The Stable Homotopy Groups of Spheres I

Shichirô Oka
(Received September 20, 1971)

Introduction and Summary

In this paper, p denotes always an odd prime number.
Let $\boldsymbol{K}_{k}=\left\{K_{k}(n)\right\}$ be the spectrum such that $K_{k}(n)$ is k-th element of the Postnikov system over S^{n} (see (1.1) of §1) and $S=\left\{S^{n}\right\}$ be the sphere spectrum.

In [6: III], H. Toda has calculated $H^{*}\left(\boldsymbol{K}_{k}\right)^{1)}$ for $k \leqq 2\left(p^{2}-1\right)(p-1)-2$ as the module over A^{*}, the Steenrod algebra mod p, by making use of several exact sequences of A^{*}-modules and by the induction on k using Lemmas 3.3 and 3.4 of [6: III], which are stated in Proposition 1.2 of $\S 1$.

Also in [6: III], for $k<2 p^{2}(p-1)-3$, the p-primary component ${ }_{p} \pi_{k}(\boldsymbol{S})$ of the k-th stable homotopy group $\pi_{k}(\boldsymbol{S})$ of spheres has been determined from the above results on $H^{*}\left(\boldsymbol{K}_{k}\right)$ by use of Lemma 3.1 of [6: III], which is quoted in (1.4) of §1. Furthermore in [6:IV], he has given the generators of ${ }_{p} \pi_{k}(S)$ by means of the compositions and the secondary ones in the same range of k.

The purpose of this paper is to calculate $H^{*}\left(\boldsymbol{K}_{k}\right)$ and ${ }_{p} \pi_{k}(\boldsymbol{S})$ for $k \leqq$ $2\left(p^{2}+p\right)(p-1)-3$ by use of the methods introduced by H . Toda [6] and some relations in ${ }_{p} \pi_{k}(\boldsymbol{S})$. The results are summarized in Theorems 4.1, 4.4, 5.1, 6.2, 7.8 and 7.9. The exact sequences presented in [4] together with the ones in [$6: I]$ are used in these calculations.

The beginning of our calculations is summarized in Theorem 4.1 of $\S 4$, which is due to H. Toda [6: III]. For further calculation, we use the following two relations:

$$
\mathscr{P}^{1} b_{1}^{p-1}=d_{1}, \Delta d_{1}=\mathscr{P}^{p^{2}} a_{0} \text { in } H^{*}\left(\boldsymbol{K}_{2\left(p^{2}-1\right)(p-1)-2}\right),
$$

which are given in Lemma 4.2 of $\S 4$.
Using these results and the exact sequences in [4] and [6: I], $H^{*}\left(\boldsymbol{K}_{2\left(p^{2}-1\right)(p-1)-1}\right)$ is determined (Theorem 4.4), and also $H^{*}\left(K_{k}\right), 2\left(p^{2}-1\right)(p-1)$ $\leqq k \leqq 2\left(p^{2}+p-2\right)(p-1)-2$, in certain dimensional restriction (Theorem 5.1).

These results enable us to calculate the $\operatorname{group}_{p} \pi_{k}(S)$ for $k \leqq 2\left(p^{2}+p-1\right)$. ($p-1$)-4 (Theorem 6.2). In addition, theorems presented in $\S 3$ give the description of generators of ${ }_{p} \pi_{k}(\boldsymbol{S})$ based on the compositions and the secondary compositions.

[^0]For funrther calculation, it is necessary that the following two coefficients $x_{3}, x_{4} \in Z_{p}$ are determined:

$$
\begin{equation*}
\mathscr{P}^{1} e_{p-2}=x_{3} b_{p}^{0}, \quad \mathscr{P}^{1} \Delta e_{p-2}=x_{4} \Delta b_{p}^{0} \text { in } H^{*}\left(\boldsymbol{K}_{2\left(p^{2}+p-2\right)(p-1)-2}\right) . \tag{7.1}
\end{equation*}
$$

In [7], H. Toda has calculated the (unstable) homotopy groups ${ }_{p} \pi_{2 n+1+k}$ $\left(S^{2 n+1}\right)$ for $k<2\left(p^{2}+p\right)(p-1)-5$ by the methods which differ from [6]. By use of the result ${ }_{p} \pi_{2\left(p^{2}+p-1\right)(p-1)-3}(S)=0$ of [7], we obtain $x_{3} \neq 0$ (Lemma 7.1). To determine x_{4}, in §8, we continue the calculations of [7] and obtain the partial results on ${ }_{p} \pi_{2\left(p^{2}+p\right)(p-1)-3}(\boldsymbol{S})$. These imply $x_{4}=2 x_{3} \neq 0$ (Proposition 7.7), and so $H^{*}\left(\boldsymbol{K}_{k}\right)$ is determined for $2\left(p^{2}+p-2\right)(p-1)-2 \leqq k \leqq 2\left(p^{2}+p\right)(p-1)$ -3 under certain dimensional restriction (Theorem 7.8).

In the forthcoming paper of the same title [5], we shall calculate the module $H^{*}\left(\boldsymbol{K}_{k}\right)$ for $k \leqq 2\left(p^{2}+3 p\right)(p-1)-4, p>3$ and for $k \leqq 74, p=3$, and the $\operatorname{group}_{p} \pi_{k}(\boldsymbol{S})$ for $k<2\left(p^{2}+3 p+1\right)(p-1)-5, p>3$ and for $k \leqq 76, p=3$.

The contents of this paper are as follows: In §1, we review the method of H. Toda [6]. Section 2 is devoted to introducing some known facts on $H^{*}\left(\boldsymbol{K}_{k}\right)$ and ${ }_{p} \pi_{k}(S)$, which are used in $\S \S 3-4$. In $\S 3$, we discuss the relationships between some special relations in $H^{*}\left(\boldsymbol{K}_{k}\right)$ and the compositions in ${ }_{p} \pi_{k}(\boldsymbol{S})$. The module $H^{*}\left(\boldsymbol{K}_{k}\right)$ is calculated for $k \leqq 2\left(p^{2}-1\right)(p-1)-1$ in $\S 4$, and for $2\left(p^{2}-1\right)(p-1)$ $\leqq k \leqq 2\left(p^{2}+p-2\right)(p-1)-2$ under degree $<2\left(p^{2}+p+1\right)(p-1)-3$ in $\S 5$. Using the results in $\S \S 3-5,{ }_{p} \pi_{k}(S)$ is calculated for $k \leqq 2\left(p^{2}+p-1\right)(p-1)-4$ in $\S 6$. In $\S 7$, the non-triviality of the coefficients x_{3} and x_{4} is discussed by use of Propositions 7.5-6, and $H^{*}\left(\boldsymbol{K}_{k}\right)$ is calculated for $2\left(p^{2}+p-2\right)(p-1)-2 \leqq k \leqq$ $2\left(p^{2}+p\right)(p-1)-3$. Also ${ }_{p} \pi_{k}(\boldsymbol{S})$ for $2\left(p^{2}+p-2\right)(p-1)-3 \leqq k \leqq 2\left(p^{2}+p\right)(p-1)$ -3 . In $\S 8$, by means of the methods established by H. Toda [7], the unstable group ${ }_{p} \pi_{2 n+1+k}\left(S^{2 n+1}\right)$ is calculated partially for $2\left(p^{2}+p\right)(p-1)-5 \leqq$ $k \leqq 2\left(p^{2}+p\right)(p-1)-2$, and in particular, ${ }_{p} \pi_{2\left(p^{2}+p\right)(p-1)-3}(S)$ is determined for $p=3$ (Proposition 7.5). Moreover, by those methods together with the results of [3][10], the non-triviality of the element $\alpha_{1} \varepsilon_{p-1}$ is proved for $p>3$ (Proposition 7.6).

§ 1. Postnikov system over spheres

In this section, we shall review the methods of H. Toda [6: III] (cf. [1]). Let $\boldsymbol{K}_{k}=\left\{K_{k}(n)\right\}$ be the spectrum such that $K_{k}(n)$ is the k-th element of the Postnikov system over S^{n}. The indexing is given by

$$
\begin{array}{ll}
\pi_{j+n}\left(K_{k}(n)\right)=0 & \text { for } j \geqq k \\
i_{*}: \pi_{j+n}\left(S^{n}\right) \xrightarrow{\approx} \pi_{j+n}\left(K_{k}(n)\right) & \text { for } j<k \tag{1.1}
\end{array}
$$

Let $S=\left\{S^{n}\right\}$ and $K(G)=\{K(G, n)\}$ be the sphere spectrum and the

Eilenberg-MacLane spectrum respectively. The fibering $i: K_{k+1}(n) \rightarrow K_{k}(n)$ with the fiber $K\left(\pi_{n+k}\left(S^{n}\right), n+k\right)$ gives rise to an exact sequence of the cohomology of spectra, which is the sequence (3.1) of [6: III]:

$$
\begin{equation*}
\cdots \xrightarrow{j^{*}} H^{i}\left(\boldsymbol{K}_{k}\right) \xrightarrow{i^{*}} H^{i}\left(\boldsymbol{K}_{k+1}\right) \xrightarrow{\delta^{*}} H^{i-k}\left({ }_{p} \pi_{k}(\boldsymbol{S})\right) \xrightarrow{j^{*}} H^{i+1}\left(\boldsymbol{K}_{k}\right) \xrightarrow{i^{*}} \cdots, \tag{1.2}
\end{equation*}
$$

where $H^{n}(G)=H^{n}(\boldsymbol{K}(G)),{ }_{p} G$ denotes the p-component of G for any finitely generated abelian group G, and the cohomology $H^{*}($) is understood to have Z_{p} for coefficients.

By (1.1) and (1.2), it follows that
(1.3) $([6: \mathrm{III},(3.3)]) H^{i}\left(\boldsymbol{K}_{k}\right)=0$ for $0<i<k+1$ and $\left.j^{*}: H^{0}{ }_{p} \pi_{k}(\boldsymbol{S})\right) \rightarrow H^{k+1}\left(\boldsymbol{K}_{k}\right)$ is isomorphic. $j^{*}: H^{1}\left({ }_{p} \pi_{k}(\boldsymbol{S})\right) \rightarrow H^{k+2}\left(\boldsymbol{K}_{k}\right)$ is monomorphic.

Let $\Delta_{r}: H^{i}() \cap \operatorname{Ker} \Delta_{r-1} \rightarrow H^{i+1}() / \operatorname{Im} \Delta_{r-1}\left(\Delta_{1}=\Delta\right)$ be the higher Bockstein operation of r-th kind. The following two statements are Lemmas 3.1 and 3.2 of [6: III] and are used to determine ${ }_{p} \pi_{k}(\boldsymbol{S})$ in this paper.
(1.4) The number of the direct summands of $\pi_{k}(\mathbf{S})$ which are isomorphic to $Z_{p^{r}}$ is equal to the rank of the image of

$$
\Delta_{r}: H^{k+1}\left(\boldsymbol{K}_{k}\right) \cap \operatorname{Ker} \Delta_{r-1} \rightarrow H^{k+2}\left(\boldsymbol{K}_{k}\right) / \operatorname{Im} \Delta_{r-1} .
$$

(1.5) If $H^{i}\left(\boldsymbol{K}_{k}\right)=0$ for $0<i \leqq k+r, r>0$, then ${ }_{p} \pi_{j}(\mathbf{S})=0$ for $k \leqq j<k+r$ and $i^{*}: H^{*}\left(\boldsymbol{K}_{k}\right) \rightarrow H^{*}\left(\boldsymbol{K}_{j}\right)$ is isomorphic for $k<j \leqq k+r$.

The module $H^{*}\left({ }_{p} \pi_{k}(\boldsymbol{S})\right)$ is the direct sum of the copies of A^{*} and $A^{*} / A^{*} \Delta$, where A^{*} denotes the Steenrod algebra mod p. Thus $H^{i}\left({ }_{p} \pi_{k}(\boldsymbol{S})\right)=0$ for $2 \leqq i \leqq$ $2 p-3$ and $H^{1}\left({ }_{p} \pi_{k}(S)\right)=0(k>0)$ if and only if ${ }_{p} \pi_{k}(\boldsymbol{S})=0$. This implies the following

Lemma 1.1. (i) The map $i^{*}: H^{k+1}\left(\boldsymbol{K}_{k-j}\right) \rightarrow H^{k+1}\left(\boldsymbol{K}_{k}\right)$ is epimorphic for $0 \leqq j \leqq 2 p-4$.
(ii) Let $k>1$. The map $i^{*}: H^{k+1}\left(\boldsymbol{K}_{k-j}\right) \rightarrow H^{k+1}\left(\boldsymbol{K}_{k-1}\right)$ is monomorphic for $1 \leqq j \leqq 2 p-3 . \quad i^{*}: H^{k+1}\left(\boldsymbol{K}_{k-1}\right) \rightarrow H^{k+1}\left(\boldsymbol{K}_{k}\right)$ is so if and only if ${ }_{p} \pi_{k-1}(\boldsymbol{S})=0$.

We can consider that the vector spaces $H^{k+1}\left(\boldsymbol{K}_{k}\right)$ and $H^{k+2}\left(\boldsymbol{K}_{k}\right)$ are given by

$$
\begin{align*}
& H^{k+1}\left(\boldsymbol{K}_{k}\right)=Z_{p}\left\{a_{i}, b_{j} ; 1 \leqq i \leqq r, 1 \leqq j \leqq s\right\} \\
& H^{k+2}\left(\boldsymbol{K}_{k}\right)=Z_{p}\left\{a_{i}^{\prime}, \Delta b_{j}, c_{1}, c_{2}, \cdots ; 1 \leqq i \leqq r, 1 \leqq j \leqq s\right\} \tag{1.6}
\end{align*}
$$

where $\Delta a_{i}=0, \Delta_{k_{i}} a_{i}=a_{i}^{\prime}\left(k_{i} \geqq 2\right)$ and $Z_{p}\left\{d_{1}, \ldots, d_{n}\right\}$ denotes the vector space over Z_{p} spanned by the elements d_{1}, \ldots, d_{n}. Then we have

$$
\begin{align*}
& H^{*}\left({ }_{p} \pi_{k}(\mathbf{S})\right)=\sum_{i} A^{*} j^{*-1} a_{i}+\sum_{i} A^{*} j^{*-1} a_{i}^{\prime}+\sum_{j} A^{*} j^{*-1} b_{j} \\
& \approx\left(\oplus \oplus^{r} A^{*} / A^{*} \Delta\right) \oplus\left(\oplus \oplus^{*} / A^{*} \Delta\right) \oplus\left(\stackrel{\stackrel{s}{\oplus}}{ } A^{*}\right), \tag{1.7}\\
&{ }_{p} \pi_{k}(\mathbf{S}) \approx\left(\bigoplus_{i=1}^{r} Z_{t_{i}}\right) \oplus\left(\oplus\left(\oplus Z_{p}\right), \quad t_{i}=p^{k_{i}} .\right.
\end{align*}
$$

To determine the module structure of $H^{*}\left(\boldsymbol{K}_{k}\right)$ by the induction on k, we shall employ the following proposition, which is proved from (1.2) similarly to Lemmas 3.3 and 3.4 of [$6: \mathrm{III}]$.

Proposition 1.2. In the notation (1.6), let

$$
\left\{\sum_{i} \alpha_{i, l} a_{i}+\sum_{i} \alpha_{i, l}^{\prime} a_{i}^{\prime}+\sum_{j} \beta_{j, l} b_{j}=0 ; \quad l=1,2, \ldots\right\}
$$

be the system of relations in the submodule $\sum_{i} A^{*} a_{i}+\sum_{i} A^{*} a_{i}^{\prime}+\sum_{j} A^{*} b_{j}$ of $H^{*}\left(\boldsymbol{K}_{k}\right)$ and let

$$
\left\{\sum_{l} \gamma_{l, m} B_{l}=0 ; m=1,2, \ldots\right\}, \quad B_{l}=\left(\alpha_{1, l}, \cdots, \alpha_{r, l}, \alpha_{1, l}^{\prime}, \ldots, \alpha_{r, l}^{\prime}, \beta_{1, l}, \ldots, \beta_{s, l}\right),
$$

be the system of relations in the submodule $\sum_{l} A^{*} B_{l}$ of $\left(\stackrel{r}{\oplus} A^{*} / A^{*} \Delta\right) \oplus$ $\left(\stackrel{r}{\oplus} A^{*} / A^{*} \Delta\right) \oplus\left(\stackrel{s}{\oplus} A^{*}\right)$. Then there exist elements

$$
d_{l} \in H^{*}\left(\boldsymbol{K}_{k+1}\right) \text { and } w_{m} \in H^{*}\left(\boldsymbol{K}_{k}\right)
$$

such that

$$
\delta^{*} d_{l}=\sum_{i} \alpha_{i, l} j^{*-1} a_{i}+\sum_{i} \alpha_{i, l j}^{\prime} j^{*-1} a_{i}^{\prime}+\sum_{j} \beta_{j, l j} j^{*-1} b_{j}, \quad \sum_{l} r_{l, m} d_{l}=i^{*} w_{m}
$$

Let $\left\{e_{n} ; n=1,2, \ldots\right\}$ and $\left\{r_{q}=0 ; q=1,2, \ldots\right\}$ be the systems of generators and of relations of $H^{*}\left(\boldsymbol{K}_{k}\right)$, then $H^{*}\left(\boldsymbol{K}_{k+1}\right)$ has the systems of generators $\left\{i^{*} e_{n}, d_{l}\right\}$ and of relations $\left\{i^{*} r_{q}=0, i^{*} a_{i}=i^{*} a_{i}^{\prime}=i^{*} b_{j}=0, \sum_{l} \gamma_{l, m} d_{l}-i^{*} w_{m}=0\right\}$.

§ 2. Some known results on $H^{*}\left(K_{k}\right)$ and ${ }_{p} \pi_{k}(\boldsymbol{S})$

Let a be an element of $H^{i}\left(\boldsymbol{K}_{k}\right)$. Then, following to H. Toda [6: III], we denote by a in \boldsymbol{K}_{l} or simply $a(l \geqq k)$ the image of a under the map $i^{*}: H^{*}\left(\boldsymbol{K}_{k}\right)$ $\rightarrow H^{*}\left(\boldsymbol{K}_{l}\right)$. Moreover, when $n>i-k$, by the stability $H^{i+n}\left(K_{k}(n)\right)=H^{i}\left(\boldsymbol{K}_{k}\right)$, we use the same letter a for the corresponding element of $H^{i+n}\left(K_{k}(n)\right)$. In particular, let $a_{0} \in H^{0}\left(\boldsymbol{K}_{k}\right)=H^{n}\left(K_{k}(n)\right)=Z_{p}$ denote a generator.

We shall define a map $\phi:{ }_{p} \pi_{k}(\boldsymbol{S}) \rightarrow H^{k+1}\left(\boldsymbol{K}_{k}\right)$ as follows:

$$
\begin{align*}
& \phi:{ }_{p} \pi_{k}(\boldsymbol{S}) \stackrel{\partial}{\underset{\sim}{\approx}}{ }_{p} \pi_{k+1}\left(\boldsymbol{K}_{k}, \boldsymbol{S}\right) \stackrel{H}{\underset{\sim}{\sim}} H_{k+1}\left(\boldsymbol{K}_{k}, \boldsymbol{S} ; Z\right) \\
& \cdot \stackrel{\rho}{\longrightarrow} H_{k+1}\left(\boldsymbol{K}_{k}, \boldsymbol{S}\right) \stackrel{\leftrightarrows}{\approx} H_{k+1}\left(\boldsymbol{K}_{k}\right) \stackrel{D}{\approx} H^{k+1}\left(\boldsymbol{K}_{k}\right), \tag{2.1}
\end{align*}
$$

where H, ρ and D denote the Hurewicz homomorphism, the reduction $\bmod p$ and the duality map respectively.

Any element $a \in H^{k+1}\left(\boldsymbol{K}_{k}\right), \Delta_{r-1} a=0, \Delta_{r} a \neq 0$, gives rise to a direct summ-
and $Z_{p^{r}}$ of ${ }_{p} \pi_{k}(\boldsymbol{S})$ by (1.4). Then an element $\gamma \epsilon_{p} \pi_{k}(\boldsymbol{S})$ generates this summand if $\phi(\gamma)=a$ (see [6: III, pp. 192-193]).

Definition 2.1. Any element $a \epsilon H^{k+1}\left(\boldsymbol{K}_{k}\right)$ together with the element $a_{0} \epsilon H^{0}\left(\boldsymbol{K}_{k}\right)$ forms a subcomplex of $K_{k}(n)$ (up to homotopy type $\bmod p$) by the first statement of (1.3). We denote this complex by $P_{k}^{n}(a)$. In more detail, there exist a complex

$$
P_{k}^{n}(a)=S^{n} \cup e^{n+k+1}
$$

and a map $f_{n}: P_{k}^{n}(a) \rightarrow K_{k}(n)$ such that $\tilde{H}^{*}\left(P_{k}^{n}(a)\right)$ is spanned by the elements $f_{n}^{*}\left(a_{0}\right)$ and $f_{n}^{*}(a)$. Moreover we denote by $\boldsymbol{P}_{k}(a)=\left\{P_{k}^{n}(a)\right\}$ the spectrum of these subcomplexes. This spectrum is stable, since $S P_{k}^{n}(a)=P_{k}^{n+1}(a)$ for $n>$ $k+1$.

Lemma 2.2. Let $a \in H^{k+1}\left(\boldsymbol{K}_{k}\right)$ and let $\gamma \epsilon_{p \pi_{k}(\boldsymbol{S})}$ denote the attaching class of $(n+k+1)$-cell of $P_{k}^{n}(a)$. Then $\phi(\gamma)=a$.

Proof. Comparing the diagram (2.1) and the diagram which is obtained by the replacement of \boldsymbol{K}_{k} by $\boldsymbol{P}_{k}(a)$ in (2.1), this lemma follows immediately.
Q.E.D.

Since $\boldsymbol{K}_{1}=\boldsymbol{K}(Z)$, we have
(2.2) The module $H^{*}\left(\boldsymbol{K}_{1}\right)$ is generated by a_{0} with the relation $\Delta a_{0}=0$.

By use of (1.4) and (1.5), we have
(2.3) $\quad H^{*}\left(\boldsymbol{K}_{k}\right) \approx H^{*}\left(\boldsymbol{K}_{1}\right) \quad$ for $k \leqq 2 p-3, \quad{ }_{p} \pi_{k}(\boldsymbol{S})=0 \quad$ for $1 \leqq k \leqq 2 p-4$ and ${ }_{p} \pi_{2 p-3}(\boldsymbol{S}) \approx Z_{p}$.

Since $H^{2 p-2}\left(\boldsymbol{K}_{2 p-3}\right)=Z_{p}\left\{\mathscr{P}^{1} a_{0}\right\}$, we obtain a well-known fact: the generator α_{1} of ${ }_{p} \pi_{2 p-3}(\boldsymbol{S}) \approx Z_{p}$ is detected by \mathscr{P}^{1} operation.

The module $H^{*}\left(\boldsymbol{K}_{k}\right), k \leqq 2 p(p-2)-2$, is calculated by H . Toda in Theorems 3.6, 3.7 and Lemma 3.8 of [6: III].

Theorem 2.3 (Toda). Let $2(p-1) \leqq k \leqq 2 p(p-1)-2$. Then $H^{*}\left(\boldsymbol{K}_{k}\right)$ has a minimal set of generators which is given by the following

Table A1

Generator a	Degree of a	Range of k in which a exists	δ^{*}-image of a in $K_{h(a)}$
a_{0}	0	$k \geqq 1$	
a_{r} $(2 \leqq r \leqq p)$	$2 r(p-1)$	$k \geqq 2(r-1)(p-1)=h\left(a_{r}\right)$	$\delta^{*} a_{2}=R_{1} j^{*-1}\left(\mathscr{P}^{1} a_{0}\right)$ $\delta^{*} a_{r}=R_{r-1} j^{*-1} a_{r-1}(3 \leqq r \leqq p)$
a_{p}^{\prime}	$2 p(p-1)+1$	$k \geqq 2(p-1)(p-1)=h\left(a_{p}^{\prime}\right)$	$\delta^{*} a_{p}^{\prime}=\Delta \mathscr{P}^{1} \Delta^{*-1} j^{*-1} a_{p-1}$
b_{1}^{0}	$2 p(p-1)-1$	$k \geqq 2(p-1)=h\left(b_{1}^{0}\right)$	$\delta^{*} b_{1}^{0}=\mathscr{P}^{p-1} j^{*-1}\left(\mathscr{P}^{1} a_{0}\right)$
$\left(R_{r}=(r+1) \mathscr{P}^{1} \Delta-r \Delta \mathscr{P}^{1}\right)$.			

The relations in $H^{*}\left(\boldsymbol{K}_{k}\right)$ are given by the relations in Table B 1 below.
Table B1
(a-1) $\quad \Delta a_{0}=\mathscr{P}^{1} a_{0}=0 . \quad$ (a-2) $\quad R_{r} a_{r}=\Delta \mathscr{P}^{1} \Delta a_{p-1}=\Delta a_{p}=\Delta a_{p}^{\prime}=\Delta \mathscr{P}^{1} a_{p}-\mathscr{P}^{1} a_{p}^{\prime}=0$.
(b-1) $\mathscr{P}^{p} a_{0}-\Delta b_{1}^{0}-\mathscr{P}^{p-2} a_{2}=0 . \quad(b-2) \mathscr{P}^{1} b_{1}^{0}=0$.
(l) $a=0$ in $K_{k}, k \geqq \operatorname{deg} a$, for the generator $a \neq a_{0}$ in Table A1. The relation $(b-1)$ induces the following
(b-3) $\quad\left(2 \mathscr{P}^{p} \mathscr{P}^{1}-\mathscr{P}^{p+1}\right) \Delta b_{1}^{0}=c\left(\mathscr{P}^{p(p-1)}\right) \Delta b_{1}^{0}=0$ in $K_{k}, k \geqq 4(p-1)$, where $c: ~ A^{*} \rightarrow A^{*}$ denotes the conjugation of A^{*}.

From this theorem and (1.4), ${ }_{p} \pi_{k}(S)$ is calculated for $k \leqq 2 p(p-1)-2$.
${\text { Corollary 2.4. The } \text { group }_{p} \pi_{k}(S) \text { is isomorphic to } Z_{p} \text { for } k=2 r(p-1) ~}_{n}$ $-1,1 \leqq r \leqq p-1$, and for $k=2 p(p-1)-2$, and vanishes for other $k \leqq 2 p(p-1)$ -2 .

Now the element b_{1}^{0} of Table A1 gives rise to a generator β_{1} of ${ }_{p} \pi_{2 p(p-1)-2}$ (S). According to the relation ($b-1$) of Table B1, the generator β_{1} can be determined uniquely by the following
(2.4) (see e.g. [3: Remark in p. 172], [7: III, p. 102]). A map f : $S^{n+2 p(p-1)-2} \rightarrow S^{n}$ of order p represents β_{1} if and only if $\mathscr{P}^{p} u=(-1)^{n} v$ in $H^{*}(L)$, where $L=S^{n} \cup e^{i-1} \cup e^{i}, i=n+2 p(p-1)$, is a complex such that the map f (resp. a map $\quad S^{i-1} \rightarrow S^{i-1}$ of degree p) is the attaching map of ($i-1$)-cell (resp. i-cell) in L (resp. L / S^{n}), and $u \in H^{n}(L)$ and $v \in H^{i}(L)$ are the generators corresponding to the cells of L.

From the results on ${ }_{p} \pi_{k}(\boldsymbol{S})$ of Corollary 2.4, we have the following facts about the element β_{1}.

Lemma 2.5 (see [6: IV, Lemma 4.10]). (i) For $0 \leqq i<p$, there exists a complex $L_{i}^{n}=S^{n} \cup e^{n+2(p-1)} \cup \cdots \cup e^{n+2 i(p-1)}$ such that $H^{n+2 k(p-1)}\left(L_{i}^{n}\right)=Z_{p}$ is spanned by $\mathscr{P}^{k} u$ for $u \in H^{n}\left(L_{i}^{n}\right), 0 \leqq k \leqq i$.
(ii) There exist maps $A: L_{p-2}^{n+2 p-3} \rightarrow S^{n}$ and $B: S^{n+2 p(p-1)-2} \rightarrow L_{p-2}^{n+2 p-3}$ such that the composition $A B$ represents an element $x \beta_{1}, x \equiv 0 \bmod p$, and that both Aj and πB represent α_{1}, where $j: S^{n} \rightarrow L_{i}^{n}$ and $\pi: L_{i}^{n} \rightarrow S^{n+2 i(p-1)}$ denote the inclusion and the projection respectively.
(iii) There exist maps $A^{\prime}: L_{p-3}^{n+4 p-5} \rightarrow L_{1}^{n}$ and $B^{\prime}: S^{n+2 p(p-1)-2} \rightarrow L_{p-3}^{n+4 p-5}$ such that $A^{\prime} B^{\prime}$ represents $j_{*}\left(y \beta_{1}\right), y \equiv 0 \bmod p$, and that both $\pi A^{\prime} j$ and πB^{\prime} represent α_{1}.

Proof. (i) and (ii) are proved in [6: IV, Lemma 4.10]. The maps A^{\prime} and B^{\prime} are constructed by the following homotopy commutative diagram of cofiberings:

which is obtained from (i) and (ii), and so (iii) follows from this diagram.
Q.E.D.
§3. Some relations on $H^{*}\left(K_{k}\right)$ and the compositions in ${ }_{p} \pi_{k}(S)$
Let $\boldsymbol{X}_{k}=\left\{X_{k}(n)\right\}$ be the spectrum such that $X_{k}(n)=\Omega\left(K_{k}(n), S^{n}\right)$, the space of paths in $K_{k}(n)$ starting from the base point and ending in S^{n}. Then $p_{k}: X_{k}(n) \rightarrow S^{n}$ is an ($n+k-1$)-connective fiber space over S^{n} with the fiber $\Omega K_{k}(n)$. The inclusion $i_{0}: K_{k}(n) \rightarrow\left(K_{k}(n), S^{n}\right)$ induces isomorphisms

$$
\begin{equation*}
([6: \mathrm{IV},(4.7)]) \quad \tau: H^{i}\left(\boldsymbol{X}_{k}\right) \xrightarrow[\approx]{\left(\Omega i_{0}\right)^{*}} H^{i}\left(\Omega \boldsymbol{K}_{k}\right) \approx H^{i+1}\left(\boldsymbol{K}_{k}\right) . \tag{3.1}
\end{equation*}
$$

Lemma 3.1. The map ϕ of (2.1) coincides with the following composition.

$$
\phi:{ }_{p} \pi_{k}(\mathbf{S}) \stackrel{\left(p_{k}\right) *}{\approx}{ }_{p} \pi_{k}\left(\boldsymbol{X}_{k}\right) \underset{\approx}{\underset{\sim}{H}} H_{k}\left(\boldsymbol{X}_{k} ; Z\right) \xrightarrow{\rho} H_{k}\left(\boldsymbol{X}_{k}\right) \xrightarrow[\underset{\sim}{D}]{\underset{\sim}{k}} H^{k}\left(\boldsymbol{X}_{k}\right) \underset{\approx}{\tau} H^{k+1}\left(\boldsymbol{K}_{k}\right) .
$$

Proof. The following diagram is commutative:

where all maps except ρH are isomorphic. Then this lemma is immediate.
Q.E.D.

Proposition 3.2. Let $f: S^{n+k} \rightarrow S^{n}$ be a representative of $\gamma \epsilon_{p} \pi_{k}(\boldsymbol{S})$, and assume $\phi(\gamma)=a \neq 0$. Then there is a map $F: S^{n+k} \rightarrow X_{k}(n)$ such that $p_{k} F=f$, $F^{*}\left(\tau^{-1} a\right) \neq 0$ and $F^{*}\left(H^{n+k}\left(X_{k}(n)\right) / Z_{p}\left\{\tau^{-1} a\right\}\right)=0$.

Proof. By the covering homotopy property, there is a map F such that $p_{k} F=f$. Consider the map $F_{*}: H_{n+k}\left(S^{n+k}\right) \rightarrow H_{n+k}\left(X_{k}(n)\right)$. Let $\iota \epsilon \pi_{n+k}\left(S^{n+k}\right)$ be the class of the identity map and $\iota^{\prime}=\rho H \iota \in H_{n+k}\left(S^{n+k}\right)$ be the generator. Then $p_{k} F=f$ implies $\left(p_{k *}\right)^{-1} \gamma=F_{*} \iota$. By Lemma 3.1, $D^{-1} \tau^{-1} a=\rho H\left(p_{k *}\right)^{-1} \gamma$. Thus, $D^{-1} \tau^{-1} a=\rho H F_{*} \iota=F_{*} \epsilon^{\prime}$. This implies the rest of the assertions.
Q.E.D.

The following theorems give the information about the compositions
with the elements α_{1} and β_{1} in ${ }_{p} \pi_{k}(\boldsymbol{S})$.
Theorem 3.3. Let $a \in H^{k+1}\left(\boldsymbol{K}_{k}\right)$ and $\gamma \epsilon_{p} \pi_{k}(\boldsymbol{S})$, and assume that
(1) $\phi(\gamma)=a \neq 0$,
(2) $\mathscr{P}^{1} a=0 \quad$ in \boldsymbol{K}_{k}.

Then there is an element $b \in H^{k+2 p-2}\left(\boldsymbol{K}_{k+1}\right)$ such that $\delta^{*} b=\mathscr{P}^{1} j^{*-1} a$ by Proposition 1.2. Furthermore such b satisfies:

$$
b \neq 0 \text { in } \boldsymbol{K}_{k+2 p-3} \text { and } \phi\left(\alpha_{1} \gamma\right)= \pm b .
$$

Theorem 3.4. In the above theorem, assume also
(3) $\mathscr{P}^{p-1} b=0$ in $\boldsymbol{K}_{k+2 p-3}$.

Then $\beta_{1} \gamma \neq 0$ in $_{p} \pi_{k+2 p(p-1)-2}(\mathbf{S})$.
Let $c \in H^{k+2 p(p-1)-1}\left(\boldsymbol{K}_{k+2 p-2}\right)$ be an element such that $\delta^{*} c=\mathscr{P}^{p-1} j^{*-1} b$. Assume further
(4) $\mathscr{P}^{p-2} b \neq 0$ in $\boldsymbol{K}_{k+2 p-3}$.
(5) $c \neq 0$ in $\boldsymbol{K}_{k+2 p(p-1)-2}$.

Then $\phi\left(\beta_{1} \gamma\right)=x c$ for some $x \equiv 0 \bmod p$.
Proof of Theorem 3.3. By Lemma 1.1, $b \neq 0$ in $\boldsymbol{K}_{k+2 p-4}$. Assume that $b=0$ in $\boldsymbol{K}_{k+2 p-3}$. Then by (1.3), $b=\Sigma x_{i} \Delta_{r_{i}} u_{i}, \Delta_{r_{i}-1} u_{i}=0$ (if $r_{i} \geqq 2$), $\boldsymbol{\Delta}_{r_{i}} u_{i} \neq 0$, for some $x_{i} \in Z_{p}$ and $r_{i} \geqq 1$, where $H^{k+2 p-3}\left(\boldsymbol{K}_{k+2 p-4}\right)=Z_{p}\left\{u_{i}\right\}$. By Lemma 1.1, u_{i} exists in \boldsymbol{K}_{k} and $\Delta_{r_{i}-1} u_{i}=0, \Delta_{r_{i}} u_{i} \neq 0$ in \boldsymbol{K}_{k}. Thus b (in \boldsymbol{K}_{k+1}) is contained in $\operatorname{Im} i^{*}$. This contradicts to $\delta^{*} b \neq 0$. Thus $b \neq 0$ in $\boldsymbol{K}_{k+2 p-3}$.

Now put $L=P_{k+2 p-3}^{n}(b), M=P_{k}^{n}(a)$, and let $f^{\prime}: L \rightarrow K_{k+2 p-3}(n), g^{\prime}: M \rightarrow$ $K_{k}(n)$ be the inclusions (see Definition 2.1) and $f=i f^{\prime}: L \rightarrow K_{k+1}(n)$.

Consider the cofibering of spectra $\boldsymbol{K}_{k+1} \xrightarrow{i} \boldsymbol{K}_{k} \xrightarrow{j} \boldsymbol{Q}$, where $\boldsymbol{Q}=\left\{Q_{n}\right\}$ is the spectrum such that $Q_{n}=K\left({ }_{p} \pi_{n+k}\left(S^{n}\right), n+k+1\right)$. Since the element γ generates a direct summand $Z_{p^{r}}$ of ${ }_{p} \pi_{k}(\boldsymbol{S})$ for some r, we have $Q_{n}=Q_{n}^{\prime} \times Q_{n}^{\prime \prime}, Q_{n}^{\prime}=K\left(Z_{p^{r}}\right.$, $n+k+1), Q_{n}^{\prime \prime}=K(G, n+k+1)$ for the decomposition: ${ }_{p} \pi_{k}(\boldsymbol{S}) \approx Z_{p^{r}} \oplus G$, and so $H^{*}\left(\boldsymbol{Q}^{\prime}\right)$ is generated by the elements q and $q^{\prime}=\Delta_{r} q$ which correspond to a and $\Delta_{r} a$, where $\boldsymbol{Q}^{\prime}=\left\{Q_{n}^{\prime}\right\}$. The element b corresponds to $\mathscr{P}^{1} q$, since $\delta^{*} b=$ $\mathscr{P}^{1} j^{*-1} a$. Thus the cell of \boldsymbol{Q} corresponding to b attaches only to the cell corresponding to q, since $H^{*}\left(\boldsymbol{Q}^{\prime}\right)$ is a direct summand (as A^{*}-module) of $H^{*}(\boldsymbol{Q})$. This implies that the map if: $L \rightarrow K_{k}(n)$ passes through the subcomplex M (up to homotopy). In other words, there is a map $l: L \rightarrow M$ such that the following diagram is homotopy commutative:

Let $\delta \epsilon_{p \pi_{k+2 p-3}(\boldsymbol{S})}$ and $\gamma_{1} \epsilon_{p} \pi_{k}(\boldsymbol{S})$ be the classes of the attaching maps of ($n+k+2 p-2$)- and ($n+k+1$)-cells of L and M respectively. From the above discussions, we have $\delta= \pm \gamma_{1} \alpha_{1}= \pm \alpha_{1} \gamma_{1}$. By Lemma 2.2, $\phi(\delta)=b, \phi\left(\gamma_{1}\right)$
$=a=\phi(\gamma)$. The kernel of ϕ consists of all p-divisible elements. Hence $\phi\left(\alpha_{1} \gamma\right)$ $= \pm b$.
Q.E.D.

Proof of Theorem 3.4. First we shall prove $\beta_{1} \gamma \neq 0$. Assume that $\beta_{1} \gamma=0$. Let $g: S^{n+k} \rightarrow S^{n}$ be a representative of γ. Then $(g A) B$ is null homotopic for the maps A, B of Lemma 2.5, so there is a map $f: L_{p-1}^{n+k+2 p-3} \rightarrow S^{n}$ such that $f \mid S^{n+k+2 p-3}$ represents $\pm \alpha_{1} \gamma$. Let $F: L_{p-1}^{n+k+2 p-3} \rightarrow X_{k+2 p-3}(n)$ be a lifting of f. By Proposition 3.2, $F^{*}\left(\tau^{-1} b\right)=u$ for a generator u of $H^{n+k+2 p-3}\left(L_{p-1}^{n+k+2 p-3}\right)$. Hence, $F^{*}\left(\tau^{-1}\left(\mathscr{P}^{p-1} b\right)\right)=\mathscr{P}^{p-1} u \neq 0$. This contradicts to $\mathscr{P}^{p-1} b=0$. Thus $\beta_{1} \gamma \neq 0$.

Let us put $L=P_{k+2 p(p-1)-2}^{n}(c), M_{1}=P_{k+2 p-3}^{n}(b), N=P_{k}^{n}(a)$, and denote the inclusions by $f^{\prime}: L \rightarrow K_{k+2 p(p-1)-2}(n), \quad g_{1}: M_{1} \rightarrow K_{k+2 p-3}(n)$ and $h: N \rightarrow K_{k}(n)$ (see Definition 2.1).

From the discussion of Theorem 3.3, the attaching map of ($n+k+2 p-2$) -cell of M_{1} represents $\pm \alpha_{1} \gamma$ by the replacement of this map if necessary. Then there is a homotopy commutative diagram of cofiberings:

where the left vertical arrow represents $\pm r$ and L_{i}^{n} is in Lemma 2.5. Let $\lambda_{i} \epsilon_{p} \pi_{n+k+2(i+1)(p-1)-1}\left(L_{i}^{n+k}\right)$ be the attaching class of the top cell of L_{i+1}^{n+k}. Then for $1 \leqq i \leqq p-1$, we can construct inductively a complex $M_{i}=S^{n} \cup e^{n+k+2 p-2}$ $\cup \cdots \cup e^{n+k+2 i(p-1)}$ and a map $q_{i}: L_{i}^{n+k} \rightarrow M_{i}$ such that for $i<p-1$ the following is a homotopy commutative diagram of cofiberings:

By Lemma 2.5 (ii), $\pi_{*}^{\prime}\left(q_{i} \lambda_{i}\right)=\pi_{*}\left(\lambda_{i}\right)$ generates ${ }_{p} \pi_{2 p-3}(S)$, hence $\tilde{H}^{*}\left(M_{i}\right)$ is spanned by the elements $u, v, \mathscr{P}^{1} v, \ldots, \mathscr{P}^{i-1} v$, where $\operatorname{deg} u=n, \operatorname{deg} v=n+k+$ $2 p-2$.

Set $M=M_{p-1}$. The map g_{1} has an extension $g^{\prime}: M \rightarrow K_{k+2 p-3}(n)$ by (1.1). Then $\bar{H}^{*}(M)$ is spanned by the $g^{\prime *}$-images of the elements $a_{0}, b, \mathscr{P}^{1} b, \ldots$, $\mathscr{P}^{p-2} b$. Put $f=i f^{\prime}: L \rightarrow K_{k+2 p-2}(n)$ and $g=i g^{\prime}: M \rightarrow K_{k+1}(n)$.

By the similar discussions in the above proof of Theorem 3.3, we obtain the following
(3.2) There exist maps $l: L \rightarrow M$ and $m: M \rightarrow N$ such that the following diagrams are homotopy commutative for some $x_{1}, x_{2} \neq 0 \bmod p$:

where A, B and L_{i}^{n} are in Lemma 2.5, and π denotes the projection.
By this, we have a homotopy commutative diagram:

where C represents $y \beta_{1}$ for some $y \neq 0 \bmod p$.
Let γ_{1} be the class of the attaching map of $(n+k+1)$-cell of N. Then by this diagram, $\phi\left(\beta_{1} \gamma_{1}\right)=x c$ for some $x \neq 0 \bmod p$. Since $\gamma_{1}=\gamma+p \lambda$ for some λ, we obtain the equality $\phi\left(\beta_{1} \gamma\right)=x c$.
Q.E.D.

Similarly to the above theorems, we obtain the following
Theorem 3.5. Let $a^{\prime} \in H^{k+1}\left(\boldsymbol{K}_{k}\right)$ and $\gamma^{\prime} \epsilon_{p} \pi_{k}(\mathbf{S})$ with
(1) $\phi\left(\gamma^{\prime}\right)=a^{\prime}, \alpha_{1} \gamma^{\prime}=0, \mathscr{P}^{2} a^{\prime}=0$ in \boldsymbol{K}_{k}.

Then the secondary composition $\left\{\gamma^{\prime}, \alpha_{1}, \alpha_{1}\right\}$ does not contain zero.
Let $b^{\prime} \in H^{k+4 p-4}\left(\boldsymbol{K}_{k+1}\right)$ be an element such that $\delta^{*} b^{\prime}=\mathscr{P}^{2} j^{*-1} a^{\prime}$. Assume also
(2) $b^{\prime} \neq 0$ in $\boldsymbol{K}_{k+4 p-5}$.

Then there is an element $\varepsilon \epsilon\left\{\gamma^{\prime}, \alpha_{1}, \alpha_{1}\right\}$ such that $\phi(\varepsilon)= \pm b^{\prime}$.
Assume further
(3) $\mathscr{P}^{p-2} b^{\prime}=0$ in $\boldsymbol{K}_{k+4 p-5}$.

Then $\beta_{1} \gamma^{\prime} \neq 0$.
Let $c^{\prime} \in H^{k+2 p(p-1)-1}\left(\boldsymbol{K}_{k+4 p-4}\right)$ be an element satisfing $\delta^{*} c^{\prime}=\mathscr{P}^{p-2} j^{*-1} b^{\prime}$. In addition, assume
(4) $\mathscr{P}^{p-3} b^{\prime} \neq 0$ in $\boldsymbol{K}_{k+4 p-5}, \quad c^{\prime} \neq 0$ in $\boldsymbol{K}_{k+2 p(p-1)-2}$.

Then $\phi\left(\beta_{1} \gamma^{\prime}\right)=x^{\prime} c^{\prime}$ for some $x^{\prime} \equiv 0 \bmod p$.
Proof. Assume that $\left\{\gamma^{\prime}, \alpha_{1}, \alpha_{1}\right\} \ni 0$. Then there is a map $F: L_{2}^{n+k} \rightarrow$ $X_{k}(n)$ such that $p_{k} F \mid S^{n+k}$ represents γ^{\prime}. By Proposition 3.2, $F^{*}\left(\tau^{-1} a^{\prime}\right)=u$ for a generator u of $H^{n+k}\left(L_{2}^{n+k}\right)$. Then $F^{*}\left(\tau^{-1}\left(\mathscr{P}^{2} a^{\prime}\right)\right)=\mathscr{P}^{2} u \neq 0$. This contradicts to $\mathscr{P}^{2} a^{\prime}=0$. Thus $\left\{\gamma^{\prime}, \alpha_{1}, \alpha_{1}\right\} \nexists 0$.

The assumption $\alpha_{1} \gamma^{\prime}=0$ implies $\mathscr{P}^{1} a^{\prime} \neq 0$ in \boldsymbol{K}_{k}. From the discussion of Theorem 3.4, there exist a complex $M=P_{k}^{n}\left(a^{\prime}\right) \cup e^{n+k+2 p-1}$ satisfying $M / S^{n}=$ L_{1}^{n+k+1} and a map $g: M \rightarrow K_{k}(n)$ such that $\tilde{H}^{*}(M)$ is spanned by $g^{*} a_{0}, g^{*} a^{\prime}$, $\mathscr{P}^{1} g^{*} a^{\prime}$. Put $L=P_{k+4 p-5}^{n}\left(b^{\prime}\right)$ and let $f: L \rightarrow K_{k+4 p-5}(n)$ be a map such that $\tilde{H}^{*}(L)$ is spanned by $f^{*} a_{0}$ and $f^{*} b^{\prime}$.

By the similar argument of the above theorems, we have a map $l: L \rightarrow M$ and a homotopy commutative diagram:

where the left vertical arrow represents $\pm \alpha_{1}$. This implies $\phi(\varepsilon)= \pm b^{\prime}$ for some $\varepsilon \in\left\{\gamma^{\prime}, \alpha_{1}, \alpha_{1}\right\}$.

The rest of the assertions is proved similarly to Theorem 3.4, by use of Lemma 2.5 (iii) instead of (ii).
Q.E.D.

The following theorem is obtained similarly to the previous theorems and the proof is omitted.

Theorem 3.6. Let $a^{\prime \prime} \in H^{k+1}\left(\boldsymbol{K}_{k}\right)$ and $\gamma^{\prime \prime} \epsilon_{p} \pi_{k}(\boldsymbol{S})$ with $\phi\left(\gamma^{\prime \prime}\right)=a^{\prime \prime}$, and assume that $\Delta a^{\prime \prime} \neq 0, \mathscr{P}^{1} \Delta a^{\prime \prime}=0$. Then $\left\{\gamma^{\prime \prime}, p \iota, \alpha_{1}\right\}$ is defined and does not contain zero (\subset denotes the class of the identity map). Let $b^{\prime \prime} \in H^{k+2 p-1}\left(\boldsymbol{K}_{k+1}\right)$ with $\delta^{*} b^{\prime \prime}=\mathscr{P}^{1} \Delta j^{*-1} a^{\prime \prime}$, and assume also $b^{\prime \prime} \neq 0$ in $\boldsymbol{K}_{k+2 p-2}$. Then there exists an element $\lambda \epsilon\left\{\gamma^{\prime \prime}, p \iota, \alpha_{1}\right\}$ such that $\phi(\lambda)= \pm b^{\prime \prime}$.
§4. $H^{*}\left(\boldsymbol{K}_{k}\right)$ for $k \leqq 2\left(p^{2}-1\right)(p-1)-1$
In this section, we shall compute $H^{*}\left(\boldsymbol{K}_{k}\right), k \leqq 2\left(p^{2}-1\right)(p-1)-1$, continued from Theorem 2.3 of $\S 2$, for our further calculation.

For any non-zero element $a \in H^{i}\left(\boldsymbol{K}_{k}\right), i>0$, we define
$h(a)=\min \left\{l:\right.$ there is $a^{\prime} \in H^{i}\left(\boldsymbol{K}_{l}\right)$ such that $a^{\prime}=a$ in $\left.\boldsymbol{K}_{k}\right\}$.
We put $q=2(p-1)$ in the rest of this paper.
Almost all of the following theorem is occupied in Theorem 3.10 of [6: III].

Theorem 4.1. Let $p q-1 \leqq k \leqq\left(p^{2}-1\right) q-2$. In degree $<\left(2 p^{2}+p\right) q-2$, $H^{*}\left(\boldsymbol{K}_{k}\right)$ has a minimal set of generators given by the following table:

Table A2

Generator a	Degree of a	$h(a)$	δ^{*}-image of a in $\boldsymbol{K}_{h(a)}$			
a_{0}	0					
a_{r} $\left(p \leqq r \leqq p^{2}-1\right)$	$r q$	$(r-1) q$	$R_{r-1} j^{*-1} a_{r-1}$ for $r \neq 1 \bmod p$			
$(1 \leqq s<p)$	$a_{s p}^{\prime}$	$s p q+1$	$(s p-1) q$	$	$	$\Delta \mathscr{P}^{1} j^{*-1} a_{s p}-j^{*-1} a_{s p-1} j^{*-1} a_{s p}^{\prime}$ for $r=s p+1$
:---						

$\begin{gathered} b_{s}^{r} \\ (r \geqq 0, s \geqq 1, r+s \leqq p) \end{gathered}$	$\begin{gathered} ((r+s) p+s-1) q \\ -2 r-1 \end{gathered}$	q	$\mathscr{P}^{p-1} j^{*-1}\left(\mathscr{P}^{1} a_{0}\right)$ for $r=0, s=1$
		((s-1) $p+s-2) q-1$	$W_{s-1} j^{*-1} b_{s-1}^{0}$ for $r=0, s \geqq 2$
		$((r+s-1) p+s) q-2 r$	$\mathscr{P}^{p-1} j^{*-1} c_{s}^{r-1}$ for $r \geqq 1$
$\left(r \geqq 0, s \geqq c_{\geqq}^{r}, r+s<p\right)$	$\begin{array}{r} ((r+s) p+s) q \\ -2 r-2 \end{array}$	$\begin{array}{r} ((r+s) p+s-1) q \\ -2 r-1 \end{array}$	$\mathscr{P}^{1 *} j^{-1} b_{s}^{r}$
d_{1}	$p^{2} q-1$	$p q-1$	$c\left(\mathscr{P}^{p(p-1)}\right) \Delta^{*-1} b_{1}^{0}$
d_{2}	$\left(p^{2}+p\right) q+1$	$\left(p^{2}-2\right) q-1$	$\Delta \mathscr{P}^{p+1} \Delta \mathscr{P}^{1} \Delta j^{*-1} b_{p-1}^{0}$

Here $R_{t}=(t+1) \mathscr{P}^{1} \Delta-t \Delta \mathscr{P}^{1}, W_{t}=(t+1) \mathscr{P}^{p} \mathscr{P}^{1} \Delta-t \mathscr{P}^{p+1} \Delta+(t-1) \Delta \mathscr{P}^{p+1}$, and c : $A^{*} \rightarrow A^{*}$ denotes the conjugation of A^{*}.

The relations in $H^{*}\left(\boldsymbol{K}_{k}\right)$, degree $<\left(2 p^{2}+p\right) q-2$, are given by the following

Table B2

(a-1) $\quad \Delta a_{0}=\mathscr{P}^{1} a_{0}=\mathscr{P}^{p} a_{0}-\Delta b_{1}^{0}=0$.
(a-2) $\quad R_{r} a_{r}=\Delta a_{s p}=\Delta a_{s p}^{\prime}=\Delta \mathscr{P}^{1} a_{s p}-\mathscr{P}^{1} a_{s p}^{\prime}=\Delta \mathscr{P}^{1} \Delta a_{s p-1}=0$.
($b-1$) $\quad \mathscr{P}^{1} b_{1}^{0}=\mathscr{P}^{1} b_{s}^{r}=0(r \geqq 1,(r, s) \neq(p-1,1)), \mathscr{P}^{1} b_{s}^{0}-\bar{W}_{s} c_{s-1}^{0}=0(2 \leqq s \leqq p-1)$,
$\mathscr{P}^{1} b_{p}^{0}-\bar{W}_{p} c_{p-1}^{0} \equiv 0 \bmod A^{*} b_{1}^{p-1}$.
$(b-1)^{\prime} \mathscr{P}^{1} b_{1}^{p-1}-x_{1} d_{1}=0$ for some $x_{1} \in Z_{p}$.
(b-2) $\quad W_{1} b_{1}^{0}=0, W_{s} b_{s}^{0}-A_{s} c_{s-1}^{0} \equiv 0 \bmod A^{*} a_{s p+s-1}(2 \leqq s \leqq p-1)$,

$$
W_{p} b_{p}^{0}-A_{p} c_{p-1}^{0} \equiv 0 \bmod A^{*} a_{p^{2}-2}+A^{*} b_{1}^{p-1}
$$

(b-3) $\quad c\left(\mathscr{P}^{p(p-1)}\right) \Delta b_{1}^{0}=0$.
(b-4) $\Delta \mathscr{P}^{p+1} \Delta \mathscr{P}^{1} \Delta b_{p-1}^{0}-A c_{p-2}^{0}-\lambda_{1} a_{p}-\lambda_{2} a_{p}^{\prime}=0, \lambda_{i}=0$ if $p>3$.
(b-5) $\Delta \mathscr{P}^{1} \Delta b_{p}^{0} \equiv 0 \bmod A^{*} a_{p^{2}-2}+A^{*} b_{1}^{p-1}$.
(c) $\mathscr{P}^{p-1} c_{s}^{r}=0$.
(d-1) $\mathscr{P}^{1} d_{1}-B_{3} c_{1}^{0}-B_{4} b_{2}^{0} \equiv 0 \bmod A^{*} a_{p}+A^{*} a_{p}^{\prime}$,
$\mathscr{P}^{p+1} d_{1}-B_{5} c_{1}^{0}-B_{6} b_{2}^{0} \equiv 0 \bmod A^{*} a_{p}+A^{*} a_{p}^{\prime}$,
$\mathscr{P}^{2 p} d_{1}-B_{7} c_{1}^{0}-B_{8} b_{2}^{0} \equiv 0 \bmod A^{*} a_{p}+A^{*} a_{p}^{\prime}$.
$(d-1)^{\prime} \Delta d_{1}-x_{2} \mathscr{P}^{p} a_{0}-B_{1} c_{1}^{0}-B_{2} b_{2}^{0} \equiv 0 \bmod A^{*} a_{p}+A^{*} a_{p}^{\prime}$ for some $x_{2} \in Z_{p}$.
(d-2) $\quad \Delta d_{2} \equiv \mathscr{P}^{1} d_{2}-C c_{p-1}^{0} \equiv \mathscr{P}^{p} d_{2}-D b_{p}^{0} \equiv 0 \bmod A^{*} a_{p^{2}-2}+A^{*} b_{1}^{p-1}$.
(l) $\quad a=0$ in $K_{k}, k \geqq \operatorname{deg} a-1$, for $a=a_{s p}^{\prime}$,
$a=0$ in $\boldsymbol{K}_{k}, k \geqq \operatorname{deg} a$, for other a in Table A2 with $0<\operatorname{deg} a \leqq\left(p^{2}-1\right) q-2$.
Here $\bar{W}_{s}, A_{s}, A, B_{i}, C$ and D are elements of A^{*} such that

```
\mathscr{P}}\mp@subsup{W}{s-1}{}=\mp@subsup{\overline{W}}{s}{}\mp@subsup{\mathscr{P}}{}{1},\quad\mp@subsup{W}{s}{}\mp@subsup{W}{s-1}{}=\mp@subsup{A}{s}{}\mp@subsup{\mathscr{P}}{}{1},\quad|\mp@subsup{\mathscr{P}}{}{p+1}|\mp@subsup{\mathscr{P}}{}{1}|\mp@subsup{W}{p-2}{}=A\mathscr{P}\mp@subsup{\mathscr{P}}{}{1}
|c(\mp@subsup{\mathscr{P}}{}{p(p-1)})\Delta=\mp@subsup{B}{1}{}\mp@subsup{\mathscr{P}}{}{1}+\mp@subsup{B}{2}{}\mp@subsup{W}{1}{},\quad\mp@subsup{\mathscr{P}}{}{1}c(\mp@subsup{\mathscr{P}}{}{p(p-1)})\Delta=\mp@subsup{B}{3}{}\mp@subsup{\mathscr{P}}{}{1}+\mp@subsup{B}{4}{}\mp@subsup{W}{1}{},
\mathscr{P}}\mp@subsup{}{}{p+1}c(\mp@subsup{\mathscr{P}}{}{2}p(p-1))\Delta=\mp@subsup{B}{5}{}\mp@subsup{\mathscr{P}}{}{1}+\mp@subsup{B}{6}{}\mp@subsup{W}{1}{},\quad\mp@subsup{\mathscr{P}}{}{2p}c(\mp@subsup{\mathscr{P}}{}{p(p-1)})\Delta=\mp@subsup{B}{7}{}\mp@subsup{\mathscr{P}}{}{1}+\mp@subsup{B}{8}{}\mp@subsup{W}{1}{}
\mathscr{P}}\mp@subsup{}{}{1}|\mp@subsup{\mathscr{P}}{}{p+1}|\mp@subsup{\mathscr{P}}{}{1}|=C\mathscr{P}\mp@subsup{}{}{1},\quad\mathscr{P}\mp@subsup{}{}{p}\Delta\mp@subsup{\mathscr{P}}{}{p+1}\Delta\mp@subsup{\mathscr{P}}{}{1}|=D\mp@subsup{W}{p-1}{}
```

Remark. The element b_{s}^{r} (resp. c_{s}^{r}) corresponds to $b_{r+s}^{(s-1)}$ (resp. $c_{r+s}^{(s-1)}$) of [6: III, pp. 201-202] so that our b_{s}^{r} (resp. c_{s}^{r}) corresponds to the element $\beta_{1}^{r} \beta_{s}$
(resp. $\alpha_{1} \beta_{1}^{r} \beta_{s}$) of ${ }_{p} \pi_{k}(\boldsymbol{S})$ by the map ϕ of (2.1). The element d_{1} corresponds to d of [6: III]. The elements b_{p}^{0} and d_{2} do not appear in [6: III] by the dimensional reason.

Proof of Theorem 4.1. Except the relations about the elements b_{p}^{0}, d_{1} and d_{2}, this theorem is proved in Theorem 3.10 of [6: III].

Let $r=p q-2$. By Theorem 2.3, $H^{r+1}\left(\boldsymbol{K}_{r}\right)=Z_{p}\left\{b_{1}^{0}\right\}$, and the submodule $A^{*} b_{1}^{0}$ has the relations:

$$
\mathrm{B} 1(b-2) \quad \mathscr{P}^{1} b_{1}^{0}=0, \quad(b-3) \quad W_{1} b_{1}^{0}=c\left(\mathscr{P}^{p(p-1)}\right) \Delta b_{1}^{0}=0 .
$$

By Proposition 1.2, these relations give the elements c_{1}^{0}, b_{2}^{0} and d_{1} of $H^{*}\left(\boldsymbol{K}_{r+1}\right)$.
Now we consider the relation $\alpha \mathscr{P}^{1}+\beta W_{1}+\gamma c\left(\mathscr{P}^{p(p-1)}\right) \Delta=0$ in A^{*}. The exact sequence (4.11) of [4] implies $\gamma=\gamma_{1} \Delta+\gamma_{2} \mathscr{P}^{1}+\gamma_{3} \mathscr{P}^{p+1}+\gamma_{4} \mathscr{P}^{2 p}$ for some $\gamma_{i} \in A^{*}$, and the following relations in A^{*} :

$$
\begin{gathered}
\Delta c\left(\mathscr{P}^{p(p-1)}\right) \Delta-B_{1} \mathscr{P}^{1}-B_{2} W_{1}=0, \quad \mathscr{P}^{1} c\left(\mathscr{P}^{p(p-1)}\right) \Delta-B_{3} \mathscr{P}^{1}-B_{4} W_{1}=0, \\
\mathscr{P}^{p+1} c\left(\mathscr{P}^{p(p-1)}\right) \Delta-B_{5} \mathscr{P}^{1}-B_{6} W_{1}=0, \quad \mathscr{P}^{2 p} c\left(\mathscr{P}^{p(p-1)}\right) \Delta-B_{7} \mathscr{P}^{1}-B_{8} W_{1}=0,
\end{gathered}
$$

for some $B_{i} \epsilon A^{*}$. We can check that these four relations generate the relations in $A^{*} \mathscr{P}^{1}+A^{*} W_{1}+A^{*} c\left(\mathscr{P}^{p(p-1)}\right) \Delta \subset A^{*}$ which contain the element $c\left(\mathscr{P}^{p(p-1)}\right) \Delta$. Hence, by Proposition 1.2, we obtain the relations about the element d_{1} :

$$
\begin{gathered}
\Delta d_{1}-B_{1} c_{1}^{0}-B_{2} b_{2}^{0}=i^{*} w_{1}, \quad \mathscr{P}^{1} d_{1}-B_{3} c_{1}^{0}-B_{4} b_{2}^{0}=i^{*} w_{2} \\
\mathscr{P}^{p+1} d_{1}-B_{5} c_{1}^{0}-B_{6} b_{2}^{0}=i^{*} w_{3}, \quad \mathscr{P}^{2 \phi} d_{1}-B_{7} c_{1}^{0}-B_{8} b_{2}^{0}=i^{*} w_{4},
\end{gathered}
$$

for some $w_{i} \in H^{*}\left(\boldsymbol{K}_{r}\right)$.
By Theorem 2.3, $i^{*} H^{*}\left(\boldsymbol{K}_{r}\right), i: \boldsymbol{K}_{r+1} \rightarrow \boldsymbol{K}_{r}$, is generated by $a_{0}, a_{p}, a_{p}^{\prime}$ with the relations $\Delta a_{0}=\mathscr{P}^{1} a_{0}=\mathscr{P}^{\dagger} a_{0}=\Delta a_{p}=\Delta a_{p}^{\prime}=\Delta \mathscr{P}^{1} a_{p}-\mathscr{P}^{1} a_{p}^{\prime}=0$. Thus the relations $(d-1)$ and $(d-1)^{\prime}$ are obtained.

The relations about b_{p}^{0} and d_{2} are obtained similarly by making use of the exact sequences (4.8) and (4.14) of [4].
Q.E.D.

Let $t=\left(p^{2}-1\right) q-2$ in the rest of this section.
To compute $H^{*}\left(\boldsymbol{K}_{t+1}\right)$, it is necessary that the coefficients x_{1} and x_{2} in the relations $\mathrm{B} 2(b-1)^{\prime}$ and $(d-1)^{\prime}$ are determined.
H. Gershenson has proved the non-triviality of x_{2} [1: Lemma 4.2], from the triviality of the mod Hopf invariant.
H. Toda has proved the relation $\alpha_{1} \beta_{1}^{p}=0$ in ${ }_{p} \pi_{t+q}(\boldsymbol{S})$ ([8] and [9: Theorem $3]$). The element b_{1}^{p-1} gives rise to the generator $\beta_{1}^{p}=\beta_{1} \circ \cdots \circ \beta_{1}$ (p-fold composition) of ${ }_{p} \pi_{t}(S) \approx Z_{p}$, and so the relation $\alpha_{1} \beta_{1}^{p}=0$ implies $\mathscr{P}^{1} b_{1}^{p-1} \neq 0$ by Theorem 3.3.

Since $a_{p}=a_{p}^{\prime}=c_{1}^{0}=b_{2}^{0}=0$ in \boldsymbol{K}_{t} by $\mathrm{B} 2(l)$, by the suitable replacement of
the generators, we have
Lemma 4.2. Let $t=\left(p^{2}-1\right) q-2$, then

$$
(b-1)^{\prime} \quad \mathscr{P}^{1} b_{1}^{p-1}=d_{1} \quad \text { in } \boldsymbol{K}_{t}, \quad(d-1)^{\prime} \quad \Delta d_{1}=\mathscr{P}^{p^{2}} a_{0} \quad \text { in } \boldsymbol{K}_{t} .
$$

Now let $\gamma b_{1}^{p-1}=0, \gamma \in A^{*}$, be any relation of $A^{*} b_{1}^{p-1}$ in $H^{*}\left(\boldsymbol{K}_{t}\right)$. Then $\gamma=$ $\gamma_{1} \mathscr{P}^{1}, \gamma_{1} d_{1}=0$, by B2 $(b-1)^{\prime}$, and $\gamma_{1}=\gamma_{2} \Delta+\gamma_{3} \mathscr{P}^{1}+\gamma_{4} \mathscr{P}^{p+1}+\gamma_{5} \mathscr{P}^{2 p}, \gamma_{2} \mathscr{P}^{p^{2}} a_{0}=0$, by $\mathrm{B} 2(d-1)$ and $(d-1)^{\prime}$. The element γ_{2} is contained in the kernel of the right translation:

$$
\left(\mathscr{P}^{p^{2}}\right)^{*}: A^{*} \rightarrow \dot{A}^{*} /\left(A^{*} \Delta+A^{*} \mathscr{P}^{1}+A^{*} \mathscr{P}^{p}\right),
$$

hence $\gamma_{2}=\gamma_{6} \Delta+\gamma_{7} \mathscr{P}^{1}+\gamma_{8} \mathscr{P}^{2 p}$ in degree $<\left(p^{2}+p\right) q$ by Proposition 1.7 of [6:I]. Using the Adem relations, we have $\gamma=\delta_{1} \mathscr{P}^{2}+\delta_{2} \mathscr{P}^{2} \Delta+\delta_{3} \mathscr{P}^{p+1} \mathscr{P}^{1}+\delta_{4} \mathscr{P}^{2 p} \mathscr{P}^{1}$, in degree $<\left(p^{2}+p+1\right) q+1$, for some $\delta_{i} \in A^{*}$. Conversely $\mathscr{P}^{2} b_{1}^{p-1}=\mathscr{P}^{2} \Delta b_{1}^{p-1}=$ $\mathscr{P}^{p+1} \mathscr{P}^{1} b_{1}^{p-1}=\mathscr{P}^{2 p} \mathscr{P}^{1} b_{1}^{p-1}=0$ in \boldsymbol{K}_{t}. Therefore the following lemma is obtained.

Lemma 4.3. Let $t=\left(p^{2}-1\right) q-2$. In degree $<\left(2 p^{2}+p\right) q-1$, the submodule $A^{*} b_{1}^{\text {p-1 }}$ of $H^{*}\left(\boldsymbol{K}_{t}\right)$ has the relations given by

$$
\mathscr{P}^{2} b_{1}^{p-1}=\mathscr{P}^{2} \Delta b_{1}^{p-1}=\mathscr{P}^{p+1} \mathscr{P}^{1} b_{1}^{p-1}=\mathscr{P}^{2} p \mathscr{P}^{1} b_{1}^{p-1}=0 .
$$

From this lemma, we calculate $H^{*}\left(\boldsymbol{K}_{t+1}\right)$.
Theorem 4.4. In degree $<\left(2 p^{2}+p\right) q-3, H^{*}\left(\boldsymbol{K}_{\left(p^{2}-1\right) q-1}\right)$ has a minimal set of generators :

$$
\left\{a_{0}, a_{p^{2}-1}, b_{s}^{p-s}(2 \leqq s \leqq p), e_{1}^{\prime}, e_{1}, d_{2}, g_{0}, d_{3}\right\}
$$

where the new generators are given by
Table A3

Generator a	Degree of a	$h(a)$	$\delta^{*}(a)$
e_{1}^{\prime}	$\left(p^{2}+1\right) q-2$	$\left(p^{2}-1\right) q-1$	$\mathscr{P}^{2} j^{*-1} b_{1}^{p-1}$
e_{1}	$\left(p^{2}+1\right) q-1$	$\left(p^{2}-1\right) q-1$	$\mathscr{P}^{2} \Delta^{*-1} b_{1}^{p-1}$
g_{0}	$\left(p^{2}+p+1\right) q-2$	$\left(p^{2}-1\right) q-1$	$\mathscr{P}^{p+1} \mathscr{P}^{1} j^{*-1} b_{1}^{p-1}$
d_{3}	$\left(p^{2}+2 p\right) q-2$	$\left(p^{2}-1\right) q-1$	$\mathscr{P}^{2 p} \mathscr{P}^{1} j^{*-1} b_{1}^{p-1}$

The relations of $H^{*}\left(\boldsymbol{K}_{\left(p^{2}-1\right) q-1}\right)$ are given by

Table B3
(a-1) $\quad \Delta a_{0}=\mathscr{P}^{1} a_{0}=\mathscr{P}^{p} a_{0}=\mathscr{P}^{p^{2}} a_{0}=0$.
(a-2) $\quad R_{p^{2}-1} a_{p^{2}-1}=\Delta \mathscr{P}^{1} \Delta a_{p^{2}-1}=0$.
(b) $\quad \mathscr{P}^{1} b_{s}^{p-s}=\Delta \mathscr{P}^{1} \Delta b_{p}^{0}=W_{p} b_{p}^{0}=0$.
(d-1) $\quad \Delta d_{2}=\mathscr{P}^{1} d_{2}=\mathscr{P}^{p} d_{2}-D b_{p}^{0}=0$.

```
(e-1) \(\quad-R_{2} e_{1}^{\prime}+\mathscr{P}^{1} e_{1}=0 \quad\) if \(p>3\),
    \(\mathscr{P}^{1} e_{1}-x_{3} b_{p}^{0} \equiv 0 \bmod A^{*} b_{p-1}^{1} \quad\) for some \(x_{3} \in Z_{p} \quad\) if \(p=3\).
(e-2) \(\quad-2 \Delta \mathscr{P}^{1} \Delta e_{1}^{\prime}+\mathscr{P}^{1} \Delta e_{1}=0 \quad\) if \(p>3\),
    \(\Delta \mathscr{P}^{1} \Delta e_{1}^{\prime}+\mathscr{P}^{1} \Delta e_{1}-x_{4} \Delta b_{p}^{0}=0 \quad\) for some \(x_{4} \in Z_{p} \quad\) if \(p=3\).
(e-3) \(\quad \mathscr{P}^{p-2} e_{1}^{\prime} \equiv 0 \bmod A^{*} b_{p-1}^{1} \quad\) if \(p>3, \quad \mathscr{P}^{1} e_{1}^{\prime}=0 \quad\) if \(p=3\).
(g) \(\quad \mathscr{P}^{1} g_{0}-A_{1}^{\prime} e_{1}^{\prime}-\lambda_{1} a_{8}-\lambda_{2} b_{2}^{1}=\mathscr{P}^{1} \Delta g_{0}-A_{2}^{\prime} e_{1}^{\prime}-A_{2} e_{1}-\lambda_{3} b_{2}^{1}-\lambda_{4} b_{3}^{0}=0\),
    \(\lambda_{i} \in A^{*}, \lambda_{i}=0\) if \(p>3\).
(d-2) If \(p>3, \mathscr{P}^{1} d_{3}-A_{3}^{\prime} e_{1}^{\prime}-A_{3}^{\prime \prime} g_{0} \equiv 0 \bmod A^{*} b_{p-1}^{1}\),
    \(\mathscr{P P}^{p+1} d_{3}-A_{4}^{\prime} e_{1}^{\prime}-A_{4}^{\prime \prime} g_{0}=0\),
    \(W_{2} d_{3}-A_{5}^{\prime} e_{1}^{\prime}-A_{5} e_{1}-A_{5}^{\prime \prime} g_{0}=0\),
    \(\mathscr{P}^{p(p-2)} d_{3}-A_{6}^{\prime} e_{1}^{\prime} \equiv 0 \bmod A^{*} b_{p-1}^{1}\).
    If \(p=3, \mathscr{P}^{1} d_{3}-A_{3}^{\prime} e_{1}^{\prime}-A_{3}^{\prime \prime} g_{0} \equiv 0 \bmod A^{*} a_{8}+A^{*} b_{2}^{1}\),
    \(\mathscr{P}^{3} d_{3}-A_{6}^{\prime} e_{1}^{\prime} \equiv 0 \bmod A^{*} a_{8}+A^{*} b_{2}^{1}\),
    \(\mathscr{P}^{4} \Delta \mathscr{P}^{1} \Delta d_{3}-A_{7}^{\prime} e_{1}^{\prime}-A_{7} e_{1}-A_{7}^{\prime \prime} g_{0} \equiv 0 \bmod A^{*} a_{8}+A^{*} b_{2}^{1}+A^{*} b_{3}^{0}\).
```

Here D, A_{i}^{\prime}, A_{i} and $A_{i}^{\prime \prime}$ satisfy the following.

```
\mathscr{P}
\mathscr{P}}\mp@subsup{\mathscr{P}}{}{2p}\mp@subsup{\mathscr{P}}{}{1}=\mp@subsup{A}{3}{\prime}\mp@subsup{\mathscr{P}}{}{2}+\mp@subsup{A}{3}{\prime\prime}\mp@subsup{\mathscr{P}}{}{p+1}\mp@subsup{\mathscr{P}}{}{1},\quad\mp@subsup{\mathscr{P}}{}{p+1}\mp@subsup{\mathscr{P}}{}{2p}\mp@subsup{\mathscr{P}}{}{1}=\mp@subsup{A}{4}{\prime}\mp@subsup{\mathscr{P}}{}{2}+\mp@subsup{A}{4}{\prime\prime}\mp@subsup{\mathscr{P}}{}{p+1}\mp@subsup{\mathscr{P}}{}{1}
W
\mathscr{P}}\mp@subsup{}{}{4}\\mp@subsup{\mathscr{P}}{}{1}\Delta\mathscr{P}\mp@subsup{\mathscr{P}}{}{6}\mp@subsup{\mathscr{P}}{}{1}=\mp@subsup{A}{7}{\prime}\mp@subsup{\mathscr{P}}{}{2}+\mp@subsup{A}{7}{}\mp@subsup{\mathscr{P}}{}{2}\Delta+\mp@subsup{A}{7}{\prime\prime}\mp@subsup{\mathscr{P}}{}{4}\mp@subsup{\mathscr{P}}{}{1}(p=3)
```

Proof. The existence of the elements $e_{1}^{\prime}, e_{1}, g_{0}$ and d_{3} follows from Lemma 4.3. The relations $\operatorname{B3}(a-1),(a-2),(b)$ and ($d-1$) follow from Theorem 4.1 and Lemma 4.2. To investigate the relations related with new generators, we consider the relations in the submodule

$$
A^{*} \mathscr{P}^{2}+A^{*} \mathscr{P}^{2} \Delta+A^{*} \mathscr{P}^{p+1} \mathscr{P}^{1}+A^{*} \mathscr{P}^{2 p} \mathscr{P}^{1} \text { of } A^{*} .
$$

By (4.13) of [4], we have the following relations in A^{*} :
$(*) \begin{cases}\mathscr{P}^{1} \mathscr{P}^{2 p} \mathscr{P}^{1}=A_{3}^{\prime} \mathscr{P}^{2}+A_{3} \mathscr{P}^{2} \Delta+A_{3}^{\prime \prime} \mathscr{P}^{p+1} \mathscr{P}^{1}, & \\ \mathscr{P}^{p+1} \mathscr{P}^{2 \phi} \mathscr{P}^{1}=A_{4}^{\prime} \mathscr{P}^{2}+A_{4} \mathscr{P}^{2} \Delta+A_{4}^{\prime \prime} \mathscr{P}^{p+1} \mathscr{P}^{1} & \text { for } p>3, \\ W_{2} \mathscr{P}^{2 p} \mathscr{P}^{1}=A_{5}^{\prime} \mathscr{P}^{2}+A_{5} \mathscr{P}^{2} \Delta+A_{5}^{\prime \prime} \mathscr{P}^{p+1} \mathscr{P}^{1} & \text { for } p>3, \\ \mathscr{P}^{p(p-2)} \mathscr{P}^{2} \triangleright \mathscr{P}^{1}=A_{6}^{\prime} \mathscr{P}^{2}+A_{6} \mathscr{P}^{2} \Delta+A_{6}^{\prime \prime} \mathscr{P}^{p+1} \mathscr{P}^{1}, & \\ \mathscr{P}^{4} \Delta \mathscr{P}^{1} \Delta \mathscr{P}^{6} \mathscr{P}^{1}=A_{7}^{\prime} \mathscr{P}^{2}+A_{7} \mathscr{P}^{2} \Delta+A_{7}^{\prime \prime} \mathscr{P}^{4} \mathscr{P}^{1} & \text { for } p=3 .\end{cases}$
By the Adem relations, we can put

$$
\begin{aligned}
& A_{3}^{\prime}=-2 \mathscr{P}^{2 p}, \quad A_{3}=0, \quad A_{3}^{\prime \prime}=\mathscr{P}^{p}, A_{4}^{\prime}=-12 \mathscr{P}^{3 p}, \quad A_{4}=0, A_{4}^{\prime \prime}=3 \mathscr{P}^{2 p}, \\
& A_{5}^{\prime}=-\left(\mathscr{P}^{3 p} \Delta+8 \Delta \mathscr{P}^{3 p}\right), A_{5}=3 \mathscr{P}^{3 p}, A_{5}^{\prime \prime}=3 \Delta \mathscr{P}^{2 p}, A_{6}^{\prime}=2 \sum_{i=1}^{p-2}(-1)^{i-1} \frac{1}{i!} \mathscr{P}^{p^{2}-i} \mathscr{P}^{i-1}, \\
& A_{6}=A_{6}^{\prime \prime}=0, \quad A_{7}^{\prime}=\Delta \mathscr{P}^{10} \Delta, A_{7}=\mathscr{P}^{10} \Delta, A_{7}^{\prime \prime}=-\Delta \mathscr{P}^{7} \Delta .
\end{aligned}
$$

Let $\alpha \mathscr{P}^{2}+\beta \mathscr{P}^{2} \Delta+\gamma \mathscr{P}^{p+1} \mathscr{P}^{1}+\delta \mathscr{P}^{2 p} \mathscr{P}^{1}=0$ be any relation in $A^{*} \mathscr{P}^{2}+A^{*} \mathscr{P}^{2} \Delta$ $+A^{*} \mathscr{P}^{p+1} \mathscr{P}^{1}+A^{*} \mathscr{P}^{2 p} \mathscr{P}^{1}$. Then, by (4.13) of [4],

$$
\delta=\delta_{1} \mathscr{P}^{1}+\delta_{2} \mathscr{P}^{p+1}+\delta_{3} W_{2}+\delta_{4} \mathscr{P}^{p(p-2)}+\delta_{5} \mathscr{P}^{4} \Delta \mathscr{P}^{1} \Delta, \quad \delta_{i} \epsilon A^{*},
$$

where $\delta_{2}=\delta_{3}=0$ for $p=3, \delta_{5}=0$ for $p>3^{1)}$.

Hence we have

$$
\begin{aligned}
& \alpha^{\prime} \mathscr{P}^{2}+\beta^{\prime} \mathscr{P}^{2} \Delta+\gamma^{\prime} \mathscr{P}^{p+1} \mathscr{P}^{1}=0, \\
& \alpha^{\prime}=\alpha+\delta_{1} A_{3}^{\prime}+\delta_{2} A_{4}^{\prime}+\delta_{3} A_{5}^{\prime}+\delta_{4} A_{6}^{\prime}+\delta_{5} A_{7}^{\prime} \\
& \beta^{\prime}=\beta+\delta_{3} A_{5}+\delta_{5} A_{7} \\
& \gamma^{\prime}=\gamma+\delta_{1} A_{3}^{\prime \prime}+\delta_{2} A_{4}^{\prime \prime}+\delta_{3} A_{5}^{\prime \prime}+\delta_{5} A_{7}^{\prime \prime} .
\end{aligned}
$$

By (4.12) of [4] and the Adem relations, we have the following relations:

$$
(* *)\left\{\begin{array}{l}
\mathscr{P}^{1} \mathscr{P}^{p+1} \mathscr{P}^{1}=A_{1}^{\prime} \mathscr{P}^{2}, A_{1}^{\prime}=\mathscr{P}^{p+1}-\frac{1}{2} \mathscr{P}^{p} \mathscr{P}^{1}, \\
\mathscr{P}^{1} \Delta \mathscr{P}^{p+1} \mathscr{P}^{1}=A_{2}^{\prime} \mathscr{P}^{2}+A_{2} \mathscr{P}^{2} \Delta, A_{2}^{\prime}=\mathscr{P}^{p+1} \Delta-2 \mathscr{P}^{p} \mathscr{P}^{1} \Delta+2 \Delta \mathscr{P}^{p+1}, A_{2}=\mathscr{P}^{p+1} .
\end{array}\right.
$$

Furthermore $\gamma^{\prime}=\gamma_{1} \mathscr{P}^{1}+\gamma_{2} \mathscr{P}^{1} \Delta$ in degree $<\left(p^{2}-1\right) q^{2)}$ for some $\gamma_{i} \in A^{*}$. Hence $\left(\alpha^{\prime}+\gamma_{1} A_{1}^{\prime}+\gamma_{2} A_{2}^{\prime}\right) \mathscr{P}^{2}+\left(\beta^{\prime}+\gamma_{2} A_{2}\right) \mathscr{P}^{2} \Delta=0$.

By (1.1) and (3.4) of [4] and the Adem relations, the relations in $A^{*} \mathscr{P}^{2}+$ $A^{*} \mathscr{P}^{2} \Delta$ are generated by the following ones:

$$
(* * *)\left\{\begin{array}{l}
\mathscr{P}^{p-2} \mathscr{P}^{2}=0, \\
\mathscr{P}^{1} \mathscr{P}^{2} \Delta-\varepsilon R_{2} \mathscr{P}^{2}=0, \quad \varepsilon=0 \text { for } p=3, \quad \varepsilon=1 \text { for } p>3, \\
\mathscr{P}^{1} \Delta \mathscr{P}^{2} \Delta-2 \Delta \mathscr{P}^{1} \Delta \mathscr{P}^{2}=0 .
\end{array}\right.
$$

Thus we have

$$
\begin{aligned}
& \alpha^{\prime}+\gamma_{1} A_{1}^{\prime}+\gamma_{2} A_{2}^{\prime}+\beta_{1} R_{2}+2 \beta_{2} \Lambda \mathscr{P}^{1} \Delta=\alpha_{1} \mathscr{P}^{p-2} \\
& \beta^{\prime}+\gamma_{2} A_{2}=\beta_{1} \mathscr{P}^{1}+\beta_{2} \mathscr{P}^{1} \Delta, \text { for some } \alpha_{1}, \beta_{i} \epsilon A^{*}, \quad \beta_{1}=0 \quad \text { for } p=3 .
\end{aligned}
$$

From the above calculations, α, β, γ and δ are determined:

$$
\begin{aligned}
& \alpha=\alpha_{1} \mathscr{P}^{p-2}-\beta_{1} R_{2}-2 \beta_{2} \Delta \mathscr{P}^{1} \Delta-\gamma_{1} A_{1}^{\prime}-\gamma_{2} A_{2}^{\prime}-\sum_{i=1}^{5} \delta_{i} A_{i+2}^{\prime} \\
& \beta=\beta_{1} \mathscr{P}^{1}+\beta_{2} \mathscr{P}^{1} \Delta-\gamma_{2} A_{2}-\delta_{3} A_{5}-\delta_{5} A_{7}
\end{aligned}
$$

[^1]\[

$$
\begin{aligned}
& \gamma=\gamma_{1} \mathscr{P}^{1}+\gamma_{2} \mathscr{P}^{1} \Delta-\delta_{1} A_{3}^{\prime \prime}-\delta_{2} A_{4}^{\prime \prime}-\delta_{3} A_{5}^{\prime \prime}-\delta_{5} A_{7}^{\prime \prime} \\
& \delta=\delta_{1} \mathscr{P}^{1}+\delta_{2} \mathscr{P}^{p+1}+\delta_{3} W_{2}+\delta_{4} \mathscr{P}^{p(p-2)}+\delta_{5} \mathscr{P}^{4} \Delta \mathscr{P}^{1} \Delta,
\end{aligned}
$$
\]

where $\beta_{1}=\delta_{2}=\delta_{3}=0 \quad$ for $p=3, \quad \delta_{5}=0 \quad$ for $p>3$.
Thus, it follows that the relations (*), ($* *$) and ($* * *$) generate the relations in $A^{*} \mathscr{P}^{2}+A^{*} \mathscr{P}^{2} \Delta+A^{*} \mathscr{P}^{p+1} \mathscr{P}^{1}+A^{*} \mathscr{P}^{2 \boldsymbol{P}} \mathscr{P}^{1}$.

By Proposition 1.2, there are elements $w_{i} \in H^{*}\left(\boldsymbol{K}_{\left(p^{2}-1\right) q-2}\right)$ such that

$$
\begin{array}{ll}
\mathscr{P}^{p-2} e_{1}^{\prime}=i^{*} w_{1}, & \mathscr{P}^{1} e_{1}-\varepsilon R_{2} e_{1}^{\prime}=i^{*} w_{2}, \\
\mathscr{P}^{1} \Delta e_{1}-\mathbf{2 \Delta \mathscr { P } ^ { 1 }} \Delta e_{1}=i^{*} w_{3}, & \mathscr{P}^{1} g_{0}-A_{1}^{\prime} e_{1}^{\prime}=i^{*} w_{4}, \\
\mathscr{P}^{1} \Delta g_{0}-A_{2}^{\prime} e_{1}^{\prime}-A_{2} e_{1}=i^{*} w_{5}, & \mathscr{P}^{1} d_{3}-A_{3}^{\prime \prime} g_{0}-A_{3}^{\prime} e_{1}^{\prime}=i^{*} w_{6}, \\
\mathscr{P}^{p+1} d_{3}-A_{4}^{\prime \prime} g_{0}-A_{4}^{\prime} e_{1}^{\prime}=i^{*} w_{7}(p>3), W_{2} d_{3}-A_{5}^{\prime \prime} g_{0}-A_{5} e_{1}-A_{5}^{\prime} e_{1}^{\prime}=i^{*} w_{8}(p>3), \\
\mathscr{P}^{p(p-2)} d_{3}-A_{6}^{\prime} e_{1}^{\prime}=i^{*} w_{9}, \mathscr{P}^{4} \Delta \mathscr{P}^{1} \Delta d_{3}-A_{7}^{\prime \prime} g_{0}-A_{7} e_{1}-A_{7}^{\prime} e_{1}^{\prime}=i^{*} w_{10}(p=3) .
\end{array}
$$

By Theorem 4.1, $i^{*} H^{*}\left(\boldsymbol{K}_{\left(p^{2}-1\right) q-2}\right)$ is generated by $a_{0}, a_{p^{2}-1}, b_{s}^{p-s}(2 \leqq s \leqq p)$ and d_{2} with the relations $\mathrm{B} 3(a-1)$, ($a-2$), (b) and ($d-1$). By the dimensional reason and the relation $\mathscr{P}^{1} b_{p-1}^{1}=0, w_{1}=x \mathscr{P}^{1} \Delta b_{p-1}^{1}$ for some $x \in Z_{p}$. For $p=3$, replacing e_{1}^{\prime} by $e_{1}^{\prime}-x \Delta b_{p-1}^{1}$, we obtain the relation $(e-3)^{1}$. By dimensional reason, ($e-1$) is obtained. For $p>3, \mathscr{P}^{1} \Delta i^{*} w_{3}=\mathscr{P}^{1} \Delta\left(\mathscr{P}^{1} \Delta e_{1}-2 \Delta \mathscr{P}^{1} \Delta e_{1}^{\prime}\right)=$ $\Delta \mathscr{P}^{1} \Delta \mathscr{P}^{1} e_{1}=\Delta \mathscr{P}^{1} \Delta R_{2} e_{1}^{\prime}=0$. For $p=3, R_{1} i^{*} w_{3}=R_{1}\left(\mathscr{P}^{1} \Delta e_{1}+\Delta \mathscr{P}^{1} \Delta e_{1}^{\prime}\right)=0$. Set $w_{3}=y \mathscr{P}^{3} a_{p^{2}-1}+x_{4} \Delta b_{p}^{0}, x_{4}=0$ for $p>3$. Then $\mathscr{P}^{1} \Delta \mathscr{P}^{3} a_{p^{2}-1} \neq 0(p>3)$ and $R_{1} \mathscr{P}^{3}$ $a_{p^{2}-1} \neq 0(p=3)$ imply $y=0$, and ($\left.e-2\right)$ is obtained.

The relations (g) and ($d-2$) are obtained similarly.
Q.E.D.
§ 5. $H^{*}\left(\boldsymbol{K}_{k}\right)$ for $k \leqq 2\left(p^{2}+p-2\right)(p-1)-2$
In this section, we shall continue the calculations of $H^{*}\left(\boldsymbol{K}_{k}\right)$ in certain dimensional restriction. Results are stated as follows.

Theorem 5.1. Let $\left(p^{2}-1\right) q \leqq k \leqq\left(p^{2}+p-2\right) q-2$. In degree $<\left(p^{2}+p+1\right) q$ $-3, H^{*}\left(\boldsymbol{K}_{k}\right)$ has a minimal set of generators:

$$
\begin{aligned}
& \left\{a_{0}, \quad a_{r}\left(p^{2} \leqq r \leqq p^{2}+p-2\right), \quad a_{p^{2}}^{\prime}, \quad b_{s}^{p-s}(2 \leqq s \leqq p), \quad b_{1}^{p}, \quad b_{2}^{p-1}(\text { if } p>3)\right. \\
& \\
& \left.c_{s}^{p-s}(2 \leqq s \leqq p-1), \quad e_{i}^{\prime}(1 \leqq i \leqq p-2), \quad e_{i}(1 \leqq i \leqq p-2), \quad d_{2}(\text { if } p>3)\right\}
\end{aligned}
$$

[^2]The new generators are given by

Table A4

Generator a	Degree of a	$h(a)$	$\delta^{*}(a)$
a_{r} $\left(p^{2} \leqq r \leqq p^{2}+p-2\right)$	$r q$	$(r-1) q$	$R_{r-1} j^{*-1} a_{r-1}\left(r \neq p^{2}+1\right)$ $\Delta \mathscr{P}^{1} j^{*-1} a_{p^{2}}-\mathscr{P}^{1} j^{*-1} a_{p^{2}}^{\prime}\left(r=p^{2}+1\right)$
$a_{p^{2}}^{\prime}$	$p^{2} q+1$	$\left(p^{2}-1\right) q$	$\Delta \mathscr{P}^{1} J^{*-1} a_{p^{2}-1}$
b_{1}^{p}	$\left(p^{2}+p-1\right) q-3$	$\left(p^{2}+1\right) q-2$	$\mathscr{P}^{p-2} j^{*-1} e_{1}^{\prime}$
b_{2}^{p-1}	$\left(p^{2}+p\right) q-1$	$\left(p^{2}+1\right) q$	$\mathscr{P}^{p-1} j^{*} c_{2}^{p-2}$
$c_{s}^{p-s}(2 \leqq s<p)$	$\left(p^{2}+s-1\right) q+2 s-4$	$\left(p^{2}+s-2\right) q+2 s-3$	$\mathscr{P}^{1} j^{*-1} b_{s}^{p-s}$
$e_{i}^{\prime}(2 \leqq i \leqq p-2)$	$\left(p^{2}+i\right) q-2$	$\left(p^{2}+i-1\right) q-1$	$\mathscr{P}^{1} j^{*-1} e_{i-1}$
$e_{i}(2 \leqq i \leqq p-2)$	$\left(p^{2}+i\right) q-1$	$\left(p^{2}+i-1\right) q-1$	$\mathscr{P}^{1} \Delta j^{*-1} e_{i-1}$

The relations in the submodule of $H^{*}\left(\boldsymbol{K}_{k}\right)$ generated by the above elements are given by Table B3 and the following

TABLE B4

```
(a) \(\quad R_{r} a_{r}=\Delta a_{p^{2}}=\Delta a_{p^{2}}^{\prime}=\Delta \mathscr{P}{ }^{1} a_{p^{2}}-\mathscr{P}^{1} a_{p^{2}}^{\prime}=0, p^{2}+1 \leqq r \leqq p^{2}+p-2\).
(b-1) \(\quad \mathscr{P}^{2} b_{1}^{p} \equiv 0 \bmod \operatorname{Im} i^{*} . \quad(b-2) \quad \mathscr{P}^{1} b_{2}^{p-1} \equiv 0 \bmod \operatorname{Im} i^{*}\).
(c) If \(p>3, \mathscr{P}^{p-1} c_{2}^{p-2}=0, \quad \mathscr{P}^{p-1} c_{s}^{p-s} \equiv 0 \bmod \operatorname{Im} i^{*}(3 \leqq s \leqq p-1)\). If \(p=3, \quad \mathscr{P}^{2} c_{2}^{1}=0\).
\((e-1)(p>3)-R_{1} e_{i}^{\prime}+\mathscr{P}^{1} e_{i}=0,2 \leqq i \leqq p-3\),
    \(-R_{1} e_{p-2}^{\prime}+\mathscr{P}^{1} e_{p-2}-x_{3} b_{p}^{0}=0\) for some \(x_{3} \in Z_{p}\).
\((e-2)(p>3)-\Delta \mathscr{P}^{1} \Delta e_{i}^{\prime}+\mathscr{P}^{1} \Delta e_{i}=0,2 \leqq i \leqq p-3\),
\(-\Delta \mathscr{P}^{1} \Delta e_{p-2}^{\prime}+\mathscr{P}^{1} \Delta e_{p-2}-x_{4} \Delta b_{p}^{0}=0\) for some \(x_{4} \in Z_{p}\).
(e-3) \((p>3) \mathscr{P}^{p-1} e_{i}^{\prime} \equiv 0 \bmod \operatorname{Im} i^{*}, 2 \leqq i \leqq p-2\).
(l) \(a_{p^{2}}^{\prime}=0\) in \(\boldsymbol{K}_{k}, k \geqq p^{2} q\),
    \(a=0\) in \(K_{k}, k \geqq \operatorname{deg} a\), for the above generator \(a \neq a_{p^{2}}^{\prime}\) with \(\operatorname{deg} a \leqq\left(p^{2}+p-1\right) q-4\).
```

Proof. The proof is done by the induction on k. The following cases are considered.
(i) $\quad H^{k+1}\left(\boldsymbol{K}_{k}\right)=Z_{p}\left\{a_{r}\right\} \quad$ for $k=\operatorname{deg} a_{r}-1, p^{2}-1 \leqq r \leqq p^{2}+p-3, r \neq p^{2}+1$.
(ii) $H^{k+1}\left(\boldsymbol{K}_{k}\right)=Z_{p}\left\{a_{p^{2}+1}, c_{2}^{p-2}\right\} \quad$ for $k=\left(p^{2}+1\right) q-1$.
(iii) $H^{k+1}\left(\boldsymbol{K}_{k}\right)=Z_{p}\left\{b_{s}^{p-s}\right\} \quad$ for $k=\operatorname{deg} b_{s}^{p-s}-1, \quad 2 \leqq s \leqq p-1$.
(iv) $H^{k+1}\left(\boldsymbol{K}_{k}\right)=Z_{p}\left\{c_{s}^{p-s}\right\} \quad$ for $k=\operatorname{deg} c_{s}^{p-s}-1, \quad 2 \leqq s \leqq p-2$.
(v) $\quad H^{k+1}\left(\boldsymbol{K}_{k}\right)=Z_{p}\left\{e_{i}^{\prime}\right\} \quad$ for $k=\operatorname{deg} e_{i}^{\prime}-1, \quad 1 \leqq i \leqq p-3$.
(vi) $H^{k+1}\left(\boldsymbol{K}_{k}\right)=Z_{p}\left\{e_{i}\right\} \quad$ for $k=\operatorname{deg} e_{i}-1, \quad 1 \leqq i \leqq p-3$.
(vii) $H^{k+1}\left(\boldsymbol{K}_{k}\right)=0 \quad$ for other k.

Assume that the theorem is true for \boldsymbol{K}_{k} in each case of the above. In the case (vii), the theorem is true for \boldsymbol{K}_{k+1} obviously. In the case (i), by Proposition 1.2, new generators of $H^{*}\left(\boldsymbol{K}_{k+1}\right)$ are a_{r+1} and $a_{p^{2}}^{\prime}$ (if $r=p^{2}-1$),
and by Proposition 1.5 of [$6: I]$, new relations are the following:

$$
R_{r+1} a_{r+1}=i^{*} w_{1}\left(r>p^{2}+1\right), \quad \Delta a_{p^{2}}=i^{*} w_{2}, \quad \Delta a_{p^{2}}^{\prime}=i^{*} w_{3}, \quad \Delta \mathscr{P}^{1} a_{p^{2}}-\mathscr{P}^{1} a_{p^{2}}^{\prime}=i^{*} w_{4} .
$$

Since w_{1} and w_{4} belong to $H^{(t+1) q+1}\left(\boldsymbol{K}_{(t-1) q-1}\right), t \geqq p^{2}$, and $i^{*} H^{(t+1) q+1}\left(\boldsymbol{K}_{(t-1) q-1}\right)$ $=0$ from the assumption of the induction, we see $i^{*} w_{1}=i^{*} w_{4}=0$. Since $i^{*} w_{2}$ $\epsilon i^{*} H^{p^{2} q+1}\left(\boldsymbol{K}_{\left(p^{2}-1\right) q-1}\right)=Z_{p}\left\{b_{2}^{p-2}\right\}$ and $i^{*} w_{3} \in i^{*} H^{p^{2} q+2}\left(\boldsymbol{K}_{\left(p^{2}-1\right) q-1}\right)=Z_{p}\left\{\Delta b_{2}^{p-2}\right\}(+$ $Z_{p}\left\{e_{1}^{\prime}\right\}$ if $p=3$), the possibility of $i^{*} w_{2} \neq 0$ or $i^{*} w_{3} \neq 0$ is the following.

$$
\Delta a_{p^{2}}=i^{*} w_{2}=x b_{2}^{p-2}, \quad \Delta a_{p^{2}}^{\prime}=i^{*} w_{3}=y \Delta b_{2}^{p-2}+z e_{1}^{\prime} .
$$

Hence $x \Delta b_{2}^{p-2}=\Delta \Delta a_{p^{2}}=0, z \Delta e_{1}^{\prime}=\Delta \Delta a_{p^{2}}^{\prime}-y \Delta \Delta b_{2}^{p-2}=0$, and it follows from Δb_{2}^{p-2} $\neq 0$ and $\Delta e_{1}^{\prime} \neq 0$ that $x=z=0$. Thus $i^{*} w_{2}=0$. By the replacement of $a_{p^{2}}^{\prime}$ by $a_{p^{2}}^{\prime}-y b_{2}^{p-2}$, we have $i^{*} w_{3}=0$.

Consequently, by a suitable choice of $a_{p^{\prime}}^{\prime}$, the relations (a) are established. Thus, the theorem is true for \boldsymbol{K}_{k+1} in the case (i).

Next we consider the case (iii). Since $A^{*} b_{s}^{p-s}(2 \leqq s \leqq p-1)$ has the relations generated by $\mathscr{P}^{1} b_{s}^{p-s}=0$, new generator of $H^{*}\left(\boldsymbol{K}_{k+1}\right)$ is $c_{s}^{p-s}(2 \leqq s \leqq$ $p-1$), and by (1.1) of [4], new relation is given by the form $\mathscr{P}^{p-1} c_{s}^{p-s}=i^{*} w$. But for $s \geqq 3(p>3)$ the degree of this relation exceeds the range of degree in this theorem ${ }^{1}$. For $s=2$, the possibility of $i^{*} w \neq 0$ is $i^{*} w=x \mathscr{P}^{p-1} a_{p^{2}+1}$. Replacing c_{2}^{p-2} by $c_{2}^{p-2}-x a_{p^{2}+1}$, we obtain $i^{*} w=0$. Thus the relations (c) are obtained, and the theorem is true for \boldsymbol{K}_{k+1}.

The cases (ii) and (iv) are similar to (i) and (iii).
Next we consider the case (vi). By Theorem 4.4 and the assumption of the induction, $A^{*} e_{i}$ (in $H^{*}\left(\boldsymbol{K}_{k}\right)$) has the relations $\mathscr{P}^{1} e_{i}=\mathscr{P}^{1} \Delta e_{i}=0$ and new generators e_{i+1}^{\prime} and e_{i+1} of $H^{*}\left(\boldsymbol{K}_{k+1}\right)$ are obtained. By (1.1) and (3.3) of [4] and the Adem relations, new relations are

$$
-R_{1} e_{i+1}^{\prime}+\mathscr{P}^{1} e_{i+1}=i^{*} w_{1}, \quad-\Delta \mathscr{P}^{1} \Delta e_{i+1}^{\prime}+\mathscr{P}^{1} \Delta e_{i+1}=i^{*} w_{2}, \quad \mathscr{P}^{p-1} e_{i+1}^{\prime}=i^{*} w_{3}
$$

The possibility of $i^{*} w_{1} \neq 0$ or $i^{*} w_{2} \neq 0$ is as follows:

$$
\begin{aligned}
& i^{*} w_{1}=x \Delta \mathscr{P}^{1} \Delta b_{p-1}^{1}+x_{3} b_{p}^{0} \quad \text { for } i+1=p-2 \quad\left(i^{*} w_{1}=0 \text { for } i+1<p-2\right) \\
& i^{*} w_{2}=y \mathscr{P}^{2} a_{p^{2}+i}\left(+x_{4} \Delta b_{p}^{0} \quad \text { if } i+1=p-2\right)
\end{aligned}
$$

Since $R_{1} \Delta+\Delta \mathscr{P}^{1} \Delta=0, i^{*} w_{1}=x_{3} b_{p}^{0}$ for $i+1=p-2$ by a suitable choice of e_{p-2}^{\prime}. Since $\mathscr{P}^{1} \Delta\left(i^{*} w_{2}\right)=\mathscr{P}^{1} \Delta\left(-\Delta \mathscr{P}^{1} \Delta e_{i+1}^{\prime}+\mathscr{P}^{1} \Delta e_{i+1}\right)=\Delta \mathscr{P}^{1} \Delta \mathscr{P}^{1} e_{i+1}=\Delta \mathscr{P}{ }^{1} \Delta\left(R_{1} e_{i+1}+\right.$ $\left.i^{*} w_{1}\right)=0$ and $\mathscr{P}^{1} \Delta \mathscr{P}^{2} a_{p^{2}+i} \neq 0$, we have $y=0$. Thus ($e-1$) and ($e-2$) are obtained and the theorem is true for \boldsymbol{K}_{k+1}.

Finally, we consider the case (v). $A^{*} e_{1}^{\prime}$ has the relation $\mathscr{P}^{p-2} e_{1}^{\prime}=0$ in \boldsymbol{K}_{k} ($k=\operatorname{deg} e_{1}^{\prime}-1$), and the new generator of $H^{*}\left(\boldsymbol{K}_{k+1}\right)$ is b_{1}^{p}. By (1.1) of [4],

[^3]the new relation is $\mathscr{P}^{2} b_{1}^{p}=i^{*} w$. For $i>1, A^{*} e_{i}^{\prime}$ has the relation of the form $\mathscr{P}^{p-1} e_{i}^{\prime}=i^{*} w^{\prime}$ and this gives no new generators in degree $<\left(p^{2}+p+1\right) q-3$. Thus, the theorem is true for \boldsymbol{K}_{k+1}.
Q.E.D.
§6. ${ }_{p} \pi_{k}(S)$ for $k<2\left(p^{2}+p-1\right)(p-1)-3$
In this section, we shall compute the $\operatorname{group}_{p} \pi_{k}(\boldsymbol{S})$ for $k<\left(p^{2}+p-1\right) q-3$, using the results on $H^{*}\left(\boldsymbol{K}_{k}\right)$ in previous sections.

In [7], H . Toda has calculated the unstable group ${ }_{p} \pi_{2 n+1+k}\left(S^{2 n+1}\right)$, hence the stable group ${ }_{p} \pi_{k}(\boldsymbol{S})$, for $k<\left(p^{2}+p\right) q-5$. Our results in this section are independent of his results.

Proposition 6.1 (cf.[6: III, Proposition 3.11]). The vector space $H^{k+1}\left(\boldsymbol{K}_{k}\right)$, $k<\left(p^{2}+p-1\right) q-3$, is as follows:

$$
\begin{aligned}
& Z_{p}\left\{\mathscr{P}^{1} a_{0}\right\}, \Delta \mathscr{P}^{1} a_{0} \neq 0, \quad \text { for } k=q-1 . \\
& Z_{p}\left\{a_{r}\right\}, \Delta a_{r} \neq 0(r \neq 0 \bmod p), \Delta_{2} a_{s p} \neq 0\left(r=s p \equiv 0 \bmod p^{2}\right), \Delta_{3} a_{p^{2}} \neq 0\left(r=p^{2}\right), \\
& \text { for } k=r q-1, \quad 2 \leqq r \leqq p^{2}+p-2, r \neq p^{2}-p, p^{2}+1 . \\
& Z_{p}\left\{a_{p^{2}-p,}, c_{1}^{p-2}\right\}, \Delta_{2} a_{p^{2}-p} \neq 0, \Delta c_{1}^{p-2} \neq 0, \text { for } k=\left(p^{2}-p\right) q-1 . \\
& Z_{p}\left\{a_{p^{2}+1}, c_{2}^{p-2}\right\}, \Delta a_{p^{2}+1} \neq 0, \Delta c_{2}^{p-2} \neq 0, \quad \text { for } k=\left(p^{2}+1\right) q-1 . \\
& Z_{p}\left\{b_{s}^{r}\right\}, \Delta b_{s}^{r} \neq 0, \text { for } k=((r+s) p+s-1) q-2 r-2, r \geqq 0,1 \leqq s \leqq p-1, \\
& \\
& \quad r+s \leqq p \text { and }(r, s)=(p, 1) . \\
& Z_{p}\left\{c_{s}^{r}\right\}, \Delta c_{s}^{r} \neq 0, \text { for } k=((r+s) p+s) q-2 r-3, \quad r \geqq 0,1 \leqq s \leqq p-1, \\
& \\
& \quad r+s \leqq p,(r, s) \neq(p-2,1),(p-1,1),(p-2,2) . \\
& Z_{p}\left\{e_{i}^{\prime}\right\}, \Delta e_{i}^{\prime} \neq 0, \text { for } k=\left(p^{2}+i\right) q-3,1 \leqq i \leqq p-2 . \\
& Z_{p}\left\{e_{i}\right\}, \Delta e_{i} \neq 0, \text { for } k=\left(p^{2}+i\right) q-2,1 \leqq i \leqq p-2 .
\end{aligned}
$$

0 for other value of k.
Proof. For $k \leqq\left(p^{2}+p-2\right) q-2, H^{k+1}\left(\boldsymbol{K}_{k}\right)$ is computed directly from (2.2), (2.3), Theorems 2.3, 4.1, 4.4 and 5.1. For $\left(p^{2}+p-2\right) q-1 \leqq k<\left(p^{2}+p-1\right) q$ -3 , it is computed easily.

The assertions on the Bockstein operations Δ_{2} and Δ_{3} follow quite similarly to Lemma 3.12 of [6: III].
Q.E.D.

By (1.4) and this proposition, the group ${ }_{p} \pi_{k}(\boldsymbol{S})$ is calculated.

Theorem 6.2. Let $k<\left(p^{2}+p-1\right) q-3$. The $\operatorname{group}_{p} \pi_{k}(\boldsymbol{S})$ is the direct sum of the cyclic groups generated by the following elements of degree k :

Generator γ	Degree of $\gamma(=k)$	Order of γ	$\phi(\gamma)$
$\begin{gathered} \alpha_{r} \\ (r \equiv 0 \mathrm{mod} p) \end{gathered}$	$r q-1$	p	$\begin{aligned} & \mathscr{P}^{1} a_{0}(r=1) \\ & a_{r}(r>1) \end{aligned}$
$\begin{gathered} \alpha_{s p}^{\prime} \\ (s \equiv 0 \bmod p) \end{gathered}$	$s p q-1$	p^{2}	$a_{s p}$
$\alpha_{p}{ }^{\prime \prime}$	$p^{2} q-1$	p^{3}	$a_{p^{2}}$
$\left(r \geqq 0,{ }^{\beta_{1}^{r} \beta_{s}} \stackrel{1}{\leqq} s<p\right)$	$((r+s) p+s-1) q-2 r-2$	p	b_{s}^{r}
$\begin{gathered} \alpha_{1} \beta_{1}^{r} \beta_{s} \\ (r \geqq 0,1 \leqq s<p,(r, s) \neq(p-1,1)) \end{gathered}$	$((r+s) p+s) q-2 r-3$	p	c_{s}^{r}
ε^{\prime}	$\left(p^{2}+1\right) q-3$	p	e_{1}^{\prime}
$\left(1 \leqq i \stackrel{\varepsilon_{i}}{\leqq p-2)}\right.$	$\left(p^{2}+i\right) q-2$	p	e_{i}
$\left(1 \leqq i \leqq \begin{array}{c} \alpha_{1} \varepsilon_{i} \\ \leqq p-3) \end{array}\right.$	$\left(p^{2}+i+1\right) q-3$	p	e_{i+1}^{\prime}

The elements $\alpha_{r}, \alpha_{s p}^{\prime}, \alpha_{p^{2}}^{\prime \prime}, \varepsilon^{\prime}$ and $\varepsilon_{i}(i>1)$ are given by the following formulas:

$$
\begin{align*}
& \alpha_{r} \in\left\{\alpha_{r-1}, p \iota, \alpha_{1}\right\}, \quad \alpha_{s p}=p \alpha_{s p}^{\prime}, \quad \alpha_{p^{2}}^{\prime}=p \alpha_{p^{2}}^{\prime \prime} \tag{6.1}\\
& \varepsilon^{\prime}=\left\{\beta_{1}^{p}, \alpha_{1}, \alpha_{1}\right\} . \\
& \varepsilon_{i}=\left\{\varepsilon_{i-1}, p \iota, \alpha_{1}\right\}, \quad 2 \leqq i \leqq p-2 .
\end{align*}
$$

For $p=3$ the following relation is satisfied:
(6.4) ([7: III, Lemma 15.5]) $(p=3) \quad \alpha_{1} \varepsilon^{\prime}= \pm \beta_{1}^{4}$.

Remark. We shall prove in [5: Corollary 12.4] that the element ε_{1} is chosen so that it satisfies the following

$$
\begin{equation*}
\varepsilon_{1}=\left\{\alpha_{1}, p \iota, \beta_{1}^{p}, \alpha_{1}\right\} \tag{6.5}
\end{equation*}
$$

where the right side is a tertiary composition (for the definition see e.g. [2]).
Remark. In our situation, the element α_{r} is determined up to the indeterminacy of the secondary composition and the element β_{s} of ${ }_{p} \pi_{(s p+s-1) q-2}$ $(\boldsymbol{S}) \approx Z_{p}, 1<s<p$, is determined up to a multiple of the non-zero element of Z_{p}. In [10] these elements are determined uniquely.

Remark. The generator ε_{i}^{\prime} in [7: III] correspond to $\varepsilon^{\prime}(f o r i=1)$ and $\alpha_{1} \varepsilon_{i-1}$ (for $i>1$). The non-triviality of $\alpha_{1} \varepsilon_{i}$ and the relations (6.2) (for $p>3$)
and (6.3) do not appear in [7], and appear in [8: Proposition 1] without proof.
Proof of Theorem 6.2. By Proposition 6.1, it follows directly that the group ${ }_{p} \pi_{k}(\boldsymbol{S})$ is the direct sum of the cyclic groups generated by $\phi^{-1}\left(\mathscr{P}^{1} a_{0}\right)$, $\phi^{-1}\left(a_{r}\right), \phi^{-1}\left(b_{s}^{r}\right), \phi^{-1}\left(c_{s}^{r}\right), \phi^{-1}\left(e_{i}^{\prime}\right)$ and $\phi^{-1}\left(e_{i}\right)$.

By Theorem 3.3 and the relation $\mathscr{P}^{1} b_{s}^{r}=0, \phi\left(\beta_{1}^{r} \beta_{s}\right)=b_{s}^{r}$ implies $\phi\left(\alpha_{1} \beta_{1}^{r} \beta_{s}\right)$ $= \pm c_{s}^{r}$ for $(r, s) \neq(p-1,1)$. By Theorem 3.4 and the relation $\mathscr{P}^{p-1} c_{s}^{r}=0$, $\phi\left(\alpha_{1} \beta_{1}^{r} \beta_{s}\right)=c_{s}^{r}$ implies $\phi\left(\beta_{1}^{r+1} \beta_{s}\right)=x b_{s}^{r+1}, x \equiv 0 \bmod p$. By Theorem 3.5 and the relations $\mathscr{P}^{2} b_{1}^{p-1}=\mathscr{P}^{p-2} e_{1}^{\prime}=0, \phi\left(\beta_{1}^{p}\right)=b_{1}^{p-1}$ implies $\phi\left(\varepsilon^{\prime}\right)= \pm e_{1}^{\prime}$ and $\phi\left(\beta_{1}^{p+1}\right)=x b_{1}^{p}$, $x \neq 0 \bmod p$, where the indeterminacy of $\left\{\beta_{1}^{p}, \alpha_{1}, \alpha_{1}\right\}$ is trivial and ε^{\prime} satisfies (6.2). By Theorem 3.3 and $\mathscr{P}^{1} e_{i}=0, \phi\left(\varepsilon_{i}\right)=e_{i}$ implies $\phi\left(\alpha_{1} \varepsilon_{i}\right)= \pm e_{i+1}^{\prime}$ for $1 \leqq i$ $\leqq p-3$. By Theorem 3.6 and $\mathscr{P}^{1} \Delta e_{i}=0, \phi\left(\varepsilon_{i}\right)=e_{i}$ implies $\phi\left(\varepsilon_{i+1}\right)= \pm e_{i+1}$ for $1 \leqq i \leqq p-3$, where ε_{i+1} satisfies (6.3).

The relation (6.1) is quite similar to (4.11-12) of [6:IV], and (6.4) follows from Theorem 3.3 and $\mathscr{P}^{1} e_{1}^{\prime}=0$.
Q.E.D.

$$
\text { §7. } H^{*}\left(\boldsymbol{K}_{k}\right) \text { and } \pi_{p} \pi_{k}(S) \text { for } k \leqq 2\left(p^{2}+p\right)(p-1)-3
$$

We shall start from the discussion on the following coefficients x_{3}, $x_{4} \in Z_{p}$ in the relations B3 (e-1), B3 (e-2), B4 (e-1) and B4 (e-2):

$$
\begin{equation*}
\mathscr{P}^{1} e_{p-2}=x_{3} b_{p}^{0}, \quad \mathscr{P}^{1} \Delta e_{p-2}=x_{4} \Delta b_{p}^{0} \quad \text { in } H^{*}\left(\boldsymbol{K}_{\left(p^{2}+p-2\right) q-2}\right) . \tag{7.1}
\end{equation*}
$$

Set $t=\left(p^{2}+p-2\right) q-2$ throughout this section.
H. Toda has proved ${ }_{p} \pi_{2 n+t+q}\left(S^{2 n+1}\right)=0$ for $n>p^{2}-1$ hence ${ }_{p} \pi_{t+q-1}(\mathbf{S})=0$ [7: III]. By Theorem 3.3, $x_{3}=0$ implies $\alpha_{1} \varepsilon_{p-2} \neq 0$ in ${ }_{p} \pi_{t+q-1}(S)$. Thus $x_{3} \neq 0$. Replacing b_{p}^{0} by $\left(1 / x_{3}\right) b_{p}^{0}$, we have the following

Lemma 7.1. $\mathscr{P}^{1} e_{p-2}=b_{p}^{0} \quad$ in $\boldsymbol{K}_{t}, t=\left(p^{2}+p-2\right) q-2$.
Let $R=x_{4} \Delta \mathscr{P}^{1}-\mathscr{P}^{1} \Delta$. Since the submodule $A^{*} b_{p}^{0}$ of $H^{*}\left(\boldsymbol{K}_{t}\right)$ has the relations $\mathscr{P}^{1} b_{p}^{0}=\Delta \mathscr{P}^{1} \Delta b_{p}^{0}=W_{p} b_{p}^{0}=0$ in degree $<\left(2 p^{2}+p\right) q$ by $\mathrm{B} 2(b-1)$, ($b-2$) and ($b-5$), we obtain the following

Lemma 7.2. In degree $<\left(2 p^{2}+p\right) q$, the submodule $A^{*} e_{p-2}$ of $H^{*}\left(\boldsymbol{K}_{t}\right), t=$ $\left(p^{2}+p-2\right) q-2$, has the relations $\mathscr{P}^{2} e_{p-2}=R e_{p-2}=W_{p} \mathscr{P}^{1} e_{p-2}=0$.

Proof. Let $\gamma e_{p-2}=0$. Then $\gamma=\gamma_{1} \mathscr{P}^{1}+\gamma_{2} \mathscr{P}^{1} \Delta$, and γ_{1} and γ_{2} satisfy $\left(\gamma_{1}+x_{4} \gamma_{2} \Delta\right) b_{p}^{0}=0, \gamma_{1}+x_{4} \gamma_{2} \Delta=\gamma_{3} \mathscr{P}^{1}+\gamma_{4} \Delta \mathscr{P}^{1} \Delta+\gamma_{5} W_{p}$. Then

$$
\begin{aligned}
\gamma & =\left(-x_{4} \gamma_{2} \Delta+\gamma_{3} \mathscr{P}^{1}+\gamma_{4} \Delta \mathscr{P}^{1} \Delta+\gamma_{5} W_{p}\right) \mathscr{P}^{1}+\gamma_{2} \mathscr{P}^{1} \Delta \\
& =\left(-\gamma_{2}+(1 / 2) \gamma_{4}\left(x_{4} \mathscr{P}^{1} \Delta-\Delta \mathscr{P}^{1}\right)\right) R+2 \gamma_{3} \mathscr{P}^{2}+\gamma_{5} W_{p} \mathscr{P}^{1} .
\end{aligned}
$$

Thus the lemma follows from this relation.
Q.E.D.

Let e_{p-1} and f be elements of $H^{*}\left(\boldsymbol{K}_{t+1}\right)$ such that

$$
\begin{equation*}
\delta^{*} e_{p-1}=R j^{*-1} e_{p-2}, \quad \delta^{*} f=\mathscr{P}^{2} j^{*-1} e_{p-2} . \tag{7.2}
\end{equation*}
$$

The following lemma is used to determine the relations related with e_{p-1} and f, and follows from routine calculations by making use of the methods employed in [4].

Lemma 7.3. The kernel of $R^{*}: A^{*} \rightarrow A^{*}$, the right translation by R, is equal to

$$
\begin{array}{ll}
A^{*}\left(\left(x_{4}-2\right) \mathscr{P}^{1} \Delta+\Delta \mathscr{P}^{1}\right) & \text { if } x_{4} \neq 1,2 \bmod p, \\
A^{*}\left(\Delta \mathscr{P}^{1}-\mathscr{P}^{1} \Delta\right)+A^{*} \Delta \mathscr{P}^{1} \Delta & \text { if } x_{4} \equiv 1 \bmod p, \\
A^{*} \Delta \mathscr{P}^{1}+A^{*} \Delta \mathscr{P}^{1} \Delta & \text { if } x_{4} \equiv 2 \bmod p .
\end{array}
$$

The kernel of $\left(\mathscr{P}^{2}\right)^{*}: A^{*} \rightarrow A^{*} / A^{*} R$ is equal to

$$
\begin{array}{ll}
A^{*}\left(\left(2 x_{4}-3\right) \mathscr{P}^{1} \Delta-\left(x_{4}-2\right) \Delta \mathscr{P}^{1}\right)+A^{*} \mathscr{P}^{p-2} & \text { if } x_{4} \equiv 0,2,3 / 2 \bmod p, \\
A^{*} \Delta+A^{*} \mathscr{P}^{p-2} & \text { if } x_{4} \equiv 2 \bmod p, \\
A^{*} R_{2}+A^{*} \mathscr{P}^{p-2} & \text { if } x_{4} \equiv 0 \bmod p, \neq 3 / 2 \bmod p, p>3, \\
A^{*} \Delta \mathscr{P}^{1}+A^{*} \Delta \mathscr{P}^{1} \Delta+A^{*} \mathscr{P}^{p-2} & \text { if } x_{4} \equiv 3 / 2 \bmod p .
\end{array}
$$

Proposition 7.4. Let $t+1 \leqq k \leqq t+2 q-1, t=\left(p^{2}+p-2\right) q-2$. In degree $<t+2 q+2, H\left(K_{k}\right)$ has minimal sets of generators:

$$
\left\{\begin{array}{llllllll}
a_{0}, & a_{p^{2}+p-2}, & a_{p^{2}+p-1}, & c_{p-1}^{1}, & b_{1}^{p}, & b_{2}^{p-1}, & e_{p-1} & f,
\end{array} f^{\prime}\right\}
$$

and of relations:

$$
\begin{aligned}
& \left\{\Delta a_{0}=\mathscr{P}^{1} a_{0}=\mathscr{P}^{p} a_{0}=\mathscr{P}^{2} a_{0}=0, \quad R_{p^{2}+p-2} a_{p^{2}+p-2}=0, \quad \mathscr{P}^{2} c_{2}^{1}=0(\text { if } p=3),\right. \\
& \left(\Delta \mathscr{P}^{1}+\left(x_{4}-2\right) \mathscr{P}^{1} \Delta\right) e_{p-1}=0, \quad \Delta f-(1 / 2) \mathscr{P}^{1} e_{p-1}=0 \text { if } x_{4} \equiv 2 \bmod p, \\
& \left.a=0 \text { in } K_{k}, k \geqq \operatorname{deg} a, \text { for } a=a_{p^{2}+p-2}, a_{p^{2}+p-1}, c_{p-1}^{1}, b_{1}^{p}, e_{p-1}\right\} .
\end{aligned}
$$

Here $a_{p^{2}+p-1}$ and f^{\prime} are given by

$$
\begin{aligned}
& \delta^{*} a_{p^{2}+p-1}=R_{p^{2}+p-2} j^{*-1} a_{p^{2}+p-2}, \\
& \delta^{*} f^{\prime}=\left(\Delta \mathscr{P}^{1}+\left(x_{4}-2\right) \mathscr{P}^{1} \Delta\right) j^{*-1} e_{p-1} .
\end{aligned}
$$

Proof. The new generators of $H^{*}\left(\boldsymbol{K}_{t+1}\right)$ are e_{p-1} and f of (7.2). From the above lemma and the Adem relations, the relations in the submodule $A^{*} R+A^{*} \mathscr{P}^{2}$ of A^{*}, degree $<3 q$, are given by

$$
\begin{gathered}
\left(\Delta \mathscr{P}^{1}+\left(x_{4}-2\right) \mathscr{P}^{1} \Delta\right) R=0, \\
\Delta \mathscr{P}^{2}-(1 / 2) \mathscr{P}^{1} R=0 \quad \text { if } x_{4} \equiv 2 \bmod p, \\
\Delta \mathscr{P}^{1} \Delta R=0 \quad \text { if } x_{4} \equiv 1,2 \bmod p .
\end{gathered}
$$

Hence, the new relations are the following:

$$
\begin{aligned}
& \Delta f-(1 / 2) \mathscr{P}^{1} e_{p-1}=i^{*} w_{1} \quad \text { if } x_{4} \equiv 2 \bmod p, \\
& \left(\Delta \mathscr{P}^{1}+\left(x_{4}-2\right) \mathscr{P}^{1} \Delta\right) e_{p-1}=i^{*} w_{2}, \\
& \Delta \mathscr{P}^{1} \Delta e_{p-1}=i^{*} w_{3} \quad \text { if } x_{4} \equiv 1,2 \bmod p .
\end{aligned}
$$

The degree of the last relation exceeds our restriction of the degree. The possibility of $i^{*} w_{1} \neq 0$ or $i^{*} w_{2} \neq 0$ is the following:

$$
\begin{aligned}
& i^{*} w_{1}=x \Delta \mathscr{P}^{1} \Delta b_{1}^{p}+y b_{2}^{p-1}(y=0 \quad \text { if } p=3) \\
& i^{*} w_{2}=z \Delta b_{2}^{p-1}(z=0 \quad \text { if } p=3)
\end{aligned}
$$

By the replacement of f by $f+x \mathscr{P}^{1} \Delta b_{1}^{p}$, we have $i^{*} w_{1}=y b_{2}^{p-1}$.
Before proving $y=z=0$ for $p>3$, we shall prove the proposition for $k>t+1$. Since $H^{t+2}\left(\boldsymbol{K}_{t+1}\right)=Z_{p}\left\{a_{p^{2}+p-2}\right\}\left(+Z_{p}\left\{c_{2}^{1}\right\}\right.$ if $\left.p=3\right)$, the new generators of $H^{*}\left(\boldsymbol{K}_{t+2}\right)$ are $a_{p^{2}+p-1}$ and b_{2}^{2} in addition for $p=3$, and new relations are $R_{p^{2}+p-1} a_{p^{2}+p-1} \equiv 0 \bmod \operatorname{Im} i^{*}, \Delta \mathscr{P}^{1} \Delta a_{p^{2}+p-1} \equiv 0 \bmod \operatorname{Im} i^{*}$ and $\mathscr{P}^{1} b_{2}^{2} \equiv 0 \bmod \operatorname{Im} i^{*}$. These are of degree $\geqq t+2 q+2$. Thus the proposition is true for $k=t+2$. For $k>t+2$, the proposition is proved rather easily.

Consequently, if $x_{4} \equiv 2 \bmod p, p>3, H^{t+2 q+1}\left(\boldsymbol{K}_{t+2 q}\right)=Z_{p}\left\{b_{2}^{p-1}\right\}, \Delta b_{2}^{p-1}=0$ or $=Z_{p}\left\{b_{2}^{p-1}, f^{\prime}\right\}, \Delta b_{2}^{p-1} \neq 0$ according as $z \neq 0$ or $z=0$. Since $\phi\left(\beta_{1}^{p-1} \beta_{2}\right)=b_{2}^{p-1}$ and $p \beta_{1}^{p-1} \beta_{2}=0$, it follows from $\Delta b_{2}^{p-1} \neq 0$ that $z=0$. If $x_{4} \equiv 2 \bmod p, p>3$, the triviality of y is equivalent to $z=0$, by comparing $\Delta i^{*} w_{1}$ and $i^{*} w_{2}$, and so $H^{t+2 q+1}\left(\boldsymbol{K}_{t+2 q}\right)=0$ for the case $y \neq 0$. By Theorem 3.4, $\beta_{1}^{p-1} \beta_{2} \neq 0$ in ${ }_{p} \pi_{t+2 q}(\boldsymbol{S})$, hence $y=z=0$.
Q.E.D.

By this proposition, $H^{t+q+1}\left(\boldsymbol{K}_{t+q}\right)=Z_{p}\left\{e_{p-1}\right\}, H^{t+2 q}\left(\boldsymbol{K}_{t+2 q-1}\right)=Z_{p}\{f\}$. Hence ${ }_{p} \pi_{t+q}(\boldsymbol{S})$ and ${ }_{p} \pi_{t+2 q-1}(\boldsymbol{S})$ are the cyclic groups generated by the elements ε_{p-1} and φ such that $\phi\left(\varepsilon_{p-1}\right)=e_{p-1}$ and $\phi(\varphi)=f$.

The following two propositions are proved in the next section.
Proposition 7.5. For $p=3,{ }_{3} \pi_{45}(\boldsymbol{S})$ is isomorphic to Z_{9}.
Proposition 7.6. For $p>3, \quad \alpha_{1} \varepsilon_{p-1} \neq 0$.
Using these propositions, we determine the coefficient x_{4} in (7.1).
Proposition 7.7. $x_{4} \equiv 2 \bmod p$.
Proof. By Proposition 7.4, it follows that

$$
\Delta f=0 \quad \text { if and only if } x_{4} \equiv 2 \bmod p
$$

For $p=3$, by use of (1.4) and Proposition 7.5, $x_{4} \equiv 2 \bmod 3$ holds.
For the case $p>3$, since the indeterminacy of $\left\{\varepsilon_{p-2}, \alpha_{1}, \alpha_{1}\right\}$ is the subgroup generated by $\alpha_{1} \varepsilon_{p-1}$, which is isomorphic to Z_{p} by Proposition 7.6 and $p \alpha_{1}=0$, and since $\left\{\varepsilon_{p-2}, \alpha_{1}, \alpha_{1}\right\}$ does not contain zero by Theorem 3.5, the group ${ }_{p} \pi_{t+2 q-1}(\boldsymbol{S})$ consists of more than p elements. Thus $x_{4} \equiv 2 \bmod p$.
Q.E.D.

By a little calculation of $H^{*}\left(\boldsymbol{K}_{k}\right)$ and the above propositions. we have the following

Theorem 7.8. Let $\left(p^{2}+p-2\right) q-1 \leqq k \leqq\left(p^{2}+p\right) q-3$. In degree $<\left(p^{2}+p\right.$ $+1) q-4, H^{*}\left(\boldsymbol{K}_{k}\right)$ has a system of generators:

$$
a_{0}, \quad a_{p^{2}+p-2}, \quad c_{p-1}^{1}, \quad b_{1}^{p}, \quad d_{2}(\text { if } p>3),
$$

and the following elements
Table A5

Generator a	Degree of a	$h(a)$	$\delta^{*}(a)$
$a_{p^{2}+p-1}$	$\left(p^{2}+p-1\right) q$	$\left(p^{2}+p-2\right) q$	$R_{p^{2}+p-2} j^{*-1} a_{p^{2}+p-2}$
b_{2}^{p-1}	$\left(p^{2}+p\right) q-1$	$\left(p^{2}+1\right) q$	$\mathscr{P}^{p-1} j^{*-1} c_{2}^{p-2}$
e_{p-1}	$\left(p^{2}+p-1\right) q-1$	$\left(p^{2}+p-2\right) q-1$	$R_{p-2} j^{*-1} e_{p-2}$
f	$\left(p^{2}+p\right) q-2$	$\left(p^{2}+p-2\right) q-1$	$\mathscr{P}^{2} j^{*-1} e_{p-2}$
f^{\prime}	$\left(p^{2}+p\right) q-1$	$\left(p^{2}+p-1\right) q-1$	$\Delta \mathscr{P}^{1} j^{*-1} e_{p-1}$
$a_{p^{2}+p}$	$\left(p^{2}+p\right) q$	$\left(p^{2}+p-1\right) q$	$R_{p^{2}+p-1} j^{*-1} a_{p^{2}+p-1}$
$a_{p^{2}+p}^{\prime}$	$\left(p^{2}+p\right) q+1$	$\left(p^{2}+p-1\right) q$	$\Delta \mathscr{P}^{1} \Delta j^{*-1} a_{p^{2}+p-1}$

where by the dimensional reason we take off the last two elements if $p=3$, and we add the element d_{2}^{\prime} such that $\delta^{*} d_{2}^{\prime}=\Delta \mathscr{P}^{1} \Delta j^{*-1} e_{p-1}, h\left(d_{2}^{\prime}\right)=\left(p^{2}+p-1\right) q-1$ and deg $d_{2}^{\prime}=\left(p^{2}+p\right) q$ if $p>3$ and $x_{5}=0$ in the relation ($e-2$) in Table B5 below.

The relations in the submodule of $H^{*}\left(\boldsymbol{K}_{k}\right)$ generated by the above elements (except d_{2}^{\prime}) are given by

Table B5

$$
\begin{array}{ll}
\text { (a-1) } & \Delta a_{0}=\mathscr{P}^{1} a_{0}=\mathscr{P}^{p} a_{0}=\mathscr{P}^{2} a_{0}=0 . \\
(a-2) & R_{p^{2}+p-2} a_{p^{2}+p-2}=0, \\
& R_{p^{2}+p-1} a_{p^{2}+p-1}=\Delta \mathscr{P}^{1} \Delta a_{p^{2}+p-1}=\Delta a_{p^{2}+p}=\Delta a_{p^{2}+p}^{\prime}=0 \quad \text { if } p>3, \\
& \Delta \mathscr{P}^{1} a_{p^{2}+p}-\mathscr{P}^{1} a_{p^{2}+p}^{\prime} \equiv 0 \bmod \operatorname{Im} i^{*} \text { if } p>3, \\
& R_{11} a_{11} \equiv \Delta \mathscr{P}^{1} \Delta a_{11} \equiv 0 \bmod \operatorname{Im} i^{*} \text { if } p=3 . \\
\text { (b) } & \mathscr{P}^{2} b_{1}^{p} \equiv 0 \bmod \operatorname{Im} i^{*}, \mathscr{P}^{1} b_{2}^{p-1} \equiv 0 \bmod \operatorname{Im} i^{*} . \\
\text { (c) } & \mathscr{P}^{p-1} c_{p^{2}-1}^{1} \equiv 0 \bmod \operatorname{Im} i^{*} \quad \text { if } p>3, \quad \mathscr{P}^{2} c_{2}^{1}=0 \quad \text { if } p=3 .
\end{array}
$$

```
(d) }\quad\Delta\mp@subsup{d}{2}{}=\mp@subsup{\mathscr{P}}{}{1}\mp@subsup{d}{2}{}=\mp@subsup{\mathscr{P}}{}{p}\mp@subsup{d}{2}{}=0
(e-1) \Delta\mathscr{P}}\mp@subsup{}{1}{1}\mp@subsup{e}{p-1}{}=0
(e-2) }|\mathscr{P}\mp@subsup{}{}{1}\Delta\mp@subsup{e}{p-1}{}-\mp@subsup{x}{5}{}\mp@subsup{d}{2}{}\equiv0\operatorname{mod}\mp@subsup{A}{}{*}\mp@subsup{a}{\mp@subsup{p}{}{2}+p-2}{}\quad\mathrm{ for some }\mp@subsup{x}{5}{}\in\mp@subsup{Z}{p}{}\quad\mathrm{ if }p>3\mathrm{ ,
    \Delta\mathscr{P}}\mp@subsup{}{}{1}|\mp@subsup{e}{2}{}\equiv0m\operatorname{mod}\operatorname{Im}\mp@subsup{i}{}{*}\quad\mathrm{ if }p=3
(f-1) \Deltaf-(1/2) 乐 }\mp@subsup{}{}{1}\mp@subsup{e}{p-1}{}=0,\quad\mp@subsup{\mathscr{P}}{}{p-2}f\equiv0\operatorname{mod}\operatorname{Im}\mp@subsup{i}{}{*}
(f-2) }|\mp@subsup{f}{}{\prime}=0,\quad\mp@subsup{\mathscr{P}}{}{1}|\mp@subsup{\mathscr{P}}{}{p-1}\mp@subsup{f}{}{\prime}\equiv0\operatorname{mod}\operatorname{Im}\mp@subsup{i}{}{*}
(l) a=0 in K}\mp@subsup{K}{k}{},k\geqq\operatorname{deg}a,\quad\mathrm{ for }a=\mp@subsup{a}{\mp@subsup{p}{}{2}+p-2}{},\mp@subsup{a}{\mp@subsup{p}{}{2}+p-1}{},\mp@subsup{b}{1}{p},\mp@subsup{e}{p-1}{},f
    a=0 in K
    d
    Furthermore the following relation holds.
(f-3) }\quad\mp@subsup{\Delta}{2}{}f=(1/2)\mp@subsup{f}{}{\prime}\mathrm{ in }\mp@subsup{K}{k}{},k\geqq(\mp@subsup{p}{}{2}+p-1)q-1
```

Proof. By use of Lemma 3.5. i) of [6: III], the relation ($f-3$) follows from the first relation of $(f-1)$. The first relation of ($f-2$) follows from ($f-3$). The second relation of ($f-2$) follows from (3.10) of [4].

Others are proved from Proposition 7.4 and Theorem 5.1 by a little calculation.
Q.E.D.

Theorem 7.9. The group ${ }_{p} \pi_{k}(\mathbf{S}),\left(p^{2}+p-1\right)-3 \leqq k \leqq\left(p^{2}+p\right) q-3$, is as follows:

$$
\begin{aligned}
p_{k}(\boldsymbol{S}) & \approx Z_{p} \quad \text { generated by } \varepsilon_{p-1} & & \text { for } k=\left(p^{2}+p-1\right) q-2 \\
& \approx Z_{p} \quad \text { generated by } \alpha_{p^{2}+p-1} & & \text { for } k=\left(p^{2}+p-1\right) q-1 \\
& \approx Z_{p^{2}} \text { generated by } \varphi & & \text { for } k=\left(p^{2}+p\right) q-3 \\
& =0 \quad \text { for other } k . & &
\end{aligned}
$$

The generators are given by

$$
\begin{align*}
& \varepsilon_{p-1}=\left\{\varepsilon_{p-2}, p \ell, \alpha_{1}\right\} \tag{7.3}\\
& \alpha_{p^{2}+p-1}=\left\{\alpha_{p^{2}+p-2}, p \iota, \alpha_{1}\right\} \tag{7.4}\\
& \varphi \in\left\{\varepsilon_{p-2}, \alpha_{1}, \alpha_{1}\right\} \tag{7.5}
\end{align*}
$$

And the following relations are satisfied:

$$
\begin{equation*}
p \varphi=\alpha_{1} \varepsilon_{p-1}, \quad 2 \varepsilon_{p-1}=\left\{\varepsilon_{p-2}, \alpha_{1}, p \iota\right\} \tag{7.6}
\end{equation*}
$$

Proof. By Theorem 7.8, we have easily

$$
\begin{aligned}
H^{k+1}\left(\boldsymbol{K}_{k}\right) & =Z_{p}\left\{e_{p-1}\right\}, \Delta e_{p-1} \neq 0, \text { for } k=\left(p^{2}+p-1\right) q-2, \\
& =Z_{p}\{f\}, \Delta f=0, \Delta_{2} f \neq 0, \text { for } k=\left(p^{2}+p\right) q-3, \\
& =Z_{p}\left\{a_{p^{2}+p-1}\right\}, \Delta a_{p^{2}+p-1} \neq 0, \text { for } k=\left(p^{2}+p-1\right) q-1, \\
& =0 \text { for other } k .
\end{aligned}
$$

Then, using (1.4), the group ${ }_{p} \pi_{k}(\boldsymbol{S})$ is determined immediately.
The secondary composition $\left\{\varepsilon_{p-2}, p \iota, \alpha_{1}\right\}$ consists of single element, since it has zero indeterminacy. Assume that $\left\{\varepsilon_{p-2}, p \iota, \alpha_{1}\right\}=0$. Then any representative $h: S^{n+t} \rightarrow S^{n}, t=\left(p^{2}+p-2\right) q-2$, of ε_{p-2} is extended to $K=$ $S^{n+t} \cup e^{n+t+1} \cup e^{n+t+q+1}$ with $\mathscr{P}^{1} \Delta H^{n+t}(K)=H^{n+t+q+1}(K)$. The extension $H: K \rightarrow$ S^{n} is liftable to $X_{t}(n)$ of $\S 3$. By Proposition 3.2, the lifting \bar{H} satisfies \bar{H}^{*} $\left(\tau^{-1} e_{p-2}\right)=u$ for a generator u of $H^{n+t}(K)=Z_{p}$. Then $\bar{H}^{*}\left(\tau^{-1}\left(R_{p-2} e_{p-2}\right)\right)=$ $R_{p-2} u=-\mathscr{P}^{1} \Delta u \neq 0$. This contradicts to $R_{p-2} e_{p-2}=0$. Thus $\left\{\varepsilon_{p-2}, p \iota, \alpha_{1}\right\} \neq 0$, and we can choose ε_{p-1} so that it satisfies (7.3).
(7.4) is similar to (7.3). (7.5) is an easy consequence of Theorem 3.5. The secondary composition $\left\{\varepsilon_{p-2}, \alpha_{1}, p \epsilon\right\}$ consists of single element, hence $a \varepsilon_{p-1}$ $=\left\{\varepsilon_{p-2}, \alpha_{1}, p c\right\}$ for some $a \in Z_{p}$. Similarly to Theorem 4.14. ii) of [6:IV], the relation $R_{p-2} e_{p-2}=0$ implies $a=2$. By Theorem 4.4 of [6: IV], $\left\{\alpha_{1}, p \iota, \varepsilon_{p-2}\right\}$ $=-\varepsilon_{p-1}$ and $\left\{p \iota, \varepsilon_{p-2}, \alpha_{1}\right\}=-\varepsilon_{p-1}$. By (4.4). i) of [6:IV], $p \varphi=p \iota\left\{\varepsilon_{p-2}, \alpha_{1}, \alpha_{1}\right\}$ $=-\left\{p \iota, \varepsilon_{p-2}, \alpha_{1}\right\} \alpha_{1}=\varepsilon_{p-1} \alpha_{1}=\alpha_{1} \varepsilon_{p-1}$. Thus (7.6) is established. Q.E.D.

§8. Some relations in ${ }_{p} \pi_{k}(S)$

In this section, we shall prove Propositions 7.5-6 in §7, by making use of the methods of [7].

The inclusion $S^{2 n-1} \rightarrow \Omega^{2} S^{2 n+1}$ induces the homomorphism of homotopy groups, which is equivalent to the double suspension $S^{2}: \pi_{i}\left(S^{2 n-1}\right) \rightarrow \pi_{i+2}\left(S^{2 n+1}\right)$, and the fibering $p: Q_{2}^{2 n-1} \rightarrow S^{2 n-1}$ with the fiber $\Omega^{3} S^{2 n+1}$ gives rise to an exact sequence
(8.1) ((1.7) of [7: I])

$$
\cdots \longrightarrow \pi_{i}\left(Q_{2}^{2 n-1}\right) \xrightarrow{p_{*}} \pi_{i}\left(S^{2 n-1}\right) \xrightarrow{S^{2}} \pi_{i+2}\left(S^{2 n+1}\right) \xrightarrow{H^{(2)}} \pi_{i-1}\left(Q_{2}^{2 n-1}\right) \longrightarrow \cdots,
$$

where $Q_{2}^{2 n-1}=\Omega\left(\Omega^{2} S^{2 n+1}, S^{2 n-1}\right)$.
For the k-fold suspension S^{k}, this sequence is generalized as follows:
$((1.7)$ of $[7: I])$

$$
\begin{equation*}
\cdots \longrightarrow \pi_{i}\left(Q_{k}^{n}\right) \xrightarrow{p_{*}} \pi_{i}\left(S^{n}\right) \xrightarrow{s^{k}} \pi_{i+k}\left(S^{n+k}\right) \xrightarrow{H^{(k)}} \pi_{i-1}\left(Q_{k}^{n}\right) \longrightarrow \cdots, \tag{8.2}
\end{equation*}
$$

where $Q_{k}^{n}=\Omega\left(\Omega^{k} S^{n+k}, S^{n}\right)$.
The main tools of [7] are these sequences and the following exact sequence:

$$
\begin{equation*}
((2.5) \text { of }[7: I]) \tag{8.3}
\end{equation*}
$$

$$
\cdots \longrightarrow{ }_{p} \pi_{i+4}\left(S^{2 m p+1}\right) \overleftrightarrow{\longrightarrow}_{p} \pi_{i+2}\left(S^{2 m p-1}\right) \xrightarrow{I^{\prime}}{ }_{p} \pi_{i}\left(Q_{2}^{2 m-1}\right) \xrightarrow{I}{ }_{p} \pi_{i+3}\left(S^{2 m p+1}\right) \longrightarrow \cdots
$$

Following to H . Toda, we use the notation: for $\gamma \epsilon_{p} \pi_{i}(\mathbf{S}), \gamma\left(n_{0}\right) \epsilon_{p} \pi_{i+n_{1}}$
$\left(S^{n_{0}}\right)$ denotes an element such that $S^{\circ} \gamma\left(n_{0}\right)=\gamma$ and $\gamma\left(n_{0}\right) € \operatorname{Im} S$, and $\gamma(n)$ denotes ($n-n_{0}$)-fold suspension of $\gamma\left(n_{0}\right)$ for $n \geqq n_{0}$. Also we use the notations $Q^{m}(\gamma)$ and $\bar{Q}^{m}(\delta)$ to the elements of ${ }_{p} \pi_{i}\left(Q_{2}^{2 m-1}\right)$ for some elements $\gamma \epsilon_{p} \pi_{i-2 m p+3}(S)$ and $\delta \epsilon_{p} \pi_{i-2 m p+2}(\boldsymbol{S})$ such that $Q^{m}(\gamma)=I^{\prime}(\gamma(2 m p-1))$ and $I\left(\bar{Q}^{m}(\delta)\right)=\delta(2 m p+1)$ (see (6.3) of [7: I]).

The map Δ of (8.3) satisfies (2.7) of [7:I] and Corollaries 9.4-5 of [7: II], which are important properties for the determination of Δ. By use of these properties, the sequence (8.3) and the results for ${ }_{p} \pi_{2 m+1+j}\left(S^{2 m+1}\right)$, $j<\left(p^{2}+p-1\right) q$, of [7], we have the following
(8.4) The group ${ }_{p} \pi_{2 n-1+k}\left(Q_{2}^{2 n-1}\right), l-6 \leqq k \leqq l-2, l=\left(p^{2}+p\right) q$, is the direct sum of cyclic groups of order p generated by the following elements:

$$
\begin{array}{ll}
(k=l-6) & Q^{1}\left(\beta_{1}^{p+1}\right), \quad \bar{Q}^{(p-s-1)(p+1)+1}\left(\alpha_{1} \beta_{1} \beta_{s}\right)(1 \leqq s<p), \\
& Q^{(p-s-1)(p+1)+2}\left(\beta_{1} \beta_{s}\right)(1 \leqq s<p), \\
& \text { and } \quad \bar{Q}^{i}\left(\alpha_{11-i}\right)(1 \leqq i \leqq 10), Q^{11}(c) \text { in addition for } p=3 . \\
(k=l-5) & Q^{i}\left(\alpha_{1} \varepsilon_{p-1-i}\right)(2 \leqq i \leqq p-2), \quad Q^{p-1}\left(\varepsilon^{\prime}\right), \quad \bar{Q}^{(p-s-1)(p+1)+2}\left(\beta_{1} \beta_{s}\right)(1 \leqq s<p), \\
& Q^{(p-s)(p+1)}\left(\alpha_{1} \beta_{s}\right)(1 \leqq s<p), \quad \bar{Q}^{1}\left(\beta_{1}^{p+1}\right) . \\
(k=l-4) & \bar{Q}^{i}\left(\alpha_{1} \varepsilon_{p-1-i}\right)(2 \leqq i \leqq p-2), \quad \bar{Q}^{p-1}\left(\varepsilon^{\prime}\right), \quad u=I^{\prime} p_{*} Q^{p^{2}(c), \quad Q^{p+1}\left(\beta_{1}^{p}\right),} \\
& Q^{(p-s)(p+1)+1}\left(\beta_{s}\right)(1 \leqq s<p), \quad \bar{Q}^{(p-s)(p+1)}\left(\alpha_{1} \beta_{s}\right)(1 \leqq s<p), \\
(k=l-3) & Q^{i}\left(\alpha_{p^{2}+p-i}\right)(i \cong 0 \bmod p), \quad Q^{j p}\left(\alpha_{p^{\prime}+p-j p}^{\prime}\right)(2 \leqq j \leqq p), \quad Q^{p}\left(\alpha_{p^{\prime \prime}}\right), \\
& Q^{p-1}\left(\alpha_{1} \beta_{1}^{p-2} \beta_{2}\right), \bar{Q}^{p+1}\left(\beta_{1}^{p}\right), \quad Q^{2 p}\left(\alpha_{1} \beta_{1}^{p-1}\right), \quad \bar{Q}^{(p-s)(p+1)+1}\left(\beta_{s}\right)(1 \leqq s<p) . \\
(k=l-2) & \bar{Q}^{i}\left(\alpha_{p^{2}+p-i}\right), \quad \bar{Q}^{p-1}\left(\alpha_{1} \beta_{1}^{p-2} \beta_{2}\right), \quad Q^{p}\left(\beta_{1}^{p-2} \beta_{2}\right), \quad \bar{Q}^{2 p}\left(\alpha_{1} \beta_{1}^{p-1}\right), \quad Q^{2 p+1}\left(\beta_{1}^{p-1}\right), \\
& Q^{p^{2}+p}(c), \text { and } Q^{2}\left(\beta_{1}^{4}\right) \text { in addition for } p=3 .
\end{array}
$$

In the above, we use the notations ε^{\prime} and $\alpha_{1} \varepsilon_{i}$ instead of ε_{i}^{\prime} of [7: III] (see the third remark after Theorem 6.2).

By Lemma 6.1 of [7: I], the p_{*}-images of the following elements are trivial:

$$
\begin{aligned}
& \bar{Q}^{(p-s-1)(p+1)+1}\left(\alpha_{1} \beta_{1} \beta_{s}\right), \quad Q^{(p-s)(p+1)}\left(\alpha_{1} \beta_{s}\right)(s>1), \quad \bar{Q}^{(p-s)(p+1)}\left(\alpha_{1} \beta_{s}\right), \\
& Q^{2 p}\left(\alpha_{1} \beta_{1}^{p-1}\right), \quad \bar{Q}^{p-1}\left(\alpha_{1} \beta_{1}^{p-2} \beta_{2}\right),
\end{aligned}
$$

and also the p_{*}-images of the following elements are the unstable elements of first type ${ }^{1)}$:

[^4]\[

$$
\begin{aligned}
& \bar{Q}^{(p-s-1)(p+1)+2}\left(\beta_{1} \beta_{s}\right)(s>1), \quad \bar{Q}^{i}\left(\alpha_{11-i}\right), \quad Q^{11}(c), \quad Q^{(p-s)(p+1)+1}\left(\beta_{s}\right)(s>1), \\
& \bar{Q}^{(p-s)(p+1)+1}\left(\beta_{s}\right), \quad Q^{2 p+1}\left(\beta_{1}^{p-1}\right) .
\end{aligned}
$$
\]

By Proposition 8.8 of [7: II], the following elements give the unstable elements of second type ${ }^{1)}$ of ${ }_{p} \pi_{2 n+1+l-2}\left(S^{2 n+1}\right)$:

$$
Q^{i}\left(\alpha_{p^{2}+p-i}\right)\left(i \leqq p^{2}+p-2\right), \quad Q^{j p}\left(\alpha_{p^{2}+p-j p}^{\prime}\right), \quad Q^{p}\left(\alpha_{p^{2}}^{\prime \prime}\right), \quad \bar{Q}^{i}\left(\alpha_{p^{2}+p-i}\right)(i \geqq 3), \quad Q^{p^{2}+p}(c) .
$$

By Theorems 10.3 and 10.6 of [7: II], the following elements give the unstable elements of third type ${ }^{1)}$ of ${ }_{p} \pi_{2 n+1+k}\left(S^{2 n+1}\right)$:

$$
\begin{aligned}
& Q^{b^{2-p}\left(\beta_{1}^{2}\right)}, \quad Q^{p^{2-1}}\left(\alpha_{1} \beta_{1}\right), \quad Q^{p^{2}\left(\beta_{1}\right),} \quad Q^{b^{2}+p-1}\left(\alpha_{1}\right), \quad \bar{Q}^{p+1}\left(\beta_{1}^{b}\right), \quad \bar{Q}^{2 b}\left(\alpha_{1} \beta_{1}^{p-1}\right), \\
& Q^{p}\left(\beta_{1}^{p-2} \beta_{2}\right) .
\end{aligned}
$$

Consequently we obtain the following
Lemma 8.1. Let $t=\left(p^{2}+p\right) q-3$ and $\gamma^{\prime}=\bar{Q}^{i}\left(\alpha_{1} \varepsilon_{p-1-i}\right), \bar{Q}^{p-1}\left(\varepsilon^{\prime}\right)$, u or $Q^{p+1}\left(\beta_{1}^{p}\right)$. If $p_{*} \gamma^{\prime}=0$, then there is an element $\gamma \epsilon_{p} \pi_{2 n+1+t}\left(S^{2 n+1}\right)$ such that $H^{(2)} \gamma=\gamma^{\prime}$ and $S^{\star} \gamma \neq 0$ in ${ }_{p} \pi_{t}(\boldsymbol{S})$. Furthermore ${ }_{p} \pi_{t}(\boldsymbol{S})$ is generated by such elements $\cdot S^{\circ} \gamma$.

Now we shall prove Proposition 7.5 of $\S 7$.
Proof of Proposition 7.5. By the relation (6.4) of §6, Lemma 6.1 (i) (ii) of [7: I] also holds for ε^{\prime} and β_{1}^{4} instead of $\beta_{1}^{r} \beta_{s}$ and $\alpha_{1} \beta_{1}^{r} \beta_{s}$, and so $p_{*} \bar{Q}^{2}\left(\varepsilon^{\prime}\right)$ $\neq 0$. By the discussion previous to Lemma 8.1, there is no element $\gamma \epsilon_{3} \pi_{48}\left(S^{5}\right)$ such that $S^{\circ} \gamma \neq 0$. By (2.11) and (2.13) of [7:1], $\alpha_{1} \beta_{1}^{4}(3)= \pm G Q^{1}\left(\beta_{1}^{4}\right)$ $\neq 0$. Since $S^{\infty} \alpha_{1} \beta_{1}^{4}(3)=\left(\alpha_{1} \beta_{1}^{3}\right) \beta_{1}=0, \quad p_{*} Q^{2}\left(\varepsilon^{\prime}\right)= \pm \alpha_{1} \beta_{1}^{4}(3) \neq 0$. Thus, by (8.1), ${ }_{3} \pi_{49}\left(S^{5}\right)={ }_{3} \pi_{51}\left(S^{7}\right)=0$, and $p_{*} u=0, p_{*} Q^{4}\left(\beta_{1}^{3}\right)=0$. Then ${ }_{3} \pi_{45}(\boldsymbol{S})$ is of order 9 by Lemma 8.1. It is also cyclic as is seen after Proposition 7.4, and the proposition follows.
Q.E.D.

For any map $f: S^{m+n} \rightarrow S^{n}$, the map $\Omega^{k} S^{k} f: \Omega^{k} S^{m+n+k} \rightarrow \Omega^{k} S^{n+k}$ induces a $\operatorname{map} Q_{k}(f): Q_{k}^{m+n} \rightarrow Q_{k}^{n}$, and for the class $\alpha \in \pi_{m+n}\left(S^{n}\right)$ of f, we denote by $Q_{k}(\alpha)$ the class of $Q_{k}(f)$. Then we have

$$
\begin{equation*}
H^{(k)}\left(S^{k} \alpha \circ \beta\right)=Q_{k}(\alpha) H^{(k)}(\beta) \quad \text { for } \alpha \in \pi_{j}\left(S^{n}\right), \beta \in \pi_{i}\left(S^{j+k}\right), \tag{8.5}
\end{equation*}
$$

where $H^{(k)}: \pi_{i+k}\left(S^{n+k}\right) \approx \pi_{i}\left(\Omega^{k} S^{n+k}\right) \rightarrow \pi_{i}\left(\Omega^{k} S^{n+k}, S^{n}\right) \approx \pi_{i-1}\left(Q_{k}^{n}\right)$ is the homomorphism in (8.2).

Furthermore, for the inclusion $j: Q_{k}^{h} \rightarrow Q_{k+l}^{h}$, the following is verified easily.

[^5](i) $H^{(k+l)}\left(S^{l} \alpha\right)=j_{*} H^{(k)}(\alpha)$ for $\alpha \in \pi_{i+k}\left(S^{n+k}\right)$,
(ii) $j_{*} Q_{k}(\beta) \gamma=Q_{k+l}(\beta) j_{*} \gamma \quad$ for $\beta \in \pi_{m+n}\left(S^{n}\right), \gamma \in \pi_{i}\left(Q_{k}^{m+n}\right)$.

Let $V_{2 m+1,2}=O(2 m+1) / O(2 m-1)$ denote the Stiefel manifold. This is an $S^{2 m-1}$ bundle over $S^{2 m}$ with the characteristic class $2 \iota_{2 m-1} \epsilon \pi_{2 m-1}\left(S^{2 m-1}\right)$. Let $\rho: \Omega S^{2 m} \rightarrow S^{2 m-1}$ be a map such that ρ_{*} is equivalent to the boundary homomorphism ∂ of the homotopy sequence of the fibering $V_{2 m+1,2} \rightarrow S^{2 m}$, i.e., the following diagram commutes:

Then the following proposition is established.
Proposition 8.2. There exists a map $Q_{2 k}(\rho): \Omega Q_{2 k}^{2 m} \rightarrow Q_{2 k}^{2 m-1}$ such that the following are satisfied:
(i) The following diagram is homotopy commutative:

where the horizontal lines are sequences of fiberings giving the exact sequence (8.2).
(ii) The following diagram is commutative:

$$
\begin{array}{ccc}
\pi_{i+1}\left(Q_{2 k}^{2 m}\right) & \xrightarrow{\Omega_{0}} \pi_{i}\left(\Omega Q_{2 k}^{2 m}\right) \xrightarrow{Q_{2 k}(\rho)_{*} *} \pi_{i}\left(Q_{2 k}^{2 m-1}\right) \\
\downarrow{ }_{2 *} & \downarrow(\Omega j)_{*} & \downarrow^{j *} \\
\pi_{i+1}\left(Q_{2 k+2 l}^{2 m}\right) \xrightarrow{\Omega} \pi_{i}\left(\Omega Q_{2 k+2 l}^{2 m}\right) \xrightarrow{\Omega_{2 k+2 l}(\rho)_{*}} \pi_{i}\left(Q_{2 k+2 l}^{2 m-1}\right) .
\end{array}
$$

(iii) Let $\sigma: \pi_{i}\left(Q_{2 k}^{2 n-1}\right) \rightarrow \pi_{i+1}\left(Q_{2 k}^{2 n}\right)$ be the homomorphism induced by the inclusion $Q_{2 k}^{2 n-1} \rightarrow \Omega Q_{2 k}^{2 n}$. Then

$$
Q_{2 k}(\rho)_{*} \Omega_{0}(\sigma \alpha)=2 \alpha \quad \text { for } \alpha \in \pi_{i}\left(Q_{2 k}^{2 n-1}\right) \cap \operatorname{Im} H^{(2 k)}
$$

Proof. Using the map $S^{2} V_{2 n+1,2} \rightarrow V_{2 n+3,2}$ of Proposition 2.1 of [3], we have a map $f: V_{2 m+1,2} \rightarrow \Omega^{2 k} V_{2 m+2 k+1,2}$ and a homotopy commutative diagram of fiberings:

where $i_{1}: S^{l} \rightarrow \Omega^{n} S^{n+l}$ denotes the inclusion. By this diagram, we have a homotopy commutative diagram:

Then $\Omega^{2 k} \rho$ defines

$$
Q_{2 k}(\rho): \Omega Q_{2 k}^{2 m}=\Omega\left(\Omega^{2 k+1} S^{2 m+2 k}, \Omega S^{2 m}\right) \rightarrow \Omega\left(\Omega^{2 k} S^{2 m+2 k-1}, S^{2 m-1}\right)=Q_{2 k}^{2 m-1}
$$

Then we see easily that this map $Q_{2 k}(\rho)$ satisfies (i) and (ii). Since the characteristic class of the sphere bundle $V_{2 m+1,2}$ is $2 \iota_{2 m-1} \epsilon \pi_{2 m-1}\left(S^{2 m-1}\right) \approx Z$,

$$
\rho_{*} \Omega_{0} S \alpha=2 \alpha \quad \text { for any } \alpha \in \pi_{i}\left(S^{2 m-1}\right)
$$

Then (iii) follows from this and (i).
Q.E.D.

Now we shall give the proof of Proposition 7.6 of $\S 7$.
Proof of Proposition 7.6. Set $r=\left(p^{2}+p-1\right) q-2$. Theorem 15.2 of [7: III] states the following
(8.7) There exists an element $\varepsilon=\varepsilon_{p-1}(2 p+3) \epsilon_{p} \pi_{2 p+3+r}\left(S^{2 p+3}\right)$ of order p such that $S^{\infty} \varepsilon=\varepsilon_{p-1}$ and $H^{(2)} \varepsilon=a_{1} \bar{Q}^{p+1}\left(\beta_{p-1}\right), a_{1} \neq 0 \bmod p$.

Since the suspension $S:{ }_{p} \pi_{2 p+2+r}\left(S^{5}\right) \rightarrow_{p} \pi_{2 p+3+r}\left(S^{6}\right)$ is monomorphic, there is an element $\mu \epsilon_{p} \pi_{2 p+2+r}\left(S^{5}\right)$ such that $S \mu=S^{3} A \circ \varepsilon$ and $S^{\infty} \mu=\alpha_{1} \varepsilon_{p-1}$, where $A \epsilon_{p} \pi_{2 p}\left(S^{3}\right)$ is an element such that $S^{\infty} A=\alpha_{1}$.

By (8.5) and (8.6) (i), $j_{*} H^{(2)} \mu=Q_{4}(A) H^{(4)}(S \varepsilon)$, where $j: Q_{2}^{3} \rightarrow Q_{4}^{3}$. By Proposition 8.2 (iii),

$$
2 j_{*} H^{(2)} \mu=Q_{4}(\rho)_{*} \Omega_{0} \sigma\left(Q_{4}(A) H^{(4)}(S \varepsilon)\right)
$$

Since $\sigma\left(Q_{4}(A) H^{(4)}(S \varepsilon)\right)=Q_{4}(S A) H^{(4)}\left(S^{2} \varepsilon\right)$, it follows from (8.6) that $\sigma\left(Q_{4}(A) H^{(4)}(S \varepsilon)\right)=j_{*} Q_{2}(S A) H^{(2)} \varepsilon$. Thus, from Proposition 8.2 (ii),

$$
2 j_{*} H^{(2)} \mu=j_{*} Q_{2}(\rho)_{*}\left(\Omega Q_{2}(S A)\right)_{*} \Omega_{0} H^{(2)}(\varepsilon)
$$

Since ${ }_{p} \pi_{2 p+r+2}\left(Q_{2}^{5}\right)$ is generated by $Q^{3}\left(\alpha_{p^{2}+p-3}\right)$ and $p_{*} Q^{3}\left(\alpha_{p^{2}+p-3}\right)=0$, the map j_{*} is monomorphic by (3.3), (3.4) and (5.2) of [7:I]. Thus we obtain the following

$$
\begin{equation*}
2 H^{(2)} \mu=Q_{2}(\rho)_{*}\left(\Omega Q_{2}(S A)\right)_{*} \Omega_{0} H^{(2)} \varepsilon \tag{8.8}
\end{equation*}
$$

Now let $M^{n}=S^{n} \cup e^{n+1}$ be the Moore space of type $\left(Z_{p}, n\right)$, i.e., the mapping cone of a map $S^{n} \rightarrow S^{n}$ of degree p. Then we have a cofibering:

$$
S^{n} \xrightarrow{i} M^{n} \xrightarrow{\pi} S^{n+1} .
$$

Also let $\mathscr{A}_{t}(\boldsymbol{M})=\underset{n}{\lim }\left[M^{n+t}, M^{n}\right]$. N. Yamamoto [10] has proved that there
exist uniquely the elements $\alpha \in \mathscr{A}_{q}(\boldsymbol{M})$ and $\beta_{(s)} \in \mathscr{A}_{(s p+s-1) q-1}(\boldsymbol{M})(1 \leqq s<p)$ such that $\pi \alpha i=\alpha_{1}, \pi \beta_{(s)} i=\beta_{s}, \alpha \beta_{(s)}=\beta_{(s)} \alpha=0$.

By the definition of $\bar{Q}^{m}()$, Lemma 2.5 of [7:I] and (8.7), we have

$$
H^{(2)} \varepsilon=a_{2} G_{*}\left(\beta_{(p-1)} i\right), \quad a_{2} \neq 0 \bmod p,
$$

where $G: M^{2 m p-h-3} \rightarrow \Omega^{h} Q_{2}^{2 m-1}$ is the map of Lemma 2.5 of [7: I].
The map $Q_{2}(\rho)\left(\Omega Q_{2}(S A)\right)$ coincides with the map $Q_{2}\left(\rho_{1}\right)$ of [3: (3.8)] up to a multiple by non-zero element of Z_{p}, by Definition 2.2 of [3] and the definition of $Q_{2}\left(\rho_{n}\right)$ of [3: pp. 171-172]. Therefore by (3.8) and (4.22) of [3],

$$
\begin{align*}
& Q_{2}(\rho)_{*}\left(\Omega Q_{2}(S A)\right)_{*} \Omega_{0} H^{(2)} \varepsilon=a_{3} G_{*}\left(\lambda \beta_{(p-1)} i\right) \text { for some } a_{3} \neq 0 \bmod p, \tag{8.9}\\
& \lambda=\beta_{(1)}+\gamma \alpha \quad \text { for some } \gamma \in \mathscr{A}_{(p-1) q-1}(\boldsymbol{M}) .
\end{align*}
$$

By Lemma 4.2 of [10], we have

$$
\pi \lambda \beta_{(p-1)} i=\pi \beta_{(1)} \beta_{(p-1)} i=\left\{\beta_{1}, p \iota, \beta_{p-1}\right\} .
$$

By (15.6) of [7: III], $\left\{\beta_{1}, p \iota, \beta_{p-1}\right\}=a_{4} \alpha_{1} \varepsilon_{p-3} \quad$ for some $a_{4} \neq 0 \bmod p$. Using Lemma 2.5 of [7: I], we get $G_{*}\left(\lambda \beta_{(p-1)} i\right)=a_{5} \bar{Q}^{2}\left(\alpha_{1} \varepsilon_{p-3}\right)$ for some $a_{5} \neq 0 \bmod p$. Thus, from (8.8) and (8.9), we obtain

$$
H^{(2)} \mu=x \bar{Q}^{2}\left(\alpha_{1} \varepsilon_{p-3}\right) \quad \text { for some } x \neq 0 \bmod p .
$$

By use of Lemma 8.1, it follows that $\alpha_{1} \varepsilon_{p-1}=S^{\infty} \mu \neq 0$.
Q.E.D.

Remark. For $p=3$, the above proof is not valid, since the element $\varepsilon_{p-1}(2 p+3)$ of (8.7) does not exist. In this case, the element $\varepsilon_{2}(11)$ exists. This satisfies $H^{(2)} \varepsilon_{2}(11)= \pm Q^{5}\left(\alpha_{1} \beta_{1}^{2}\right)$ and $S^{\infty} \varepsilon_{2}(11)=\varepsilon_{2}$ (see [7: III, Proposition 15.6]).

References

[1] Gershenson, H. H., Relationships between the Adams spectral sequence and Toda's calculations of the stable homotopy groups of spheres, Math. Zeit., 81 (1963), 223-259.
[2] Mimura, M., On the generalized Hopf homomorphism and the higher composition I, J. of Math. Kyoto Univ., 4 (1964), 171-190.
[3] Oka, S., On the homotopy groups of sphere bundles over spheres, J. of Sci. Hiroshima Univ., Ser A-I, 33 (1969), 161-195.
[4] , Some exact sequences of modules over the Steenrod algebra, Hiroshima Math. J. 1 (1971), 109-121.
[5] , The stable homotopy groups of spheres II, to appear in this journal 2.
[6] Toda, H., p-primary components of homotopy groups, I. Exact sequences in Steenrod algebra; II. Mod p Hopf invariant; III. Stable groups of the sphere; IV. Compositions and toric constructions, Mem. Coll. Sci., Univ. Kyoto, Ser. A, 31 (1958), 129-142; 143-160; 191-210; 32 (1959), 288-332.
[7] \quad, On iterated suspensions I, II, III, J. of Math. Kyoto Univ., 5 (1965), 87-142; 5 (1966), 209-250; 8 (1968), 101-130.
[8] —, An important relation in homotopy groups of spheres, Proc. Jap. Acad. Sci., 43 (1967),

839-842.
[9] —, Extended power of complexes and applications to homotopy theory, ibid. 44 (1968), 198-203.
[10] Yamamoto, N., Algebra of stable homotopy of Moore space, J. Math. Osaka City Univ., 14 (1963), 45-67.

Department of Mathematics, Faculty of Science, Hiroshima University

[^0]: 1) In this paper, the cohomology $H^{*}()$ will be understood to have Z_{p} for coefficients.
[^1]: 1) In the case $p=3$ of (4.13) of [4], we can omit the term $\left(\mathscr{P}^{4} \Delta\right)^{*}$, since $\mathscr{P}^{4} \Delta=\mathscr{P}^{1} \Delta \mathscr{P}^{3} \in A^{*} \mathscr{P}^{3}$.
 2) For degree $\geqq\left(p^{2}-1\right) q$, this relation is understood up to modulo $A^{* \mathscr{P}^{p^{2}-1}}$, and so there is a new relation in $A^{*} g_{0}$ of degree $\left(2 p^{2}+p\right) q-2$. This gives no effect for the calculation of $H^{*}\left(\boldsymbol{K}_{k}\right)$ under degree $<\left(2 p^{2}+p\right) q-3$.
[^2]: 1) If we use a result of $\S 6: \phi\left(\beta_{1} \beta_{p-1}\right)=b_{p-1}^{1}$, then $x \neq 0 \bmod p$ implies $\left\{\beta_{1} \beta_{p-1}, p \ell, \alpha_{1}\right\} \nRightarrow 0$ by Theorem 3.6. But $0=\beta_{p-1}\left\{\beta_{1}, p^{\iota}, \alpha_{1}\right\} \subset\left\{\beta_{1} \beta_{p-1}, p \iota, \alpha_{1}\right\}$, hence $x \equiv 0 \bmod p$.
[^3]: 1) In this case, the proof of $i^{*} w=0$ will be given in [5: Theorem 13.1]. Also in [5: Theorems 10.1 and 13.1], we shall discuss the relations $\mathrm{B} 4(b-1),(b-2)$ and ($e-3$).
[^4]: 1) The classification of the unstable elements (S^{∞}-kernel) of ${ }_{p} \pi_{2 n+1+k}\left(S^{2 n+1}\right)$ is due to H. Toda ([7: I, p. 88]).
[^5]: 1) The classification of the unstable elements (S^{∞}-kernel) of ${ }_{p} \pi_{2 n+1+k}\left(S^{2 n+1}\right)$ is due to H. Toda ([7: I, p. 88]).
