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§ 1. Introduction and problem setting

The aim of this paper is to investigate the behavior of values of linear
programming problems under some monctone variations of objective func-
tions and constraints.

More precisely, let X and Y be real linear spaces paired under the bilinear
functional ((,));, and let Z and W be real linear spaces paired under the
bilinear functional ((,));. A (linear) program for these paired spaces is a
quintuple (4, P, Q, yo, o). In this quintuple, 4 is a linear transformation
from X into Z, P is a convex cone in X, Q is a convex cone in Z, y, is an
element of Y and z, is an element of Z. The set S of feasible solutions for
the program and the value M of the program are defined by

S={x€P; Ax—z,€Q},

and
M=1inf {((x, yo)1; v €S} if S=¢,
M=o0 if S=g¢,

where ¢ denotes the empty set.

Let us denote the weak topology on X by w(X, Y) and the Mackey
topology on X by s(X, Y) (cf. [2]). Let R be the set of real numbers and R,
the set of non-negative real numbers. Let us define P* and Q" by

Pr={yeY;((x, y))1=0  forall xeP},
Q"' ={welWV; (2, w)), =0 for all ze€Q}.

We say that the program (A4, P, Q, yo, zo) is regular if 4 is w(X, Y)
—w(Z, W) continuous, P is w(X, Y)-closed and Q is w(Z, W )-closed.

We shall investigate some relations between the sequence {M,} of values
of programs (A4,, Py, Qu, yu z,) and the value M of the program (4, P, Q, yo, z0)
determined by any one of the following conditions:

(I) A,= A4, Yu= Y05 En=20,
(I 1) P;z <P7z+1 and P:U Pm
1
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(I 2) Q?l C Qu +1 and Q = ”\O:/I Q:z'

(ID P,=P, Qﬂ:Q, Y= Yo
L. 1) (4,,1—4,) (P)CQ and {4,x} w(Z, W)-converges to Ax
for all x € X,
(L. 2) z,—z,.1€0 and {z,} w(Z, W)-converges to z,.

(II1) A4,=A4, P,=P, Q,=0, z,=z,,
Y= yur1 € PT and {y,} w(Y, X)-converges to y,.

(IV) A=A, Yn= Y05 En=20,
(IV.1) P,,CP, and P=[\P,
n=1

(IV~ 2) Qn+1 CQn and Q:?Z} Qn~
(V) Pn:Pa Qn:Qa Yn= Yo
(V.1) (4,—A,,1) (P)CQ and {4,x} w(Z, W)-converges to 4x for
all x € X,
V.2) z,,1—2z,€Q and {z,} w(Z, W)-converges to z,.

(VI) Aﬂ:A) Pﬂ:Pp Qﬂ:Q) Zp=—20,
Yar1— ¥» € P and {y,} w(Y, X)-converges to y,.

The above problems were partially studied by K. S. Kretschmer [3].
Potential-theoretic forms of the above problems were investigated by
M. Ohtsuka [4] and M. Yamasaki [5; 6.

§ 2. Preliminaries

For later use, we shall recall some results in [17], [3] and [6].

Let 4 be a w(X, Y)—w(Z, W) continuous linear transformation from X
into Z in this section. We denote by 4* the adjoint transformation. Namely
A* is a linear transformation from I into Y which is w(W, Z)—w(Y, X)
continuous and satisfies ((4x, w));=((x, A*w)); for all x € X and we W.

The dual program of the program (A4, P, Q, yo, zo) is defined as the
program (A%, Q*, —P*, —zo, yo) for W and Z paired under »((,)) and for Y
and X paired under ,((,)). Here the bilinear functionals ,((,)) and 1((,))
are defined by »((w, z)) =((z, w)), for allwe W and z € Z and 1((y, x)) =((x, )1
for all y€ Y and x € X. The set S* of feasible solutions for the dual program
and the value M* of the dual program are given by

S*={weQ"; yo— A*we P},
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M*=sup {((zo, w))2; wE S*} if S*s£4,
M*=—oco if S*=4¢.

We have

Proposttion 1.1 It 48 always valid that M* <M. 1f the s(Z, W)-interior
Q° of Q is nonempty, if there exists x € P such that Ax—z,€Q° and of M 1s
Sfinite, then M= M*=((z,, w))s for some we< S*.

We say that a program (4, P, Q, yo, z0) is a finite (linear) program if X,
Y, Z and W are finite dimensional Euclidean spaces, ((,)), and ((,)). are
usual inner products and P and Q are polyhedral cones. We have

Prorosition 2. Assume that (A, P, Q, yo, z0) 18 a finite program. If
M< oo or M*> — oo, then M=M%* holds.
We shall use the following separation theorem.

ProrosiTion 8.2  Let K and F be convex sets in X and assume that the
s(X, Y)-interior K° of K 1s nonempty and FNK°=¢. Then there exists a
non-zero y€ Y such that

((uy =%, y)h
for all u € F and x € K.

§ 8. The case where M, =M, .,

Let us define S, by
Sﬂ: {x S Pn; A”x—z” EQ”}'

First we shall prove

Tueorem 1. Assume that y,=y, for all n and that S,C S, 1CS and
SC \7 S, (the w(X, Y)-closure of \7 Sn). Then it 1s valid that lim M, = M.
n=1 n=1

-0

Proor. By our assumption that S,CS,.1CS and y,= y, we have
M, =M, =M and lim M,=M. We show that lim M,<M in case M< co.

N—o0 N—oo

Let r be any number such that M <r. There exists x € S such that
((x, yo))1<r. For any ¢>0, there exist n, and x such that z<S, and

(%, yo)<((x, yo)r+e. Then
MngMnué(O-Ga yo))1 <r+e

1) See [3] for the case of regular programs and [6] for the present case.
2) [3], p.- 230.
3) [1], Proposition 1, p. 71.
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for all n =n,, and hence lim M,<r+e. Letting first ¢—>0 and next r—M, we

obtain the desired inequality.

CoroLLARY. If condition (1) is fulfilled, then lim M,= M.

Proor. By condition (I), we have S,CS,.; and S =O S
2=1
Next we assume condition (II). By the relation
An-}-lx — 21 :Anx_zn+ (An-f—lx —Anx> + (zn_z72+1),

we see that S,CS,., and M, >M,. .. If Q is w(Z, W)-closed, then for any
x €Sy, {dwx—z,} w(Z, W)-converges to Ax—z,€(Q, so that S,CS and

O S, CS. It is not always valid that SCO S,.
n=1 n=1

We shall prove

TueorREM 2.  Assume that condition (11) is fulfilled and that Q is w(Z, W)-
closed. If Q°=¢ and PNA ' (zo+Q°) =@, then it 1s valid that lim M,= M.

N—>c0

Proor. By Theorem 1, it is enough to show that SCC/Sn. Let
n=1

2 €PNA(z0+0Q°) and let C be the convex hull of the set {4,%—z,;
n=1,2,...}. If C"NQ°=¢, then there exists w=~0 such that

((w, @) = (v, @))2

for all u€C and veQ by Proposition 3. Since Q is a convex cone, we
see easily that w€Q™ and ((u, @)),=<<0 for all u€C. It follows that
(A% — 25, @) < 0 for all n, and hence ((Ax — zy, @), =<0. This is a contradic-
tion. Therefore CNQ°=~¢. There exist a finite subset J of natural numbers
and positive numbers {¢;; i € J} such that

Z t;=1 and Z t,(Al:T?—Z,) EQO.
ie]

i€y
Let m be an integer such that m =i for all i €J. Then by the relation
Am&'—zm: Z t,(Aﬁ_C—Z,)‘}’ Z tz<Am-’/—e—AzE)+ Z ti(zi_zm)
=i iej ie]
we have A4,%x—z,€Q° and x€ \7 Sy Thus we have shown that
=1

PNA Y ze+0)C O S, LetxeSand:eR,0<t<1. Then we have
n=1

x=tx+(1—t)x €P,
Axi—zo=t(Ax—z0)+ (1 —1t) (Ax—20) €Q°,
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and hence «, € C/ S,. Letting t—0, we conclude that » € \7 S,, which com-
n=1 n=1
pletes the proof.
Finally we are concerned with condition (III). We have

Tueorem 3.  Assume that condition (III) is satisfied. Then it 1s valid
that lim M,= M.

N—o0

Proor. We have S,=S and we may assume that S+=¢. Let M(y)=
inf {((x, y)1; x € S}. Then M,=M(y,) and M= M(y,). Since y,— y,.1 € P" and
P* is w(Y, X)-closed, we have y,—yo€P" and M(y,) =M (yn.1) =M ().
Since M(y) is w(Y, X)-upper semicontinuous, we have M(y,) = lzlrn M(y,).

Thus we have lim M(y,) =M(yo).

§ 4. The case where M, <M,

In this section we always assume that the program (A4,, P, Qu, ya, z.) is
regular for each n. It follows that the set S, of feasible solutions is w(X, Y)-
closed.

It is easily seen that condition (IV) implies that S, S,,1 CSand S= /“\ S,
n=1
If condition (VI) is fulfilled, then S,=S for all » and M,<M,,;. Assume
condition (V). Then by the relations
Ayx— Zp— (An+1x - Zn+l) =+ (Aﬂx - An+1x> + (zn+1 - Zn)a
(A,—A) (P)CQ and 20— 2, €0,

we have SCS,,;1 S, Let us assume that xE/N\S,,. Then x€P and
n=1

A,x—z,€Q for all n. Since Q is w(Z, W)-closed, we have Ax—z,€Q and
hence x € S.
Thus we have

Tueorem 4. Any one of conditions (IV), (V) and (VI) tmplies that
SCS,1CSy S= f\ S, and M, <M, .. =M.
n=1

We remark that any one of conditions (IV), (V) and (VI) does not neces-
sarily imply that lim M,=M. This will be shown by examples in §5 below.

M— o0

We shall investigate some criteria which assure that lim M,=M.

N> oo

Tueorem 5. Assume that y,= vy, for all n,that SCS,.1 C S, and S= F\ Sy
n=1

and that there is an n, such that S, is nonempty and w(X, Y)-compact. Then
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it 18 valtd that lim M,= M.

N— o0

Proor. Since SCS,.1CS, and y,= y, we have M,<M,,,=M and
lim M,<<M. Tt is enough to show that lim M,>M in case lim M,<co. Let

N—o0 N—c0 N—c0

r be any number such that lim M, <r. For each n, there exists x,€ S, such

N—>00

that ((x,, y0))1<r. Obviously x,€ S, for all n =n, By our assumption that
S,, is w(X, Y)-compact, there exists a w(X, Y)-convergent subsequence of
{x,}. Denote it again by {x,} and let x be the limit. Since S, is w(X, Y)-
closed and x,< S, for all n =>m, we have x€ S,,. By the arbitrariness of m,
we have x € S and

M= ((w, 3 =1im ((vay yo) =7

By the arbitrariness of r, we obtain the desired inequality.
Next we shall prove

TuEOREM 6.  Assume that y,= y,€ (P*)° (the s(Y, X)-interior of P*) and
that any w(X, Y)-bounded set in P is relatively w(X, Y)-compact. If condition
(V) 1s fulfilled, then lim M,= M.

n—> o0

Proor. It is enough to show that lim M, > M in case lim M,<eo. Since

N—o N—oo

yo€ P*, we have M, =0. There exists x, € S, such that ((x,, y0)1 <M,+1/n.
For any ye Y, there is ¢>0 such that y,+ey<c (P*)°. Since x,€ P, we have

0= ((xns Yox 89’))1 <M, -+ 1/” +e((%, y))la
so that

| Gony D] < (M +1/m)/6 = (lim M+ 1)/e.
Namely {x,} is w(X, Y)-bounded. By our assumption, there exists a w(X, Y)-
convergent subsequence of {x,}. Denote it again by {x,} and let x be the

limit. It follows from the same argument as in the proof of Theorem 5 that
x€ S. Therefore we have

This completes the proof.
Let us denote

Sk={we Q} ; yu— A*we P}

If any one of conditions (IV), (V) and (VI) is satisfied, then S*C S¥,; and
MEF<M}¥,. We prepare
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Lemma 1. Assume that the program (4, P, Q, yo, zo) ts regular and that
any one of conditions (V) and (VI) is fulfilled. If S*= \7 Sk (the w(W, Z)-
n=1

closure of O S¥), then lim M¥ = M*.
n=1 N0

Proor. Since M} <M, < M*, it suffices to show that lim M* = M* in

N—o0

case M*>—oo., Letr be any number such that M*>r. There exists we S*
such that ((z¢, w)).>r. For any ¢>0, we can find n, and @ such that we S}
and ((z,, @), >r—e. It follows for each n>n, that

M;?( 2 M;j; ,}: ((znoa w))z >T—€,

and hence lim M >r—e. By letting first e>0 and next r—M*, we obtain the

N—oco

desired inequality.

Lemma 2. Assume that M, <M, < M and lim M =M. Then lim M,= M.

72— 00 N-—>oc0
Proor. Since M << M, by Proposition 1, we have

M=lim M} <lim M, <M.

7 —

N—>00 N—r00

We shall prove

TarorEM 7. Assume that the program (A, P, Q, yo, zo) is regular and that
(PH)° ¢ and Q" NA* (y—(P))F¢.  If any one of conditions (V) and
(VD) is fulfilled, then it is valid that lim M, = M.

72— o0

oo

Proor. By the dual statement of Theorem 2, we have S*=\/S}, so that

n=1

lim M = M* by Lemma 1. Since M=M* by the dual statement of Proposi-

N—o00

tion 1, our assertion follows from Lemma 2.

Turorem 8.  Assume that condition (IV) is fulfilled and that there exists
we \J Q; such that y,— A*we \ ) (P;). Then it is valid that lim M, =M.
n=1 n=1

n—o0

Proor. We have

lim My*=m* = sup {((z0, w))2; we € and y,— A*we D},

72— 00

where C=\7(?;; and D:\?Pﬂ+ (cf. the corollary of Theorem 1). If there
n=1 n=1

exists we C such that y,— A4*we D° (the s(Y, X)-interior of D), then we have
m*=M by the dual statement of Proposition 1, since D*=P and C*=Q by
condition (IV). By means of Lemma 2, we complete the proof.
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Finally we have

Tueorem 9. Let (A,, Py, Qu, ya, zx) be a finite program and assume that
A,= A4 for all n and condition (V) is fulfilled. Then it is valid that lim M, = M.
Proor. By Theorem 4, we have M, < M,., <M. It is enough to show
that lim M,>=M in case lim M,<oo. It follows from Proposition 2 that

S*£¢. Let M*(z)=sup{((z, w))s; we S*}. Then M*(z,)=M and M*(z,) =M,
by Proposition 2. Since M*(z) is w(Z, W)-lower semicontinuous, we have
lim M,=1lim M*(z,) = M*(z,) =M.

N—oc0 N—o0

This completes the proof.

§ 5. Counter examples

We shall show by examples that any one of conditions (II), IV), (V) and
(VI) does not necessarily imply that lim M, =M.

N—>c0

For a compact interval F in the real line, let M(F) be the totality of
Radon measures of any sign on F, M *(F) be the subset of M (F) which consists
of non-negative Radon measures, C(F) be the totality of finite real-valued
continuous functions on F and C*(F) be the subset of C(¥) which consists of
non-negative functions. Denote by Sy the support of € M(F). We always
assume that the real linear spaces M(F) and C(F) are paired under the
bilinear funectional ((,)) defined by

(s, f))zg fdp  for all pe M(F) and fe C(F).

We also assume that two n-dimensional Euclidean spaces R” are paired under
the bilinear functional defined by the ordinary inner product. Denote by R}
the positive orthant of R”.

First we give

Exampre 1. Let X=Y=Z=W=R? P=Q=R3, y,=(1,0) and z,=(1, 0).
For x=(x1, x5) € X, define 4,x and 4x by

Anx:(xl+x2) _xZ/zn):
Ax =(x1+ x5, 0).

Consider the programs (4., P, Q, yo, z0) and (4, P, Q, ¥, z0). Then
(Ap1—A4,) (P)CQ and {4,x} converges to Ax. It is easily seen that
M,=1>0=M for all n.

Kretschmer [37] gave
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Exampre 2. Let F=[0,1], Z=C(F), W=M(F), X=Y=R, P=R,,
Q=C"(F), yo=1and (4x) (¢)==x¢. Define {z,} CZ by

zp(t)=min (¢, 1—2)/(n—1)).

Then z,—z,.1 €0 and {z,} w(Z, W)-converges to zo=0. Let us consider the
programs (4, P, Q, yo, z,) and (4, P, Q, y,, z0). It is shown that M,=1>0=M
for all n.

Examples 1 and 2 show that condition (II) does not always imply that
lim M,=M.

N—o0

Next we give

Exampre 8. Let F=[—1,1], X=M(F), Y=C(F), Z= W=R?*, P=M~*(F),
yo(t)=—min (¢, 0), zo=(—1, 0) and let

1 1
A#=<—S lltid/xv, —S tzd/i>
- 0

for € X. Define Q, and Q by
Qn=1{(z1, 22); 1 =0, 2, =0 and z/n =2z},
Q =4(21, 0); z: < 0}.
It is clear that Q,,, C0Q, and szo\ Q.. Consider the programs {4, P, Q,, yo,
n=1
zo) and (4, P, Q, yo, z0). We have M,=0<1=M for all n.

Exampre 4. Let F=[ -1, 1], X=M(F), Y=C(F), Z=W=R, Q= R, yo(t)
= —min(¢, 0), zo=1 and let A#:S\t |du. Define P, and P by

= An€MT(F); SpC[—1,1/n},
P ={peM"(F); SpC[—1,0]}.

It is clear that P, .; C P, and P= /o.\ P,. Consider the programs (4, P,, Q, yo,
n=1

zo) and (4, P, Q, yo, z0). Then it is valid that M,=0<1=M for all n.
Examples 3 and 4 show that condition (IV) does not necessarily imply
that lim M, =M.

n-—o0

ExavprLe 5. Let X=Y=R? Z=W=R, P=R}, Q=R,, y,=(1, 0) and
zo=1. For x=(x, x,) € X, define 4,x and Ax by

A,zxle—i- OCZ/TL and Ax=x1.

Then (A,— A,.1) (P)CQ and {A4,x} converges to Ax. Let us consider the



258 Maretsugu Y AMASAKI

programs (4,, P, Q, yo, z0) and (4, P, Q, yo, z0). It is easily verified that
M,=0<1=M for all n.

Exampie 6. Let F=[ —1, 17, X=M(F), Y=C(F), Z= W=R%, P=M"*(F),
Q=R}, yo(t)=—min(¢, 0) and let

= 10—

Define {z,} CZ by
z,=1, —1/n).
Then z,.1—2,€ Q and {z,} converges to z,=(1, 0).

Consider the programs (4, P, Q, yo, z») and (4, P, Q, yo, z0). Then we have
M,=0<1=M for all n.

Examples 5 and 6 show that condition (V) does not always imply that
}‘im M,=M.

Exampre 7. Let F=[0,1], X=M(F), Y=C(F), Z=W=R, P=M"*(F),
0=Ro, zo=—1 and Au= —Std,u,. Defiine {y,} C ¥ by

ya(t)=max (—t, (¢—=1)/(n—1)).

Then y,.1—y, € P*=C*(F) and {y,} w(Y, X)-converges to y,=0. Consider
the programs (4, P, Q, yu., zo) and (4, P, Q, ¥, z0). It is shown that
M,=—1<0=M for all n. Namely condition (VI) does not necessarily imply
that lim M,=M.

7—>00
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