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§1. Introduction

On the problem of finding bounds for dimensions of higher order non-
singular immersions of an n-dimensional €~ manifold M in Euclidean N-space,
Feldman (cf. [7, Theorem 6.27]) has obtained the following general result (cf.
also Pohl [10, Theorem 2.47]). Suppose p is a positive integer. Set C,.,,—1
=v(n, p).”

Tueorem (1.1) (Feldman) If either N<v(n,p)—n or N=v(n, p)+n,
there is a pth order non-singular immersion of M in Euclidean N-space.

For p=1, (1.1) says that if N>2n, there is an immersion of M in Eu-
clidean 2n-space, which is the classical Whitney’s theorem [157].

Suzuki (cf. [18], [14]) has proved several results on higher order non-
singular immersions of projective spaces in Euclidean spaces. The following
theorem [13, Theorem (1.2)7] is obtained by making use of Stiefel-Whitney
classes of higher order tangent bundles of real projective n-space RP”. In-
tegers s(n, p) and d(n, p) are defined by

s(n, p):max{i | 0<i§n,<c’“"”’j—i_l> <0 (mod 2)}

d(n, p)=max{i|0<i <n,( 1) 50 (mod 2}

Tueorem (1.2) (Suzuki) If p s odd, and if —d(n, p)<k<s(n,p), RP"
cannot be immersed in (v (n, p)+ k)-space without affine singularities of order

p.

Theorem (1.2) shows the impossibility of improving Feldman’s theorem
(1.1) in many cases of real projective spaces (cf. [13, p. 270 ).

The purpose of this paper is to establish some necessary conditions for
the existence of odd order non-singular immersions of RP” in Euclidean N-
space and to give non-existence theorems of the non-singular immersions by
studying homotopical properties of the stunted projective spaces. We obtain
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the following two results which are partial improvements of Suzuki’s theorem
(1.2). For integers m and n with 0 <m<n, let ¢ (n, m) be the numbers of
integers s such that m<s<n and s=0, 1, 2 or 4 (mod 8). We write simply
¢ (n) instead of ¢ (n, 0). Define an integer ¢ by

p=¢(n, m—1) if m=0 (mod 4),

p=¢(n, m) if m=0 (mod 4).
Tueorem (1.3) Suppose p is odd. Set m=s(n, p). If

Crippt+m=0(mod 8 and =0 (mod 2°°"),

then RP" cannot be immersed in (v(n, p)+ m)-space without a ffine singularities
of order p.

Tueorem (1.4) Suppose p is odd. Set m=d (n, p). If
Cpipp—m=0(mod 8) and =<0 (mod 2°°1),

then RP" cannot be immersed in (v (n, p) —m)-space without affine singularities
of order p.

After some preparations in §2, we give in §3 some necessary conditions
for the existence of odd order non-singular immersions of RP” in Euclidean
N-space. In §4 we establish a sufficient condition (Lemma (4.1)) and a neces-
sary condition (Lemma (4.2)) that two stunted projective spaces RP"/RP™ !
and RP"**/RP™'** are mod 2 S-related. We apply the method of Adem-
Gitler [27] to the proof of (4.1), and we make use of the Adams operation [1]
for the proof of (4.2). Applying the results obtained in §3 and §4 to the
problem of odd order non-singular immersions, we have in §5 some non-
existence theorems (Theorems (5.5)-(5.8)). In §6 we notice that James’
theorem and Sanderson’s theorem on the non-existence of immersions of RP”
in Euclidean space (cf. [9], [2], [11]) are also shown.

§ 2. Preliminaries

Let M be a C~ differentiable manifold of dimension n and let 7,(M) be
the bundle of pth order tangent vectors on M. Note that 7(M) is the tangent
bundle T(M) of M. The dimension of T,(M) is

CoitCroirzt +Crip1,p=Cripp—1,

which we denote by v (n, p). Let R" be Euclidean N-space and x1,..-, xx be
the coordinates of R". Define a bundle homomorphism, called the natural kth
order dissection on R", Dy: Ty, 1 (RY)——> T, (RY)(k=1) by
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Dk(Xk+ Z‘ail. . .ihl(@k“/@xil. . Ox,-kﬂ))———Xk,

where X, ¢ T;(R"). Set D\D;...D, ;=% , We say that a C~ differentiable
map f: M—> R" is a pth order non-singular immersion of M in R if the
bundle homomorphism V,7T,(f): T,(M)—> T(R") is injective or surjective
on each fiber according as v(n, p)<<N or v(n, p) =N respectively, where
Ty (f): Ty(M)—> T,(R") is the pth order differential of f. Clearly, the first
order non-singular immersion is an immersion or a submersion. The follow-
ing result is known (cf. [ 7, Proposition 8.4 ] or [ 13, Lemma (2.3) ]).

Lemma (2.1) Suppose that there is a pth order nom-singular immersion
of an n-manifold M in Euclidean N-space.

1) If NZ=v(n, p), there exists an (N—y(n, p))-dimensional vector bundle
a over M such that

T,(M)Da=N,

where D denotes the Whitney sum and where N means the N-dimensional
trivial bundle over M.

(2) If N=v(n, p), there exists a (v(n, p)— N)-dimensional vector bundle
B over M such that

T,(M)=B®DN.

Let ¢ be (the isomorphism class of) the canonical line bundle over real
projective n-space RP”. The pth order tangent bundle 7,(RP”) of RP” is
given as follows (cf. [13, p. 274 ).

Lemma (2.2) In KO(RP")

Cner,pS_l ifp 7:8 Odd,

T,(RP")=

Coipp—1 1f p 18 even.
Let w(a) denote the total Stiefel-Whitney class of a vector bundle «.
CoroLLARY (2.3) If p s odd,

w(Ty(RP")=(1+ x)Crr.s
where x 1s the generator of H* (RP"; Z,) =~ Z,.

§ 8. Necessary conditions for the existence of odd order non-singular
immersions of RP"

Let p be an odd integer >0. In this section we shall give some necessary
conditions for the existence of pth order non-singular immersions of real
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projective n-space RP" in Euclidean N-space. Let m and n be integers such
that 0<m <n.

Tueorem (3.1) If there exists a pth order non-singular immersion of
RP" in (v (n, p)+m)-space, then the following (a) and (b) hold.

(a) The bundle (a-2°"—C,.,.,) & has a-2°" —C,, , ,—m independent non-
zero sections, where a 18 a sufficiently large integer.

(b) The bundle (C,. 5 ,+m)¢& has C,.,,, , independent non-zero sections.

TueorEM (3.2) If there exists a pth order non-singular immersion of
RP” in (v (n, p)—m)-space, then the following (c) and (d) hold.

(¢) The bundle C,. & has C,. , ,—m independent non-zero sections.

(d) The bundle (a-2°"—C,.p ,+m)& has a-2°—C,, ., independent non-
zero sections, where a s a sufficiently large integer.

Proor or (3.1). (a) If there is a pth order non-singular immersion of
RP" in (v(n, p)+m)-space, there exists an m-dimensional vector bundle «
over RP” such that

TI,(RP")@a:V(n,P)+m:Cn+p,D_l+m

by (2.1) (1). Since T)(RP")=Cy.p,,6—1 by (2.2), we have C,.;6+a=Cyip
+m in KO(RP”). £—1 is a generator of KO(RP")> Zyum (cf. [1, Theorem
(7.4)7), and so a-2°™(¢—1)=0 for any integer a. Therefore we have

a-2°"Mg — C,,+p,p$——a=a-2¢(”)— Cripp—m
in KO(RP"). 1If we choose a such that a-2°”—C,., ,>n, we obtain
a GB (a°2¢(n) - Cn+[7,17 - m) = (a.2<p(n) - Cn+ﬁ.ﬁ) £

(b) Under the assumption, there exists an m-dimensional vector bundle
a over RP”* such that

Cripp§Da=0Cyipptm.
Tensoring both sides of this equation with &, we have
Coiny DR E=(Cripp+m)é
since £R £=1. Q.E.D.

Proor oF (3.2). (c) If there is a pth order non-singular immersion of
RP" in (v(n, p)—m)-space, there exists an m-dimensional vector bundle 3
over RP” such that

Tp(RP")zﬂ@(UOL, p)—m)ZB@(an,ﬁ—l—m)
by (2.1) (2). Since T,(RP")=C,,,,£—1 by (2.2), we have



On the odd order non-singular immersions of real projective spaces 201

Crip.sE=BD (Crip,p—m).

(d) Tensoring both sides of the above equation with &, we have

Cn+p,p= B ® & EB (Cn+17,15—m) £,
As a-2°™ (¢ —1)=0 for any integer a, we obtain
(@29 —Cpipp+m)E=BRED (@2°"—Cyip,p)

for a sufficiently large integer a. Q.E.D.

Remark. The above proofs show that the assumption of Theorem (8.2)
may be replaced by the statement: ¢f T,(RP") has v(n, p)—m independent
non-zero sections.

§4. Mod 2 S-relations of RP"/RP™!

Let S?X denote the g-fold suspension of a space X, where g is a non-
negative integer. It is said that two spaces Y and Z are mod 2 S-related, if
for some non-negative integers r and ¢ there is a map S”Y—> S'Z which
induces isomorphisms of all homology groups with Z, coefficients. Let n and
m be integers with 0<<m <<n. The next lemma is a generalization of Pro-
position 3.3 of Adem-Gitler [27].

Lemma (4.1) Suppose Coipn><0(mod 2). If the bundle (n+k)& has k
independent non-zero sections, then the stunted projective spaces RP”/RP™'
and RP""*/RP™'** gre mod 2 S-related.

Proor. If the bundle (m+ k)& has k& independent non-zero sections, there
is an m-dimensional vector bundle « over RP” such that (m+k)é=a@P k. For
a vector bundle A over a CW-complex M let M* denote the Thom complex of
2. By the theorems of Atiyah [3], we have

Sk(RPn)a ~ (RPn>a(-Bk___ (RPn)(m+k)§zRPn+m+k/RPm—1+k’

where by X~ Y we mean that there is a natural homeomorphism of a space
X onto a space Y. Let

h: Sk (RPn)a__)RPn+m+k/RPm71+k

denote the composite homeomorphism. The total Stiefel-Whitney class w(«)
of « is given by

w(@) =L+ x)" =3 Cpo i’
i=0



202 Teiichi KoBavaAsHI

where x is the generator of H'(RP"; Z;)=Z,. Since Cp 1 n><0 (mod 2),
wm(a) 0. Therefore the homomorphism

Uwn (@) : H™(RP"; Z,)—> H(RP"; Z,)

which sends an element y¢ H""(RP"; Z,) to an element yUw,(x) ¢ H/(RP",
Z,) is an isomorphism for each ¢ with m <<¢<_n. Thus for the inclusion map
j: RP"——> (RP™")%, defined by the zero-section of «, the induced homomor-
phism

J¥r H'((RP"%; Zy)—> H'(RP"; Z5)

is an isomorphism for any ¢ with m <¢=<n. As (RP")* is (m—1)-connected,
there is a map f such that the following diagram is homotopy-commutative:

RP" — L . (RP™=

P\ A

RP"/RP™
where p is the projection. Then the induced homomorphism
i HY((RP™)“; Zz)——>H”(RP”/RP”"1; Zs)

is an isomorphism for each ¢ with 0<"¢g<n. Let S*f denote the k-fold suspen-
sion of f. It is easy to see that there exists a map g such that the follow-
ing diagram is homotopy-commutative:

k
SHRP*/RPY) S, sk (rprye
‘| |
RPn+k/RPm»1+k i RPn+m+k/RPm«l+k

where i is the inclusion. Then the map g induces isomorphisms of all coho-
mology groups with Z, coefficients, and isomorphisms of all homology groups
with Z, coefficients (cf. [12, Chapter 5]). Q.E.D.

Let ¢ (n, m) denote the number of integers s such that m<s<<n and s=
0,1, 2 or 4 (mod 8. We write ¢ (n) instead of ¢ (n, 0). Define an integer ¢
by

p=¢(n, m—1) if m2<=0 (mod 4),
p=¢(n, m) if m=0 (mod 4).

Lemma (4.2) Let k be an integer such that k=0 (mod 8). If the stunted
projective spaces RP"/RP™ ' and RP"**/RP™ '** gre mod 2 S-related, then
k=0 (mod 2°71).
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Proor. We may assume £>0. First, consider the case m=<0 (mod 4).
Then, according to [1, Theorem 7.4,

EO(RP”/RP”’I) =~ Zgo, ¢=¢ (n, m—1).
By the assumption, for some integer r =0 there is a map
f: Sk+r(RPn/RPm—1) — Sr(RPn+k/RPm—1+k)

which induces isomorphisms of all homology groups with Z, coefficients. We
may choose r such that r=0 (mod 8). The map f induces isomorphisms of
all cohomology groups with Z; coefficients (cf. [12, Chapter 57]), and so by
the arguments using the Atiyah-Hirzebruch spectral sequence (cf. [4, §2]
and [1, §6]) we can see that f induces an isomorphism of the KO-groups.
Consider the following diagram:

~ 7(8 ~
Ko(RPn+k/RPm~l+k) I Ko(sr(RPn+k/RPm71+k))

I -

o~ 7|8 ~
KO(RP”’Lk/RPm‘l*k) 41___) KO(S"(RP" +k/RPm~14 k))

where each of the vertical maps 3 is the Adams operation, and where each
of the horizontal maps I"® is r/8 fold composition of the isomorphism I defined
by the Bott periodicity [5, Theorem 1]. According to [1, Theorem 7.4, the
right-hand map 3 is the identity. Thus, by [1, Corollary 5.87, we have

YOI =8T RS =8ri2 s,
Therefore the right-hand map 3 is 3772, Similarly
¥¢: KO(S**"(RP"/RP"*))—> KO(S**"(RP"/RP"™%))
is 3*+M/2 Since ¥ is natural for maps [ 1, Theorem 5.1, we have

glk+7r)/2 *:f*3”2=3”2f*-

Thus (3%+7/2—8712)(;)=0, where ¢ is a generator of KO (S**"(RP"/RP™ ')~
Zoe, p=¢ (n, m—1). Hence 32 —1=0 (mod 2**™-Y). Then we have k=0
(mod 2¢™=V-1)  In fact, if k/2=(2N+1)2’, where N is an integer and where
[ is an integer with [ <<¢(n, m—1)—38, then 3¥?—1=2'"2(mod 2'*%) by [1,
Lemma 8.17]. This is impossible.

In case m=0 (mod 4), according to [1, Theorem 7.4

KO(RP"/RP™ )~ Z+ KO (RP"/RP™) ~ Z+ Zy,, 9= (n, m).

By the assumption, for some integer r=0 (mod 8) there is a map
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f: Sk-w(RPn/RPm»l) 3 Sr(RPn+k/RPm-1+k)

which induces isomorphisms of all homology groups with Z, coefficients. We
may take f for a cellular map. It defines the map

fo: Sk+r(RPn/RPm)_>Sr(RPn+k/RPm+k)

which induces an isomorphism of I?O-groups. The rest of the proof is similar
to the above case, so we omit the details here. Q.E.D.

§ 5. pth order non-singular immersions of RP”

We set v (n, p)=Cnip,,—1. Let p be odd >0 and let m and n be integers
such that 0<m <n. From (3.1) and (4.1) we have the following two results.

Tueorem (56.1) Assume (C"'””";m_l>£0 (mod 2). If there is a pth

order non-singular immersion of RP" in (v(n, p)+m)-space, then RP"/RP"*
and RP""'/RP™ '*' are mod 2 S-related, where t=a-2°"—C,,,,—m (a s a
sufficiently large integer).

Proor. According to (3.1) (a), the bundle (a-2°™ —C,,,.,) E=(m+1t)¢ has
t independent non-zero sections. Since

Covtm= <a-2¢(n)— Cn+p,p> = <— C’;rlup,p) _ <Cn+p,p;m—-1)_\£0 (mod 2),

m

we obtain the desired result by (4.1). Q.E.D.

TueoreM (5.2) Assume (C’”f{z”_{—m) >0 (mod 2). If there is a pth order

non-singular immersion of RP" in (v(n, p)+m)-space, then RP"/RP™ ' and
RP"*s/RP™'** are mod 2 S-related, where s=C,. , ,.

Proor. According to (8.1) (b), the bundle (C,,,,+m)é=(m+s)& has s
independent non-zero sections. Since C,,,: »>0 (mod 2), we have the desired
result by (4.1). Q.E.D.

From (8.2) and (4.1) we obtain the following two results. The proofs are
similar to those of (56.1) and (5.2).

Tueorem (5.3) Assume (C””’“”> =0 (mod 2). If there is a pth order non-

m
singular immersion of RP” in (v (n, p)—m)-space, then RP"/RP”"' and RP"*’
/RP™ 7 gre mod 2 S-related, where r=_C,. p,,—m.

TueoreMm (5.4) Assume (C”*fr':—1> 520 (mod 2). If there is a pth order
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non-singular immersion of RP" in (v (n, p)—m)-space, then RP"/RP™ ' and
RP"?/RP™** gqre mod 2 S-related, where v=a-2*"—C,,, ,(a is a sufficiently
large integer).

These theorems, combined with Lemma (4.2), yield non-existence theo-
rems of odd order non-singular immersions of RP” in Euclidean spaces. We
have the following four theorems from Theorems (5.1)-(5.4) respectively.

Tureorem (6.5) Suppose
o) (C“P»f’;m‘l) <0 (mod 2)

(i) Cuipp+m=0(mod 8 and =<0 (mod 2°°1),

then RP" cannot be immersed in (v(n, p)+m)-space without affine singularities
of order p.

Theorem (1.3) follows from Theorem (5.5) immediately.

Tueorem (5.6) Suppose
0 (er;ﬁ m) 520 (mod 2)

(i) Cuipp,=0 (mod 8) and =250 (mod 2°°1),

then RP" camnot be immersed in (v(n, p)+m)-space without affine singularities
of order p.

Tueorem (6.7) Suppose
) <C';;;'f>> 520 (mod 2)

() Cpipp—m=0(mod 8) and >0 (mod 2°Y),

then RP" cannot be immersed in (v(n, p) —m)-space without affine singularities
of order p.

Theorem (1.4) follows from Theorem (5.7) immediately.

Turorem (5.8) Suppose
0 (C“;f—1> <0 (mod 2)

(i) Cpipp=0(mod 8) and =<0 (mod 2°71),

then RP” cannot be immersed in (v(n, p) —m)-space without affine singularities
of order p.
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§ 6. Remarks

In this section we notice that non-immersion theorems of James and
Sanderson (cf. [97], [117) follow also from (5.2) and (5.5).

It is said that the stunted projective space RP"/RP™ ! is S-reducible,
if for a sufficiently large integer ¢, the ¢-fold suspension of a generator of
H,(RP"/RP™'; Z,) coincides with the image of the fundamental class of
H,,.(S"*"; Z,) by the homomorphism H,..(S"*"; Z;)—> H,.;(S'(RP"/RP™");
Z3), which is induced by the natural map $**'——> S*(RP"/RP™"'). Accord-
ing to [8] and [17], RP"/RP™ ' is S-reducible if and only if n+1=0 (mod
20=m) (ef. [9, (8.1)]).

Set n+1=(2b+1)2°"*“ where b, c and d are integers and 0 <c¢ <3.
Define

j(n)=2°+84d.

TueoreM (6.1) Let p be an odd integer >0 and r be an itnteger >3 such
that 2" >p—1. If n=2"—1, RP" cannot be immersed in (v(n, p)+n—j(n))-
space without affine singularities of order p.

Proor. Note that

Gunp= (D) = (F AP 1) 2

Since p is odd and 2">p—1, we have C,,, ,=N-2" for some odd integer N>0.
Set m=n—j(n). Then 0<m<2" as r>3, and we get

<Cn+b’,;;+m> _ <N2+§’:%:§EZ§> -0 (mod 2).

If there is a pth order non-singular immersion of RP” in (v(n, p)+m)-space,
RP"/RP™ ' and RP"**/RP™'** are mod 2 S-related by Theorem (5.2), where
s=Cyu.pp. Thus these two stunted projective spaces are both S-reducible or
not S-reducible (cf. [9, Lemma (2.1)]). But by the above remark we see that
RP*+*/RP™ '** is S-reducible, while RP"/RP™"! is not S-reducible. This is
a contradiction. Q.E.D.

For p=1, Theorem (6.1) says that if n=2"—1, RP” cannot be immersed
in (2n —g)-space, where

q=2r if r=1, 2 (mod 4),
qg=2r+1 if r=0 (mod 4),
g=2r+2 if r=83 (mod 4),
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which is just Theorem (1.1) of [9]. The method of the above proof is due to
Adem and Gitler (ef. [2, Theorem 3.4]) who have given a simple proof of
James’ theorem. Next, we shall give another proof of Theorem (1.1) of [11].
James and Sanderson obtained their results by making use of axial maps.

Tueorem (6.2) (Sanderson) Let r be an integer >2. RP” cannot be im-
mersed in (271 —1)-space, where

n=2"4+r+2 if r=1 (mod 4),
n=2"+r+3 if r=1 (mod 4).

Proor. In Theorem (5.5) we put p=1and n+m=2""'-1(>2). If r=x
1 (mod 4), then m=2"—r—38>0, and hence C,,,»==0 (mod 2). It is easy to
see that ¢ —1=r+2. Thus we have n+m+1=2""12<0 (mod 2°°!), and so we
get the desired result by (5.5). In case r=1 (mod 4), the proof is similar to
the above case. Q.E.D.
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