Corrections to "On the Vector Bundles m^{\$n} over Real Projective Spaces"

Toshio Yoshida

(Received February 10, 1972)

Here, we shall give corrections to \$4 of [3].

p. 11, line 23 and footnote: " $H^{n-1}(X; Z_2)$ " should be " $H^{n-1}(X; Z)$ ".

p. 12, line 29 and *p.* 13, line 1: " $H^{k-2}(RP^k; Z_2)$ " should be " $H^{k-2}(RP^k; Z)$ ".

P. 13, line 12-line 32: The proof of Theorem 4.4 should be replaced as follows:

PROOF. Case (a). By 2.2, we can write $n\xi_k = (n-k-1) \bigoplus \eta_1$, where η_1 is the (k+1)-dimensional vector bundle over RP^k . We consider the obstructions for η_1 to have three linearly independent cross-sections.

The primary obstruction is $w_{k-1}(\eta_1)$, which is zero sinbe $\binom{n}{k-1}$ is even. The secondary one belongs to $H^k(RP^k; \pi_{k-1}(V_{k+1,3}))$, and $\pi_{k-1}(V_{k+1,3})=0$ if $k\equiv 1 \pmod{4}$ by $\lceil 1 \rceil$.

Therefore, we have span $\eta_1 \geq 3$ and so span $(n\xi_k) \geq n-k+2$, which is the first result. Assume $k \geq 8$, and write $n\xi_k = (n-k+2) \oplus \eta_2$, where η_2 is the (k-2)-dimensional vector bundle over RP^k . We consider the obstructions for η_2 to have a non-zero cross-section.

The primary obstruction is the Euler class $X(\eta_2)$ of η_2 , which is zero because $H^{k-2}(RP^k; Z)=0$ for odd k. So, η_2 has a non-zero cross-section over the (k-2)-skeleton of RP^k .

The sacondary one is a coset of

$$(w_2 \otimes 1 + 1 \otimes Sq^2) \cdot H^{k-3}(RP^k; Z)$$

by 4.1 with the above corrections, where the dot operates by η_2 . This group is equal to $H^{k-1}(RP^k; Z_2)$ since $n \equiv 0, k \equiv 1 \pmod{4}$. So, η_2 has a non-zero cross-section over the (k-1)-skeleton of RP^k .

Finally, the third one is a coset of

$$(w_2 \otimes 1 + 1 \otimes Sq^2) \cdot H^{k-2}(RP^k; Z_2)$$

by 4.2, where the dot operates by η_2 , and this group is equal to $H^k(RP^k; Z_2)$ since $n \equiv 0, k \equiv 1 \pmod{4}$.

Therefore, η_2 has a non-zero cross-section over RP^k and the proof is completed.

Case (b). By 2.2, we can write $n\xi_k = (n-k) \oplus \eta$, where η is the k-

Toshio Yoshida

dimensional vector bundle over RP^k . Then, we have

$$Sq^{1}H^{k-1}(RP^{k}; Z_{2})=0, \quad w_{k-1}(\eta)=0, \quad w_{k-3}(\eta)=0.$$

The first equality holds since k is odd, and the second since $\binom{n}{k-1}$ is even. For the third, it is easy to see that $w_{k-3}(\eta) = w_{k-3}(n\xi_k) = \binom{n}{k-3}x^{k-3}$, where x is the generator of $H^1(RP^k; Z_2) \cong Z_2$. Since $n \equiv 2, k \equiv 3 \pmod{4}$ and $\binom{n}{k-1}$ is even by the assumptions, we see that $\binom{n}{k-3}$ is even and so $w_{k-3}(\eta) = 0$.

Therefore, we have $span \eta \ge 2$ by [2. Theorem 6.4] and the above three equalities. So $span (n\xi_k) \ge n-k+2$.

The proof of $span(n\xi_k) \ge n-k+3$ for $k \ge 8$ follows by the same methods as (a). Thus the proof is completed. q.e.d.

References

- [1] G.F. Paechter: The groups $\pi_r(V_{n,m})$ (I), Quart. J. Math., Oxford Ser. (2), 7 (1956), 249-268.
- [2] E. Thomas: Postnikov invariants and higher order cohomology operations, Ann. of Math., 85 (1967), 184-217.
- [3] T. Yoshida: On the Vector Bundles $m\xi_n$ over Real Projective Spaces, J. Sci. Hiroshima Univ. Ser. A-I, 32 (1968), 5-16.

Department of Mathematics, Faculty of General Education, Hiroshima University