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The representations of distributions as distributional boundary values
of holomorphic functions have been discussed by many authors. As for a
distribution on a unit circle, G. Kéthe [10] developed the theory of holomor-
phic representations through the Cauchy integral along the unit circle of the
given distribution. On the other hand, for a distribution on the real axis,
H. G. Tillmann [ 257 constructed its holomorphic representation by making
use of a technique similar to the method of G. Mittag-Leffler. There the
representation is not unique and we may add an entire function to obtain
another representing function. Recently, in his article [127] motivated by
the works of M. Sato [[16, 17], A. Martineau has developed the theory of the
distributional boundary values of holomorphic functions, and reduced the
problem of representing a distribution to solving a non-homogeneous Cauchy-
Riemann equation. The solution is a distribution which is holomorphic except
on the line where the original distribution is given.

For a vector-valued distribution on the real axis, H. G. Tillmann [ 26 | has
shown that the Cauchy integral along the real axis gives rise to a holomor-
phic representation if the distribution happens to be of almost compact sup-
port, while the method of G. Mittag-Leffler just referred to cannot be applied
to an arbitrary vector-valued distribution. We are naturally led to the ques-
tion whether it is possible to give holomorphic representations of an arbit-
rary vector-valued distribution on the real axis. We can show that the
answer is negative. This is because the space of entire functions has no
topological supplement in the space of the solutions of the Cauchy-Riemann
equations mentioned above. On the contrary, any vector-valued distribution
on a unit circle is holomorphically represented by the Cauchy integral.

The main purpose of the present paper is to develop a general theory on
holomorphic representations of the vector-valued distributions so that we may
be able to answer the question raised above even in a Riemann surface M.
Here a vector-valued distribution is given on a real analytic 1-dimensional
oriented closed submanifold I which need not be connected. The problem
will be reduced to solving a non-homogeneous Cauchy-Riemann equation in
accordance with the idea of A. Martineau. Naturally his method requires a
modification in its treatment of the subject.

Special attention will be paid to the cases where the original distribution
is given on the real axis or on a unit circle.
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Throughout this paper E will stand for a quasi-complete locally convex
Hausdorff topological vector space.

The presentation of the material is arranged as follows: Section 1 is
devoted to some preliminary discussions needed for our later purpose. In
particular, the well-known fact that a distribution is locally a finite order
derivative of a continuous function will be proved by modifying a technique
due to A. Pietsch [147] so that we may obtain a clear-cut method of represent-
ing a bounded set of distributions in a similar form. In Section 2 the notions
of the value of a distribution introduced by S. Lojasiewicz [117] will be ex-
tended to an E-valued distribution. Section 3 deals with the extension of the
method of A. Martineau to E-valued distributions. As an analogue of Pro-
position 4 in A. Martineau [12, p. 204] it is shown that if an E-valued dis-
tribution f{x) is given on an open interval of the real axis, then any holomor-
phic representation is obtained as a solution g(z) of the differential equation
%‘g =%( f®0,). In Section 4 the distributional boundary value of an E-
valued holomorphic function is investigated from a viewpoint of the Carle-
man’s extension principle. The main result of this section is the theorem
showing that if %.(z) and %.(z) are E-valued holomorphic functions on the
upper and the lower half planes respectively and if, for each & € E’,
<(ﬁl(x+ i) —ho(x — ic)), & > converges to a distribution as e— +0, then By, B2
have the distributional boundary values on the real axis R.

Section 5 is devoted to a general theory on holomorphic representations
of E-valued distributions. Let M and I” be the same as described before.
The main result of this section is as follows. If E is taken arbitrary, the
representation is only possible according to the cases;

(a) when M is open, /" is compact,

(b) when M is compact, the E-valued distribution given on /" satisfies
certain conditions.

On the other hand, when M is open, the holomorphic representation is always
possible if E is an (F)-space.

Section 6 is concerned with the distributional boundary value of holo-
morphic functions on a unit open disc D. We introduce the space of slowly
increasing holomorphic functions on D, of which the boundary behaviors are
investigated. Applying a theorem of N. A. Davydov, we can construct a
boundary distribution which has no value at any point. We show that any
two boundary distributions have the multiplicative product in a sense des-
cribed in [21]. The result will be generalized by a conformal map to the
boundary distributions on the same side of an analytic arc. In the final
section we shall study the &’-boundary value of holomorphic function on a
half plane belonging to the class H*. Improvements are given for the results
of E. J. Beltrami-M. R. Wohlers [ 1] related to the Hilbert transform pairs.
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1. Preliminaries

Let 2 be a non-empty open subset of an N-dimensional Euclidean space
RY. If x=(x1, ---, 2n), y=(y1, -, yn) € RV and 2 is a real number, we write

N 1 .
x+ yz(x1+ Yis o xy+ yN)s lx:(lxla ) ixN) and l x | =<Zl| x]_IZ),j. If P 1S
=
N
an N-tuple (p, -, py) of non-negative integers, the sum ) p; will be denoted
i=1

by |p| and with D,=(Dy, .., Dy), D;= ->—, we put D?=D%'... D%. In addition,
P 896]'

we shall use the notation D”=D? ... D% for an integer m =>0.

A distribution T ¢ @'(8) is locally a distributional derivative of a continu-
ous function F. A. Pietsch [147] has devised an interesting method of con-
structing such a function F. In our treatment we shall need an analogue for
a vector-valued distribution. In the following we shall modify his method of
construction so that it may be convenient for our later discussions.

N
Let Q:.H1 (aj, b,)C CR. T is said to be of order at most m on Q if there
i-

exists a constant C such that

(<T,¢>I§Clsup|D"¢|
pl=m

for any ¢ € Dg. Then, D; being dense in DF, T will be uniquely extended to
a continuous linear form on Dg.

ProposiTion 1. Given QC C £, there ewists a function G(x, y)=
N
I1G{(x;, ;) defined on R*" such that each G;€ DTy ; 1.1, and such that for
j=1

any T € D'(2) with order at most m on Q we can write T=D*"**F on Q, where
F(x)=<T,, G(x, y)> € D.

Proor. For each j, 1<j=<N, we consider the ordinary differential
equation

y(2m+2)(t) — 61 (1)
with boundary conditions
y(a) = y'(a;) == y"Xa;) =0, @
y(6) = y'(b;) == y"(b;) =0,

where 0,, a;<t<b;, is the Dirac measure concentrated at r. The general
solution of (1) is given by
= @@=yt

= (2m—+1)|‘ +CO+Clt+"--|-sz+lt2m+1
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with constants ¢y, ci, .-, cami1, Which should be chosen to satisfy the boundary
conditions (2). Then cg, c1, -+, c2pmy1 Will be uniquely determined and will be
polynomials of r. Put

/ e A 2mt1
Gixj, y7) = 1 for (xj, y)€[a;, ;1% [aj b;],
0

otherwise.

Clearly Gj ¢ D7, s 1xra,b,7 and if we restrict the domain of G to [a;, b,]x
[Laj, b,], G; will be of class C*” and satisfy G,(x;, y)=G{y; x;) [4, p. 193].

N
Let G(x, y)= I1G{x;, y;), and put
i=1

F(x)= < Ty, G(z, y)>.
Then we have for any ¢ ¢ Dg
<D™ 2F, ¢> = < F, D>
= << Ty, G(x, 3>, D" 2(x)>

= <1, (6Gx, PP pa)da> = < T, 6>,

which completes the proof.

Let B be a bounded subset of @’(2). Since B is equicontinuous, there
exist for any QC C 2 a constant C=C(Q) and a non-negative integer m =m(Q)
such that

| < T, 4> | = Csup| Dg|
pl=m

for any ¢ € Dy and T € B. Every distribution 7 ¢ B can be written on Q
T =D*"**Fr, Fr(x)=<T,, G(x, y)> € Dz,

where G(x, y) is the function considered in Proposition 1.

The set {G(x, *)}.eg forms a compact subset of 7 since the map Q > x —
G(x, +) € D} is continuous. From this and the fact that the strong and weak
topologies on any equicontinuous subset of 9 coincide, it follows from the
Banach-Steinhaus theorem that a directed set {7,} of B converges to 0 in
D'(2) if and only if for any QC C 2, {Fr,} converges uniformly to 0.

Let L and M be any two locally convex Hausdorff topological vector spaces.
The e-product LeM is the linear space of bilinear forms on L/ x M. hypo-
continuous with respect to the equicontinuous subsets of L', M, which is
equipped with the topology of uniform convergence on the products of equi-
continuous subsets of L', M’ [18, p. 18]. Let L. (L.; M) be the space of con-
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tinuous linear maps of L/ into M with the topology of uniform convergence
on the equicontinuous subsets of L’. There exist the algebraic and topologi-
cal isomorphisms among LeM, L.(L.; M) and L. (M.; L) [18, p. 34]. Hence
we shall identify LeM with 2.(L.; M) or with L. (M.; L). The map x: L/ x
(LeM) > (%', i) > ii(%") € M is hypocontinuous with respect to any equicontinu-
ous subset of L. This implies that if £ is a relatively compact subset of
LeM and 4’ is an equicontinuous subset of L, then the set {i(%"): i€ l, ¥ ¢ 4}
is a relatively compact subset of M.

Let 2 be a non-empty open subset of RY and E a locally convex Hausdorff
topological vector space. We write D,(E) instead of D'(2)E, a space of E-
valued distributions. We shall assume that E is quasi-complete unless other-
wise stated.

Let £ be a relatively compact subset of @D,(E) and V° the polar of a 0-
neighbourhood ¥ of E. Then the set {< T, &> € D'(2): Te L, & € V°} is re-
latively compact and a fortiori bounded in @D'(2). From the preceding dis-
cussions we have immediately

ProrosiTioN 2. Let £ be a relatively compact subset of Dp(E). Given
QC C 82, we can write with the notations used before

<T,&>=D'Fry, Frsx)=<<T &>, Glx, y)>,

where Te L, & € V° and the map x: Lx V° 3 (T, &) Fz 3 € Cq is continuous
in the topology induced on L x V° by the product Dy(E)x E".

In accordance with S. Y.ojasiewicz [11, p. 187 we shall show

ProrositioN 3. We assume that N=2. Let Q=1xJC C82 with I=(a, b),
J=(c, d) and let X € D (E). If ngDgz\f’ =0 on Q with positive integers p, q,
then X may be written in the form

I PRSI
X =#§1xl“sp(y)+ Vgly“ T,,(x)
on Q with distributions S,(y) and T,(x) independent of x and y respectively.

Proor. Since the functions 1, x, ..., ! are linearly independent in
D'(I), we have the functions a,(x) € D(I) such that

<a x), x*>=—0,,; #,v=01 .. p—1

Let ¢ be any element of (7). If we put
§) = B+ T < §a)>a,(x),

x . p—1
then x(ac)zg~ ((xT—_fi),—ﬂr)dr belongs to D(I) and ¢=D?x. Similarly we
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have b,(y) € D(J) satisfying
<y”) bv(y)>:_6,uva ﬂ) V:()s 1, Tty ‘]—1
For any &(y) € D(J), the function

) =)+ B <y 6D >0.)

can be written as 7(y)=Di(y) with &(y) € D(J). Since X has the property
ngDgX' =0 on Q, we have

<X, 99> = < X, Dba(x)QDL(y) >
=(—1)**"*<DiDIX, xRE>=0

and therefore
— <X JDRE> = T <% 9> <X, a,(RE)>
FE <y 5 <X g0Db()>

p=1q-1 >
FN T <at 6> <y 6> <X, a(0)Rb.()>,

=0 50
where

<at, p> < X, a, ()R ) > = <at, ¢> < <Xy, a()>, E(y)>

= <a* <Xy, au()>, pRQE>,

<yt 6> <X, H(0)Rb,(H)> = << X, b(D)> ", dRE>,

<at, ¢> <y, 6><X, a()Rb,(9)> = <<X, ., a,(O)Rb,(T)>x*y", pRE>.
We have therefore the relation

—X= iz:)< X,,, a,(t)>x"+ qz;l< Xery b,(0)> 9
SIS ARHOLINORIRS
Putting
S(y)= <X,y —at)>,

_, o P N
T,(x)= <X, —b,(t)>+ ZO<X,,,, —a, ()b, (v) > x*,
=

then S,( ) T,(x) are independent of » and y respectively and we have X=

—1 — —1 N
pZ xS ,( y)+qZ} y* T,(x) on Q, completing the proof.
~=0 v=0
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2. Some remarks on fixation of vector-valued distributions

The notions of the value of a distribution at a point of RY and of the
section of a distribution will be extended to the vector-valued distributions.

Let T be an E-valued distribution defined on a neighbourhood U of
xo€ RY. T is said to have the value T(x,)=é€E at x=xo, if T(xo+ %), 2 being
a positive real number, converges to & in @'(E) as 1— +0, namely, for any
peD, < T(xo+1x), ¢(x)>= < T(x), 7117¢<x_lx°>> converges to 6S¢(x)dx
as 1— +0. If Tisgivenon U \{x,}, lim 7 will be defined similarly.

With the aid of Proposition 2 we can show after the proof of Proposition
1 in S. Lojasiewicz [ 11, p. 17] the following

Prorosition 4. Let U be a neighbourhood of xo€ RY and T an E-valued
distribution defined on U\{x,}. Then lim T=2 if and only if for any equi-

X%
continuous subset V° of E and any neighbourhood PC C U of x,, there exists a
continuous function Fy € C(RY), & € E,-, such that for a non-negative integer k
we have

<T,&>= <8 &>+D'Fy
on P\{x.}, where Fsr=o(|x—xo|*™) uniformly on V° as |x—x,|—0.

Let us consider a restricted d-sequence {p,}, that is, a sequence of non-
negative function p, € D(RY) with the following properties:

(i) suppp, converges to {0} as n—>oo;
(ii) Spn(x)dx converges to 1 as n— oo

(iii) S|x |'¥| Dkp,(x)| dw < My (M, being independent of n),

where the integral is extended over the whole N-dimensional space [22, p. 917.
Along the same line as in the proof of Proposition 8 in R. Shiraishi [22, p. 93]
we can show

ProposiTion 5. Let T be an E-valued distribution defined on a neighbour-
hood of %o € RY. T has the value T(x,)=¢é € E if and only if

lim< T, ox—2x9)> =28

n—ooo

for every restricted 0-sequence {0,}.

By proceeding in the same way as in the proof of Lemma 3 in our previ-
ous paper [ 8, p. 156 ] we can show

Prorosition 6. Let T be an E-valued distribution defined on a neighbour-
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hood of 0 n RY. If the values %(0)=éj € E exist for j=1,2, ..., N, then the
j
same s also true of T.

Let £ be a non-empty open subset of R¥=RY:x R): and T € Dy (E).
For x, € RY* we put

2., ={ye R (x, y) € 2}
and assume that £, is not empty. If lim T(x+2x, N=1R5(y) then we
—+0

shall say that x=x, can be fixed in T(x, y) and that S € D5, (E) is the section
of T for x=x, which will be denoted by T(x,, y). If T is defined on o\2,,
one can define lim T(x, y) in obvious fashion.

X2 %0

The following Propositions 4’ and 5" are the analogues of Propositions 4
and 5 and will be proved in a similar way.

ProrositioN 4. Let T be an E-valued distribution defined on 2\2. . Then
lim T(x, y)=§( y)if and only if for any equicontinuous subset V° of E and

X7 %o

any non-empty open subset GC C 2, , there exist non-negative integers k, I, a
neighbourhood 4 of x, and a continuous function Fy(x, y)€ C(RY), & € Ej-,
such that

<T,&>=<1.Q5y), &>+ DiDFs
on (4\{xo}) x G, where Fsr=o(| x — x| *") uniformly on G and V° as | x — xo| —0.

Prorosition 5. T has the section T(xo, y)= §( y) € Dig, (E) for x=x0 if
and only if

lim < T, p,(x—x0)>=1,3(»)

for every restricted 0-sequence {0,}.
We assume that N=2. Let 2,=(a, b)x(0, ¢) and I=(a, b).

DeriniTioN 1. Let T e Dy (E). If there exists a distribution SeDE)
such that

ymOT(x, 1y) = SR V()

m Dir (E), Y denoting the Heaviside function, then S(x) will be called the
limit of T as y— +0 and denoted by lim T'(x, y). This means that
y=+0

1&15 T, %qﬁ(x)gb (%)> =<5, ¢>S:¢(y)dy

for any ¢ € D(I) and ¢ € D(R.).
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In the same way as in the proof of Proposition 4 we have
Prorosition 7. Let T € Dy (E). Then lim T(x, y)=S(x) if and only
=40

1.f for any open intervals JyC CIand J,=(0, ¢;) with 0<c1<c and any equi-
continuous subset V° of E’ there exists a function Fy € C(R?), & € E,-, such that
Jor some positive integer k we can write

<T,&>=<S(x)QY¥(y), &>+ D:D:Fy
on J1 X Jz, where Fyr=o(y*) uniformly on J, and V° as y— +0.
Prorosition 8. Let T € D, (E). If lim % — §(x) exists, then lim T(x, y)
y—=+0 y—+0

also exists.

Proor. Let V° be any equicontinuous subset of E/. Take J; and J, as
in Proposition 7. Then there exist a positive integer £ and a function
Fs € C(R?), & € Ej,-, for which

< % &> = < S(x)QY(y), &> + DED'Fs

on J, X Jo, where Fy=o(y*) uniformly on J; and 7° as y—> +0. We have for
any ¢ € D(J,) and & € V°

—(,),@—<<T,¢>, g>=<< 2l 45 &>
¥ 0y

= <8, 6>, > +(— DD Fos, ppP@)da
and therefore
<<T, 4>, 8>=<<8,¢>,8>y+(— l)kD’;‘lgF?(x, NEB(x)dx + ¢y, 5%,
where ¢, 5 is a constant depending on ¢ and .
This implies that for any given ¢>0 and ¢ € D(J,) we can choose 0>0

so that

| << T2y 2y)— T, Xy, dQP>, &> | <e

for any 2 and 2 with 0<4, <. Since D,(E) is quasi-complete, we can
conclude that the limit lim 7(x, y) exists, completing the proof.
y=+0

3. Boundary values of vector-valued holomorphic functions

Let C be a complex plane and z a complex variable with z=x+iy.
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For any non-empty open subset 2CC we denote by H(£2) the space of holo-
morphic functions on £ with the compact convergence topology. Ho(E)=
H(2)eE will stand for the space of E-valued holomorphic functions defined
on 2.

Let 2,=1x(0, b) with I=(—a, a) and 5>0. In his paper [12, p. 200],
A. Martineau has shown some equivalent conditions for the existence of the
distributional boundary value of & € H(£2,). There the distributional bound-
ary value problem is reduced to solving a differential equation [12, p. 204].
In accordance with his idea we shall first study the analogues for vector-
valued holomorphic functions.

PropostTioN 9. Let he & 2, (E). Then the following conditions are equi-
valent :

(@) k can be extended over I=(—a, a) as an E-valued distribution.

(b) & is a slowly increasing function near each point of I, namely, for
any JC CI and any continuous semi-norm p of E, there exists a positive
number ko such that

supp( y“h(x +iy)

18 bounded for sufficiently small vy.

(¢) The distributional limit limk(x + i) exists.
&>+0

(d) The distributional limit lirPsz(x +iy) exists.
pont

Proor. (a)—(b). Let 7 be an absolutely convex neighbourhood of 0 in
E such that p coincides with the gauge of 7. Suppose k can be extended
over I=(—a, a) to an E-valued distribution which we shall denote by the
same symbol % for the sake of simplicity. Let 2 be the domain of the ex-
tended 5. Choose positive numbers a;, b; so that w=(—ay, a1) x (—by, b)) C 2
and JC C(—ay, a;). Then, by Proposition 2, there exists a continuous func-
tion g:(z) defined on the plane C such that for some positive integer & we
can write

<h(z), &> = DiDE geA(z) forany & eV’

Y

on w. The map V° 3 & — gi € C(@) is continuous, where 7° has the topology
induced by E’.
Let #(z) be an E-valued holomorphic function on £, such that

. de . N
7 e #z) = h(2).

If we put ri(2)= <#(z), &>, then
D:D¥( g —rs)=0 for any &’ € V°
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on 2,Nw. Consequently we can find by Proposition 3 continuous functions
S, (y), T, :(x)on (0, by) an_d on (—a,, a;) respectively with the properties:
k-1 k—1

) gs(z2)—ri(z) =I§0x"S,L,;'(y)—|— ugoy” T, s(x) on 2,Nw,

(i) S,y = <gs(a)—re(2), —a (x)>, #=0,1, ..., k—1,

(iii) T,(x) = < gs(2)—re(2), —b,(n>

k-1
+ 35 <gi@)—ria), —a(n@b.(5)> "
y=0,1, ..., k—1,

where a,, b, have been chosen as in Proposition 3.

(ii) implies that the map &— S, ()€ C((0, b,]) is continuous where
C((0, b,7]) has the compact convergence topology. (iii) implies that each T, ;/(x)
is a continuous function on [ —ay, a;] and the map & —» T, 5 € C([—ai, a1]) is
continuous.

If we put

k-1 k-1
ly(2)= gz*(Z)+”§0x”< go(2), ax)>— Eo y* T, (%),
it is a continuous function on @ and the map &—I:(z) € C(®) is also continu-
ous. Now we can write

k—1
ry(z)+ Z(I) 2 <ry, a(x)> = l5(2). @®
P

Taking any distinct points x;, j=1, 2, ..., &, in (—ay, a1), we consider the sys-
tem of equations
k—1
refxi+iy)+ Z(])x’;<r;', ax)>=ls(x;+1y),
P
j=1,2, .., k.

Since det|x%|0, it follows that each of <ry, a (x)>, #=1, 2, ..., k—1,1is
uniquely extended to a continuous function on [0, b;] and the map & —
<rgy a,(x)> € €0, b,]) is continuous. From this we see that if we put

~ k=1
Lez) = li(2)— 2 2" <re, a(%)>, 2
p=1

then ['s/(z) is uniquely extended to a continuous function on [ —as, a;]x [0, b;]
and that the map &—[:(z) € C([(—ay, a1 ]x[0, b,]) is continuous. From (1)
and (2) we have

re(2)+ <ri, al(x)> = l5(2). 3

Let I'(y) be the positively oriented boundary of the rectangle (—ay, a;)x
(9, b1) with 0< y<b;. If we put si(y)=<rs, ag(x)>, then since ri(z) is
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holomorphic on 2., we have
sr()—se )= | 0.

Consequently s;(y)—ss(y") tends to 0 uniformly on ¥° as y— y'—0. This
together with (3) implies that rs/(x +ic) converges uniformly for x € [ —ay, a; ]
and & € V° as e—> +0. We can write for z € Jx (0, y,) with 0< y, <6, and for
any e € V°

20N e 2k)! . &
<ha, o> =G0 e

where I'y=1imI"(y). It follows that
y=>+0

sup sup| y* 1 <k(z), &> |
0<y<y, x€J

is bounded. Thus (a) implies (b).

(b)—(c). Let 7 be any neighbourhood of 0 in E. Consider any interval
JC C I and a positive number y,<b. Put 2,=Jx(0, ). Then, by our hypo-
thesis, there exist a positive integer k£ and a positive constant M such that

| y*<h(z), &>|<M forany ze®2, and &¢€V"

2
If we consider an E-valued holomorphic function g(z) such that%g =

(z), then a simple calculation will show that there exists a constant M
satisfying
|<gz), & >—<glE@),e>|<M|z—2|.

for z, 2/ ¢ 2, and & ¢ V°. Consequently < g(x+ic), &> converges in C(J)
uniformly for ¢ € V° as e— +0. Using the fact that

<h(x4ie), & >=DE2< g(x+ie), &>,

we can conclude that the distributional limit of A(x+ie) for e— +0 exists.
Thus (b) implies (c).

(e)—>(d). Suppose (¢) holds. Let B; be any bounded subset of (1) and
V any neighbourhood of 0 in E. Given any >0, there exists an ¢,>0 such
that 0<e<¢, implies that

| <o), o> padn— < <5 &>, 4> <n

for any ¢ € B, and any & € V°.

Let B; be any bounded subset of D(R,) and let ¢>1 be chosen so that
every ¢ € B, vanishes identically for y>c. We have then with agvi_v and
0<y<e
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1S<E(x+isy), & >¢(x)dx—< <S8, &>, 6> | <.
Consequently, for any ¢ € B; and any ¢ € B, we have
[ <Btetiey, &> pp(iddy— < <3, 8>, 6> (0(ndy]
<n{l¢lay,

which means that

lim <i(x +ie ), J)R(7)> = <SR Yy, ANRU()>.

Thus (¢) implies (d).

The implication (d)—(a) is an immediate consequence of the following
Proposition 10.

Thus the proof is complete.

Let 2_ be the domain symmetric to £, with respect to the real axis and
put =2, VIUL_.

Prorosition 10. If T e Dy (E) has the distributional limit lim T(x, y)=
y=+0
S(x), then there exists a W € D(E) such that W coincides with T on 2. and

vanishes on 2_. Moreover W is unique under the condition that W— SR Y( ¥)
has the section 0 for y=0.

Proor. Let p € &R) be equal to 1 on (2, o) and 0 on (—oo, 1). Put
0 y)=p<%> for 0<e<<1. We consider the distribution H—’}GEQ)’Q(E) defined
by

Wy $>=<T(x, ), 0 DK, >, b€ D). @

¢ € D(L) has a compact support and so we can find an interval JC C I and
a positive b; < b such that suppg CJx(—bi1, b;). Let ¥ be any neighbourhood
of 0 in E. Then there exist by Proposition 7 a positive integer £ and a con-
tinuous function Fy- € C(R?), & € V°, such that we can write

<7, &>=<8SQY,, &>+ D:D'Fy

on w=Jx(0, b)), where Fs = o(y*) uniformly on J and V° as y— +0 and
Fy=0 for y<0.
If suppd CJ x(—by, by), then using (4) we can write

< < ﬁ'& §/>, ¢> :<<§® Yy) él>a 0(6)(y)¢(xa y)>+<Df}D§F§’, 0(5)(}’)‘15(% y)>
=< <8, &>, (oo, Ddy>+ <Fr, DiDioo Dz, 1>,
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which converges uniformly on 7° to < <3S, &>RY, ¢>+ < DiD'Fy, ¢> as

¢— +0. This means, since D, (E) is quasi-complete, that lim I;'g= We D(E)
&-+0

exists and we have

<W,¢> =lim < T, oo PB(x, y)>

=lim < T—SQY, o Nd(x, >+ <SQY, ¢>.

&~+0

As a result, we see that W satisfies the conditions stated in our proposition.

Let l—V)l be another E-valued distribution belonging to @,(E) with all the
properties stated in Proposition 10. If we put ¢(y)=1—0(y)—po(— y), then
using Lemma 4 in our previous paper [ 8, p. 166 ] we have

lim < 71— SR, ¢ n)d(x, y)>=0.

&-+0

Consequently we can write
<, ¢>=1lim < W= SR, (e D+ bce W, 9>+ < S, ¢>

=lim < T— SR Y, o Nz, >+ <SRY, ¢>,

E-+0

=< 1’-—’7: ¢>>
which completes the proof.

The uniquely determined W e D,(E) in the preceding proposition will be
called in this paper a canonical extension of 7. We see that T ¢ @, (E) has
the canonical extension if and only if the distributional limit limp.y ()7

&->+0

exists in @,(E). The limit will be the canonical extension of 7.

Remark 1. Let ke, J(E). If <h, &> €L, is slowly increasing
for each & ¢ E’, then & is slowly increasing in the sense of (b) in Proposition
9. Indeed, this follows from Baire’s category theorem.

PropositioN 11.  Let he D), L(E). Ifthe distributional limsit h,=limh(x + ie)

&—-+0
exists, then the canonical extension gec Dy(E) of k satisfies the following equa-
tion: '

Qg

=4 .30,

DD
wi

Proor. By Proposition 10 we have g=limp.,(y)k. Consequently
E—+0
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E:Hm<00(e)h+p @ 0h)

0z E—=+0
=lim apff)h
E-+0 Z

Now, for any ¢ € D(2)

Mn<am“h¢> lim <7, WWM>

E-+0 E-+0

~lim <%, %p'({_)w

E-+0 2

= hm <h(x+18y), L o'(Yd(x, y)>

= <hy, 8x, 0o (Ddy>
= E‘ +®6y, ¢>
therefore we obtain
08 _ i 7
52_‘ - 2 (h+®6y)a

which completes the proof.

k. in the preceding proposition will also be called the distributional
boundary value of k. For T ¢ D, (E) we define similarly the canonical ex-
tension. k€ o (E) has the distributional limit (boundary value) o=
lim(x —i¢) if and only if the distributional limit g= llm 0(5)( y)h exists. In

&—=+0
this case we can show that

0g _

1,7
8 —— L (23,

Using this fact we shall show

Tueorem 1. Let fe€ DYE). In order that f can be represented in the
form f=fi— fz, where fi and f, are the distributional boundary values of holo-
morphic functions hi € Heo (E) and hy€ Xy (E) respectively, it is mecessary
and sufficient that there exists a distribution ge Dy(E) satisfying the equation

98 — L (fim0,)

on 2.
Proor. Suppose that f'=f1—f, with fi=1limky(x+ie) and fo=1limky(x—ic).
E=+0 E-+0
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If we put 3= @+ g, where g;, j=1, 2, is the canonical extension of %,, then
by Proposition 11 we obtain

Ry
||

_g_i
0z 0z

Q)‘ )
wl

= L (i F2®0,) = 5 (FR0,).

Conversely, suppose that there exists a distribution g e Dy(E) such that

o)

= 2 (fiR0)).

DD
W

As 5‘6_g_0 on 2,Uf2_, gis holomorphic on £, 2_. If we put 721=g'|.9+,
z

hy= Z182_, then ge Dy(E) is the extension of both k, and k.. By virtue of
Proposition 9 the distributional limits fl: lim £y(x + ie) and fzz lim Fy(x — ie)
E—=+0 E—>+0

exist. Let g, j=1, 2, be chosen as before. Then we have

0(g—( (g&+ gz)) 2(f — F))®8,

and supp(g—(&:+ &) CI. Owing to a lemma of A. Martineau [12, p. 2087,
we can conclude that f=f;— fa.
Thus the proof is complete.

4. A version of Carleman’s extension principle and its applications to

vector-valued holomorphic functions

Let G; be a domain in the complex plane C. Suppose the boundary 0G;
contains an open line segment I such that for any z, € I there exists a neigh-
bourhood U of z, such that U does not intersect 0G,\I. Let G, be the domain
symmetric to G, with respect to I, and let us assume that G; and G, are dis-
joint. If two holomorphic functions 4, on G; and A, on G, take on the same
boundary values on this line segment from within each domain, then 4; and
h, are analytic continuations of each other. The result will be generalized
in this section to the vector-valued holomorphic functions.

For the sake of simplicity, we shall take G;=2,=(a, )% (0, ¢) and I=
(a, b). Put 2=2,UIUQ_.

Let u be a real- or complex-valued harmonic function on £,. First we

note that lim u(x +:y) and hm au(;—;m exist in the distributional sense if

Y-+0
and only if one of these ex1sts in the same sense. This is because we can
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%u _ 0%u

apply Proposition 8 since — =—~—,. Suppose a=limu(x+iy), B=
0y 0x y—+0

lim %ﬂl} exist. Consider the canonical extension # which was defined by

Yy-+0

the distributional limit limpu. We know that limol, ,u=a®J, and
E—+0 E—+0

lim p’(e)a—u =pB®3,. Since A(pu)= X (0leyu)+ O’mavu, it follows by passing

&>+0 0y 0}’ ay

to the limit that
AT =a®05+ BR0,.

Define uy(x+iy)=u(x—iy) for y<0. u; is harmonic on £_. Then ina
similar way we have

Aty = —a®0;+ BR0,,
where #; is the canonical extension of u;. Consequently
A(z— 1) = 2035, A&+ &) = 2P&0,.

Therefore & — @, (resp. # - #;) is harmonic on £ if « (resp. B) vanishes on I.
This means that the Schwarz reflection principle for harmonic functions
remains valid under a weaker assumption than usual. The reasoning shows
that the result holds also for the harmonic function u(xy, -, x,, y), n =1

Prorosition 12. Let h € H(82.) and let u, v be the real and the imaginary
parts of h.
(a) If limu(x+iy)=0 tn the distributional sense, then h can be continued
=40

analytically across I into 2_.
(b) If the distributional limit lim u(x ) exists, then the distributional

Y-+0

limit limh(x + ie) exists.
&40

(¢) The distributional limit lim u(x + i) exists 1.f and only 1.f the distribu-
§~+0

tional limit lim u(x +1iy) exists.
y-+0

Proor. (a) In virtue of the Schwarz reflection principle just described,
© can be continued to a harmonic function u; on £. Let v, be a conjugate
harmonic function of u;. A;=u;+iv, is holomorphic on £ and we can take
vi=v on £, and therefore h=~h; on £2,.

(b) Since Ou —ai, we see that lim @i(x—f—i y) exists, and so does

ax 6y y—+0 0")/
ylitPov(x-i— iy). This implies that ylin}) h(x+iy) exists. Owing to Proposition 9

we can conclude that limA(x +i¢) exists.
E-+0

(¢) Suppose lim u(x +ic) exists. We see that limu(x+iy) exists by the
&—+0 ¥-+0
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same reasoning as in the proof of the implication (¢)—(d) in Proposition 9.
Conversely, suppose limu(x+iy) exists, then (b) implies that limaA(x 4+ ie)
Jo+0 E-+0

exists and so does lim u(x + ie).
E-40

Following the proof of Theorem 1 in T. Carleman [ 3, p. 387 we shall show

Prorosition 13 (Carleman’s extension principle). Let hi € H(2.) and
hy € H(R_). If the distributional limit lim(hi(x +ic) — ho(x —ic)) ewxists and
E~+0
equals 0, then h, and hy are analytic continuations of each other.

Proor. Consider the function @(z)= hy(z)+h(z) € H(2,). From the
assumption it follows that the imaginary part of @(z) converges to 0 in the
sense of distribution as y— +0, and therefore, by Proposition 12, @(z) can
be continued analytically to ¢ € #(2). Similarly the function H(z)=
i(hi(2)—hs(2)) € H(L,) can be continued analytically to » € #(£2). We can
write for z € 2,

W)= 3 (W@ —io(@) and hE)= 5 () +io) M

Combining (1) with the fact that ¢(z) and w(z) are real on the real axis, we
see that the analytic continuation of 4; into 2_ is equal to A;. Thus the proof
is complete.

ProrosiTioNn 14. Let hy € H(R,) and hy € H(L_). If the distributional
limit

Lim (b + i) —ho(w —ie)) = f € D(D),

exists, then the distributional limits limh(x+ie)=f1 and limhy(x—ic)=f>
=40 E-+0
exist and f=f1— fo.

Proor. For any interval JC C I we shall consider a distribution af ¢
D'(R), where a belongs to D(I) and takes the value 1 on J. There exists a
holomorphic function 4 defined on C\supp(af) such that the distributional
limits limA(x + ig), GlirPOh(x—ie) exist and

E-+0

limA(x + ie)— lim h(x — ie) = f,
&-+0

E>+0

and therefore we have
sljzr;((hl—h)(x +ie)—(h:—h)(x—ie)) = (1—a)f.

Proposition 13 implies that the functions 2, —4 and h;— & have the same analy-
tie continuation Ay in 2, UJU2_. Since both 4 and &, have the distributional
boundary values on J from within each domain £, and 2_, if follows that A,
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and h, have the distributional boundary values f; and f, respectively and
fi—f2=f as J can be chosen arbitrarily. Thus the proof is complete.

We are now in a position to generalize these results for the vector-valued
holomorphic functions.

Turorem 2. Let by € Ko (E)and hy € o (E). If for each & € E' the dis-
tributional limit

lim <(hi(x +ie)— ho(x —ie)), &> = f € D'(I)

E~+0
exists, then the distributional limits limh(x +ic)=f1 € DYE) and lim hy(x — ic)
E=+0 E-+0
=ﬁ € DYE) exist and <fi—fz, &> =f%, and therefore f;' can be written in
the form fy=<f, &> with f € DYE).
Proor. By Proposition 14 the distributional limits lim <A(x + ie),e’ >,

E—+0

lim < h(x —i¢), & > exist and therefore by Proposition 9 and Remark 1 we can
&40

conclude that the distributional limits limk(x +ic)=f3 € D)(E), limh(x —ic)=

€40 E-+0
f2 € DYE) exist. We have moreover <fi—f, &>=/fs for each & ¢ E' and
hence we can write fy'= <f, &> with f'¢e D)(E). Thus the proof is complete.

As an immediate consequence of Theorem 2 we have
CoroLLARY. Let hy€ X o (E). If for each & ¢ E’' the distributional limit
lim <k (x +ic), &> =fre D (I) exists, then the distributional limit

E-+0

limiy(x +ie)=f, € DYE) exists and f5=<f1, &>.
E=+0

Tueorem 3 (Carleman’s extension principle for vector-valued holomorphic
functions). Let by € X o (E) and hy€ Ho (E). If for each & € E' the distribu-
tional limat

lim < (h1(x + ie) — hao(x — ic)), &> =0

E->+0
exists, then hy and R, are analytic continuations of each other.

Proor. Owing to Theorem 2 there exist the distributional limits
fl = lim Ay (x + i¢), fz = lim Ay(x — i¢),
&40 &40

and fi=f5. It follows then from the proof of the first part of Theorem 1
that %, and k, are analytic continuations of each other.

Let H(2) be the space of harmonic functions on £, with the compact con-
vergence topology. We shall denote by Hy(E) the e-tensor product H(R)eE,
the space of E-valued harmonic functions on 2.
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Prorosition 15.  Let i € Hy (E). If for each & € E' the distributional
limit im <ii(x+ie), € > =0 exists, then ii(z) can be extended to an E-valued
E—+0

harmonic function across I into £_.

Proor. Let z, be any fixed point of 2, and consider the line integral
3= (_0n ou
(z)= Szo< oy dx+ P dy) ,

evaluated along any rectifiable curve L £, joining the point z, to the vari-
able point z € £,. Then % is harmonic and satisfies the equations:

o _ _oa 0 _oa
0x 0y’ 0y 0x

If we put ﬂz)zﬂ(z)+i17(z), then f will be holomorphic on £2,. Similarly we
define g(z)= —i(z)+i9(z), z € £_, which is holomorphic on £2_.
Owing to our hypothesis, we have for each & € E’

lim < f(x+ie)— g(x —ie), &> = 2 lim < (a(x +ie)), &> = 0.
E-+0 E—=+0

In virtue of Theorem 3 there exists an k € Ho(E) such that % is the analytic
continuation of both f and g The E-valued function %(z)—h(z) is harmonic
on 2 and we have for z€ 2,

i(z) = %(l—z'(z)— i(2),

which completes the proof.

5. General discussions on representation of vector-valued distributions as

the boundary values

The distributional boundary value problem of holomorphic functions has
been developed by many authors. Recently A. Martineau [127] has reduced
the problem to solving a non-homogeneous Cauchy-Riemann equation. Bas-
ing on this line of thought we shall discuss in this section the problem for
vector-valued distributions, especially in a Riemann surface. To this end we
shall first introduce the notion of the distributional boundary value of a cur-
rent on a manifold according to the method described in our previous paper
[97]. Here a distribution is understood as a current of degree 0 and of even
kind.

Let 2 be a non-empty open subset of R¥=R, x R¥~! and assume that
20={y€e R"*: (0, y) € £} is not empty. We denote by 2_ the open subset
{(x, y) € 2: x<0}. Consider a diffeomorphism
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{ x' = S(xa 9’)
X
y(:ﬂ(-“% y)

of 2 onto an open subset £’ CR,,x RY~!, which maps £, to 27 and £2_ to 2.
Then the map 7,=7(0, y) is a diffeomorphism of 2, onto 2;. The Jacobians
of the maps x and », will be denoted by J, and J, respectively. For any
TeD(2.)and SeD(L) the direct images T'=xT and S’ =7,S are defined
by the equations:

<T'(s', ), d(a's y)> = <T(x, y), [T |8(Ex, ¥), 7(x, ¥)>, ¢ € D(L)

and

<SSy, 9(yD)> = <SS Toy [ 0(e( ) >, ¢ € D(L9).

Then we can show the following lemma in the same way as in the proof of
Lemma 1 in our previous paper [ 9, p. 1757.

Lemma 1. Let Te D'(2.).
(a) If there ewists a distribution Se D'(Ry) such that }im T(Ax, y)=
—+0

Y(x)QS(y), then )IiIIIOT’(/Ix’, ¥)= VxRS (y).

(b) If there exists a distribution Se€ D'(2,) such that }Hlo AT(Ax, y)=
Y(2)QS(y), then S(y)=0.

Let f’, 0<p=<N, bea p-currenton 2_. If }\ij?o]a(ix’ y)= V()& §( y) exists,
then g‘will be called the boundary value of 12 on 2, and we write §( y)=
li_}molp"(x, y). By making use of Lemma 1 we can also show that the statement

(a) of the same lemma remains valid with distributions replaced by currents.

Let M be a differentiable manifold of dimension NV, and let £ be an open
subset with regular boundary. Owing to the preceding discussions, if we
follow the same process as done in [ 9] for the section of currents, we can in
an obvious way define the notion of the boundary value on 02 of currents
defined on 2. The details are omitted.

Let 2 be an open subset in the z-plane intersecting an open interval I
with the real axis. Let 2, ={z=x+iye€ £: y>0} and 2_={z=x+iyec 2:
y<0}. Given an f € D'(I), to find out 4, € H(L2,) and k, € H(L_) such that f
is the difference of the boundary values of &, and &, is tantamount to solving
the differential equation:

0 i
5{ = ?(f(g)ay) (1)

Let w=@(z) be a holomorphic isomorphism of £ onto an open subset £2’
in the w-plane. Let I’, 2, 2" be the images of I, 2., 2_ respectively. 2,
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and 27 are open subsets with regular boundary I’, so that we can speak of
the boundary values of holomorphic functions on £/, or on £2.. Let H be the

injection of Iinto 2. If we denote by %Il( f) the direct image of &'(I) into
9Y(2) defined by

<H(P), dDdz> = <f, dx)dx>, ¢ DR),

0,1
then, by a simple calculation, we have H(f)= %( f®0,)dz, so that we can

write (1) in the form
— 0,1

where 0 means the coboundary operator: o g= %—gdz. By the conformal map

O the equation (1) is transformed into the same form, where H should be
understood as the injection I’ into £’. The solutions of the equation will
give rise to holomorphic representations of a given distribution on I’ in the
sense described above.

Let 2 be any open subset in the z-plane. We consider a real analytic
1-dimensional closed submanifold 7" of £ which is oriented. £ is assumed to
have the orientation induced by the z-plane. The conformal map allows us
to speak of the positive and the negative sides of I". As a result, given a
distribution f € D'(I"), there exists a holomorphic representation of f, that is,
f is represented by the difference of the boundary values of a holomorphic
function on £2\/" from the positive and the negative sides of /" if and only if
the equation of the form (2) admits a solution, where H is the injection I'— 2

and %?1( f) means the direct image of f in the sense just described.

The foregoing discussions lead us naturally to the consideration of the
problem in a Riemann surface. Let M be a Riemann surface, that is, a con-
nected complex analytic manifold of complex dimension 1. It is orientable
and oriented by its complex analytic structure. Let I” be a real analytic 1-
dimensional closed submanifold which is oriented. The positive and the nega-
tive sides of I” will be defined in an obvious fashion. By reducing the dis-
cussions to each coordinate neighbourhood of M, we have, as an immediate
consequence of the preceding discussions, the following

ProrosiTioN 16.  Let M be a Riemann surface, in which a submanifold I’
with the properties just described is given. A distribution f on I" is holomor-
phically representable 1f and only i f the equation

dg=—H(f) 3)

; 0.1 0.1
admits a solution ge D'(M), where H(f)e D'(M) denotes the direct image
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induced by the injection I"— M.

- 0,1
As regards the vector-valued distribution f € D5(E), the map H: D'(I")—~
Ebl’(M) being continuous, the tensor product %{1 R1: Q)}(E)—»%Z%W(E) has a

meaning. Taking into account Theorem 1 together with our preceding dis-
cussions we shall obviously reach

Prorosition 17. Let M and I” be as before. An f € Dp(E) is holomorphi-
cally representable 1f and only if the equation

~ 0,1 5
0= —(HRD(f) 4
admits a solution gin Dy(E).

Let (M) stand for the sheaf of the germs of holomorphic functions
in M. An analogous notation prefixed with © should be understood in a like
sense.

Case (i), where M is open. Then the g-th cohomology group
HY(M, $I(M))=0 for g =1 since M is a Stein manifold. This together with
the exact sheaf sequence

0 DAM) > D (M) 2> 9D/ (M)~ 0
implies that the sequence

0 (M) > D (M) 2> D/ (M)—0

1
is exact, so that the map D'(M )—i@’(M} is onto. Consequently any f € D'(I)

is holomorphically representable. We note that the map 0: @’(M)—».(E)Z')l’(M)
is an epimorphism by a theorem of L. Schwartz [ 20, p. 604 ].

Case (ii), where M is compact. The image 0D'(M) is closed in &)1’(M)
[19, p. 887, and therefore the polar of the kernel of the map 3: @)(M)—»lQi(M)

with respect to the scalar product between 0@1’(M ) and @(M ), while the kernel
consists of the holomorphic forms which generate a g-dimensional linear sub-
space, g being the genus of M. Let ¢, ¢s, ---, ¢, be the linearly independent
holomorphic forms. As a result, the equation (3) admits a solution if and
only if <f, H*(¢;,)>=0, j=1,2, ..., g, where H*(¢,) denotes the reciprocal

- 1,0 1,1
image of ¢;, We note that the map 0:D(M)—D(M) is a quasi-monomor-
phism.

Tueorem 4. Let E be an arbitrary quasi-complete locally convex Hausdorff
topological vector space. Then the equation (4) admits a solution for any
f e Du(E) if and only if the following conditions are satisfied according to the
cases;
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(a) when M is open, the space of holomorphic functions (M) has a topo-

— 0,1
logical supplement in the preimage 0-'(H(D'(I"))) which is a closed linear sub-
space of D'(M),
(b) when M is compact, f satisfies the relations

<f H@)>=0, j=1,2 ., g

Proor. (a) Necessity. It is not difficult to verify that }5{1 is a monomor-
phism so that 2, the image (}I’l(@’(l“ )), is a closed linear subspace of Qobl’(M).
Let X be the pre-image of (1)"[1(@’(1" )) by the map . Then X is a closed linear

subspace of @'(M) since the map 0 is continuous. Let §, denote the map
K% 0. 1f we let E=/, the strong dual of £, we can choose an f so that

—OIYI( f) may denote the identical map of £. A solution g of (4) for such an f
denotes a continuous linear map u: £—>X. Then the equation (4) implies
that 0,ou is the identical map of £. Consequently H(M), the kernel of 3,,
has a topological supplement in X.

Sufficiency. Suppose H(M) has a topological supplement X; in K. As
noted in the proof of case (i), 0 is an epimorphism so that 0, is also an epi-
morphism and, in turn, the map X, 2> £ has the continuous inverse z=. We
consider X,(E) to be a closed linear subspace of D},(E). Consequently if we

put, for any f € D(E), g= —(n@l)}f( f), then g will satisfy the equation (4).

(b). We shall continue to use the same notations. H(M) is 1-dimensional
and therefore has a topological supplement in XK. Then in virtue of case (ii)
considered above, the same reasoning as in (a) will show that the statement
of (b) holds true.

Remark 2. In case the right-hand side of the equation (4) is taken arbit-

rarily from (@M(E), we shall have an analogue of Theorem 4. When M is
open, however, we can show that the space of holomorphic functions has no
topological supplement in @'(M). In fact, suppose H(M) has a topological
supplement in @'(M). There exists then a projection u: D' (M)—H(M). u is

51 -
also considered a 1Q)(M)-valued holomorphic function # on M. Let U be a
compact neighbourhood of a point of M. supp R( p), p €U, is contained in a

fixed compact set KC M. If gE&)l’(M) vanishes on a neighbourhood of K,
then u(g)=0 since u(g) is holomorphic and vanishes on U. Let 2 be a re-
latively compact open neighbourhood of K. Choose o € D(2) such that a=1
ona neighbourhood of K. Let us consider a Banach space C(2) of continuous
functions on 2, and define a continuous map v: C(2)—> H(M) by the relation
v(§)=u(ag), ¢ € C(2). 1If ge H(M), then ge C(2) and u maps (1—a)g into 0,
which implies v(g)=g. Thus v is onto, and therefore an epimorphism. Con-
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sequently H(M) is isomorphic with a Banach space. Since H(M) is nuclear,
so A(M) must be finite-dimensional, which is a contradiction.

ProrosiTion 18. Let E be an (F)-space. Suppose M is open. The equation
(4) admits a solution for any f € Dp(E).

0,1

Proor. We have only to show the map 0: D)@ E—> Dy, SE is onto. The
sheaves 9(&,,QE) and H(D,QE) are fine, so from the exact sheaf sequences

0> DANBE) > DEGGE) D> HEwDE) 0
0 - DAy D E) > NDYyBE) > 9Dy SE) 0

we have the exact sequences of cohomology groups [ 6, p. 34]

. _ 0,1 0
0> AuBE—— EyDE2— EyDE—— H' (M, D(HySDE))—0
0> XD E— Dy E-2 DS E—2 > H (M, DK S E)) 0.

_ 0.1
Since E is an (F)-space, the map 04: &EyRQE—->ERE is onto [5, p. 387,
whence H'(M, O(XuRE))=0. This together with the last exact sequence
implies that the map 0,=0: D}, SE— D), QE is onto. Thus the proof is com-
plete.

Hitherto we have considered the holomorphic representations for distri-
butions. However, the same reasoning will be applied to the representations
for currents of degree 1. In the beginning of this section we have discussed
the boundary values of currents on an open subset with regular boundary in
a differentiable manifold. From these considerations, given a current

1
vy € D'(I'), the statement that y is representable by a holomorphic form on
M\ I' will have a definite meaning. In the following we shall enumerate the
analogues of Propositions 16, 17, 18 and Theorem 4 without proofs.

1
ProrosiTioN 16. A current y € O'(I") is holomorphically representable i f
and only if the equation

do = — H(r) )

1,0 1,1 1,1
admits a solution v ¢ D'(M), where H(y) € D'(M) denotes the direct image in-
duced by the injection I" — M.

1
Prorosition 17, A 7 € DW(E) is holomorphically representable if and
only vf the equation

95 = —(HR1)F) 6)
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1,0
admats a solution @ in Dy(E).

Tueorem 4. Let E be an arbitrary quasi-complete locally convex Haus-
dorff topological vector space. Then the equation (6) admits a solution for any

1
7 € Dr(E) if and only 1if the following conditions are satisfied according to the

cases;
(a) when M is open, the space of holomorphic forms has a topological sup-

plement in the preimage 5‘1(}'11(513([ ) which is a closed linear subspace of
G (an).

(b) when M is compact, 7 satisfies the relation
S? — 0.

Prorosition 18, Let Ebe an (F)-space. Suppose M is open. The equation
1
(6) admaits a solution for any 7 € Dp(E).

The rest of this section is devoted to the considerations in the z-place C,
the simplest example of an open Riemann surface.

Given [ € &(C), we consider the equation: 0g=1dz or %ﬁi =1. If we use
z

i, we obtain a solution g=%*l, which

a fundamental solution 1 for —
Tz 0z

can be written in the form:

g=— 277:% dz¥ldz,
where the symbol *; means the x;-convolution considered in R. Shiraishi [23,
p. 1487]. 1In fact, by the definition of *; we have

1 danlaz = (%*l)*‘l(*dz/\*dé)
- (%*l)*—l(idz/\(—idz))
- 2i<%*l>*'1(dx/\dy)= —2i(%*l>.

We shall first consider the holomorphic representation of a distribution
f on a unit circle /. Owing to Proposition 16, we are led to solve the equa-

tion (3). supp %’Il( f)CTI, so we see that

dzi H( f) € D(C)

&= 27iz
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is a solution. A precise interpretation can be given to this expression in ac-
cordance with the idea of F. Norguet [13, p.15]. Let z be the map:
CxI 3(z,0)>z+e%€C. From the definition of *;-convolution, a simple

1
57 dz N f(0) by

calculation shows that the expression is the direct image of

1. dz N\ f(6)> in notation. If we decompose u

the map u and written u<
27niz

into v and w:
CxI'>CxI'*C,

where v maps (z, 0) into (z+ €%, §) and w is a projection, then we can write

77}iz dz /\f(0)>> ’

1 0,1 o o
gz e H(f)=w <U<2

from which, after a calculation, we can conclude the following

ProrosiTiON 19. Let f be any distribution on a unit circle I'.  If we put

_ 1 1) .
8= 5> gr P dg, (Cauchy integral)

where the integral means the partial integration in the sense of L. Schwartz
[18, p. 130, then g satisfies the equation

dg=—H(f),

and therefore f is holomorphically representable by the holomorphic function g
restricted to C\I'.

If we consider any vector-valued distribution f on a unit circle I, we
have an analogue of Proposition 19. Theorem 4 implies then that the space

of entire functions has a topological supplement in the space 5‘1(0571(@’(1“ )))-

Next we consider the case where I" is the real axis R. Let 9D;: be the
space of summable distributions on R.

DeriNiTION 2. Let k be a positive integer. A distribution fe€ D'(R) is
called to be of class k iof f€(x—i)*Dj1. We denote by Kj, the set of distribu-
tions of class k.

XK} is assumed to have the image topology by the map D713 g—(x—i)g
€ gc,; The dual space (X,). with the compact convergence topology is

A with the image topology defined by the map &,5¢—>-— O —z)"

(x— (x—0)t
o= z)’/g We can show that XX is the strong dual of (XX}). so that the space
X, is essentially the space O, introduced by H. J. Bremermann [ 2, p. 54].
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In the following, for the sake of simplicity, we shall write % for pv%.

Prorosition 20. Let f € D'(R). Then the following conditions are equi-
valent :

1) fand -}6— are composable.
@ feki.

3) fxpe(x—i)L" for any ¢ € D.
(4) fxpe(x—i)L' for any ¢ € &.
B) f and % are & -composable.

6) f:R0,and % are composable.

@ fr ks

with respect to t.

€Dy, (the multiplicative product) is partially summable

Proor. (1)—(2). Since f and % are composable, we have

f(% *gb) € Dy for any ¢ €.

Consequently

e ((x - i)(% *¢>> c D).

xX—1

If we choose ¢ € D so that ¢ =0, but not identically vanishes, then %*g{; €RB
and for sufficiently large |x| there exists a positive constant C with
‘(x—i)(% w).‘;_c, and hence f € XK.

(2)—>4)—>(3). fis written in the form f=(x—i)g, g€ D;. Then we
have for any ¢ € &

[ro=(xg)*p—igxd
= x(g*¢)—g* xp—ig*ed
=(x—i)(g*P)— g*x¢,

where x¢ € & and gx*¢, gxx¢ € L', and therefore fx¢ e (x—i)L'. (4)—(3) is
trivial.

(4)—>(5). For any ¢ €D, (x—i) (%f *gb) € &, therefore for any ¢ € ¥ we
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have

() e L

which shows that f and —%c— are %’-composable.

(6)—>(1) is trivial.
(3)—(2). Let K=[—1,1]. The linear map ¢ >h=f*¢ of Dg into the

Banach space (x —i)L' with norm ||a||= S ‘;fi—l ‘ dx is continuous, and hence it

is continuous in the topology of Dy induced by D% for some positive integer
m. We can find u € D% and & € Dy such that

0= Driu + ¢
Then
f=f*0=D""*fxu)+fx&.

Since fxu, fx&€(x—i)L' and D"**(fxu)€ (x—i)Dj, consequently we see
that f e XK.

Therefore we have shown that the conditions (1) through (5) are equivalent.

Before proving the equivalence of conditions (6) and (7), we note that a
distribution g€ D'(R,) is summable if and only if g(x)®J, € D;, is sum-
mable. In fact, g(x)®Q0, € (D1),,, means that (g(x)R3,)*(d(x)Rd(») € L,
for any ¢ € D, and ¢ € D,, that is, (gx¢)¢(y) € L', which is equivalent to the
condition that g*¢e€ L' for any ¢ € D, and, in turn, to the condition that
g€ D

(6)2(7). The condition (6) means that

(f:0,) <_1—*¢> € (Do, forany ¢¢D,,,

that is,

(fgg - f((‘;%){g deds)®3, € @),

which is equivalent from the above remark to saying that

f,ggﬂ(;%ty)dxdye@gl,

which means that f ’.71—2 €D; ,,, is partially summable with respect to ¢.

@2 (7). For any ¢cD,,, if we put C(x)=gg - (: )

(x—i)¢(x) € &, so we see that (2) implies (7). If we take ¢=>0, but =40, then

dtds, then
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for sufficiently large | x| there exists a positive constant C with |(x—i)Z(x)]|
= C, so we see that (7) implies (2).
Thus the proof is complete.

Now let f € K{. Then we have

H(f) = (fR0,)dz.

Proposition 20 implies that %5[1( f)and % are ’-composable and that Zg);

is partially summable with respect to :. With some modifications, we can
follow the process given for the preceding case where I is a unit circle. And
we obtain the following

ProrosiTioN 19'.  Let f be a distribution of class 1. If we put

1 (" f@ :
§=5 - S_w P dt, (Cauchy integral)

where the integral means the partial integration in the semse of L. Schwartz
[18, p. 1307, then g satisfies the equation
— 0,1
and therefore f is holomorphically representable by the holomorphic function g
restricted to C\R.
For our later purpose we show
Prorosition 21. Let fe K. Then the holomorphic function h(z)=

i r % dt, z € C\R, has the boundary values h. and h_:

21

h+= f ’“1*‘*]“:6+*f3

2 2mix
A S
A e A
1 .. 1 I 1 . . .
where 0, = — —— lim — — and 0_=— =~ lim —= -, the limits being taken in
271 e~v0 x+ 1€ 27l esho x— 18

the distributional sense.

Proor. We define the Fourier transform ¢=5(¢), ¢ €, by §(&) =

Sqﬂ(x)eif”dx and therefore the Fourier transform #, u € &/, is given by <, ¢>

=<u, $>,¢€ . Since f and % are &'-composable, it follows from [21,
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p. 2337 that the multiplicative product of F-'(f) and F-1(d,)= 517? Y(¢) exists,

Y being the Heaviside function.
Let Imz>0. We can write for any ¢>0

he(x) = h(x+ie) = f+ m

and therefore
F N he) = F ([ )re V()= e (T f)Y).
Consequently
he(w) = He *H(FHFHY)).

Since, for e—> +0, e=**(F-(f)Y) converges to FX(f)Y in &, so that A, con-
verges to h, =FH(F(f)Y)=0,xf in & as e—> +0.

Similarly we can show that A_ exists and equals f*0_. Thus the proof is
complete.

Every f e Q'(R) is holomorphically representable by holomorphic func-

tions on C\R since there exists a solution ge D'(C) of the equation %5;:

Ti( f&0,). But this is not true of E-valued distributions if E is taken to be

an arbitrary quasi-complete locally convex Hausdorff topological vector space.
Otherwise, by Theorem 4 the space H(C) of entire functions would have a

topological supplement O8 in JC=5*1(OHI(Q)’(R))), a closed linear subspace of
D'(C), which consists of the solutions of the equation %;5: —é—( f&®a,) for
arbitrary f € @'(R). We note that any solution g is holomorphic on C\R.
The map 9: JC—»ﬁ:OFf(@’(R)) being an epimorphism, we see that the map
D(R) > f->we W with 2 = L (f&0,) is an isomorphism. Let z, be a point

in C,. The linear form w— w(z,) is a continuous one since on H(C.) the com-
pact convergence topology coincides with the topology induced by QD'(C.).
Then we can write with a unique ¢., € D(R)

w(z0) = < f, ¢,>. )

Let z, run through a compact neighbourhood UC C.. Then the set {¢., € D(R):
z0 € U} 1s compact and therefore contained in some D(I), I being a finite
open interval. If f vanishes on I, but not on R, then by (7) we have w(z)=0
for every z, € U, and therefore w=0 on (C\R)\UI, where w is holomorphic.
Since f =}ir+rl()(w(x+ie)—w(x—ie)) in the distributional sense, we must have

f=0, a contradiction.
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Let us return to an open Riemann surface M. I  is a real analytic 1-
dimensional closed submanifold which need not be connected. When 7" is not
compact, the above reasoning will remain valid with some modifications in
proving that &(M) has no topological supplement in K. The map D'(R)— 0
considered above should be replaced by an isomorphism &'(7")—QJ, a topo-
logical supplement of #(M) in K. A point p, € M\I" is chosen and a linear

map w—w(p,) will determine a unique form ¢, € le(]") such that w(p,) =
<f,$s,>,and soon. f should be taken so that the corresponding w vanishes
identically on M\ 7". This will be possible since I" is not compact. On the
other hand, however, if I" is compact, X(M) has a topological supplement in
XK. In fact, if we let E be the strong dual of £, then E will be an (F)-space

and L=E. because of the fact that ‘ﬁ(@'(r )) is isomorphic with D'(I), of

which @(F ) is the strong dual. Now it follows from Proposition 18 and the
proof of (a) in Theorem 4 that #(M) has a topological supplement in K. A

0,1
similar argument is also applicable to #£(M). Therefore we have the follow-
ing

THEOREM 5. In the statements of Theorem 4 (resp. Theorem 4'), the condi-
tion (a) is equivalent to the condition:
(&) When M is an open Riemann surface, I' is compact.

6. Slowly increasing holomorphic functions on a unit disc

Let D={z:|z| <1} be an open unit disc and let "=0D be its boundary.
This section is primarily devoted to the study of the distributional boundary
values of elements of (D) or X p(E), E being a quasi-complete locally convex
Hausdorff topological vector space as before.

Let @ € Hp(E) be an E-valued harmonic function on D and put i,(60)=

i(re'?) for z=re’’, 0=r<1. i, denotes an element of Dn(E). lim i,, if it
7—1-0
exists in the distributional sense, is called the boundary value of i#. Owing

to Proposition 15 together with a conformal map, the existence of the
boundary value of # is tantamount to the existence of the boundary value of
each <, &>, & e¢E’. It follows from a result of L. Simon [247] that if
f € Dy(E) is the boundary value of i, then we can write

1 A—f@
=5 ) 1 vreosGnipds  15I<1 W

and, conversely, any i defined by (1) is harmonic and has the boundary value

Let he Xp(E) be an E-valued holomorphic function on D. % is also
harmonic on D. From the discussions just before, we see that % has the
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boundary value 7 on I" if and only if % is representable by the Poisson integral
in the form (1). Clearly % is given by the formula

- 1 ¢ fo

= ) 2

h(Z) ZEZSFC—de ( )

With necessary modifications of the proof of R. Shiraishi [22, p. 1037] we
have

Lemma 2. Let € Dp(E). If f has the value £(0) at z=1, then & defined
by (1) has the non-tangential value at z=1 which is equal to f 0).

Let I" be a simple analytic arc and GCC a domain which is situated on
one side of the arc and whose boundary contains an open arc /' I.

Prorosition 22. Let he H(E). Suppose kh has the boundary value
fe DH(E) on T, Iffhas the value é,€ E at z=z, ¢ I'o, then k has the non-
tangential value &, at z= z,.

Proor. We may assume, if necessary, by means of a conformal map
that G is a domain C D and that 7', is an open arc of the unit circle 7" and
zo=1€ T, We choose an a € D) with support C CI, such that «=1on a
neighbourhood of z=1. Putting gzaf, we can find g € Xp(E) and g ¢
Hp(E) such that g=(g1),—(g)-, where (g1), and (g)- are the boundary
values of g and g respectively. The functions gl(z)—ii(z) and g,(z) have
the same boundary value on an open arc 7', I, with 1 € I"’;. Then by Theo-
rem 3 there exists an analytic continuation @(z) of &1(z)—h(z) into @(z) across
the arc I';. As a result, (g1), has the value g0+ 0(1) at z=1. It follows
from Lemma 2 that z(z) has the non-tangential value éo+B(1) at z=1, and
therefore % has the non-tangential value &, at z=1, which completes the proof.

PropositioN 23. Let he Ho(E). Suppose k has the distributional boundary
value f on I'y. Let ACI, be a set of positive measure. If f has the value 0
at every point of A, then k vanishes on G.

Proor. By virtue of the preceding proposition, 4 has the non-tangential
value 0 at every point of 4. Owing to Privalov’s theorem [15, p. 2127, it
follows that % vanishes on G. The proof is complete.

DeriNiTION 3. A(2)= i} a,z" € H(D) is said to be slowly increasing if {a,}
n=0
18 slowly increasing, that 1is, there exists a positive integer k such that
{a,(L4+n)""} 0,12, 18 bounded.
Let &, be the set of slowly increasing & € (D) such that sup|a|*(1+n)*
<oo. ©is a Banach space with norm: ||a||,=sup|a|"(1+n)* S=\/S, is
k>0

defined as the inductive limit of the Banach spaces &,. © is a nuclear space
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since © is isomorphic to the space of slowly increasing sequences. It is
clear that & is invariant under differentiation and multiplication.

By means of a conformal map and from Proposition 9, A € Z(D) has the
boundary value on 7" if and only if there exists a positive integer k£ such that
(1—r)*n(z) is bounded on D. In fact, if (1—r)*A(z) is bounded, then Cauchy’s
inequality will show that {a,} is slowly increasing. The converse will follow
from the estimate of A(z).

We shall say that & € Zp(E) is slowly increasing if, given any continuous
semi-norm p, there exists a positive integer £ such that A—r)*p(h(2)) is
bounded on D, or equivalently, if {p(d,)} is slowly increasing, where d, de-
notes the Taylor coefficients of 4. In virtue of Baire’s category theorem, £
is slowly increasing if and only if % is scalarly slowly increasing.

As an immediate consequence of these considerations we have

PropositioN 24. k€ Hp(E) has the boundary value on I' if and only if k is
slowly increasing.

It follows from this proposition that & has the e-property. In fact, let
g€ Dp(E) such that g is scalarly a slowly increasing holomorphic function,
then g e Lp(E) since H(D) has the e-property and therefore ge S(E).

Remark 3. Let ¢>0 be fixed. If he H(D) is slowly increasing if and
only if there exists a positive integer k£ such that

(1—r)t Sz \hGe®)|cdo<M, 0<r<1 3)

for some constant M. It is almost trivial that every & € & satisfies the condi-
tion (8). Conversely, suppose & € (D) satisfies the condition (2). |A(z)|¢
being subharmonic on D, the inequality

A 1 . 2 pz_rz 1
i0 & iry| & —
(e[ =5 hoe™) || s =it 0= D
yields
, 21y
0 &
|hre) | = -~

Let m be a positive integer ‘;%(k+1). It follows that (1—r)"A(z) is bounded
on D. The condition (8) implies that the Hardy class H; is contained in &.
2 .
In fact, by definition, & € A, if lim 3 |h(re?®) | £d6 < oo.
r—1-0/0

Remark 4. Let h € &. If A(z) has no non-tangential value at any point
of I, then by Lemma 2 the boundary value of 2 on I” has no value at any
point of 7. We can really construct such an # by using N. A. Davydov’s
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theorem: For any sequence {a,} of non-negative numbers satisfying lim a,
@nf

N—oo

= oo, lim ¥a, =1, there exists a subsequence {a, } such that for any sequence

72— 00
{a,,} of real numbers, the function f(z):g_,‘lanke"ankznk[ankj is holomorphic on

the unit disc D and | f(z)| diverges uniformly on a sequence of concentrated
rings to infinity [15, p. 119]. As a result, the Nevanlinna class N does not
cover &. In fact, recall that A ¢ #(D) is said to belong to the Nevannlinna
27 i
class NV if lim SO log* |A(re’®)| df < oo, and that any & ¢ N has non-tangential
n-1-0

1
value at almost every point on 7. On the other hand, e1-7 €N, but ¢&. We

note that N is not invariant under differentiation.

Let us recall the definition of the multiplicative products of distributions
defined on a non-empty open subset 2 CRM. Let S, Te¢D'(2). The mul-
tiplicative product S-7T in the sense of Hirata-Ogata is defined as the dis-
tributional limit of (S*p,)T for any J-sequence {p,}, if it exists [ 21, p. 227].
On the other hand, in our previous paper [8, p. 161 ] we have considered the
multiplication invariant under diffeomorphism which covers multiplication in
the sense of Hirata-Ogata. The multiplicative product S-7T was defined there
as the distributional limit of (S*p,)T for any restricted d-sequence {p,}, if it
exists [21, p. 95]. We note that these multiplications are of local character.

Let us denote by &, the set of the boundary values h. of he&. It is

clear from the Cauchy integral formula (2) that if we write A(z)= ianz”,
n=0

then i, = 3 a,e™’, where the series converges in the distributional sense.
n=0

ProrosiTiON 25.  For any fi, f2 € €, the multiplicative product fi-f»
exists. Moreover, f1, f are the boundary values of hi, hy € & respectively, then
f1f2 18 the boundary value of h=hih;.

Proor. Let

oo

fi=Fae, fo=Tbe. 4)

v=0

f1and f; are considered to be periodic distributions on R with period 2z.
We shall show that f;- f; exists in the sense of Hirata-Ogata. Let o, be any
d-sequence with supp 0, C[—1, 1]. Since the series (4) converge in the dis-
tributional sense, we can write

© 2 )
fl %0, = Z auetug S p,,(t)e"”’dt
v=0 0

=2r Y a,c,,e"?,
pprs
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and

(fi*xon)f2= i 271(aoCn,0b, +a1¢,,1b, -1+ +a,c,,bo)e’™’
Py

where c, , is the Fourier coefficient of p, as a periodic function with period

27, {c,,,} is a rapidly decreasing sequence such that |c, , | 2‘21—71 and limc,,

= 51; We shall estimate the coefficients of (4). If h; € &S, hy € S; then we

have with constants 4, B
la,A+»)* =4, [b,A+»)'|<B.

Consequently |d,,|<AB(1+v)**'*! and d,, converges to aob,+aib, 1+
+a,by as n—co. It follows that lim(fi*xp,)f> exists in the distributional

sense and
fl-fz = zo(aob,, +ab, 1+ "'+a,bo)ei”9.

The last part of the statement is clear. Thus the proof is complete.

TueoreM 6. Let G and Iy be the same as in Proposition 22. If h,,
hy € H(G) have the boundary values fi1, f» on I'o, then the multiplicative product
f1f2 exists.

Proor. The multiplicative product being of local character, we may as-
sume, if necessary, by means of a conformal map that G is contained in D and
I’y is an open arc of the unit circle . We choose an « € D(I") with support
C I’y such that =1 on an open arc I';CI,. Putting gi=af1, g.=af2, we
can find £(z), &x(z) € (D) and 5,(z), 72(z) € H(D°) such that

& =ED:—()-, g =(E2)—(n2)-.

There exist analytic continuations @,(z) and @,(z) of &,(z)—hi(z) and &x(z)—
ha(z) respectively across the arc /', and we have on I,

S1(0) = (£0).(0)— 0:1(e”),  f2(0) = (£2).(0)— Ba(e™).

It follows from the preceding proposition that the right-hand sides of the
equations have the multiplicative product, and therefore f;-f; exists on /',
Since the multiplicative product is of local character and 7", is chosen so as
to contain any given point of /"y, we can conclude that fi-f> exists on [.
Thus the proof is complete.
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Remark 5. If we consider the set 9 of distributions on "y consisting of
the boundary values of holomorphic functions from the same side of the arc
I'y, then M forms a linear space and, in virtue of Proposition 25, the multi-
plication defined on 9t is associative.

Remark 6. Let I'=0D be the unit circle. For any f € D'(I"), the Cauchy
integral (cf. Proposition 19)

_1¢ f6
g_%gr‘cfzdc

defines holomorphic functions 4, € #(D) and h; € H(D°) when we restrict g on
D and D° respectively. The Fourier expansion of f:

= ;wa,,e’”"
yields
ha(z) = ni]oa,,z”, 2] <1
ha(z) = gla_,,z—", |z| >1.
Therefore

(h1)+ = ngoaneme’
(h)_= Y a_nei".
n=1

We note that /' € &, if and only if (h;)-=0. Basing on these considerations
we can easily verify the following properties:

(i) If f €&, is real, the f is a constant.

(i) If f e D'(I') is real, there exists a unique real ge @'(I") within real
constants such that f+ige®..

(iii) Let &_ be the set of the boundary values of holomorphic functions
on D°. If geS_(resp. € &,) has the multiplicative product with every f € &,
(resp. € &), then ge C*(I).

7. Holomorphic functions on a half-plane

Let C be the complex plane with generic point z=x+:iy and let C,, C_
be the upper and the lower half planes respectively. This section will be
mainly concerned with the #’-boundary values of holomorphic functions on a
half plane. The study of the space X;, which was introduced in Section 5,
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will allow us to make some improvements of the results of E.J. Beltrami-
M. R. Wohlers [ 1, p. 77] related to the Hilbert transform pairs.

Let H* be the space of A(z) € #(C.) with the property: for any y,>0
there exist a non-negative integer / and a constant 4(y,) such that

[h(x+iy)| < A(y0)| 2]’
on the half plane y=>1y, We shall denote by H~ the space of A(z) e H(C.)

such that A(z) € H*.
Consider an h € H*. If we put h.(x)=h(x +ic) for e>0, he € Oy(R) C L' (R).
If lim A, exists in the space %, then the limit is said to be the &#’-boundary

&—>+0
value of 4. Similarly for h € H-. Let 5 be the space of real numbers dual

to the space R. Let &, be the space of distributions on & with supports
C[0, ). Similarly we define @'. If ge D, and e **g is a summable dis-

tribution for every ¢>0, the Fourier-Laplace transform
Ll glz)= Sj e'*f g(&)d¢, Imz>0

is an element of H*. H™ is the set of such Fourier-Laplace transforms. It
is well known that /[ g] has an &"-boundary value if and only if ge (&)
and then the #’-boundary value is the Fourier transform of g. The Fourier-
Laplace transform /[ g] is defined for ge D. if e**ge D1 for every ¢>0
and the same is true of H-.

From the proof of Proposition 21, the above considerations on Fourier-

Laplace transforms yield the following
Prorosition 26. Let f € K{. The Cauchy integral (cf. Proposition 19")

_ 1 (= s
g_ZﬂiS—w t—z dt

defines hi € H" and hy € H- when g is restricted on C, and C_ respectively. h,
and hy; have the & -boundary values

(h1)+ = 6+*f:
(ho)- = 0_xf,
and therefore f=(h)). if and only ©f 0_xf =0, that s,

Imfzn_l—x*Ref,

Re f = —%*Imf.

Remark 8. It is easily verified that K{ > D7, DL’ 1<p<eo.
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The Fourier transform 4 of a function u € L?, 1<p<2, is a function € L,
P = p%l, however, if p>2, 4 is not a function in general [7, p. 105]. For

f € XK{, we can show that

—Lan, ey

[.3 (@i = 5 {10

where integrals are taken in the distributional sense and the left-hand side
is a continuous function of r. In fact, first we shall show that the multi-
plicative product F-*( f)-Y(é —r) exists for every ¢ in the sense of Hirata-
Ogata, which will entail that if we consider any g such that Dg=9"(f), the
multiplicative product J,-g exists in the sense of Hirata-Ogata [21, p. 2297,
so that g will be continuous [21, p. 2297. As feX{, f and "0, are &'-
composable, and therefore F-1( f)-F(e**"9,) exists in the sense of Hirata-

Ogata, while we can write F-'(e*70,)= i Y(é —1), which was to be proved.

By definition, g(v)— g(0)= S “1(f)(&)dE, and therefore S;Q‘I( f)(&)de is a

continuous function of . For simplicity, let z>0. Let x.(&)=Y(&)— Y(é—7)
be the characteristic function of the interval [0,7]. We can write [9, p. 184 ]

[ n@de= " n@d (e

On the other hand, for any 6-sequence {0,} we have x,-F~'( /)=lim(x,*0,)F (1)
and therefore

[" n@F (@ =1im <F(p), 220,>

=lim <f, 2z (x,)F " (0,)>.

Since F'(x,) = i ¢ fl;l €0_, and J'(p,) € B converges to —217 in &,, so

2nd Y (x,)F 1(p,,) converges to J~Y(x,) in O_; [2, p. 54]. Then from the above
equations we obtain (1.) The continuity follows also from the right-hand side

—ixT

of the relation (1), because if ¢ — ¢, 1converges to E_—_%.;C_—l in 0_, as

easily verified.

The following proposition is the analogue of Proposition 20 and will be
proved in a similar way

ProrosiTiON 27.  Let fe€ D'(R) and k any positive integer. Then the
Jollowing conditions are equivalent:

1) fand D"‘l% are composable.
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@ feXi
(3) fx¢ € (x—i) L' for any ¢ € D.
@) fxp€e(x—i)'L* for any ¢ € &.

(B5) fand D’H—i— are &' -composable.
6) f:R0,and % are composable.
@) f,-(?_i55 € D; .+ (the multiplicative product) is partially summable

with respect to t.

PropositioN 28. Let f € K;, k=1. The integral
DY SO,

271 Jr(e—2)*

g="

determines h, € H* and h, € H- when g is restricted on C. and C_ respectively.
Then the boundary values (h,), and (hy)- exist:

(hy), = D*'0.x f,
(ho)-=D*10_xf

and D*'f=(hy), —(hs)-. Therefore (h)).=D*"'f if and only if D*'0_xf=0,
that 1s,

07— L (5L mey)
Re D*-f = — %(Dk-l%*lmf) .

This is also equivalent to the condition that f is a boundary value of an h € H*.

Proor. The two tempered distributions are &’-composable, then their
Fourier transforms have the multiplicative product in the sense of Hirata-
Ogata [21, p. 2337. From this fact together with the formulas F-(D*-1§,)

B _Z}E(ié)k_ly(f) and 9—1<%%>=(—i)k5k_18'65Y(5) for ¢>0, we have

(R r) - o1

— e_Ef(g~I(Dk_1§+*f)).

Therefore h,=L[J'(D*0,xf)] belongs to H* and has the boundary
value D*"'0 xf. The same is true of hy=L[F H(D*10_xf)].

The rest of the statement in our proposition is clear except the last part.
f is a boundary value of an he H* if and only if F'(f)eD.N¥. Let
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(hy),=D*'f. Then it follows that &**J-!( f) and therefore 3'(f) € D. NS
Conversely, let f be a boundary value of an h € H*. I (f)e D .N&". Since
feXKi, FHf)E11—-Y) exists. If we take a 0-sequence {p,} such that
supp 0, C (0, o), then J'(f)-&'A—-Y)= 1"im(9“1(f)*0n)$"‘1(1 —-Y)=0.

Consequently D*~'6_x f=0, which completes the proof.

Proposition 28 is an improvement of a result of E.J. Beltrami-M. R.
Wohlers [1, p. 78], where f is taken from (x —i)*~'Q;. properly contained in
Ki=(x— i)' D).

ProrosiTionN 29. Let f € K. If wetake f suchthat f=x""'f, then f € Xj.
The integral

_ZES‘” J@ 4,

&= 27Tl —o b —2Z

determines h, € H* and h, € H~ when g is restricted on C, and C_ respectively.
Then the boundary values (hy). and (hy)_ exist:

(h). = 2" 70+ f),
(ho)- = x* (0 -*f)
and f=(h),—(hs)_. f ts a boundary value of an he€ H* if and only if

x*-X(0_xf) is a polynomial. And if this is the case, we can choose f so that
x* 1 0_xf)=0.

Proor. Evidently f e XK. It follows from Proposition 26 that (k,), and
(hs)- exist with the formulas described in our proposition. f is a boundary
of an h € H* if and only if h, is a polynomial in z. This will follow from
Proposition 80. A, is a polynomial if and only if (A;)_ is a polynomial in .
Let h; be a polynomial, then %Sw zji(—ti)}—/ dt—0 for y——co. Therefore
hy(z) must be of the form

hz(z) = Clzk_z-l— szk_3+ R Chr—1.
If we use the formulas

: S‘” 00 gy — (=171 1 Imz<0

271 ) t—2z 27 YV

our last statement will easily follow.

We now turn to an extension theorem of Carleman’s type for &’'-conver-
gence. To do so, we shall first show the following

Lemma 3. Let h € H(C) and I=[ —a, a ] with a>0. If the function
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h'gp = S_ hx—' +iNHa)ds',  ¢eD;

18 a polynomial in z=x iy, then h(z) is also a polynomial in z.

Proor. Let %3, be the space of polynomials in z of degree <<n. P, isa
finite-dimensional Banach space. ;is an (F)-space and the map: @D;3¢—
hx'¢p € D'(C) is continuous. Then, owing to Theorem 4 of Grothendieck [16,
p. 167, the hypothesis ~A+'¢ € \US, implies A+'¢p € some P, for every ¢ € D;.

Take a p € D; such that p=0 and Spdle. If we put p,;%p(%) for

0< <1, then Ah+'p, € B, converges to ~ in D'(C), which implies that the
polynomials a+'p, € P, converge in ,. Therefore A(z) is a polynomial in z,
completing the proof.

Prorosition 30. Let hy€ H* and hy € H. If hi(x+ie)—ho(x—ic) tends
to 0 in & as e— +0, then h; and h, are the restrictions of a polynomial in z.
Therefore the functions hy and hy have the same & -boundary value.

Proor. Since lim (hi(x +ie)—ha(x —ie))=0 in &, it follows from Proposi-
&—-+0

tion 13 that 4, and A, are analytic continuations of each other. Thus there
exists h € H(C) such that & equals h; on y>0 and h; on y<0. Let F(z)=
h'd(z), 6 € D(R). Then hx'¢p € H(C). Using the fact that F(x+ie)— F(x—ie)
tends to 0 in Oy as e— +0, we can show that

|F(z)—F(z)|=MQ+|z])° €))

for some positive M and s, which may depend on ¢. F(z)—F(z) is an entire
function whose real part coincides with that of F(z)—F(z). This together

with (2) implies that F(z)— F(z) is a polynomial in z. Consequently we have
with some constants M’ and s’

|F(2)=F)| | F(2)—=F(&)| + | F(5)— F(2)|
=2M'(1+|z])",

which implies that F(z) is a polynomial. Owing to Lemma 3 we see that the
function A(z) € H(C) is a polynomial. Thus the proof is complete.

ProrositioN 31. Let hy€ H" and hy € H~. If there exists an f € & such
that

E—+0
m &', then hy and h; have the &'-boundary values fi, f> respectively and f =

Si—fz
Proor. If we write g=d'(f) in the form g=gi— g, g€ DN,
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g €D NS, then L[ gi] and L[ g ] belong to H*, H™ respectively and L[ g,],
L[ g»] have the #'-boundary values and therefore

61113) (i~ LLgi D (x+ie)—(he— LL gD (x—ie)) = 0.

From this together with Proposition 30, it follows that #; and A, have the &'-
boundary values f, and f, respectively and f=f1—f>. Thus the proof is
complete.

DerINITION 5. We shall denote by H*(E) the space of h € He (E) such that
<h, &> € H* for every & € E’, and by H (E) the space of h € ¢ (E) such that

k(z) € H'(E).
Lemma 4. Let ﬁe%c+(E). If <h, &> has the &'-boundary value
<h, &>,=lm <k(x+ic), &> for every & € E', then there exists a unique
E-+0

h, € P'(E) such that k(x+ ic) tends to k. in &(E) as e— +0.

Proor. By Corollary to Theorem 2 the map E.» & — <h, &>, €D, is
continuous and <k, &>, ¢ &". Since the space & has an e-property, there
exists a unique %, € &(E) such that <#h,, & >=<h, &>,. From the relation

<F k), & >=F(<h,, &>), ¢ ck,

we see that F'(k.,) e #(E). FHe T '(h,)) = h(x+ic), where e *F(h.)
tends to FX(k.) in #.(E). Therefore h(x+ic) tends to %, in &(E). Thus
the proof is complete.

Tueorem 7. Let ky, € H*(E) and ky € H(E), Lf for every & € E’ there exists
a distribution i € & such that

lim < (Ay(x +ie)— ho(x —ie)), & > = f&
E->+0
in &', then hi(x+ie), hy(x—ic) have the limits fl, fz wn &L'(E) respectively as
e +0 and <fi—fo, &> =fs.
Proor. By virtue of Proposition 31, lim <% (x+ie), &> and lim <Zy(x
&-+0 &—+0

—ie), &> exist in & for any & € E’. It follows therefore from Lemma 4
that there exist f3, f; € #/(E) such that

limk(x+ie)=f1, limhy(x—ic)=f3
£=+0 &=+0
in #(E). Clearly <fi—f2, &>=fs. Thus the proof is complete.

The space K,(E) will be introduced in an obvious way, and we can show
the analogues of Proposition 28, but the details will be omitted.
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