HirosHiMa MATH. J.
1 (1971), 435-443

Existence Theorems for Certain Nonlinear Equations

Nobuyuki KenmocH1
(Received September 20, 1971)

Introduction

The aim of this paper is to give theorems on the existence of solutions
of equations of the forms

(a) Lu+Au=f
and
(b) u+LAu=/f,

where L is a linear mapping and A4 is a nonlinear mapping.

It is known that if L is a linear maximal monotone mapping and A4 is a
bounded pseudomonotone mapping, then (a) and (b) have solutions (see [4;
Traeorem 1] and [7; Tueorem 17]). H. Brezis [ 3] introduced a class of non-
linear mappings, called of type M, of a Banach space into its dual space, which
contains the class of pseudomonotone mappings, and then showed in [2]
that if L is a linear monotone mapping which is V-regular and 4 is a bounded
mapping of type M, then (a) has a solution. We shall show that if L is a
linear maximal monotone mapping and A4 is a bounded mapping of type M,
then (a) and (b) admit solutions; thus the above two results are corollaries
to our theorem.

§1. Definitions and notation

Let V be a real reflexive Banach space and 7V * its dual space with the
dual norm. We denote the norm of x € V7 by ||x||v, the norm of x* € V'* by
||#*|lv» and the natural pairing between V* and 7V by <, >. We use the
symbols “—s”, “ ¥, and “7°,” to denote the convergence in the strong,
weak and weak* topology respectively.

Let T be a multivalued mapping of 7 into V* (i.e., to each x €V, a
subset T'x of V'* is assigned). Thesets D(T)={x € V; Tx=>c¢}, R(T):\{,Tx

x€

and G(T)={(x, xx) € VxV*; x* € Tx} are called the domain, the range and
the graph of T respectively. The inverse 7' of T is the multivalued map-
ping defined by T 'x*={x € V; x* € Tx} with the domain D(T-)=R(T).

A multivalued mapping T of 7 into V* is called monotone if for any
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(xi’ xik) EG(T) (lzl) 2)9
<xF—axf, x1—x:>>0,

and it is called maximal monotone if there is no proper monotone extension
of T. A multivalued mapping 7 is called coercive if

inf <atf, x>

—co as ||xlly—oco, x € D(T).
wers || xlv

A singlevalued mapping 7T of D(T)=V into V'* is called of type M([3])
if it satisfies the following conditions (M;) and (M,).

(M,) If {x;} is a net such that ||x;||yr <K, x;— %> x inV, Tx;—¥5 x* in
V* and limsup< Tx;, x;,> <<a«*, x>, then Tx=x*.

(M) ’1I‘he restriction of T to any finite dimensional subspace of V is
continuous with respect to the weak* topology.

We generalize the notion of mappings of type M to the multivalued case.
For a multivalued mapping T of D(T)=V into V'*, we consider the following
conditions.

(my) If {x;} and {x7}} are nets such that xF ¢ Tx;, ||x;||r <K, x;/~Z>x in
V, x% % x* in V* and limsup<x¥, x;><<x*, ¥>, then x* ¢ Tx.

(m3) The restriction <;f T to any finite dimensional subspace F of V is
upper semicontinuous with respect to the weak* topology, that is, for any
x € F and any weak*-neighborhood U* of Tx, there exists a neighborhood U
of x in F such that U*D> T(U)=\ Tx«.

€U
(m3) For each x € V, Tx is a bounded closed convex subset of V'*.

Remark 1. It is easy to see that if 7 is bounded, that is, T maps bound-
ed subsets of 7 to bounded subsets of 7*, then (m;) and (ms) imply (m,), and
if V is finite dimensional, then (m;) and (m3) imply (m,).

Let J be the duality mapping of 7, that is, J be defined by Jx={x* € V'*;
<x*, x> =||x|l3 [|x*|lv==||x||v} for each x € V. In general, J is multivalued.
The inverse J~! is the duality mapping of ¥ *. It is known that if 7* is
strictly convex, then Jx consists of a single element for each x € V.

§2. Multivalued mappings satisfying (m,), (m:) and (m3)

In the rest of this paper we assume that 7 is a real reflexive Banach
space.

THEOREM 1. Let A be a multivalued mapping of D(A)=V into V*
satisfying (my), (m2) and (m3). Let C be a bounded closed convex subset of V
containing the origin 0 in its interior. Suppose that



Existence Theorems for Certain Nonlinear Equations 437

<x*, x>>0 for any x € 0C and any x* € Ax,

where 0C s the boundary of C. Then the set S={x € C; 0 € Ax} is non-empty
and weakly compact.

To prove this theorem we use the following lemma.

LemMma 1. Let V be finite dimensional and A be a multivalued mapping
of D(A)=V into V* such that

(1) Ax is a bounded closed convex subset of V* for each x €V,

(2) A is upper semicontinuous.

Let C be a bounded closed convex subset of V. Then there exist x, € C and
x% € Axy such that

<% xo—ax><0 for all x € C.

We omit the proof of Lemma 1, since this lemma is a special case of
THEOREM 6 in [67].

Proor oF TueorEM 1: Let {V,; a € 4} be the family of all finite dimen-
sional subspaces of 7, j, the canonical injection of V', into 7 and ;¥ the
adjoint of j,. We define an order “<” in the index set 4 by inclusion of
corresponding subspaces, that is, for «, g € 4, «a<pB if and only if V', V.
Then 4 is a directed set. For each a € 4, we set 4,=j% 4j,. Itiseasy to
see that each 4, satisfies conditions (1) and (2) in Lemma 1. Therefore there
exist x, € CNV, and x% € Ax, such that

2.1) <xE xa—2x><0 forall x e CNV,.
In the case where x, € C—0C, we have
2.2) <xk, x>=0 for all x € V.

In the case where x, € 0C, noting that <x%, x,>>>0 by hypothesis and
<xk, x,><0 by (2.1), we obtain <x¥, x,>=0. Thus also in this case we
have (2.2). Hence,

(2.3) jExt=0.

Since C is weakly compact, there exists a subnet {x,,} of {x.}.c4 such
that x,,—%>x, € C. By (2.3), %0 and limsup< %, x,,>=0. Condition
(m,) implies 0 € 4x,. Thus S is non-empty. The weak compactness of S
follows from (m;). q.ed.

CoroLLarY. Let A4 be a multivalued mapping of D(A)=V into V*
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satis fying (my), (m3) and (ms). Suppose that A is coercive. Then R(A)=V*.

Proor. Let y* be an arbitrary element of V*. We define a mapping
A" by A'x=Ax— y*. Itiseasy to see that A" satisfies conditions (m1), (mz)
and (m3). By the coerciveness of A, there exists a positive numberr such
that<x*, x>>0 for any x €0B, and any x*€ A'x, where B,={x¢€V;
[lx]ly <r}. Therefore by TurorEm 1 we obtain R(A’) 50, that is, R(4) > y*.
Thus R(A)=V*. q.e.d.

§3. Nonlinear functional equations

In this section we shall show the existence of solutions of nonlinear func-
tional equations of the forms (a) and (b).
The existence of solutions of (a) is given by the following theorem:.

TueorREM 2. Let C be a bounded closed convex subset of V containing the
origin 0 in its interior. Let L be a multivalued maximal monotone mapping
of D(L)CV into V* such that the graph G(L) is a linear subspace in V x V*
and A be a bounded multivalued mapping of D(A)=V into V* satisfying (m1)
and (m3). Suppose that

3.1 <x*, x>>0 for any x € 0C and any x* € Ax.

Then the set S={x € C; Lx+ Ax 3 0} is non-empty and weakly compact.

The method of proof is based on that of Turorem 19 in [8]. To prove
the above theorem, we prepare three lemmas.

Lemma 2. Let T be a multivalued maximal monotone mapping of
D(T)CVinto V*. Then x%€ Tx,yn=1,2,..., x,— xo and x5 x% imply
that xo € D(T) and x% € Tx,.

Proor. From the monotonicity of T it follows that

<x¥—x* x,—x>>0 Jor any (x, x*) e G(T).
Letting n — oo, we have
<xt—a* xg—2>>0 for any (x, x*) € G(T).
The maximal monotonicity of T implies that (x,, 2%) € G(T). q.e.d.

Remark 2. From Lemma 2 it follows that the graph G(L) of the mapping
L in TueoreM 2 is strongly closed in ¥ x V*. Since G(L) is a linear subspace,
it is weakly closed in V' x V'*,
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Lemma 3. Let V and V* be strictly convex and L be as tn THEOREM 2.
For e>0, we set Le=(L*+eJ ). Then L, is a singlevalued, bounded, demi-
continuous (i.e., x,—— x implies that L, x,—> L. x) and maximal monotone
mapping with the domain D(L)=V and L0=0.

Proor. It is evident that L~! is a maximal monotone mapping with the
domain D(LY)=R(L)CV*. From a result in [5] it follows that L~ +eJ ':
D(L-Y=R(L)— V is a maximal monotone coercive mapping and R(L™*+¢eJ ")
=V. Thus D(L:)=V and L, is a bounded maximal monotone mapping.

Let x* and y* be contained in L.x. Then L 'x*+eJ 'x*3 x and L' y*
+eJ'y*3 x. Therefore there exist x € L™'x* and y € L'y* such that
x teJ la*k= y’-{-e]‘ly*:x. We have

0=<x*—y* x'+eJ 'a*—y —eJ ty*>
=<a¥— ¥ x'— > Fe<at— yF Jlak =y >
Zellla*[fe — <a¥, T hy*>—<y*, T a*> 4y *|[5)
=e(llx*{lve—1 y*[[v0)?.

Hence [|x*|[y+=|ly*||y» and <y*, J'x*>=||y*||3-. This implies x*= y*.
Thus L. is singlevalued.

Let x¥=L.x, and x,—x,. By the boundedness of L., there exists a
subsequence {x, } such that x} "xf. From Lemma 2 it follows that
x§=L;xo. This implies that ¥, x*=L.x,. Thus L. is demicontinuous.

Since G(L) is linear, 0 € L7'0. Therefore we have 0 € L-}0=L"'0+¢eJ7 %0
=L '+eJH0. Thus 0=L.0. q.e.d.

Lemma 4. Let V and V* be strictly convex, and let C, A and L be as in
THeEOREM 2; (3.1) is assumed as well. For each ¢ >0 and each a € A, we set

Ae,a:jﬁ(Le'FA)].a,

where Li=(L'+eJ')"" and 4, j, and j% are as in the proof of THEOREM 1.
Then each A; , is bounded and satisfies conditions (m,), (m3) and the boundary
condition

3.2) <x*, x>>0 Sor any x € 0(CN\V,) and any x* € A, , x.

Proor. It is clear that each 4., is bounded and satisfies (m3). Since
<L¢x, x>>0 for any x € V' by Lemma 3, we have (8.2), by making use of
3.1).

To verify condition (m;) for A, ., it is sufficient to show that G(4,. ,) is
closed in V,x V%, Let {x,} CV, and {y}} be sequences such thaty} € 4. ,x,
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#n—x in V,and yf—y*in V¥ For each n we have y} =j&(L: x,+ x;) for
some x} € Ax,. Since A is bounded, there is a subsequence {x} } of {x}}
such that x% % x* in V*. Since x,—*x in ¥ and L.x,—% L.x by LEMMa
3, we obtain

O0=lim<y¥ —j&Lexn,, %, —x>
k

:1ikm<x:'fk, Xpy— 2>

=lim<xf, x,, > — <% x>
E

and y*=j¥(L.x+x*). By condition (m,) for 4, we have x* € Ax, and hence
y*€jE(Le+ A)jax=Ae ox. Thus G(4. ) is closed in V, x VE. g.ed.

Proor or THEOREM 2: Since V is reflexive, there exists a norm on V
equivalent to the initial norm with respect to which ¥ and ¥V * are strictly
convex (see [1]). Thus, we may assume that 7 and V' * are strictly convex
from the beginning.

For each ¢>0 and each a € 4 we consider the mapping A, , which is
given in LEmma 4. By Remark 1 and THeorewm 1, there exist x. ., € CNV,
and x¥. € Ax. , such that

3.3) <Lexeotxka,x>=0  foral x€V,.

By the weak compactness of C and the boundedness of 4 and L., there exists
a cofinal subdirected set {«;} of 4 such that x. ., —">x. €C, xF o, xE and
Le %o, X¥ From (3.3) it follows that x¥+X¥=0in V'*.

There exists « such that x. € V,. Therefore by (3.3) we have

0=limsup[ <L:x¢,a, Xe,a,— %>+ <xEay Xoa,— Xe> ]

and by the monotonicity of L.

lim.inf<L5 Xe,ap xe,“i—x6>2lim<L5 Xey Xe,a,— ¥e> =0,

1

Thus it follows that

(8.4) limsup<x¥a, xe,0,> <<axd, x>,

Now condition (m,;) for 4 and (3.4) imply that x* € Ax..
Set X¥o=Lcxeo Then x.,€ L7'X¥,+eJ 'X%, and hence «x.,
—eJ'X¥,€ L' X¥,. By the monotonicity of L=' and the fact 0 € L7'0, we
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have 0 << X¥., xca—eJ 'X%,>. Using this relation and (3.3) we infer
that

(35) _<xé ,ay Xeg, a>>5<Xe a,J :Ek,u>
= el XEallp-

Since {x. .} CC and A is bounded, — <x¥ ., x> <K where K is a constant
which is independent of ¢ and @. Therefore from (3.5) it follows that

(36) \/gHJ_lek,a”V:\/alX?Sk,a”V*g\/E

Therefore we may assume that veJ 'X#. —">p0.. Then |jo:|lyr <VK. Since
X:Ek,ai € L(xe,ai_ejilX ,Q, ), Xe a; ——)_x* and Xe,a; —8J_1X6 a; —*xé—\/é_pé‘,
we have —x* € L(x.—Vep,) by LEmma 2 and Remarxk 2.

Since {x.;e>0}CC and {x¥; >0} is bounded by the boundedness of
A, there exists a sequence {;} tending to 0 such that x. —%—>x,€ C and

x¥, "5 x¥. Then Veyp.,——0 and x.,—Ve,0:,—2—>x. By Lemma 2 and

RemARk 2 again, we have — x} € Lx,, and hence, using the monotonicity of L,

<'_x€+x0, Xe— \/&‘_pg—xo>20.

It follows that
3.0 limksup<xz~kk, xe, > <lim< xf, we, —Ver 06, — 0>
k
+lim<«xf§, x:, >
k

=< x§, o>

Condition (m;) and (3.7) imply that x¥ € Axo,. Thus 0= —xF+ x& € Lxo+ Axo,
that is, S2¢. The weak compactness of S follows from condition (m,) for
A and the maximal monotonicity of L. q.ed.

As an immediate consequence of THEOREM 2 we have

CoroLLARY 1. Let A be a bounded coercive mapping of type M of D(A)
=V into V* and L a linear maximal monotone mapping of D(L)V into V*.
Then for any given f € V* the equation Lx+ Ax=f has a solution and the set
of all solutions is weakly compact.

Proor. For feV* we define a mapping 4,y by A;x=Ax—f. By the
coerciveness of A there exists a positive number r such that < A;x, x >>0
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for all x € 9B,. Therefore by Turorem 2 the equation Lx+ A;x=0 has a
solution in B,. The weak compactness of the set of all solutions follows
from the coerciveness of 4, (M;) and the maximal monotonicity of L. q.e.d.

The next three corollaries give the existence of solutions of equations of
type (b).

CoROLLARY 2. Let A be a bounded mapping of type M of D(A)=V wnto
V* and let C be a bounded closed convex subset of V containing the origin 0
n its interior. Suppose that < Ax, x>">0 for all x € C. Let L be a linear
maximal monotone mapping of D(LYC V™ into V. Then the set S={x € C;
x+ LAx=0} is non-empty and weakly compact.

Proor. Since S={x € C; L 'x+ Ax >0}, L' is maximal monotone and
the graph G(L™!) is linear, Turorem 2 implies that S is non-empty and
weakly compact. q.e.d.

Remark 3. CororLARY 2 is a generalization of Tueorem 19 in [3].

CoroLLARY 3. Let A be a bounded mapping of type M of D(A)=V into
V* such that for each x, €V

<A(x+x0), x>

—co as ||x||ly — oo
[E71%

and L a linear maximal monotone mapping of D(LYCV* into V. Then
R(I+LA)=V.

Proor. For any x, €V we define a mapping 4., by A.,x=A(x,+x).
Clearly 4., is a bounded coercive mapping of type M. By the coerciveness
of A, there exists a positive number r such that <4, x, x>>>0 for all
x € 0B,. Therefore, by CoroLLARY 2, y+ LA, y=0 has a solution in B,, that
is, x+ LAx=x, has a solution. qg.e.d.

CoroLLARY 4. Let L be a linear maximal monotone mapping of D(L) CV*
into V and A a coercive mapping of type M of D(A)=V into V*. Suppose
that A= is coercive and for each x* € R(A), A 'x* is closed and convex in V.
Then R(I+LA)=V.

Proor. By the CororrLary of THeEorEmM 1 we have R(A)=V*. By
hypotheses A~' is a coercive bounded mapping of D(A~')=F*into V. Itis
easy to see that A4~! satisfies conditions (m,) and (m;). Therefore by
TureoreMm 2 there exists a point x* € V* such that 4 'x*-+Lx* 30, that is,
there exists x € 47 'x* such that x+LAx=0. Just as in CoroLLARY 1 we
can show the existence of a solution of x4+ LAx=x, for each x, € V. q.e.d.
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