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Introduction

It has been shown that the Kuramochi boundary of a Riemann surface
or of a Green space has many useful potential-theoretic properties (see [9],
[4],[11], ete.). In this paper, we shall give a few more properties of the
Kuramochi boundary.

We consider a Green space £ in the sense of Brelot-Choquet [37] and
denote by 2% its Kuramochi compactification of £ (see [4], [9] and [14] for
the definition). Let I" be the harmonic boundary on 4=2*— £, i.e., the sup-
port of a harmonic measure w=w,, (x, € £). By definition, /" is a non-empty
closed subset of 4.

Let K, be a fixed compact ball in £. For any resolutive function ¢ on 4,
let H, be the Dirichlet solution on £ —K, with boundary values ¢ on 4 and 0
on 9K, (=the relative boundary of K,). For the existence of H,, see e.g.[11].
If ¢ is a function on I and is the restriction of a resolutive function ¢ on
4, then H; is uniquely determined by ¢; we denote it also by H,. With this
convention, we consider the space Rp(I") of functions ¢ on I" which are
restrictions of resolutive functions on 4 and for which H, € HD,. Here, HD,
is the space of all harmonic functions z on £—K, having finite Dirichlet
integral D[ u ] on £—K, and vanishing on 9K,. Identifying two functions
which are equal w-almost everywhere, we can define a norm ||-]| on Rp(I") by

lell*=D[H,]

for ¢ e Rp(I).

In this paper, we shall show the following three properties: (1) The
space Rp(I") is a Dirichlet space in the sense of Beurling-Deny [1] on I;
(2) The capacity on I" associated with this Dirichlet space coincides with
the Kuramochi capacity (9] and [47]); (8) The solution of a boundary value
problem (of Neumann type) is expressed in terms of the Kuramochi kernel.

1. Dirichlet space Rp(I")

The following lemma is a consequence of Lemma 5.3 in 187 (also ef. [117]):

Lemma 1. There exists a constant M >0 such that
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o do= ol
for all o € Rp(I).

Let D[ uy, us ] be the mutual Dirichlet integral of uq, u; € HD, over £ —
K,. We define an inner product <., -> on Rp(I") by

<@1, 92> ZDEHzpp ngj

for ¢, ¢, € Rp(I'). Then, using Lemma 1, we easily obtain (cf. the proof of
Lemma 5.2 in [137] or Theorem 1 of [117]):

Lemma 2. Rp(I') is a Hilbert space with respect to the inner product
< o e >‘

Also we have

Lemma 3. If ¢ € Rp(I'), then ¢=min(max (¢,'0), 1) e Rp(I") and ||¢||<
llell-

Proor. Applying Lemma 4.9 in [13]to X=2 —K,, we have ¢*=max (¢,
0) e Rp(I') and ||¢*||=<|l¢||. Proposition 3.1 in [137] implies that ¢ =min(¢™*, 1)
is resolutive and H, is the greatest harmonic minorant of min(H,+, 1). It
follows (cf. Lemma 4.5 in [137]) that ¢ ¢ Rp (/") and D[ H,]<D[H, ], ie.,
lgll=lle*]l.

Now, let C(I") be the space of all continuous functions on I” with the uni-
form convergence topology and let Cp, (I )=C({") \Rp(I"). By Stone-Weier-
strass theorem, we have (cf. [10] and [117)

Lemma 4. Cp(I") is dense in C(I).
Next we prove
Lemma 5. Cp(I) is demse in Rp(I').

Proor. Let ¢ € Rp(I") be given and let u=H,. We consider a sequence
{K,} of compact sets in £, n=1, 2, ..., such that the interior of K, contains
K,_, for each n=1,2, ... and \ J;_,K,=82. Let u,=u®» in the notation of [4]
or [127]. Then D[u,]<D[u] and u,=u q.p.” on K,. Hence D[u—u,|<
2Dg g, [u].” By the definition of the Kuramochi boundary, each u, has con-
tinuous extension to 4. Let ¢, be its restriction to I". It is easy to see that
H, is the harmonic part in the Royden decomposition of u, on 2—K,. It
follows that H, ¢ HD,, i.e., ¢, € Cp(I"). Since D[ u,, u,—H, |=D[u,—H, ]
and D[ u, u,—H, ]=0, we have

0=D[u—H, J=D[(v—un)—(ua—H,,)]

1) q.p. (quasi-partout) means “except for a set of capacity zero”.
2) Dg_g,[u] is the Dirichlet integral of u over 2 —K,.
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=D[u—un]—D[u,—H, ]
=2Dg g, [u]—>0(n—>oc0).

Therefore ||¢ — ¢.||— 0(n—>c0).

Tueorem 1. The space Rp(I") is a Dirichlet space with respect to the
measure w.

Proor. By Lemmas 1, 2, 4 and 5, we see that Rp(I") is a regular func-
tional space with respect to » (see [5] and [8]). Lemma 3 shows that the
unit contraction operates on Rp(/"). Thus, by Theorem 2 in [ 8], we see that
Rp(I) is a Dirichlet space.

2. Capacity on the Kuramochi boundary

2.1. In case 2 is a Riemann surface, Kuramochi himself defined a ca-
pacity on his boundary ([9]), which coincides with the capacity defined by
Constantinescu-Cornea [4]. According to [4] (p. 185), the Kuramochi ca-
pacity C(0) of a closed set & on 4 is defined by

# 1s a canonical measure on 4 such that}
b

6(6)=sup{ﬂ<5>s [uN(E, a)du(@) =1 forall ac2—K,

where N(¢,a) (€€ 4,a€ 2—K,) is the Kuramochi kernel relative to K, (cf.
[9] and [14]). This definition is also valid in case £ is a Green space (cf.
[12]) and the whole theory in section 17 of [4] can be verified for a Green
space (cf. the results and methods in [2], [7], [10] and [12]). Note that
0. (&)=N(&, a) is a continuous function on 4 for each a € 2K, and in fact
9. €Cp(I"). For a non-negative measure x on 4, we denote by u, the N-
potential of x:

w@= | NG @du® (@eo-Ky),

where ¢, is the constant given in [13]. The set of all N-potentials is denoted
by P, (see [12] for this notation).

We know that C is a Choquet capacity and C(4—1")=0 (see Folgesatz
17.24 of [47]). Also, by Satz 17.3 and statements in p. 188 of [4], we have

Lemma 6. If u is a mon-negative canowical measure such that u, € HD,,
then C(0)=0 implies p(0)=0 for 0 C 4; in particular, the support of u 1s con-
tained in I'.

2.2. As we have shown that Rp (") is a Dirichlet space, we have another
notion of capacity on /" through the theory of Dirichlet space (cf. [17], 5], [6]
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and [8]): For a closed set ¢ in I,
C (@ =inf{|l¢||*; ¢ € Co(I'), ¢ =1 on 0}.

Now, let &(I") be the set of all signed Radon measures v on I such that
the mapping ¢ »f¢dy is continuous on Cp (/") with respect to the norm ||-]|.
For each v ¢ &(I'), there exists a unique element p, in Ry (I") such that

<pu,¢>=g¢ dy

for all p e Cp(I"). p, is called the potential of v in the theory of Dirichlet
space (see [1] and [6]). The following results are generally known (see [5]
and [8])):

Lemma 7. Let 0 be a closed subset of I'. Then there exists a unique non-
negative measure vs € & (I") such that vs (I =y;(0)= llo,,[I?=C (). Further-
more, 0 =p,,<1(w-a.e.) and there exists a sequence {¢,} in Cp(I") such that
0<¢,<1lon I, ¢g,=1o0nd for each n and ||¢,—o0,,||>0(n—o0).

Lemma 8. If C(0)=0, then o (0)=0.

3. Equality of C and C

First we prove
Prorosition 1. If v € E(I), then

HPK“):%SFN@’ Ddv(©) (ae 2—Ky).

d

Proor. It is easy to see that U,=H, (a € —K,) is the reproducing
function defined in [12] (=u, in [4]; ¢f. [11], Th. 10). Therefore

caH,(@)=D[H,, U,]
=D[H,, H,,]
=<0, ¢a>=8¢a dv:ng(é, a)dy (§).
As a converse, we have

Prorosition 2. If ux is a mon-negative canonical measure on 4 such that
u, € HDy, then p € &(I'); in fact

g(ﬂ du=D [qua u;t]

for any ¢ € Cp(I).
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Proor. By Lemma 6, # is a measure on /. Since the set of irregular
points on 4 has C-capacity zero (Folgesatz 17.26 in [4]), the extension of H,
by ¢ on I" (and arbitrary on 4—1I) is quasi-continuous (with respect to €) on
2% for each ¢ € Cp(I"). Hence, by Hilfssatz 17.3 in [4], [¢ du=D[H,, u,].
Thus |f¢ du|<VD[u,]-||¢|l, and hence x € &E ().

ProrosiTION 3. Any non-negative u € & (I') is a canonical measure.

Proor. By Proposition 1, H, =u, € PD,. Hence there exists a non-nega-
tive canonical measure 4’ on 4 such that u, =H,, (see [4],[9],[12] or [14]).
By the above proposition, # € & (I") and

(¢ dw=prH, 1,]=<g¢, 0,>=(0dn

for all ¢ €e Cp(I"). Since Cp(I") is dense in C(I") (Lemma 4), it follows that
#'=pon . Since both measures belong to & (I"), we conclude that z=#/, so
that x is a canonical measure.

THEOREM 2. C(0)=C(0) for any closed subset ¢ of I

Proor. Let x; be the non-negative canonical measure on ¢ such that
C(0)=x5(0)=D[u,,] (satz 17.6 in [4]). Let ¢ be the extension of u,, to 4
in the sense of [4]. Then, by the definition of x;, ¢s=1 q.p. (with respect
to €) on 8. On the other hand, the non-negative measure vy; given in Lemma
7 is canonical by Proposition 8 and u,, € HD, by Proposition 1. Hence, by
Hilfssatz 17.3 in [4], we have D[ u,,, u,,]=[¢s;dvs. Since ¢s=1 q.p. on 0,
Lemmas 6 and 7 imply that [¢sdvs=v;(0)=C(). Hence

CO)=D[uy, u,,].

On the other hand x; € &(I") by Proposition 2 and Proposition 1 implies
Hoy,=uy, as well as H,,,=u,,. Hence

D[ux,;a uv‘;]: <0X,y’ 0»5>~

Now, by Lemma 7, there exist ¢, € Cp(I"), n=1, 2, ..., such that 0<¢,<1
on ", p,=1 on ¢ for each n and ||¢,—0,,/|>0 (n—>c0). Then

<Oy 0,,> =liM< 0y, 0, > =1im[ @, dx;=x5(0)=C(0).

Thus, we have the theorem.

4. Remarks on normal derivatives on the Kuramochi boundary

In [137], we said that a signed measure v on 4 is a normal derivative of
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u € HD, on 4 in the weak sense if
D[u, H,]= —S(p dy

for all ¢ € C(4) such that H, € HD,. It is easy to see that in this case v is a
measure on /" and v € &(I), so that [¢pdv=<p,, ¢ >=D[H,, H,] for any
¢ € Cp(I"). Hence Proposition 1 can be interpreted as follows (cf. Satz 17.26
and Satz 17.27 in [4]):

Tueorem 3. If u € HD, has a normal derivative v on 4 vn the weak sense,
then v € &) and

1
w@== | Ne,odv© @ce-K).
dJr
Conversely, if v € &(I"), then there exists a unique u € HD, having a normal

derivative vy on 4 in the weak sense; in fact u is given by the above formula.

CoroLLArY 1. If uw € HD, has a normal derivative v on 4 in the weak
sense and if vy <0, then u=u_, € P,.

Conversely, using Proposition 2, we have

ProrositioN 4. Any function in D, \HD, has a mon-positive normal
derivative on 4 in the weak sense.

An w-measurable function 7 on 4 (or on /") is called a normal derivative
of u € HD, if

D[us H<p]: _S(QT do

for all ¢ e Rgp(I") (={¢ € Rp(I"); bounded}) (see [1387]). Using Lemma 5, we
can easily show that if ydw is a normal derivative of u on 4 in the weak
sense then 7y is a normal derivative of u on 4 (see Remark in p. 113 of [13];
cf. the proof of the corollary to Theorem 4. 1 in [137]). Thus Theorem 3 and
Proposition 4 have the following consequences:

CoroLrLARY 2 to Theorem 3. If 7y is an w-measurable function on 4 such
that ydw € &(I), then there exists a unique u € HD, having a normal deriva-
tive v on 4; in fact u 1is given by

w@=——{ V& @) r©do .

CoRroOLLARY to Proposition 4. If u € P, has a (function-valued) normal
derivative on 4, then it is non-positive (w-a.e.).
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Remark. The condition ydw € & (I") coincides with condition (77) in [13]

(p. 126).
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