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1. Introduction

This paper is concerned with the ideal theory of a commutative ring R
(which may not have an identity). We say that R is integrally closed in its
total quotient ring T (or, simply, integrally closed) provided R contains every
element a e T such that a is integral over R (i, e., an + rιan~1-\ [-rn = 0 for
some ri, ..., rn in R). A ring R is n-dimensional (n a, non-negative integer),
or has dimension n (dim R = n), provided there exists a chain P0<Pχ<
<Pn<R of prime ideals in R and there is no such chain of prime ideals with
greater length. If R has no prime ideals except R, then we say that dimi? =
- 1 .

A ring is said to have property (N) provided the following three condi-
tions are satisfied:

(1) The ascending chain condition on ideals of R (α.c.c.)

(2) Proper prime ideals (i. e. φR, (0)) of R are maximal.

(3) The ring R is integrally closed

and R has property (v) provided (1), (3) and

(20

hold in R. Properties (JV) and (v) are not equivalent even in a domain, but (TV)
always implies (v). We say that R has property (jt) provided every ideal of
R is a product of prime ideals of R (rings with this property are called ge-
neral Z. P. I. rings). It is well known that if R is a domain with an identity
then R has property (N) if and only if R has property (π). For a brief his-
tory see [3; 32], and in addition see [15; 53], [16; 2.75], [8; 80], [10], [14],
and [12]. Rings having property (π) have been studied extensively—for ex-
ample, see [12], [6; 579], [7] and [2]. In [6] Gilmer studied domains with-
out an identity which have property (π). In general (N) and (π) are not
equivalent in a commutative ring—in fact the ring of even integers has pro-
perty (N) and does not have property (π).

The purpose of this paper is to investigate commutative rings having

1) This author received partial support from NSF Grant No. 6467 during the preparation of this
paper.
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property (TV), (or property (v)) and such rings will be called TV-rings (v-rings).
In the case when R is a domain they will be called TV-domains (v-domains).

If R is a ring and 5 is a ring with an identity e containing R as a sub-
ring, then we denote {r+ne\r e R, n an integer} by R*(S). In case D is a
domain D* will mean D*(K) where K is the quotient field of D unless stated
otherwise.

We show that a domain D is an TV-domain if and only if D is a product of
distinct prime ideals in a Dedekind domain D which is a finite Z)*-module.
In order to prove the above theorem, we first obtain a generalization of a
theorem of Akizuki Q13 25] which states that an integral domain D with an
identity has the restricted minimum (RM) condition if and only if D satisfies
axioms (1) and (2) above. See Theorem 3 its corollaries and Theorem 25 for
this result. A ring R is said to have the (RM) condition, (or be an RM-ring),
provided R/A has the descending chain condition (d. c. c.) on ideals, for all
ideals AΦ(ϋ). In addition, some results are obtained concerning TV-rings (v-
rings) with zero divisors. In particular, if (1) and (2) hold in a ring R which
is not a domain, then (3) is valid in R. Finally we investigate rings with the
property that every proper residue class ring is an TV-ring.

In the last section we consider an alternative to our definition of TV-
domain. Condition (3) is replaced by:

(3') The ring R is integrally closed as an ideal (i. e. R contains all ele-
ments a of T for which there exist elements r, e R* for & = 1, •••, n such that

A ring has property (TV') provided (1), (2) and (3') hold in R. We show that
a domain D has property (TV7) if and only if D is an ideal in a Dedekind do-
main D such that D is a finite D*-module.

The notation and terminology are those of Zariski and Samuel, Commuta-
tive Algebra with the following exceptions—we do not require that a noethe-
rian ring have an identity element and we do not require that a domain have
an identity element. In particular we use C to denote containment and <
to denote proper containment. An ideal A in a ring R is proper provided
(0)<A <R. The ring of integers will be denoted by Z and all rings considered
are assumed to be commutative and have more than one element.

In addition, we use the term semi-prime ideal A to mean A — s[A. Also
we use the term special primary ring to mean a ring R with identity in which
the only ideals are R, M, and powers of M, where M is the unique maximal
ideal of R and jfeP' = (O) for some ί e Z. An ideal A is called regular provided
it contains a regular element of the ring.

2. Restricted minimum condition in domains without identity

In this section, we study the relationship between the a. c c. and the
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(RM) condition in domains without identity. We first prove four lemmas
which will be used in the main theorem.

LEMMA 1. Let S be a ring with identity e containing R as a subring and
let R* = JS*(5). Then every ideal of R is an ideal of R* and R*/R ̂  Z/(ή) for
some non-negative integer n hence, if P is a proper prime ideal of R* such
that R*>P>R, then Pis maximal.

PROOF. It is easy to check that every ideal of R is an ideal of Z?*. The
function/: Z-*R*/R, defined by f(m) = meJrR for m e Z, is a homomorphism
from Zonto R*/R; hence R*/R = Z/(n) for some non-negative integer n. If
P is a prime ideal in R* such that R*>P>R, then P is maximal in R* since
proper prime ideals are maximal in Z/(n).

LEMMA 2. Let R, S, and R* be as in Lemma 1. // PX<P2< <Pn<R
is a chain of prime ideals in R, then there exists a chain Pf <P2* < <P* °f
prime ideals in R* such that PfΓ\R = Pifor ί — 1, , n.

PROOF. We first prove the lemma in the case that 5 is a domain. For
i = l, •••, n set P?=PiRPnrλR*, where RPfl is the quotient ring of R with re-
spect to the prime ideal Pn. Since RPn^R*^)R and PiRpnΓ\R = Pi, we have
P?Γ\R = Pi for ι' = l, , n. We now consider the case in which S is a ring.
Denote by d the set of ideals Λ* and R* such that A:¥ΓΛR = P1. Since Pλ e d5

d is nonempty and there exists a maximal element Pf e d by Zorn's lemma.
A standard argument shows that Pf is prime in 1?*, and the proof is com-
pleted by applying the domain case to the domains R/PιCR*/P*-

LEMMA 3. Let R, 5, and R* be as in Lemma 1. // PφR is a prime ideal
of R and P* is a prime ideal of R* such that P*ΓλR = P, then P is maximal
in R if and only if P* is maximal in R*.

PROOF. We have R/PC R*/P* (to within isomorphism) and R/P is a non-
zero ideal of R*/P*.

If P* is maximal in Λ*, then R/P is a nonzero ideal in the field R*/P* so
R/P=R*/P* and P is maximal in R.

If P is maximal in R, then R/P is a field with identity /. It follows easily
that / is the identity of J?*/P*? and since R/P is an ideal of R*/P* contain-
ing the identity then R/P=R*/P* is a field and P* is maximal in 1?*.

LEMMA 4. Let R be a subring of a ring S with identity and let R* = R*(S).
If P and Q are prime ideals in R* such that R*>P>Q and P4JR, then
R>PΓ\R>QΓ\R.

PROOF. It is clear that R>Rr\P^)Rr\Q. Now suppose that PΓ\R=QΓ\R,
and choose r e R-(PΓ\R) = R-(Qr\R) and peP-Q; then rpe Pr\R=QΓ\R
which implies rp e Q and hence r e Q. But this contradicts our choice of
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r e R-(QΓ\R\ so PΓ\R>QίλR.

COROLLARY 5. Let R, S and R* be as in Lemma 1 then dimi?<dimi?*

PROOF. The proof follows directly from Lemmas 1, 2, and 4.

THEOREM 6. A domain D has properties (1) and (2) if and only if D* has
properties (1) and (2).

PROOF. If D has an identity, then D = D* and the theorem is valid. Sup-
pose D does not have an identity and that properties (1) and (2) hold in D
then D* is noetherian [5 184]. If P is a proper prime ideal in D* such that
P>D, then Pis maximal by Lemma 1. If P is a proper prime in D* such
that PφD, then DφPΓ\DZ)PDφ(ϋ) and by Lemma 3 we see that P is maxi-
mal. Finally we will show that if D is prime in Z>* then D is maximal. If
D is prime in D* and not maximal, then there exists a maximal ideal M of Z>*
such that D*>M>D>(0). By [16 240] there exists a chain Z>*>M>P>(0)
of prime ideals in D* such that PctD. But we have just shown that all prime
ideals of D* different from D are maximal and we have a contradiction.
Therefore, all proper prime ideals in D* are maximal. Conversely, if D* has
properties (1) and (2), then clearly D has property (1) since ideals of D are
ideals of D*. By the theorem of Akizuki [13; 25] 2>* has the (RM) condi-
tion, and consequently D has the (RM) condition since ideals of D are ideals
of 2>*. Let Pbe a proper prime ideal of D; then D/P is a domain with the
d. c. c. (and hence is a field) so P is maximal.

COROLLARY 7. T/iβ (i?M) condition holds in a domain D if and only if
conditions (1) and (2) hold in D.

PROOF. In [1 342] Akizuki proved that a regular RM-ring has the a. c. c.
In any ring with the (RM) condition proper prime ideals are maximal, so
conditions (1) and (2) hold. Conversely, if conditions (1) and (2) hold in D,
then they hold in JD* by Theorem 6. By [3; 29] D* is therefore an RM-
domain and D is an 7?M-domain.

COROLLARY 8. A domain D is an RM-domain if and only if D* is an
RM-domain.

3. Characterization of regular v-rings

THEOREM 9. If R is a ring with an identity and A is a regular ideal of
R, then A is a noetherian ring if and only if R is noetherian and R is a finite
A* = A*(R) module.

PROOF. If A is noetherian, then A* is noetherian by [5; 184]. Since A
is an ideal in R and in 4̂*, A is contained in the conductor of R over A*. Let
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d e R and let r be an element of A regular in R; then d-r eACA* which im-
plies that d e r~ιA*. Since A* is noetherian and r~λA* is finite over Λ*, we
see that r~ιA* is a noetherian ^*-module. But RCr^A*, so R is a noetheri-
an ^4*-module and hence R is a noetherian ring. Conversely, suppose R is
noetherian and R is a finite A* module; then by Eakin [4] A* is noetherian
and by [5; 184] A is noetherian. Note that we did not use the hypothesis
that A is a regular ideal in the proof of the converse.

LEMMA 10. If A is a regular ideal of a ring R, then the total quotient ring
of A is equal to the total quotient ring of R.

PROOF. Let r be an element of A which is regular in R, and let a be a
regular element of the ring A. If ax = 0 for x e R, then a(rx) = 0 implies that
rχ — Q and x — 0. Hence a is regular in R.

THEOREM 11. If A is a regular ideal of an integrally closed ring R, then
A is integrally closed if and only if A — 4~A in R

PROOF. Suppose A is integrally closed. If x e 4~A then xn e A which im-
plies x e A since A is integrally closed, and therefore A = \I~A in R. Converse-
ly, suppose A — iA in R and let x be an element of the total quotient ring of
A which is integral over A. Since R is integrally closed, it follows from
Lemma 10 that x c R. Furthermore, we have xn+1 + anx

n+ ...+ao=0 with
α, 6 A for i = 0, , n. This implies that xn+ι e A since x e R and A is an ideal
of R. Hence x e {A =A and A is integrally closed.

THEOREM 12. IfRisa regular ring with total quotient ring Γ, then R is
a regular v-ring if and only if all of the following hold'.

(a) R is a semi-prime ideal in a noetherian, integrally closed ring S with
identity;

(b) R*(T) = R*CSCT, S is a finite R*-module, and dim 5 < 2

(c) If Pis a prime ideal of S such that PT)R, then height P < 1 [17; 240].

PROOF. Suppose that R is a regular v-ring and let S be the integral
closure of i?* in Γ. If a 6 S and d e R, then da is integral over R and hence
da e R so R is an ideal of S. Since R is noetherian, it follows that S is no-
etherian and 5 is a finite i?*-module by Theorem 9. Theorem 11 gives us
^JR = R in S and R is a semi-prime ideal of 5.

To establish that dim 5 <2, let #* > P* > P* > P3* > P* be a chain of prime
ideals in #*. If Px* ^ R and R% φ R, it follows from Lemma 1 that P?t)R and
applying Lemma 4, we have RrλP?>RΓλP£>RΓ\P?, contradicting dimi?<l.
If P^Z>R and P£ = R, then there exists a prime ideal F% in i?* such that
Pi*>P?>P3* and P^φP* since #* is noetherian [17; 240], and Lemma 1
yields PξJjR; again we contradict dimi?<l. If PfjjR, it is clear that we
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have a contradiction by Lemma 4; hence dimi?* <2. Since S is integral over
Λ*, it follows from the lying over theorem [17; 259] that dimi?*^: dim 5 < 2.

If Pis a prime ideal of S such that PJ)R, then P* = PΓ\R* is a prime
ideal of i?* such that P*^DR; applying the lying over theorem and Lemma 4,
it follows from dimi? <;i that height P < 1 .

Conversely, suppose (a), (b) and (c) hold. Then R is noetherian and in-
tegrally closed by Theorems 9 and 11. Since S is a finite /?*-module, then 5
is integral over i?* [17; 254] and dimi?* = dimS<2 by the lying over theo-
rem [17; 259]. Now we wish to show that d i m # < l . Suppose Pi<P 2 <P 3

<R is a chain of prime ideals of R, then by Lemma 2 there exists a chain
P*<P?<P* of prime ideals of Λ* such that Pfr\R = P{. Now P^R since
height P* = 2 so that P3 = R which also yields a contradiction so dimi?<l.

By modifying the proof of Theorem 12 slightly, we can establish the
following result.

THEOREM 13: Let R be a regular ring with total quotient ring T and let
n be a non-negative integer. Then R is noetherian, integrally closed, and
dimR<in if and only if all of the following hold:

(a) R is a semi-prime ideal in a noetherian, integrally closed ring S with
identity

(b) i?*(Γ) = Λ*CSC T, S is a finite R*-module, and dimS<> + l;

(c) If Pis a prime ideal of S such that P^DR, then height P < n .

We remark that dim/?>0 in Theorem 13 since R is a regular ring (the
powers of a regular element form a multiplicative system S, and there exists
a prime ideal P such that Pr\S is empty). However, it can happen that R is
noetherian, integrally closed, and dim 2?=— 1 while Λ* is noetherian, integ-
rally closed, and dimi?* = l (e. g. the ring D/D2 in Example 15).

THEOREM 14. A domain D is an N-domain if and only if D is a product
of distinct prime ideals in a Dedekind domain D such that D is a finite D*-
module.

PROOF. Let D be an TV-domain with quotient field K and let D be the
integral closure of D* in K. Conditions (1) and (2) hold in D* by Theorem 6,
so that dimD = dimi)* = l. As in the proof of Theorem 12, D is an ideal in D,
D is noetherian, integrally closed, and a finite Z)*-module. Hence D is a De-
dekind domain, and D is a product of distinct prime ideals since VI) = D in D.

Conversely, D is noetherian by Theorem 9 and therefore D* is noetherian.
Since D is a finite Z>*-module, then dim/)* = dim2? = l. Hence conditions (1)
and (2) hold in D by Theorem 6, and D is an iV-domain by Theorem 11.

It is clear that an TV-domain is a v-domain, but the converse is false as is
shown by the following example.
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EXAMPLE 15. Denote by Z [ > ] the ring of polynomials with integer
coefficients and let S' = Vj(p, x\ i. e. Sf is the union of all of the maximal ide-

P

als of Z[_x~] of the form (p, x) where p is a prime number. Set S = Z [ V ] \ S /

and J=Z[x~]s, i e. the quotient ring of Z\_x~\ with respect to the multiplica-
tive system S. Let D = xJ. It follows directly that / = / ) * , / is noetherian,
integrally closed, and 2-dimensional. Furthermore, the maximal ideals of /
are exactly the ideals of the form (p, x)J9 where p is a prime number, i. e.
all of the maximal ideals of / contain D. There are infinitely many non-
maximal prime ideals of /[16; 240], the only prime ideals of J=D* which
contain D are maximal by Lemma 1, and D is prime in /. If P*φ(0) is a
non-maximal prime ideal of /, then DίλP* is a proper prime ideal of D; hence
D has proper prime ideals. If P is a proper prime of D, Lemma 2 implies
that there exists a prime ideal P* of / such that P*Γ\D = P; furthermore, P
is maximal if and only if P* is maximal by Lemma 3. It follows from Lem-
ma 2 that D is 1-dimensional however, no proper prime ideal of D is maximal.
Consequently, D is not an iV-domain; however, Theorem 12 implies that D
is a v-domain.

THEOREM 16. If A is a product of distinct prime ideals in a general Z.
P. /. ring R with an identity and R is a finite A* = A*(R) module, then A is a
v-ring.

PROOF. Since R is a general Z. P. /. ring, we have i? = i?iφ 0/2w where
Ri is either a Dedekind domain or a special primary ring for & = 1, •••,
n Q2; 89]. Set Ai — ARi, Af = Af(R{\ and note that A{ is a product of dis-
tinct prime ideals in R{ (including R{) for ϊ = l, , n. Since R is a finite J*-

t n

module, we have R = ΣsiA* where s{ e R for ι' = l, ••-, t. Now, s, = £ > ; . with
i y = i J

r, e Λy for i = l, , ί and it follows readily that Λ y= Σ r{.AJ and Λ, is a finite
/ = 1

^ module fory' = l, ra. If i?y is a Dedekind domain, then Aj = (0) or Aj is a
v-ring by Theorem 12. If Rj is a special primary ring, then Aj is the maximal
ideal in R, (or, Aj = Rj and ^ is a v-ring). Since Aj is a nilpotent ring, we
have dim Aj=— 1 or ^- = (0). Furthermore, Λy is noetherian, which implies
that Af is noetherian [4], hence Aj is noetherian [5; 184]. Since Aj is in-
tegrally closed (trivially) then Aj is a v-ring. Finally, A is a v-ring since a
finite direct sum of v-rings is a v-ring.

The converse to Theorem 16 is false; in fact, if A is a ring with an
identity then A is an ideal in a general Z. P. /. ring if and only if A is a gene-
ral Z. P. /. ring (as we will presently show), and in Example 19 we exhibit a
v-ring with an identity which is not a general Z. P. /. ring.

PROPOSITION 17. If R is a ring and A is a finitely generated ideal of R
such that A = A2, then R =
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PROOF. If R does not have an identity, let 5 be a ring with identity con-
taining R as a subring [11; 87] and set R* = R*(S). If R has an identity, set
R = R*. In either case, A is an ideal of Λ*. Since A = A2 there exists an
e e A such that ea = a for all a e A [5; 185]. If e* is the identity of JR*, then
e and e* — e are orthogonal idempotents and Λ* = ei?*φ(e* — e)Λ*. If follows
that Λ = e ί 0 ( e * - e ) 5 , eΛ = Λί, and R =

COROLLARY 18. If (0)φA = A2 is an ideal in a general Z. P. I. ring R,
then A is a general Z. P. I. ring.

PROOF. Since R is noetherian [12 125], it follows by Proposition 14 that
R = A(&R1 and A^R/R^s a general Z. P. I. ring.

EXAMPLE 19. Let x and y be indeterminates over a field F and set
R = F[_x, y]/O, y)2. The ring R has exactly one proper prime ideal P=
(x9 y)/(χ9 γ)2 and consequently R is its own total quotient ring and is integ-
rally closed. It is clear that R is noetherian and dimiu = 0, hence R is an N-
ring. Obviously R is not a general Z. P. I. ring since P2 = (0).

It follows from Theorem 14 that an iV-domain can be imbedded as an
ideal in a Dedekind domain (i. e. Z. P. I. domain with identity) in a special
way. However, Corollary 18 and Example 19 show that in general a v-ring
cannot be imbedded as an ideal in a general Z. P. /. ring.

We complete this section with a sufficient condition that D* be a Dedekind
domain when D is an TV-domain, and give two examples.

THEOREM 20: If there exists deD such that D — dD+dZ and D is an

N-domain, then D* is a Dedekind domain.

PROOF. It suffices to prove that D* is integrally closed since D* has pro-
perties (1) and (2) by Theorem 6. Let a be an element of the quotient field
of D* which is integral over D* then a = a/b with a and b 6 D and there exist
df e D*, i = 0, •••, n-1, such t h a t a» + d*-.1a

n-1 + .-- + d% = 0. Hence (da)n +

dd*-1(da)n~1+ •••-\-d$dn = 0 and da is integral over D, which implies da e D

since D is integrally closed. Therefore da— d(a/b) — kd+ nd where k e D and
n e Zand consequently a = a/b = (kd+nd)/d = k+n e D* and D* is integrally
closed.

EXAMPLE 21: This example shows that the domain D* of Theorem 14
may not be a Dedekind domain (i.e. D > 2)*). Let ΰ)=(l + V"5)/2, 5 =
{a + bω\a, be Z}5 25=(2), and (2)*={n + 2a + 2bω\a9 b, neZ}. Then (2) is a
prime ideal in the Dedekind domain S [9; 33, 66], S=(2)* + a)(2)* is a finite
(2)*-module, and 5^(2)* since ω ί (2)*. It follows from Theorem 14 that (2)
is an JV-domain, but (2)* is not a Dedekind domain since the integral closure
of (2)* is S (however, (2)* is an T^M-domain).
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EXAMPLE 22. In this example, we show that a prime ideal in a Dedekind
domain need not be an iV-domain (in fact, need not be noetherian). Denote
by Q the field of rational numbers, let x be an indeterminate over Q, and set
D=Q[_x^x) (i. e., the quotient ring of Q\iχ~} with respect to the prime ideal
(#)). The ideal Ό — xΏ is a prime in 5, and we will show that D is not noe-
therian by showing that Z>* is not noetherian. If pn denotes the nth prime
number and Λι = (x/2)D*, then define An for n>l by An = An-ι + (x/pn)D*.
It follows easily that χ/pn+ι does not belong to An for ra>l, and therefore
the sequence Ai<A2<- is strictly increasing—which implies that JO* (and
hence D) is not noetherian.

4. Characterization of iV-rings with proper zero divisors

We state without proof the following theorem, which is an easy consequ-
ence of Theorem 4 of [1 339].

THEOREM 23. Let R be a ring and let Pu , Pr be ideals of R such that
r

R/Pi is a field for i = l> •••, r and such that (0)= J]Pfκ Then there exists a

positive integer n such that R = RnφN where Rn = Rn+1 has an identity, N is

nilpotent, and in Rn, (0)=/JFfi where Pi = PiΓ\Rn and Rn/Pi is a field for
i = l

i = l, .-., r.
COROLLARY 24. Let R be a regular ring in which (0) is not a prime ideal.

If conditions (1) and (2) hold in R, then R has an identity.

PROOF. Since R is noetherian every ideal of R contains a product of
k

prime ideals, hence (0)=fjPi. The P{ are maximal by (2) and we apply
/ = 1

Theorem 23 to R and see that JV=(O) since R is regular.

THEOREM 25. If R is a ring with a regular element, then R is an RM-
ring if and only if conditions (1) and (2) hold in R.

PROOF. The result follows from Corollary 7 in case R is a domain, so
we may assume that (0) is not prime in R. If conditions (1) and (2) hold,
then Corollary 24 applies and R has an identity, and hence R is an RM-τing
[3 29]. Conversely, if R is an RM-rmg with a regular element then the
a. c. c. is valid in R [ 1 ; 342] and since property (2) holds in any RM-ring,
the proof is complete.

REMARK 26. We note that it follows from the proof of Theorem 25 that
a regular RM-ring, in which (0) is not a prime ideal, has an identity. How-
ever, an i?M-domain need not have an identity (e. g. the even integers).
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LEMMA 27. If R has the d. c. c, then R is equal to its total quotient ring
T (and R is integrally closed).

PROOF. If there are no regular elements in R, then R—T. If r is regular
in R, then (r)

n = (r)n+1 for some integer n. Hence rn = srn+1 + mrn+1 with s e R,
m e Z so that r = r(sr + mr) and e = sr + mr is an identity for R. It follows
easily that every regular element of R has an inverse in R and R= T.

PROPOSITION 28. Let Rbe a ring with a regular element which is not a
domain. Then R is an N-ring if and only if R is a ring τυith identity in
which the d. c. c. holds.

PROOF. Suppose R is an JV-ring. It follows from Theorem 25 and Re-
mark 26 that R has an identity. Now since R is a noetherian ring with an
identity and every prime ideal different from R is maximal, R has the d. c. c.
[3, 28].

Conversely, by [3, 28] R is noetherian and every prime ideal =̂= R is
maximal. By Lemma 27, R is integrally closed and therefore R is an TV-ring.

COROLLARY 29. IfRisa ring in which (0) is not prime, then R is an N-
ring if and only if conditions (1) and (2) hold in R.

PROOF. Suppose (1) and (2) hold in R. If R has a regular element then
Corollary 24 implies that R has an identity, and therefore R has the d. c. c.
by [3; 28]. It follows from Lemma 27 that R is an TV-ring. If R has no
regular elements then R—T^ its total quotient ring, and R is an TV-ring.

THEOREM 30. Let Rbe a ring in which (0) is not prime. Then R is an
N-ring if and only if R ~ Rx φ φ Rk φ TV where each R{ is a noetherian pri-
mary ring with identity and N is a noetherian nilpotent ring.

PROOF. Suppose R is an TV-ring. If R has a proper prime ideal P, then
k

( 0 ) = / / P / < where R/P{ is a field for ί = l, •-, h because every ideal in a noe-
i = l

therian ring contains a product of prime ideals. (It (0) = RsP£2 Pξk then
(0)^P 5 P| 2 .P^ where P is a proper prime, hence (0)=PsPp-..Pi*). By The-
orem 23, R = Rn®Nwhere Rn has an identity, and (0)=P{ι. Fe

k* in Rn where
the Rn/Pi are fields. Therefore Rn^Rn/F^® ®Rn/Pe

k* by [16; 176] and
each Rn'/Pe

i

i = Ri is a noetherian primary ring with identity. If R has no
proper prime ideals, then \j(O) = R and Rn = (0) so R = N.

Conversely, if -R = /?i© ®Λft©iV, where each R{ is a noetherian pri-
mary ring with identity, then it is clear that properties (1) and (2) hold in R.
We consider two cases. If TV=(O), then R satisfies the d. c. c. and R is an TV-
ring by Proposition 25. Second, if TV (̂O), then there are no regular elements
and R is an TV-ring since R is integrally closed.
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THEOREM 31. Let R be a general Z.P.L ring with identity and suppose
that R is a finite A* = A*(R) module where A is an ideal of R. Then A is an
N-ring if and only if one of the following holds:

(a) Either A is a Dedekind domain D or a product of distinct prime ide-
als in a Dedekind domain D such that D is a finite A*Γ\D module.

(b) The ideal A is a product of prime ideals in a general Z. P. I. ring Rι
such that primes different from Rι are maximal in Ru and R =

PROOF. Let R = Dλ 0 0 Dt 0 5i 0 0 Su where the A are Dedekind
domains (not fields) and the 5, are special primary rings (possibly fields)
[2; 84]. If A is a domain then ACD{ for some ί say ί = l or A is a field. By
Theorem 14, we see that (a) holds.

If A is not a domain, then by Theorem 30 some power of A is idempotent
and consequently AD{ is either (0) or D{ for ί = l, ..., t. But AD{ cannot be A
because proper prime ideals are maximal in A and Ac£Di, therefore (b) holds.
Note that there are only a finite number of such ideals in a given ring.

If (a) holds, then A is an TV-ring by Theorem 14. If (b) holds, then A is
noetherian by [4]] and A* has property (2) by [16; 259], so proper prime ide-
als are maximal in A by Lemmas 2 and 3. Since any ideal in a special pri-
mary ring is integrally closed, we see that A is an TV-ring.

5. Characterization of almost iV-rings

In this section, we investigate rings with the property that every proper
homomorphic image is an TV-ring.

THEOREM 29. A ring R has the property that R/A is an N-ring for every
ideal A =̂= (0) if and only if R is one of the following types of rings:

(a) R is a one dimensional noetherian ring with a non-maximal prime
ideal P=V(0) such that P 2 =(0), there are no ideals between P and (0),
and R/P is an N-domain.

(b) R = DφK where D is an N-domain and K is a field.
(c) R = RιQ) • •• 0 i ^ 0 7 V where each R{ is a noetherian primary ring

with identity and N is a nilpotent ring with the a. c. c.
(d) R is an RM-domain.

PROOF. The ring R is noetherian since R/A is noetherian for all A^(0).

Case 1. R is a domain. If R has a proper prime, then let P denote one
such prime. If 0 ^ % e P, then R/(χ2) is an TV-ring. Let φ: R -• R/(χ2) be the
natural map. Then φ(P) is maximal and P is maximal since P^)(x2). There-
fore, R is an i?M-domain by Corollary 7. If R has no proper prime ideals
then R is again an iϋM-domain by Corollary 7.
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Case 2. R is not a domain and R has at least one proper prime ideal P
which is not maximal. Let Pi^R be a prime of R. Then R/Pι is an TV-
domain and dimi?/Pi<l. There are no ideals between P and (0) because
P>A>(0) implies P/A is maximal in R/A which is a contradiction. There-
fore either P=P2 or P2=(0). If P2=(0), then R is a ring of type (a). If
P=P2, then by Proposition 17, i? = P0i?( l-e) . Since there are no ideals be-
tween P and (0) and P has an identity, P must be a field since any ideal of P
is an ideal of R. Therefore R^KφD, where K is a field and D^R/P is an
TV-domain, and R is of type (b).

Case 3. R is not a domain and every prime ideal of R except R is maxi-
mal. If R has no proper primes then V(0) = -R which implies that Λ* = (0)
since i? is noetherian, and J? is a ring of type (c). If R has at least one pro-
per prime ideal then (0) = Pβl'.. PΛ

β* where the P, are maximal and prime. By
Theorem 20 R = Rn($N where Rn has an identity and TV is nilpotent. In
Rn = R, (0)=i5ί1...i5|* such that R/Pi is a field. Therefore R^R/F{^@
φ i / P / * by [16; 178] and R^RX@ -"®Rk®TV where Ri = R/Pγ is a noe-
therian primary ring with identity for each ί and TV is a noetherian nilpotent
ring.

Conversely, suppose R is a ring of type (a) and let B =V (0) be an ideal of
R. If B = P, then R/B is an TV-ring by hypothesis. If B^P, then all proper
primes of R/B are maximal and R/B is noetherian. Hence R/B is an TV-ring
by Corollary 26, or R/B is a field which is an TV-ring. Suppose R^DφK,
where D is an TV-domain and K is a field. If i?=V(0) is an ideal of R, then
B = BX + B2 and R/B^D/B1φK/B2. By considering the cases 52=(0) and
B2=K, it follows easily (see Corollary 26) that i?/2? is an TV-ring. Similarly,
if R is of type (c) or (d) then it follows readily that R/B is an TV-ring for
each 5^r(0) in R.

6. An alternate definition of TV-domains

In this section, we consider a variation of the concept of TV-domains ob-
tained by replacing (1), (2), (3) by (1), (2) and

(30 D contains every element a of K (the quotient field of D) for which
there exist elements di e Dι for ί = 1, , n such that an + dίa

n~1+ • - • + dn = 0.

Since D is an ideal in D*, (3') simply states that D is integrally closed as an
ideal of Z>* in the sense of [17 349]. It is shown in [17] that an ideal D of
R has property (30 if and only if D is complete (i. e., D— f\ DRV, where 5 is

V<ES

the set of all valuations v of K non-negative on R and Rv is the valuation ring
corresponding to the valuation v).
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THEOREM 30. A domain D with quotient field K is complete (integrally
closed as an ideal in £)*) and has properties (1) and (2) if and only if D is an
ideal in a Dedekind domain D such that D is a finite D*-module.

PROOF. Suppose D satisfies conditions (1), (2) and (30. If D has an iden-
tity then D is a Dedekind domain. If D does not have an identity, then let
D be the integral closure of J9* in K. We will show that D is an ideal in
D; D = D' = (DByZ)DD where A denotes the completion of A [17; 347, 348],
therefore D is an ideal of D. Since D is an ideal of both D* and 25, D is con-
tained in the conductor of D over Z>*. Fix 0^=de D and let de D; then
dde D, which implies that da Dd^QD*^1 and DCD*d~\ Now D is noe-
therian so D* is noetherian [5; 184] and D*d~ι is a noetherian D*-module
since it is finite over D* [16; 158]. Hence D is a noetherian Z)*-module
[16; 156] so D is a noetherian ring since any ideal of D is a Z?*-submodule.
By Theorem 6, Z>* has properties (1) and (2) so D is an i?M-domain [3 29],
and consequently D is a Dedekind domain.

Conversely, if D is an ideal of a Dedekind domain D such that D is a
finite i>*-module, then D* is noetherian by [4]. By the lying over theorem
[16; 259] dimJD* = dim25<l so D*is an i?M-domain [16; 203] and consequ-
ently D has properties (1) and (2). Any ideal A in a Dedekind domain is com-
plete because Γ\ ARV = ΓΛADP = A [17; 84], so D is complete.

S
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