. Γ is a real analytic 1-
dimensional closed submanif old which need not be connected. When Γ is not
compact, the above reasoning will remain valid with some modifications in
proving that 9t(M) has no topological supplement in 9i. The map ζΰ'(R) -> 08-
considered above should be replaced by an isomorphism ζύ'(Γ) -+ Q9, a topo-
logical supplement of 9t(M) in 9i. A point p0 e M\ Γ is chosen and a linear

map w-+w(p0) will determine a unique form φPo e 2>(Γ) such that w(po) =
</, ΦPQ>, and so on. / should be taken so that the corresponding w vanishes
identically on M\Γ. This will be possible since Γ is not compact. On the
other hand, however, if Γ is compact, 9ί{M) has a topological supplement in
9ί. In fact, if we let E be the strong dual of J2, then E will be an (F)-space

and M = E'C because of the fact that °H(β>'(Γj) is isomorphic with 2)'(Γ), of

which 2)(Γ) is the strong dual. Now it follows from Proposition 18 and the
proof of (a) in Theorem 4 that &t(M) has a topological supplement in 3C. A

0,1

similar argument is also applicable to 9t(M). Therefore we have the follow-
ing

THEOREM 5. In the statements of Theorem 4 (resp. Theorem 4'), the condi-
tion (a) is equivalent to the condition:

(a') When M is an open Riemann surface, Γ is compact.

6. Slowly increasing holomorphic functions on a unit disc

Let D={z: \z\ <1} be an open unit disc and let Γ=dD be its boundary.
This section is primarily devoted to the study of the distributional boundary
values of elements of 9ί{U) or £CD(E), E being a quasi-complete locally convex
Hausdorff topological vector space as before.

Let ύ 6 HD(E) be an E-valued harmonic function on D and put ύr(θ) =
ύ(reiθ) for z = reiθ, 0 < > < l . ύr denotes an element of Q)f

Γ(E). lim ύr, if it
r-»l-0

exists in the distributional sense, is called the boundary value of u. Owing
to Proposition 15 together with a conformal map, the existence of the
boundary value of ύ is tantamount to the existence of the boundary value of
each < a , e '>, e' aEr. It follows from a result of L. Simon [24] that if
fe Q)f

r(E) is the boundary value of ύ, then we can write

and, conversely, any ύ defined by (1) is harmonic and has the boundary value

Let h 6 dCD{E) be an E-valued holomorphic function on D. h is also
harmonic on D. From the discussions just before, we see that h has the
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boundary value /on Γ if and only if h is representable by the Poisson integral
in the form (1). Clearly h is given by the formula

R,) It βJζ. (2)
2πι)Γζ — z

With necessary modifications of the proof of R. Shiraishi Q22, p. 103] we
have

LEMMA 2. Let fe Q)r

Γ(E). If /has the value f(0) at z = l, then ύ defined
by (1) has the non-tangential value at z = l which is equal to f(0).

Let Γ be a simple analytic arc and G C C a domain which is situated on
one side of the arc and whose boundary contains an open arc ΓQ C Γ.

PROPOSITION 22. Let h e dtG(E). Suppose h has the boundary value
f e Q)p(E) on Γo. If f has the value e0 e E at z = z0 e Γo, then h has the non-
tangential value e0 at z = z0.

PROOF. We may assume, if necessary, by means of a conformal map
that G is a domain C D and that Γo is an open arc of the unit circle Γ and
zQ = l e Γo. We choose a n α e ©CO with support CCΓQ such that α = l o n a
neighbourhood of z = l. Putting g—af^ we can find gχedCD{E) and g2 e
dtvc(E) such that g={gι)+ — {g2)-^ where (gι)+ and (^2)- are the boundary
values of gλ and g2 respectively. The functions gι(z) — h(z) and g2(z) have
the same boundary value on an open arc ΓICΓQ with 1 e I\. Then by Theo-
rem 3 there exists an analytic continuation Φ(z) of gι(z) — h(z) into g2(z) across
the arc Γi. As a result, (gι)+ has the value eo + <#(l) at z = l. It follows
from Lemma 2 that gx{z) has the non-tangential value eo + Φ(l) at * = 1, and
therefore h has the non-tangential value e0 at z = l, which completes the proof.

PROPOSITION 23. Let hedtG(E). Suppose h has the distributional boundary
value f on Γo. Let ACΓQ be a set of positive measure. If f has the value 0
at every point of A, then h vanishes on G.

PROOF. By virtue of the preceding proposition, h has the non-tangential
value 0 at every point of A. Owing to Privalov's theorem Q15, p. 212], it
follows that h vanishes on G. The proof is complete.

DEFINITION 3. h(z)= Σanz
n e dt(D) is said to be slowly increasing if {an}

is slowly increasing, that is, there exists a positive integer k such that

7&)-*}w=o,if2f... is bounded.

Let ©£ be the set of slowly increasing h e 9l(D) such that sup | a \ n(l + n)'k

<oo. &k is a Banach space with norm: ||/ι||^ = sup |α | w ( l + π,)~ .̂ & = \J&k is
k>0

defined as the inductive limit of the Banach spaces @Λ. @ is a nuclear space
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since @ is isomorphic to the space of slowly increasing sequences. It is
clear that @ is invariant under differentiation and multiplication.

By means of a conformal map and from Proposition 9, h e 9t{U) has the
boundary value on Γ if and only if there exists a positive integer k such that
(l — r)kh(z) is bounded on D. In fact, if (l — r)hh(z) is bounded, then Cauchy's
inequality will show that {an} is slowly increasing. The converse will follow
from the estimate of h(z).

We shall say that h e 9tΌ{E) is slowly increasing if, given any continuous
semi-norm p, there exists a positive integer k such that (1 — r)kp(h(z)) is
bounded on Z), or equivalently, if {p(an)} is slowly increasing, where an de-
notes the Taylor coefficients of h. In virtue of Baire's category theorem, h
is slowly increasing if and only if h is scalarly slowly increasing.

As an immediate consequence of these considerations we have

PROPOSITION 24. h e 9tΌ(E) has the boundary value on Γ if and only if h is
slowly increasing.

It follows from this proposition that @ has the ε-property. In fact, let
g e QyD(E) such that g is scalarly a slowly increasing holomorphic function,
then g e 9tΌ{E) since dt(D) has the ε-property and therefore g € @(2?).

REMARK 3. Let ε>0 be fixed. If h e 9t{Ώ) is slowly increasing if and
only if there exists a positive integer h such that

o
\h(reiθ)\£dθ<,M, 0 < r < l (3)

for some constant M. It is almost trivial that every h e @ satisfies the condi-
tion (3). Conversely, suppose h e dί{D) satisfies the condition (2). | h(z) |
being subharmonic on D, the inequality

£

\Kre)\<L

yields

2k+ιM
\h(reiθ)\£<,

τr(l-r)*

Let m be a positive integer ^ (& +1). It follows that (1—r)mh(z) is bounded
ε

on D. The condition (3) implies that the Hardy class Hε is contained in @.

In fact, by definition, h e H£ if lim [^ \h(reiθ)\€dθ<oo.

REMARK 4. Let h e @. If Λ(̂ r) has no non-tangential value at any point
of F, then by Lemma 2 the boundary value of h on Γ has no value at any
point of Γ. We can really construct such an h by using N. A. Davydov's
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theorem: For any sequence {an} of non-negative numbers satisfying lim an

= 00 lim \/an =1, there exists a subsequence {an } such that for any sequence
00

{anjc} of real numbers, the function f(z)= Σanke
ιa'nkznklank] is holomorphic on

the unit disc D and \f(z) \ diverges uniformly on a sequence of concentrated
rings to infinity [15, p. 119]. As a result, the Nevanlinna class N does not
cover @. In fact, recall that h e dt(JS) is said to belong to the Nevannlinna

Γ2π

class Nif lim \ log+\h(retθ)\ dθ<oo, and that any h e N has non-tangential

value at almost every point on Γ. On the other hand, eϊ-* eiV, but ί@. We

note that TV is not invariant under differentiation.
Let us recall the definition of the multiplicative products of distributions

defined on a non-empty open subset Ω C RN> Let S, T e Q)f(Ω). The mul-
tiplicative product S T in the sense of Hirata-Ogata is defined as the dis-
tributional limit of (S*pn)T for any (̂ -sequence {pn} > if it exists [21, p. 227].
On the other hand, in our previous paper [8, p. 161] we have considered the
multiplication invariant under diffeomorphism which covers multiplication in
the sense of Hirata-Ogata. The multiplicative product S T was defined there
as the distributional limit of (S*pn)T for any restricted (̂ -sequence {pn}, if it
exists [21, p. 95]. We note that these multiplications are of local character.

Let us denote by @+ the set of the boundary values h+ of h e @. It is
OO

clear from the Cauchy integral formula (2) that if we write h(z)= Σanz
n,

then h+= Σ^n^ιn\ where the series converges in the distributional sense.

PROPOSITION 25. For any fu f2 e @+ the multiplicative product fλ f2

exists. Moreover, fλ, f2 are the boundary values of hi, h2 e @ respectively, then
fi'fz is the boundary value of h — hιh2.

PROOF. Let

/i and f2 are considered to be periodic distributions on R with period 2π.
We shall show that fx -f2 exists in the sense of Hirata-Ogata. Let pn be any
5-sequence with supppwC[ — 1, 1] Since the series (4) converge in the dis-
tributional sense, we can write
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and

»)/2 = Σ 2n(a0cnt0bu + aιcnΛbv^ιH ha vcn > vb 0)e t v θ

v = 0

= Σ d^e"", (5)
0

where cn>u is the Fourier coefficient of pn as a periodic function with period

2π . {cw,} is a rapidly decreasing sequence such that \cn v\ <r^— and lim cn v

= -o—. We shall estimate the coefficients of (4). If hi e &h h2 e @, then we

have with constants .4, 5

Consequently | dn>v \<,AB(l + v)k+ι+1 and dW)V converges to αo

+ αvό0 as π,—»oo. It follows that lim(/i*pw)/ 2 exists in the distributional
n—*oo

sense and

/i / 2=
f = 0

The last part of the statement is clear. Thus the proof is complete.

THEOREM 6. Let G and Γo be the same as in Proposition 22. If hu

h2 6 9t{G) have the boundary values fu f2 on ΓOi then the multiplicative product
/ i / 2 exists.

PROOF. The multiplicative product being of local character, we may as-
sume, if necessary, by means of a conformal map that G is contained in D and
Γo is an open arc of the unit circle Γ. We choose an a e 2)(Γ) with support
C C A such that a = l on an open arc Λ C Γo. Putting g1=afu g2=af2, we
can find $1(z\ ξ2(z) e dC{D) and ^(z), τ?2(z) e 9t{Ώc) such that

gl = (f l)+ - (Vl)-9 g2 = (?2)+ - (^2)-.

There exist analytic continuations Φi(z) and Φ2(z) of £i(z) — hi(z) and $2(z) —
h2(z) respectively across the arc Γλ and we have on Γx

It follows from the preceding proposition that the right-hand sides of the
equations have the multiplicative product, and therefore /Ί /2 exists on A .
Since the multiplicative product is of local character and Γλ is chosen so as
to contain any given point of Γo, we can conclude that /Ί /2 exists on Γo.
Thus the proof is complete.
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REMARK 5. If we consider the set 3JΪ of distributions on Γo consisting of
the boundary values of holomorphic functions from the same side of the arc
Γo, then Wl forms a linear space and, in virtue of Proposition 25, the multi-
plication defined on 9ft is associative.

REMARK 6. Let Γ = dD be the unit circle. For any / e 2)'(Γ), the Cauchy
integral (cf. Proposition 19)

2πi)Γ ζ — z

defines holomorphic functions hi e 9t(JS) and h2 € £l(Dc) when we restrict g on
D and Dc respectively. The Fourier expansion of/:

yields

hi(z)=Σanz
H, \z\<l

n = o

Therefore

We note that/e@+ if and only if (A2)_ = 0. Basing on these considerations
we can easily verify the following properties:

(i) If / e @+ is real, the / is a constant.
(ii) If / e 2)'(JΓ) is real, there exists a unique real g e 2)χΓ) within real

constants such that / + ίg e @+.
(iii) Let @_ be the set of the boundary values of holomorphic functions

on Dc. If gξ @_ (resp. 6 @+) has the multiplicative product with every / 6 @+

(resp. e @_), then g- 6 C°°(Γ).

7. Holomorphic functions on a half-plane

Let C be the complex plane with generic point z = x + ίy and let C+, C_
be the upper and the lower half planes respectively. This section will be
mainly concerned with the ^'-boundary values of holomorphic functions on a
half plane. The study of the space <£K'k9 which was introduced in Section 5,
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will allow us to make some improvements of the results of E. J. Beltrami-
M. R. Wohlers [1, p. 77] related to the Hubert transform pairs.

Let H+ be the space of h(z) e £6(C+) with the property: for any jo>O
there exist a non-negative integer I and a constant A(γ0) such that

on the half plane j ^ j o We shall denote by H~ the space of h(z) e

such that A(i) e H+.
Consider an h e H+. If we put h£(χ) = h(x + is) for ε> 0, h€ e 0M(R) C &"(R).

If lim hε exists in the space Sf\ then the limit is said to be the ^'-boundary

value of h. Similarly for he H~. Let Ξ be the space of real numbers dual
to the space R. Let 2>+ be the space of distributions on Ξ with supports
CCO, °°). Similarly we define 2)'_. If geQ)'+ and e~εξg is a summable dis-
tribution for every ε > 05 the Fourier-Laplace transform

imz>o

is an element of H+. H+ is the set of such Fourier-Laplace transforms. It
is well known that i?CgG has an ^'-boundary value if and only if ge 6f'(Ξ)
and then the ^'-boundary value is the Fourier transform of g. The Fourier-
Laplace transform M[^g2 is defined for geQ)f_ if eεξgeQ)'Lι for every ε>0
and the same is true of Ήr.

From the proof of Proposition 21, the above considerations on Fourier-
Laplace transforms yield the following

PROPOSITION 26. Let f e <0C[. The Cauchy integral (cf. Proposition 19')

6 if- Λ

2πι)-~t — z

defines hi e H+ and h2 £ H~ when g is restricted on C+ and C- respectively, hi
and h2 have the ^'-boundary values

(h2)_ = δ-*f,

and therefore f=(hι)+ if and only if £_*/=0, that is,

Im/ = — *Re/?
J πx J

Re/= - — *Im/.
J πx J

REMARK 8. It is easily verified that ίK[~^)Q)r

LP~^L\ 1 <;p<oo.
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The Fourier transform ύ of a function u e Lp, K p <J 2, is a function e Lp\

τ, however, if p>
1

we can show that

p' = —^-τ, however, if p>2, ύ is not a function in general [7, p. 105]. For
p — 1

*)^d*, (i)

where integrals are taken in the distributional sense and the left-hand side

is a continuous function of r. In fact, first we shall show that the multi-

plicative product 3--χf)-Y(ξ — τ) exists for every r in the sense of Hirata-

Ogata, which will entail that if we consider any g such that Dg=Q~ι(f\ the

multiplicative product δτ-g exists in the sense of Hirata-Ogata [21, p. 229],

so that g will be continuous [21, p. 229]. As / e £C'U f and eixrδ+ are &>'-

composable, and therefore <3-~\f)*(3-'\eixτδ+) exists in the sense of Hirata-

Ogata, while we can write 3-~\eixτδ+)= -^— Y(ξ — r), which was to be proved.

By definition, g(r)-g(0)=[r9-\fXξ)dξ, and therefore [T9-\f)(ξ)dξ is a
Jo Jo

continuous function of r. For simplicity, let r>0. Let κτ(?)= Y(£)— Y(ξ — τ)
be the characteristic function of the interval [0, r ] . We can write [9, p. 184]

On the other hand, for any ί-sequence {ρn} we have %r

and therefore

Γ xτ(ξ)9-\fXξ)d$ = lim
J—oo n-*oo

= lim

Since 3-~\xτ) = -<=- — e CLi and 3-~\pn) e £ converges to ̂ — in dSc, so
Zπ —ιx άiz

2π9-\xτ)3 -\ρn) converges to 3-\xτ) in 0_i [2, p. 54]. Then from the above
equations we obtain (1.) The continuity follows also from the right-hand side
of the relation (1), because if r-*r 0, ^— converges to 1^— in 0-i as

— ιx —ιx
easily verified.

The following proposition is the analogue of Proposition 20 and will be
proved in a similar way

PROPOSITION 27. Let f e Q)XR) and k any positive integer. Then the
following conditions are equivalent:

(1) / and Dh~ι are composable.
x
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(2) fe&ί.
(3) f*φ e(x- ίfL1 for any φeQ).
(4) f*φ € (x - ί)kLι for any φesr.

(5) f and Dk~ι— are S^-composable.
J x

(6) fχ®δy and —^ are composable.
z

(7) ft γ ^ eQ)χyytt (the multiplicative product) is partially summable

with respect to t.

PROPOSITION 28. Let f e 9i'k^ h ^ 1. The integral

determines hi e H+ and h2 e H~ when g is restricted on C+ and C_ respectively.
Then the boundary values (Ai)+ and (A2)_ exist:

(h2)- = Dk-ιδ_*f

and Dk-1f=(h1)+-(h2)-. Therefore (h1)+ = Dk-ιf if and only if Dk~ld_*f=0,
that is,

This is also equivalent to the condition that f is a boundary value of an he H+.

PROOF. The two tempered distributions are ^-composable, then their
Fourier transforms have the multiplicative product in the sense of Hirata-
Ogata [21, p. 233]. From this fact together with the formulas 3"1(i)^-1(J+)

JL and ^ " 1 ( γ * l R l ) = (---O*f*-1e"cfΓ(f) for ε>0, we haveCίf)

Therefore h1 = jβ[9--1(Dk-1δ+*f)J belongs to H+ and has the boundary
value Dk~ιδ+*f. The same is true of h2 = M[β-\Dk-1δ^f)J

The rest of the statement in our proposition is clear except the last part.
/ is a boundary value of an h e H+ if and only if 9-\f) e Qy+r\S?. Let
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(Ai)+ = D"-1f. Then it follows that ξ"-^-\f) and therefore 3~\f) e 0'+

Conversely, let/ be a boundary value of an heH+. 9-\f)cQ)'+r\^". Since
f€#C'k, 3"1(/) #*"1(1-F) exists. If we take a 5-sequence {pn} such that
supppBC(0, co), then g

Consequently Dk~1δ_*f=0, which completes the proof.

Proposition 28 is an improvement of a result of E. J. Beltrami-M. R.
Wohlers [1, p. 73], where/ is taken from {x — i)k~ιQ)r

L2 properly contained in

PROPOSITION 29. Let f e 9i'k. If we take f such that f= xk */, then f e .
The integral

"*Λ dt

determines hi e H+ and h2 6 H~ when g is restricted on C+ and C_ respectively.
Then the boundary values (hι)+ and (h2)- exist:

(A2)- = xk'Xδ-*f)

and f = (Ai)+ — (A2)_. f is a boundary value of an h e H+ if and only if
xk~\δ_*f) is a polynomial. And if this is the case, we can choose f so that

PROOF. Evidently / e <9C{. It follows from Proposition 26 that (Ai)+ and
(A2)_ exist with the formulas described in our proposition. / is a boundary
of an h e H+ if and only if h2 is a polynomial in z. This will follow from
Proposition 30. h2 is a polynomial if and only if (A2)_ is a polynomial in x.

Let h2 be a polynomial, then ψ-Λ -ί^-dt-+O for j ^ —oo. Therefore

h2(z) must be of the form

If we use the formulas

i
-oo t — z

our last statement will easily follow.

l m z < 0

We now turn to an extension theorem of Carleman's type for ^-conver-
gence. To do so, we shall first show the following

LEMMA 3. Let h £ 9t{C) and I=[_ — a, a~\ with α>0. // the function
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h*'φ=\ h(χ-x' + ίγ)φ(x')dx\ φeQ)j
J-a

is a polynomial in z = x + ίy, then h(z) is also a polynomial in z.

PROOF. Let ?$n be the space of polynomials in z of degree < > . ?$n is a
finite-dimensional Banach space. 2)/ is an (F)-space and the map: ©/ z φ ->
h*'φ e Q)'(C) is continuous. Then, owing to Theorem A of Grothendieck [16,
p. 16], the hypothesis h*'φ e VJ^n implies h*fφ e some ^n for every φ e 2)7.

Take a p e © / such that p^>0 and \pdx = l. If we put p λ = - _ p Λ _ ϊ - j for
J Λ \ Λ /

1, then h*'pλe?βn converges to h in 2)'(C), which implies that the
polynomials h*'pλ e φ w converge in $βΛ. Therefore Λ(jar) is a polynomial in 2:,
completing the proof.

PROPOSITION 30. Let hi e H+ and h2 6 jy~. // hι(x + ίέ) — h2(x — ίs) tends
to O m y ' α s ε - ^ + 0 , ίfcew /ii α^d h2 are the restrictions of a polynomial in z.
Therefore the functions hi and h2 have the same &"-boundary value.

PROOF. Since lim (hι(x + ίε)—h2(x — ίεj)—0 in Sf\ it follows from Proposi-

tion 13 that hλ and h2 are analytic continuations of each other. Thus there
exists he dC{C) such that h equals hλ on y > 0 and h2 on j < 0 . Let F(z)=
h*'φ(z\ φ e Q)(R). Then h*'φ 6 9t{C\ Using the fact that F(x + iε) - F(x - ίe)
tends to 0 in 0M as ε -> + 0, we can show that

z\)s (2)

for some positive Mand s, which may depend on φ. F(z) — F(z) is an entire

function whose real part coincides with that of F(z) — F(z). This together

with (2) implies that F(z) — F(z) is a polynomial in z. Consequently we have
with some constants M' and s'

\F(z)-F(z)\^\F(z)-F(z)\

which implies that F(z) is a polynomial. Owing to Lemma 3 we see that the
function h(z) e dt(C) is a polynomial. Thus the proof is complete.

PROPOSITION 31. Let hi e H+ and h2 e H~. If there exists an f e Sf' such
that

lim (hι(x + ίε) — h2(x — iέj) = f
ε-^ + o

in S?\ then hi and h2 have the ^'-boundary values /1, f2 respectively and f =

/1-/2.

PROOF. If we write g=d-~\f) in the form g= gx— g2, gιeQ
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g2 e 2)'_Λ«?", then J2[gi] and £[_g2~] belong to H+, H~ respectively and
J2[_g2~] have the ^'-boundary values and therefore

From this together with Proposition 30, it follows that hi and h2 have the &"-
boundary values / i and f2 respectively and f=f1— f2. Thus the proof is
complete.

DEFINITION 5. We shall denote by H+(E) the space of he dίc+(E) such that
<h, er> e H+ for every e' e E\ and by H~(E) the space of he 9tc_(E) such that

h(z) e H+(E).

LEMMA 4. Let h e 8tc (E). If < /t, er > has the Sf'-boundary value
<h, e'> + = lim < h(x + ίε\ ef > for every er e E\ then there exists a unique

ε^ + o

h+ e Sf'(E) such that h(x + ίε) tends to h+ in ^(E) as e -> + 0.

PROOF. By Corollary to Theorem 2 the map E'c B e'-> <h, ef>+ e Q)r

x is
continuous and <h, ef>+ 6 / . Since the space s? has an ε-property, there
exists a unique h+ e ^\E) such that <Λ+, ef> = <h, er>+. From the relation

<3~XKX e/> = ^-\<h+y er>\ e'eE',

we see that d-~\h+) e SP+(E). 3(e-€ξ9--χh+)) = h(χ + ίε\ where e-
€ξ9-\h+)

tends to 9-~\h+) in &"+(E). Therefore h(χ + ίε) tends to h+ in Sfr(E). Thus
the proof is complete.

THEOREM 7. Let hi e H+(E) and h2 e H~(E\ If for every er e E' there exists
a distribution fa e &" such that

lim < (hι(x + is) — h2(x — ΐε)), e' > = fγ

in &\ then hι(χ + iε\ h2(x — ίε) have the limits fu f2 in &"(E) respectively as
+ 0 and < / i - / 2 ? e;>=fy.

PROOF. By virtue of Proposition 31, lim < hι{x + ίε\ er> and li
£ ^ + 0 6^ + 0

— ίε), er> exist in S?' for any e' e E\ It follows therefore from Lemma 4
that there exist fu f2 e Sf'iE) such that

lim hι{x + ίε) = jΓi, lim h2(x — ίε) — f2

in $f\E\ Clearly < / i - / 2 , ef>=fy. Thus the proof is complete.

The space di'k{E) will be introduced in an obvious way, and we can show
the analogues of Proposition 28, but the details will be omitted.
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