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Introduction

For a harmonic space satisfying the axioms of M. Brelot [1], one can de-
fine the notion of Wiener functions as a generalization of that for a Riemann
surface or a Green space (see [2]). The class of Wiener functions may be
used to see global properties of the harmonic space; in particular, in order to
show that a compactification of the base space be resolutive with respect to
the Dirichlet problem, it is enough to verify that every continuous function
on the compactification is a Wiener function (see Theorem 4.4 in [2]). Thus,
given two harmonic structures 9, and 9, on the same base space £2, it may
be useful to know when the inclusion BW ™V C BW ® holds, where BW ¥ (i=1,
2) is the class of bounded Wiener functions with respect to ; i=1,2). In
this paper, we shall give a sufficient condition for the above inclusion, which
includes the conditions given in [4] and [5] for special cases.

1. Harmonic spaces and Wiener functions

In this paper, we assume that a harmonic space (£, D)={D(G)}c:opens
satisfies Axioms 1, 2 and 3 of M. Brelot [1] and that £ is non-compact. For
an open set G in £, the set of all superharmonic functions on G with respect
to (2, ) is denoted by J5(G). The set of all potentials with respect to (&2, )
is denoted by 95. In general, given a family 4 of (extended) real-valued func-
tions, we use the notation 4*={fe€ 4; f=0} and BAd={f € 4; f: bounded}.

We furthermore assume that (2, ) satisfies

Axiom 4. 1ledy(2) and Py++~{0}.

Remark that under Axiom 4 the following minimum principle holds (see [1]):

If v € Jp(£2) and if for any ¢>0 there exists a compact set K in £ such
that v(x) > —e on £ —K, then » =>0.

Given an extended real-valued function f on £, we consider the classes

5 o . there exists a compact set K, in 2
Ba(N)={0 € I3 Gachthat v=fon 2—K, |

and
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Ws(f)={—v; v € We(—1}.
In case O0g( f) (resp. QW () is non-empty, we define
P =inf W (f) (resp. hf=sup Wo(f)).

It is known (cf. [2]) that 22 (resp. 4}) € H(2) if it exists. Remark that if fis
bounded, then both O8( 7) and Q04 () are non-empty and inf of <hP <hP <
sup of (by Axiom 4 and the minimum principle).

In case O0g( ) and Q9(f) are both non-empty and A7 =r?, we say that
f is $-harmonizable (cf. [2]) and denote hf =4? by h?. Obviously, any func-
tion in J§(L2) is H-harmonizable and if p € Py, then A5 =0.

The set of all continuous 9-harmonizable functions (called H-Wiener
functions) will be denoted by W®°. We define (the class of $-Wiener poten-
tials)

We={fecW> h?=0}.

It is known ([27]) that W?® and W{ are real linear spaces; if f, g€ W*° and 2,
u are reals, then A%, ,=2ah?+ £h2. Also, constant functions belong to W®

and 0 <<hP <1,
We can easily prove the following lemma:

Lemva 1. If fe W® and g is a bounded function on 2, then

hY.,=h?+h2 and A}, ,=h?+h%.

2. Comparison of the classes of Wiener functions

Now we consider two harmonic structures ; and 9, on the same space
£ (non-compact). We assume that both (2, ;) and (£, ©.) satisfy Axioms
1~4. For simplicity, we replace the index ©; by (i), e.g., we write J1,(G)
for Jg (), Wy (f) for e, (f), ' for A, ete.

LemMa 2. Suppose BW VCBW®, Then, BW Y CBW @ if and only if
P =hP for any fc BW®, where fi=h".

Proor. The “if” part is obvious. Suppose now that BW " C BW® and let
feBW®, Then f—fi e BW " CBW®. Hence h{¥; =0, so that h{¥’ =h{?.

Tureorem 1. Suppose the following condition (C) is satisfied:

(C) There exists p € P2y such that for any v € 3;,(2) with 0 v =<1 there
is w € 35, (2) with the property that |v—w|=p on 2.

Then BWYCBW® and BWY CBW .
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Proor. By Lemma 2, it is enough to show thatif fe WV and 0= <1,
then fe W® and b’ =h{?, where fi=h". Given such an f, let v € O9q,(f)
and 0 <v=<_1. By condition (C), there exists w € 33,(£2) such that |v—w|=<p.
Since w+p € J2(2) and w+p=v_> f outside a compact set in 2, we have
w+p € O)(f). Hence w+p =%, and hence v+2p =w+p=h?. Taking the
infimum of » € O8,,( f), we have

) hP+2p = R,

By applying the above result to the function 1—f, we have A{Y +2p =
h{%,. By virtue of Lemma 1, this inequality can be written as

(2) h(ll)_h}l)_i_zpzh(f)_h}z)‘
(1) and (2) imply
/_1}2) _2P§h}l) :fl gb(ff_’,) _I_h(ll) _h(12) +2p§h'(f2) + (1_h§.2)) +2p-

Since 1—4{? € Pz, it follows that f is H.-harmonizable and A =h{®. Hence
we have the theorem.

The following theorem is an easy consequence of the above theorem:

THEOREM 2. If there exists a compact set K (may be empty) such that
BJ,(2 —K)CBJ{,(2—K), then BW'YCBW™® and BW{® CBW .

Proor. Since D5, #{0} by assumption, there exists p € P,y such that p
=1 on a neighborhood of K. Given v € J{,(£2) such that 0 <v <1, let w=inf
(1, v+p). Since v|2—K € BS;,(2—K)C BS5 (2 —K), w| 2 —K € I(2—K).
Also, w(x)=1 on a neighborhood of K. Hence w € J¢,,(£2). On the other hand,
we see 0 <w—v=inf (1—v, p)=p. Thus condition (C) of Theorem 1 is satis-
fied, and hence our conclusion holds.

P. A. Loeb [ 3] defined that $, =9, if there exists a compact set K in £
such that 9,(G) C 3}, (6) for any open set G contained in 2 —K. In this case,
we have J5,(2—K) (I35, (2—K) (cf. [3]). Hence we have

CorOLLARY. If ©,=>9, in Loeb’s sense, then BW CBW® and BW (P C
BWY,

8. Applications to the solutions of Ju—qu=0

Now let 2 be a locally Euclidean space having a Green function (or a
hyperbolic Riemann surface) and consider the differential equation du —qu=
0 on 2, where ¢ is a locally Holder continuous non-negative function on 2.
Then the solutions of this equation form a harmonic space (2, 9,) satisfying



234 Fumi-Yuki MAEDA

Axioms 1~4 (see [4]). We denote by G?(x, y) the Green function on £ for
this equation.

If ¢; and g, are two locally Holder continuous non-negative functions on
£, then we obtain the following result as a consequence of Theorem 1:

Prorosition. If

62 (e, ) max (0= g2, 0) dy<+oo
Sfor some x € 2, then BWCBW™® and BW CBW ®, where we put H1=9,,
and ,=9,,

Proor. Under the condition of the proposition,

=67, ) max (g ()—g: (), 0) dy

(see [4] for the constant c,) is an ,-potential, i.e., p € D,,. Given v € J;,(2)
such that 0=<<v<1, let w=v+p. Then, in the distribution sense, we have
(cf. [4]) dv—q1v=0 and 4p—q:p=—max(q:—qz, 0). Hence

dw—gqyw=dv—qv+ dp—qsp
§(91—92)U_max(91—92, 0)=<0.

Thus w € J5,(2) (see [4]) and 0 <w—v=p. Therefore condition (C) of Theo-
rem 1 is satisfied and the proposition is proved.

CoroLLARY 1. If there exists a>0 such that g, <aq, outside a compact
set in 2, then BWY CBW® and BW" CBW 2.

Proor. We may prove only the case a—=1. In this case ¢;—¢.=
(a¢—1) g, outside a compact set. Since

SG‘” (%, Vg2(y)dy=ca

for all x € £ (cf. [4]), the condition in the above proposition is easily veri-
fied.

CoroLLARY 2. () For any q(=0), BWCBW'? and BW,CBW ¥ ; (b) If
[G(x, ) q(y)dy< + oo, then BW'?=BW and BW=BW,. Here, W (resp.
W) is the class of ,-Wiener functions (resp. $,-Wiener potentials) and W
(resp. W) is the class of ordinary Wiener functions (resp. Wiener potentials).

Remark. The above proposition and Corollary 1 show that our results
contain the results given by Hidematu Tanaka [5]. Also, Theorem 3. 1, (i)
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and Corollary 2 to Theorem 3.2 in [4] are immediate consequences of the
above corollaries.

Added in proof: We can improve Lemma 2 as follows: If B CBW®,
then BW{® CBW and h» =h{® for any f€ BW", where fi=h{".
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