A Study of $\mathscr{D}_{L^{2}-V a l u e d ~ D i s t r i b u t i o n s ~ o n ~ a ~ S e m i-A x i s ~}^{\text {- }}$ in connection with the Cauchy Problem for a Pseudo-Differential System

Mitsuyuki Itano and Kiyoshi Yoshida
(Received September 20, 1972)

In a previous paper [10] one of the present authors has investigated the fine Cauchy problem for a system of linear partial differential operators and obtained the following result: Let $\vec{P}\left(t, x, D_{x}\right)$ be an $N \times N$ matrix of linear partial differential operators with coefficients $\epsilon C^{\infty}\left(R_{n+1}\right)$. The fine Cauchy problem consists in finding a solution $\vec{u}=\left(u_{1}, u_{2}, \cdots, u_{N}\right), u_{j} \in \mathscr{D}^{\prime}\left(R_{n+1}^{+}\right)$ to the equation

$$
D_{t} \vec{u}+\vec{P}\left(t, x, D_{x}\right) \vec{u}=\vec{f} \quad \text { in } R_{n+1}^{+}
$$

with initial condition

$$
\lim _{t \downarrow 0} \vec{u}(t, x)=\vec{\alpha},
$$

when $\vec{\alpha}=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{N}\right), \alpha_{j} \in \mathscr{D}^{\prime}\left(R_{n}\right)$ and $\vec{f}=\left(f_{1}, f_{2}, \cdots, f_{N}\right), f_{j} \in \mathscr{D}^{\prime}\left(R_{n+1}^{+}\right)$are arbitrarily given, where $\lim _{t \downarrow 0} \vec{u}$ denotes the distributional boundary value of \vec{u}. If there exists a solution \vec{u} for the problem, then \vec{f} must have the canonical extension \vec{f}_{\sim} over $t=0$ and $\vec{v}=\vec{u} \sim$ satisfies the equation

$$
D_{t} \vec{v}+\vec{P}\left(t, x, D_{x}\right) \vec{v}=\vec{f}-i \delta \otimes \vec{\alpha} .
$$

Conversely, if $\vec{v}=\left(v_{1}, v_{2}, \cdots, v_{N}\right), v_{j} \in \mathscr{D}_{+}^{\prime}\left(R_{n+1}\right)$ is a solution of this equation, then the restriction $\vec{u}=\vec{v} \mid R_{n+1}^{+}$is a solution for our original Cauchy problem and $\vec{u}_{\sim}=\vec{v}$. If we replace $\vec{P}\left(t, x, D_{x}\right)$ by $\vec{A}(t)$, an $N \times N$ matrix of pseudo-differential operators [cf. p. 384 for definition], we shall have a right reason to consider the spaces $\mathscr{D}^{\prime}\left(R_{t}^{+}\right)\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ and $\mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ instead of $\mathscr{D}^{\prime}\left(R_{n+1}^{+}\right)$and $\mathscr{D}^{\prime}\left(R_{n+1}\right)$ respectively. As a result, it will be natural to introduce the boundary value and the canonical extension in a suitable sense.

The present paper is also designed to be the introductory part of our subsequent paper [12] which will appear in this journal.

In Section 1 we discuss the space $\mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ and the spaces related to it. These spaces are all reflexive, ultrabornological and Souslin. Section 2 is devoted to discussions concerning the $\mathscr{D}_{L^{2}}^{\prime}$-boundary value and the $\mathscr{D}_{L^{2}}^{\prime}$-canonical extension. Various alternatives of these notions will also be considered. In Section 3 we shall introduce the operator $\vec{A}(t)$ referred to above and in-
vestigate the properties thereof. In Section 4 some pseudo-commutativity relation for $\vec{A}(t)$ will be discussed. In particular, when applied to a singular integral operator in the sense of A.P. Caldelón, our result will refine Theorem 4 in [3]. The final section is concerned with the fine Cauchy problem for a pseudo-differential system.

1. The space $\mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$

Let $R_{n+1}=R \times R_{n}$ be an ($n+1$)-dimensional Euclidean space with generic point $(t, x), x=\left(x_{1}, \cdots, x_{n}\right)$ and $R_{n+1}^{+}=\left\{(t, x) \in R_{n+1}: t>0\right\}$. As usual, we write $|x|=\left(\sum_{j=1}^{n} x_{j}^{2}\right)^{1 / 2}$ and $<x, \xi>=\sum_{j=1}^{n} x_{i} \xi_{i}$, where $\xi=\left(\xi_{1}, \ldots, \xi_{n}\right) \in \Xi_{n}$, the dual Euclidean space of R_{n}. If p is an n-tuple (p_{1}, \cdots, p_{n}) of non-negative integers, the sum $\sum_{j=1}^{n} p_{j}$ will be denoted by $|p|$ and with $D_{x}=\left(D_{1}, \ldots, D_{n}\right), D_{j}=$ $\frac{1}{i} \frac{\partial}{\partial x_{j}}$ and $D_{t}=\frac{1}{i} \frac{\partial}{\partial t}$, we put $D_{x}^{p}=D_{1}^{p_{1}} \ldots D_{n}^{\phi_{n}}$.

Let L be a locally convex Hausdorff space and L^{\prime} be its dual. We shall denote by $L_{\sigma}^{\prime}, L_{b}^{\prime}$ and L_{c}^{\prime}, respectively, the weak dual, the strong dual and the dual space L^{\prime} with the topology of uniform convergence on absolutely convex, compact subsets of L. For a locally convex Hausdorff space M, following L. Schwartz [16, p.18], the ε-product $L \varepsilon M$ is defined as the linear space of bilinear forms on $L_{c}^{\prime} \times M_{c}^{\prime}$ hypocontinuous with respect to the equicontinuous subsets of L^{\prime}, M^{\prime} and provided with the ε-topology, that is, the topology of uniform convergence on the products of an equicontinuous subset of L^{\prime} and an equicontinuous subset of M^{\prime}. If we let $\mathscr{L}_{\varepsilon}\left(L_{c}^{\prime} ; M\right)$ be the space of continuous linear maps of L_{c}^{\prime} into M with the topology of uniform convergence on the equicontinuous subsets of L^{\prime}, it is shown [16, p.34] that there exist the canonical isomorphisms between $L \varepsilon M, \mathscr{L}_{\varepsilon}\left(L_{c}^{\prime} ; M\right)$ and $\mathscr{L}_{\varepsilon}\left(M_{c}^{\prime} ; L\right)$. Hence we can identify $L \varepsilon M$ with $\mathscr{L}_{\varepsilon}\left(L_{c}^{\prime} ; M\right)$ or with $\mathscr{L}_{\varepsilon}\left(M_{c}^{\prime} ; L\right)$ in accordance with these canonical isomorphisms.

As to the tensor product $L \otimes M$, every $\sum_{j=1}^{n} x_{j} \otimes y_{j} \in L \otimes M$ defines a bilinear form on $L^{\prime} \times M^{\prime} ;\left(x^{\prime}, y^{\prime}\right) \rightarrow \sum_{j=1}^{m}<x^{\prime}, x_{j}><y^{\prime}, y_{j}>$, which is certainly an element of $L \varepsilon M$. In view of the fact that the linear map of $L \otimes M$ into $L \varepsilon M$ thus defined is injective, $L \otimes M$ is regarded as a linear subspace of $L \varepsilon M$. Equipped with the ε-topology, the space $L \otimes M$ will be denoted by $L \bigotimes_{\varepsilon} M[16$, p. 47]. The π-topology (resp. the c-topology) on $L \otimes M$ is defined as the finest locally convex topology on this vector space for which the canonical bilinear $\operatorname{map}(x, y) \rightarrow x \otimes y$ of $L \times M$ into $L \otimes M$ is continuous (resp. separately continuous). $L \otimes_{\pi} M$ (resp. $L \otimes_{\iota} M$) will stand for the space $L \otimes M$ with the π-topology (resp. the c-topology). The notations $L \widehat{\bigotimes}_{\varepsilon} M, L \widehat{\bigotimes}_{\pi} M$ and $L \widehat{\bigotimes}_{1} M$ are used to represent the completions of $L \otimes M$ with topologies ε, π and c
respectively. In what follows we often write $L(M)$ instead of $L \varepsilon M$.
In our later discussions we need the following
Lemma 1 (cf. [17, p.103]). Let L be a nuclear Fréchet space and M a reflexive Fréchet space, then $L \varepsilon M$ is a reflexive Fréchet space and furthermore we have $(L \varepsilon M)_{b}^{\prime}=L_{b}^{\prime} \varepsilon M_{b}^{\prime}$.

Now let \mathscr{H} be a locally convex Hausdorff space contained in $\mathscr{D}^{\prime}\left(R_{n+1}\right)$. Following L. Schwartz [16, p.7] we shall say that \mathscr{H} is a space of distributions if the identical map of \mathscr{H} into $\mathscr{D}^{\prime}\left(R_{n+1}\right)$ is continuous, and that \mathscr{H} is normal if (i) it is a space of distributions, (ii) \mathscr{H} contains $\mathscr{D}\left(R_{n+1}\right)$ as a dense subset and (iii) the identical map of $\mathscr{D}\left(R_{n+1}\right)$ into \mathscr{H} is continuous. It is shown in [16, p. 10] that if \mathscr{H} is a normal space of distributions, then so is \mathscr{H}_{c}^{\prime}.

As is well known, \mathscr{D}_{t}^{\prime} and $\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}$ are complete normal spaces of distributions enjoying the approximation properties by truncation and regularization. It follows from Proposition 3 and Corollary 1 [16, p. 9, p. 47] that $\mathscr{D}_{t}^{\prime} \widehat{\otimes}_{\varepsilon}\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}$ $=\mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right.$. Since \mathscr{D}_{t}^{\prime} is nuclear, we have $\mathscr{D}_{t}^{\prime} \widehat{\otimes}_{\varepsilon}\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}=\mathscr{D}_{t}^{\prime} \widehat{\otimes}_{\pi}\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}$ and therefore $\mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)=\mathscr{D}_{t}^{\prime} \widehat{\otimes}_{\pi}\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}$.

Proposition 1. $\quad \mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ is a normal space of distributions.
Proof. Since the identical map $\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x} \rightarrow \mathscr{D}_{x}^{\prime}$ is a continuous injection, it follows from Proposition 1 in [16, p. 20] that $\mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right) \subset \mathscr{D}_{t}^{\prime}\left(\mathscr{D}_{x}^{\prime}\right)$. On the other hand, owing to the kernel theorem [16, p.93], $\mathscr{D}_{t, x}^{\prime}$ is identified with $\mathscr{D}_{t}^{\prime}\left(\mathscr{D}_{x}^{\prime}\right)$ algebraically and topologically. Consequentely $\mathscr{D}_{t}^{\prime}\left(\mathscr{D}_{L^{2}}^{\prime}\right) \subset \mathscr{D}_{t, x}^{\prime}$. If we consider $\mathscr{D}_{t, x}$ as a subspace of $\mathscr{D}_{t, x}^{\prime}$ it is clear that $\mathscr{D}_{t, x}$ is a dense subset of $\mathscr{D}_{t}^{\prime}\left(\mathscr{D}_{L^{2}}^{\prime}\right)$, which completes the proof.

Remark. For any element $u \in \mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$, there exists a sequence $\left\{\phi_{j}\right\}$, $\phi_{j} \in \mathscr{D}\left(R_{n+1}\right)$ such that ϕ_{j} converges in $\mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ to u as $j \rightarrow \infty$. More precisely, if we let $\left\{\rho_{j}\right\}$ and $\left\{\alpha_{j}\right\}$ be respectively any sequences of reguralizations and multiplications in \mathscr{D}_{t}^{\prime}, and let $\left\{\rho_{j}^{\prime}\right\}$ and $\left\{\alpha_{j}^{\prime}\right\}$ be corresponding sequences in $\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}$, we can then apply the Banach-Steinhaus theorem to conclude that the sequence $\alpha_{j} \alpha_{j}^{\prime}\left(u *\left(\rho_{j} \rho_{j}^{\prime}\right)\right) \in \mathscr{D}\left(R_{n+1}\right)$ converges in $\mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ to u.

Let us denote by $\overline{\mathscr{D}}_{t}\left(\left(\mathscr{D}_{L^{2}}\right)_{x}\right)$ the strict inductive limit of the Fréchet spaces $\mathscr{D}_{K_{j}}\left(\left(\mathscr{D}_{L^{2}}\right)_{x}\right)\left(=\mathscr{D}_{K_{j}} \widehat{\otimes}_{\pi}\left(\mathscr{D}_{L^{2}}\right)_{x}\right), j=1,2, \ldots$, where we have designated by $\mathscr{D}_{K_{j}}$ the space of infinitely differentiable functions in R_{t} which vanish outside $K_{j}=$ $[-j, j]$. We see from Lemma 1 that $\mathscr{D}_{K_{j}}\left(\left(\mathscr{D}_{L^{2}}\right)_{x}\right)$ is a reflexive Fréchet space. Consequently $\overline{\mathscr{D}}_{t}\left(\left(\mathscr{D}_{L^{2}}\right)_{x}\right)$ is reflexive. $\overline{\mathscr{D}}_{t}\left(\left(\mathscr{D}_{L^{2}}\right)_{x}\right)$ consists of all infinitely differentiable functions f in R_{n+1} such that supp $f \subset[a, b] \times R_{n}$ for some bounded interval $[a, b]$ and $\max _{t}\left(\int\left|D_{t}^{k} D_{x}^{p} f(t, x)\right|^{2} d x\right)^{\frac{1}{2}}<\infty$ for any $k, p=\left(p_{1}, \cdots, p_{n}\right)$. It is to be noted that $\overline{\mathscr{D}}_{t}\left(\left(\mathscr{D}_{L^{2}}\right)_{x}\right)=\mathscr{D}_{t} \widehat{\otimes}_{i}\left(\mathscr{D}_{L^{2}}\right)_{x}$. In fact, $\mathscr{D}_{t} \otimes\left(\mathscr{D}_{L^{2}}\right)_{x}$ is clearly a dense subset of $\overline{\mathscr{D}}_{t}\left(\left(\mathscr{D}_{L^{2}}\right)_{x}\right)$. Let G be any locally convex Hausdorff space.

To any separately continuous bilinear map u of $\mathscr{D}_{t} \times\left(\mathscr{D}_{L^{2}}\right)_{x}$ into G, there is uniquely associated a linear map v of $\mathscr{D}_{t} \otimes\left(\mathscr{D}_{L^{2}}\right)_{x}$ into G such that $u=v \circ \phi, \phi$ being a canonical map of $\mathscr{D}_{t} \times\left(\mathscr{D}_{L^{2}}\right)_{x}$ into $\mathscr{D}_{t} \otimes\left(\mathscr{D}_{L^{2}}\right)_{x}$. Observing that $\mathscr{D}_{K_{j}}$ and $\left(\mathscr{D}_{L^{2}}\right)_{x}$ are Fréchet spaces, we see that the restriction of v to $\mathscr{D}_{K_{j}} \otimes\left(\mathscr{D}_{L^{2}}\right)_{x}$ becomes continuous under the π-topology and admits a unique continuous extension taking $\mathscr{D}_{K_{j}} \widehat{\otimes}_{\pi}\left(\mathscr{D}_{L^{2}}\right)_{x}=\mathscr{D}_{K_{j}}\left(\left(\mathscr{D}_{L^{2}}\right)_{x}\right)$ into \hat{G}, the completion of G, which shows that v admits a unique continuous extension which takes $\overline{\mathscr{D}}_{t}\left(\left(\mathscr{D}_{L^{2}}\right)_{x}\right)$ into \widehat{G}. Thus $\mathscr{D}_{t} \otimes_{i}\left(\mathscr{D}_{L^{2}}\right)_{x}$ is a dense subspace of $\overline{\mathscr{D}}_{t}\left(\left(\mathscr{D}_{L^{2}}\right)_{x}\right)$, whereupon $\overline{\mathscr{D}}_{t}\left(\left(\mathscr{D}_{L^{2}}\right)_{x}\right)=\mathscr{D}_{t} \widehat{\otimes}_{t}\left(\mathscr{D}_{L^{2}}\right)_{x} . \quad$ It is shown [17, p. 104] that $\mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ is the strong dual of $\mathscr{D}_{t}\left(\left(\mathscr{D}_{L^{2}}\right)_{x}\right)$. With these in mind, we can state the following

Proposition 2. $\mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ is a reflexive space with strong dual $\overline{\mathscr{D}}_{t}\left(\left(\mathscr{D}_{L^{2}}\right)_{x}\right)$ $=\mathscr{D}_{t} \widehat{\otimes}_{l}\left(\mathscr{D}_{L^{2}}\right)_{x}$.

A locally convex Hausdorff space E is said to be ultrabornological or of type (β) if E is an inductive limit of Banach spaces $B_{\imath}, \iota \in I$. It follows from this definition that an ultrabornological space is barreled and bornological, and that a quasicomplete bornological Hausdorff space is ultrabornological.
$\mathscr{L}_{c}(E ; F)$ is a Souslin space, that is, a continuous image of a Polish space, if E is a strict inductive limit of a sequence of separable Fréchet spaces and if F is a countable union of images, under continuous linear maps, of separable Fréchet spaces. The result was stated without proof by L. Schwartz [19, p.602]. We shall make use of this fact which can be verified without much labor and show the following

Proposition 3. $\mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ is an ultrabornological Souslin space.
Proof. The strong dual of an ($L F$)-space in the strict sense is ultrabornological if the latter is reflexive [6, p.111]. It follows that $\mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ is ultrabornological.

That the space $\mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ is a Souslin space is a consequence of Schwartz's theorem referred to just before, since we can take $E=\mathscr{D}_{t}$ and $F=\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}=\bigcup_{m=0}^{\infty}$ $\mathscr{H}_{(-m)}$. Thus the proof is complete.

As a generalization of the preceding proposition we shall show the following Theorem 1, where F is a closed subset of R_{t} and \mathscr{D}_{F}^{\prime} denotes the subspace of \mathscr{D}_{t}^{\prime} which consists of all the one-dimensional distributions with support contained in $F . \quad \mathscr{D}_{F}^{\prime}$ is provided with the induced topology, so it is nuclear.

Theorem 1. $\mathscr{D}_{F}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ is a reflexive, ultrabornological Souslin space.
Proof. $\mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ being reflexive, we see that $\mathscr{D}_{F}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ is semireflexive as a closed subspace of $\mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$. Consequently if we can show that $\mathscr{D}_{F}^{\prime}\left(\left({ }_{L}{ }^{2}\right)_{x}\right)$ is bornological, then we can conclude that it is reflexive and ultra-
bornological. That $\mathscr{D}_{F}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ is a Souslin space follows from the fact that $\mathscr{D}_{F}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ is a closed subspace of $\mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ which is known by Proposition 3 to be a Souslin space. Thus to complete the proof of our theorem it remains to show that $\mathscr{D}_{F}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ is bornological. To this end, we shall first consider a special case where F is a compact subset K of R_{t}. \mathscr{D}_{K}^{\prime} is the strong dual of a nuclear Fréchet space $\mathscr{E}(K)$ which is obtained by restriction to the set K of infinitely differentiable functions of t. It follows from Lemma 1 that $\mathscr{D}_{K}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ is the strong dual of a reflexive Fréchet space $\mathscr{E}(K) \widehat{\otimes}_{\pi}\left(\mathscr{D}_{L^{2}}\right)_{x}$, and it results that $\mathscr{D}_{F}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ is bornological. Now we shall turn to the general case by following the process due to K. Fujikata and K. Miyazaki [4, p. 23]. Let $\left\{\alpha_{j}\right\}$ be a partition of unity subordinate to the covering $C_{j}, j=1,2, \ldots$, where $C_{j}=\left\{t \in R_{t}: j-1-\frac{1}{3}<|t|<j+\frac{1}{3}\right\}$, Putting

$$
\begin{aligned}
F_{1} & =F \cap\left\{\bigcup_{j=1}^{\infty} \bar{C}_{2 j-1}\right\}, \quad F_{2}=F \cap\left\{\bigcup_{j=1}^{\infty} \bar{C}_{2 j}\right\}, \\
\alpha & =\sum_{j=1}^{\infty} \alpha_{2 j-1}, \quad \beta=\sum_{j=1}^{\infty} \alpha_{2 j}, \\
Q_{j}^{\prime} & =\left\{t \in R_{t}:|t|<2 j-1+\frac{1}{2}\right\}, \quad Q_{j}^{\prime \prime}=\left\{t \in R_{t}:|t|<2 j+\frac{1}{2}\right\},
\end{aligned}
$$

we obtain
(i) $F=F_{1} \cup F_{2}$,
(ii) $(\operatorname{supp} \alpha) \cap F_{1},(\operatorname{supp} \beta) \cap F \subset F_{2}$ and $\alpha+\beta=1$,
(iii) $Q_{j}^{\prime} \cap F_{1}, Q_{j}^{\prime \prime} \cap F_{2}$ are compact for each j.

Now we can write down: $\mathscr{D}_{F_{1}}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)=\prod_{j=1}^{\infty} \mathscr{D}_{\bar{C}_{2 j-1}}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ and $\mathscr{D}_{F_{2}}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)=$ $\prod_{j=1}^{\infty} \mathscr{D}_{\bar{C}_{2 j}}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$. Using the fact that the product space of a countable number $j=1$
of bornological spaces is bornological, we see that $\mathscr{D}_{F_{1}}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ and $\mathscr{D}_{F_{2}}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ are bornological. Consider the map $\theta: \mathscr{D}_{F_{1}}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right) \times \mathscr{D}_{F_{2}}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right) \ni\left(u_{1}, u_{2}\right) \rightarrow$ $u_{1}+u_{2} \in \mathscr{D}_{F}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$. Then θ is linear and continuous. For any given $u \in \mathscr{D}_{F}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$, if we put $u_{1}=\alpha u, u_{2}=\beta u$, then $u_{1} \in \mathscr{D}_{F_{1}}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right), u_{2} \in \mathscr{D}_{F_{2}}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ and $u_{1}+u_{2}=u$, that is, θ is onto. Furthermore if u converges in $\mathscr{D}_{F}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ to 0 , then u_{1}, u_{2} converges respectively in $\mathscr{D}_{F_{1}}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right), \mathscr{D}_{F_{2}}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ to 0 . Then we see that the map θ is epimorphic and therefore $\mathscr{D}_{F}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ is isomorphic to $\left(\mathscr{D}_{F_{1}}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right) \times \mathscr{D}_{F_{2}}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)\right) / \operatorname{Ker} \theta$. Consequently, $\mathscr{D}_{F}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ is bornological, which was to be proved.

If $F=[0, \infty)$, we shall use the notation $\left(\mathscr{D}_{t}^{\prime}\right)_{+}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ instead of $\mathscr{D}_{F}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$. Similarly for $\left.\left(\mathscr{D}_{t}^{\prime}\right)\right)_{-}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$. As an immediate consequence of Theorem 1 , we have

Corollary 1. $\left(\mathscr{D}_{t}^{\prime}\right)_{+}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ is a reflexive, ultrabornological Souslin space.
We note that the strong dual of $\left(\mathscr{D}_{t}^{\prime}\right)_{+}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ is $\mathscr{D}\left(\bar{R}_{t}^{+}\right) \widehat{\otimes}_{\iota}\left(\mathscr{D}_{L^{2}}\right)_{x}$. Here $\mathscr{D}\left(\bar{R}_{t}^{+}\right)$is the set of infinitely differentiable functions in \bar{R}_{t}^{+}which vanish outside a compact subset and it is a reflexive ($L F$)-space with the usual topology. We omit the proof since the method of proving Proposition 2 will be applied.

We shall denote by $\mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)\left(\bar{R}_{n+1}^{+}\right)$the space which is obtained by restriction to R_{n+1}^{+}of all the distributions $\epsilon \mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$. The space will be identified with the quotient space $\mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right) /\left(\mathscr{D}_{t}^{\prime}\right)_{-}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ equipped with the quotient topology. We shall also denote by $\mathscr{D}^{\circ}\left(\bar{R}_{t}^{+}\right)$the closed subspace of $\mathscr{D}\left(R_{t}\right)$ which consists of infinitely differentiable functions with support contained in $[0, \infty)$.

Finally we shall show
Proposition 4. $\mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)\left(\bar{R}_{n+1}^{+}\right)$is a reflexive, ultrabornological Souslin space and $\mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)\left(\bar{R}_{n+1}^{+}\right)$is isomorphic to $\mathscr{D}^{\prime}\left(\bar{R}_{t}^{+}\right)\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)=\left(\mathscr{D}\left(R_{t}^{+}\right) \widehat{\bigotimes}_{l}\left(\mathscr{D}_{L^{2}}\right)_{x}\right)_{b}^{\prime}$.

Proof. According to the reasoning just before Proposition 2, $\dot{\mathscr{D}}\left(\bar{R}_{t}^{+}\right) \widehat{\otimes}$, $\left(\mathscr{D}_{L^{2}}\right)_{x}$ is reflexive and an $(L F)$-space in the strict sense. Here we can infer that $\mathscr{D}^{\prime}\left(\bar{R}_{t}^{+}\right)\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ is the strong dual of $\mathscr{\mathscr { D }}\left(\bar{R}_{t}^{+}\right) \widehat{\otimes}_{\iota}\left(\mathscr{D}_{L^{2}}\right)_{x}$. It follows that $\mathscr{D}^{\prime}\left(\bar{R}_{t}^{+}\right)\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)=\left(\mathscr{\mathscr { D }}\left(\bar{R}_{t}^{+}\right) \widehat{\otimes}_{\iota}\left(\mathscr{D}_{\left.L^{2}\right)_{x}}\right)^{\prime}\right.$ is ultrabornological. Consider the identical $\operatorname{map} J: \mathscr{D}\left(\bar{R}_{t}^{+}\right) \widehat{\otimes}_{l}\left(\mathscr{D}_{L^{2}}\right)_{x} \rightarrow \mathscr{D}\left(R_{t}\right) \widehat{\otimes}_{l}\left(\mathscr{D}_{L^{2}}\right)_{x}$ which is a monomorphism. The dual map ${ }^{t} J: \dot{\mathscr{D}}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right) \rightarrow \mathscr{D}^{\prime}\left(\bar{R}_{t}^{+}\right)\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ is continuous and onto. Here $\mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ is a Souslin space and $\mathscr{D}^{\prime}\left(\bar{R}_{t}^{+}\right)\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ is ultrabornological. The open mapping theorem [19, p.604] then shows that ${ }^{t} J$ is an epimorphism, whereupon $\mathscr{D}^{\prime}\left(\bar{R}_{t}^{+}\right)\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ is isomorphic to the quotient space $\mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right) / \operatorname{Ker}^{t} J=\mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right) /$ $\left(\mathscr{D}_{t}^{\prime}\right)_{-}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)=\mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)\left(\bar{R}_{n+1}^{+}\right)$. Thus we can also see that $\mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)\left(R_{n+1}^{+}\right)$ is are reflexive, ultrabornological Souslin space. The proof is complete.

2. $\mathscr{D}_{L^{2}}^{\prime}$-boundary values and $\mathscr{D}_{L^{2}}^{\prime}$-canonical extensions

Given $\varphi \in \mathscr{D}\left(R_{t}^{+}\right)$, then $\varphi_{\lambda}, \lambda>0$, will be defined by letting $\varphi_{\lambda}(t)=\frac{1}{\lambda} \varphi\left(\frac{t}{\lambda}\right)$.
Lemma 2. Let E be a locally convex Hausdorff space and v a continuous linear map of $\mathscr{D}\left(R_{t}^{+}\right)$into E. If we assume that $v(\phi)=v\left(\phi_{\lambda}\right)$ for every nonnegative $\phi \in \mathscr{D}\left(R_{t}^{+}\right)$with $\int_{0}^{\infty} \phi(t) d t=1$, then there exists a unique $e_{0} \in E$ such that $v(\phi)=\left(\int_{0}^{\infty} \phi(t) d t\right) e_{0}$ for every $\phi \in \mathscr{D}\left(R_{t}^{+}\right)$.

Proof. It is clear that $v(\phi)=v\left(\phi_{\lambda}\right)$ holds for every $\phi \in \mathscr{D}\left(R_{t}^{+}\right)$. Now let e^{\prime} be any elemeht of E^{\prime}, and consider a linear form $\mathscr{D}\left(R_{t}^{+}\right) \ni \phi \rightarrow\left\langle e^{\prime}, v(\phi)\right\rangle$. Since it is continuous, there exists a unique distribution $T_{e^{\prime}} \epsilon \mathscr{D}^{\prime}\left(R_{t}^{+}\right)$such
that $\left\langle T_{e^{\prime}}, \phi\right\rangle=\left\langle e^{\prime}, v(\phi)\right\rangle$. It follows then from our assumption that $<T_{e^{\prime}}, \phi>=<T_{e^{\prime}}, \phi_{\lambda}>$, which implies that $T_{e^{\prime}}(t)=T_{e^{\prime}}(\lambda t)$ for every $\lambda>0$ and therefore $\frac{d}{d t} T_{e^{\prime}}=0$, that is, $v\left(\frac{d \phi}{d t}\right)=0$ for any $\phi \in \mathscr{D}\left(R_{t}^{+}\right)$. Let ϕ_{0} be a fixed non-negative element of $\mathscr{D}\left(R_{t}^{+}\right)$such that $\int_{0}^{\infty} \phi_{0}(t) d t=1$. If we put $e_{0}=v\left(\phi_{0}\right)$, then, since any $\phi \in \mathscr{D}\left(R_{t}^{+}\right)$can be written in the form $\phi=\left(\int_{0}^{\infty} \phi(t) d t\right) \phi_{0}+\frac{d}{d t} x$, $\chi \in \mathscr{D}\left(R_{t}^{+}\right)$, we obtain $v(\phi)=\left(\int_{0}^{\infty} \phi(t) d t\right) e_{0}$, as desired.

Now let us consider a distribution $u \in \mathscr{D}^{\prime}\left(R_{t}^{+}\right)\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right) \subset \mathscr{D}^{\prime}\left(R_{n+1}^{+}\right)$which is identified with a continuous linear map of $\mathscr{D}\left(R_{t}^{+}\right)$into $\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}$. Suppose $u(\varepsilon t, x)$ converges in $\mathscr{D}^{\prime}\left(R_{t}^{+}\right)\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ to a distribution v as $\varepsilon \downarrow 0$. Then Lemma 2 shows that v is independent of t and can be written in the form $Y_{t} \otimes \alpha$, where Y_{t} is the Heaviside function and $\alpha \epsilon\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x} . \quad \alpha$ is called the $\mathscr{D}_{L^{2}}^{\prime}$-boundary value of u and denoted by $\mathscr{D}_{L^{2-}}^{\prime} \lim _{t \downarrow 0} u$. From this definition we also see that
 this observation, we shall show that $\mathscr{D}_{L^{2}-\text {-lim }}^{\prime+1} u=\alpha$ is equivalent to saying that $\phi_{\varepsilon} u$ converges in $\mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ to $\delta_{t} \otimes \alpha$ for any non-negative $\phi \in \mathscr{D}\left(R_{t}^{+}\right)$ with $\int_{0}^{\infty} \phi(t) d t=1$. Suppose that $\mathscr{D}_{L^{2}}^{\prime} \lim _{t \downarrow 0} u=\alpha$. Then for any $\psi \in \mathscr{D}\left(\boldsymbol{R}_{t}\right)$ we have $\left\langle\phi_{\varepsilon}(t) u(t, \cdot), \psi(t)>=<(\psi u)(\varepsilon t, \cdot), \phi(t)>\right.$, and the product ψu has the $\mathscr{D}_{L^{2}}^{\prime 2}$ boundary value $\psi(0) \alpha \in\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x} . \quad$ Thus $\lim _{\varepsilon \downarrow 0}<\phi_{\varepsilon} u, \psi>=\psi(0) \alpha=<\delta_{t} \otimes \alpha$, $\psi>$. Conversely if $\phi_{\varepsilon} u$ converges in $\mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ to $\delta_{t} \otimes \alpha$ and if $\Psi \in \mathscr{D}\left(\boldsymbol{R}_{t}\right)$ is such that $\psi(t)=1$ in a 0 -neighborhood, then $\left\langle\phi_{\varepsilon} u, \psi\right\rangle$ converges in $\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}$ to $\left\langle\delta_{t} \otimes \alpha, \psi\right\rangle=\psi(0) \alpha=\alpha$. Since $\left\langle\phi_{\varepsilon} u, \psi\right\rangle=\left\langle u, \phi_{\varepsilon} \psi\right\rangle=\left\langle u, \phi_{\varepsilon}\right\rangle$ for sufficiently small $\varepsilon>0$, it follows that $\left\langle u(\varepsilon t, \cdot), \phi>\right.$ converges in $\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}$ to α.

Lemma 3. Let s be a real number. If a sequence $\left\{u_{j}\right\}, u_{j} \in \mathscr{H}_{(s)}\left(R_{n}\right)$, is bounded in $\mathscr{H}_{(s)}\left(R_{n}\right)$ and converges in $\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}$ to 0 , then u_{j} converges in $\mathscr{H}_{(s-1)}\left(R_{n}\right)$ to 0 .

Proof. By our assumption there exists a constant C such that $\int\left|\hat{u}_{j}\right|^{2}\left(1+|\xi|^{2}\right)^{s} d \xi \leqq C$. Given $\varepsilon>0$, we can take N so large that

$$
\int_{|\xi|>N}\left|\hat{u}_{j}\right|^{2}\left(1+|\xi|^{2}\right)^{s-1} d \xi \leqq \frac{1}{1+N^{2}} \int\left|\hat{u}_{j}\right|^{2}\left(1+|\xi|^{2}\right)^{s} d \xi \leqq \frac{C}{1+N^{2}}<\varepsilon
$$

where \hat{u}_{j} is the Fourier transform of u_{j}. Let α be the characteristic function of the set $\left\{\xi \in \Xi_{n}:|\xi| \leqq N\right\}$ and we put $\hat{v}_{j}=\chi(\xi) \hat{u}_{j}\left(1+|\xi|^{2}\right)^{s}$. For any integer l with $l+s \geqq 0$ we have

$$
\begin{aligned}
& \int\left|\hat{v}_{j}\right|^{2}\left(1+|\xi|^{2}\right)^{l} d \xi=\int_{|\xi| \leqq N}\left|\hat{u}_{j}\right|^{2}\left(1+|\xi|^{2}\right)^{l+2 s} d \xi \\
& \quad \leqq\left(1+N^{2}\right)^{l+s} \int\left|\hat{u}_{j}\right|^{2}\left(1+|\xi|^{2}\right)^{s} d \xi \leqq C\left(1+N^{2}\right)^{l+s}
\end{aligned}
$$

which shows that the sequence $\left\{v_{i}\right\}$ is bounded in $\left(\mathscr{D}_{L^{2}}\right)_{x}$. Since $\left\{u_{j}\right\}$ converges in $\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}$ to 0 as $j \rightarrow \infty$, it follows that $\sup _{k}\left|\left(u_{j}, v_{k}\right)\right|=\sup _{k}\left|<u_{j}, \bar{v}_{k}>\right|$ converges to 0 as $j \rightarrow \infty$. Consequently the inequalities

$$
\begin{aligned}
\sup _{k}\left|\left(u_{j}, v_{k}\right)\right| \geqq\left|\left(u_{j}, v_{j}\right)\right| & =\frac{1}{(2 \pi)^{n}} \int_{|\xi| \leqq N}\left|\hat{u}_{j}\right|^{2}\left(1+|\xi|^{2}\right)^{s} d \xi \\
& \geqq \frac{1}{(2 \pi)^{n}} \int_{|\xi| \leqq N}\left|u_{j}\right|^{2}\left(1+|\xi|^{2}\right)^{s-1} d \xi
\end{aligned}
$$

yield that $\int_{|\xi| \leqq N}\left|\hat{u}_{j}\right|^{2}\left(1+|\xi|^{2}\right)^{s-1} d \xi<2 \varepsilon$ for sufficiently large j, which completes the proof.
 $\subset[0, a]$ such that $f(t)=o\left(t^{k}\right)$ in $\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}$ as $t \downarrow 0$. Then there exists a nonnegative integer m such that f is an $\mathscr{H}_{(-m)}$-valued continuous function of t and $\|f(t)\|_{(-m)}=o\left(t^{k}\right)$ as $t \downarrow 0$. In fact, the set $\left\{\frac{f(t)}{t^{k}}\right\}_{0<t<a}$ is bounded in $\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}$ and therefore there exists a non-negative integer m such that $f(t) \in \mathscr{H}_{(-m+1)}$ and $\|f(t)\|_{(-m+1)}=O\left(t^{k}\right)$. By Lemma 3, $f(t)$ is an valued $\mathscr{H}_{(-m)}$-continuous function of t and $\lim _{t \downarrow 0} \frac{\|f(t)\|_{(-m)}}{t^{k}}=0$.

Lemma 4. Let E be a Fréchet space and F an inductive limit of Banach spaces $F_{j}, j=1,2, \ldots$, with norm $\|\cdot\|_{(j)}$ and assume that every bounded subset of F belongs to some F_{j} and bounded there. Let $\left\{u_{\gamma}\right\}_{\gamma \in \Gamma}$ be a family of continuous linear maps u_{γ} of E into F and assume that $\left\{u_{\gamma}(x)\right\}_{\gamma \in \Gamma}$ is bounded in F for every $x \in E$. Then there exists an m_{0} such that $u_{\gamma}(x) \in F_{m_{0}}$ for any $x \in E$ and the seminorm $x \rightarrow \sup _{\gamma}\left\|u_{\gamma}(x)\right\|_{\left(m_{0}\right)}$ is continuous.

Proof. Let us consider the set

$$
\mathbf{F}_{m}=\left\{\left\{y_{\gamma}\right\}_{\gamma \in \Gamma}: y_{\gamma} \in F_{m} \text { and }\left\{\left\|y_{\gamma}\right\|_{(m)}\right\}_{\gamma \in \Gamma} \text { is bounded }\right\} .
$$

If we put $\left\|\left\{y_{\gamma}\right\}\right\|=\sup _{\gamma}\left\|y_{\gamma}\right\|_{(m)}$ for $\left\{y_{\gamma}\right\}_{\gamma \in \Gamma} \in \mathbf{F}_{m}$, then \mathbf{F}_{m} is a Banach space with norm $\left.\|\cdot\| . \quad G_{m}=\left\{\left(x,{ }^{\gamma}, u_{\gamma}(x)\right\}_{\gamma \in \Gamma}\right) \in E \times \mathbf{F}_{m}\right\}$ is a Fréchet space and closed in $E \times \boldsymbol{F}_{m}$. Consider the projection P_{m} of G_{m} into E. As a continuous image of a Fréchet space, the set $E_{m}=P_{m}\left(G_{m}\right)$ is of the 1 st or of the 2 nd category. On the other hand we have $E=\bigcup_{m} E_{m}$. In fact, let $x \in E$. Since $\left\{u_{\gamma}(x)\right\}_{\gamma \in \Gamma}$ is bounded, there exists an m such that $u_{\gamma}(x) \in F_{m}$ and $\left\{\left\|u_{\gamma}(x)\right\|_{(m)}\right\}_{\gamma \in \Gamma}$ is bounded, that is, $\left(x,\left\{u_{\gamma},(x)\right\}\right) \in G_{m}$ and therefore $x \in E_{m}$. Since E is a Fréchet space, it follows that $E=E_{m_{0}}$ for some m_{0}. Then the projection $P_{m_{0}}$ has a continuous inverse $E \ni x \rightarrow\left(x,\left\{u_{\gamma}(x)\right\}\right) \in G_{m_{0}}$. This means that $u_{\gamma}(x) \in F_{m_{0}}$ for any $x \in E$ and the norm $x \rightarrow \sup _{\gamma}\left\|u_{\gamma}(x)\right\|_{(m)}$ is continuous. Thus the proof is
complete.
Let $u \in \mathscr{D}^{\prime}\left(R_{t}^{+}\right)$and $I=(a, b) \subset \subset(0, \infty) . \quad u$ is said to be of order $\leqq l$ on \bar{I} if there exists a constant C such that $\left|<u, \phi>\left|\leqq C \sup _{t}\right| D_{t}^{l} \phi(t)\right|$ for any $\phi \epsilon$ $\mathscr{D}\left(R_{t}^{+}\right)$. Then, $\mathscr{D}_{\bar{I}}$ being dense in $\mathscr{D}_{\bar{I}}^{l}, u$ will be uniquely extended to a continuous linear form on $\mathscr{D}_{\bar{I}}^{l}$.

Now we are prepared to apply S. Łojaciewicz's method [13, p.p. 17-18] in proving the following

Theorem 2. Let a be any positive number. Given $u \in \mathscr{D}^{\prime}\left(R_{t}^{+}\right)\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$, then $\mathscr{D}_{L^{2}}^{\prime-\lim _{t \downarrow 0}} u=\alpha \epsilon\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}$ if and only if there exists a $\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}$-valued continuous function $f(t), t \in[0, a]$, such that for a non-negative integer k,

$$
u=Y_{t} \otimes \alpha+D_{t}^{k} f \quad \text { in }(0, a) \times R_{n}
$$

and

$$
f(t)=o\left(t^{k}\right) \quad \text { as } t \downarrow 0 .
$$

More precisely, f can be chosen an $\mathscr{H}_{(-m)}$-valued continuous function with $\|f(t)\|_{(-m)}=o\left(t^{k}\right)$ as $t \rightarrow 0$, for some non-negative integer m.

Proof. Let u be written in the form as asserted in our theorem. Let $g(t)=\frac{f(t)}{t^{k}}$. Now, given $\phi \in \mathscr{D}\left(R_{t}^{+}\right)$, there can be found a $\psi \in \mathscr{D}\left(R_{t}^{+}\right)$such that $\psi_{\varepsilon}=t^{k} D_{t}^{k} \phi_{\varepsilon}$. Since, then, $g(t) \rightarrow 0$ in $\mathscr{D}_{L^{2}}^{\prime}$ as $t \downarrow 0$, we obtain for $\varepsilon \downarrow 0$

$$
<D_{t}^{k} f, \phi_{\varepsilon}>=(-1)^{k} \int_{0}^{\infty} f(t) D_{t}^{k} \phi_{\varepsilon} d t=(-1)^{k} \int_{0}^{\infty} g(t) \psi_{\varepsilon} d t \rightarrow 0
$$

$$
\begin{aligned}
& \mathscr{D}_{L^{2}-\lim _{t \downarrow 0} u}=\mathscr{D}_{L^{2-}}^{\prime} \lim _{t \downarrow 0}\left(Y_{t} \otimes \alpha+D_{t}^{k} f\right) \\
&=\mathscr{D}_{L^{2-}}^{\prime-\lim _{t \downarrow 0}\left(Y_{t} \otimes \alpha\right)=\alpha .}
\end{aligned}
$$

Suppose $\mathscr{D}_{L^{2}}^{\prime} \lim _{t \downarrow 0} u=\alpha$ holds. Without loss of generality, we may assume that $a=1$ and $\alpha=0$. Let us consider the intervals $I=(0,1)$ and $I_{\nu}=\left(\theta^{\nu+2}, \theta^{\nu}\right)$, $\nu=0,1, \ldots$, where $\theta=\frac{1}{2}$, and we put $u_{\nu}(t, x)=u\left(\theta^{\nu} t, x\right)$. Now we can regard u_{ν} as a continuous map of $\mathscr{D}_{\bar{I}_{0}}$ into $\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x} . \quad$ Here $\mathscr{D}_{\bar{I}_{0}}$ is a Fréchet space and $\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}=\bigcup_{m=0}^{\infty} \mathscr{H}_{(-m)}$. In view of Lemmas 3 and 4 , we can take a non-negative integer m and a 0 -neighborhood V of $\mathscr{D}_{\bar{I}_{0}}$ such that $\left\|u_{\nu}(\phi)\right\|_{(-m)} \leqq 1$ and $\lim _{\nu \rightarrow \infty}$ $\left\|u_{\nu}(\phi)\right\|_{(-m)}=0$ for any $\phi \in V$, where $V=\left\{\phi \in \mathscr{D}_{\bar{I}_{0}}: \sup _{t}\left|D_{t}{ }_{t} \phi\right| \leqq 1\right\}, l$ being a nonnegative integer. $\mathscr{D}_{\bar{I}_{0}}^{l}$ is the closure of $\mathscr{D}_{\bar{I}_{0}}$ with respect to the norm $\sup _{t}\left|D_{t}^{l} \phi\right|$,
so that u_{ν} can be uniquely extended to a continuous map of $\mathscr{D}_{I_{0}}^{l}$ into $\mathscr{H}_{(-m)}$. By the same method as in [9, p. 399] we can find a function $G \in \mathscr{D}_{\bar{I}_{0} \times \bar{I}_{0}}^{l}$ such that if we put $f_{\nu}(t)=u_{\nu}\left(g_{t}\right)$, where $g_{t}(s)=G(t, s)$, then $f_{\nu}(t)$ is an $\mathscr{H}_{(-m)}$-valued continuous function with support $\subset \bar{I}_{0}$ and
(1) $u_{\nu}=D_{t}^{2 l+2} f_{\nu} \quad$ in I_{0}.

Since $\left\{g_{t}\right\}_{t \in \bar{I}_{0}}$ forms a compact subset of $\mathscr{D}_{\bar{I}_{0}}^{l}$, it follows from the BanachSteinhaus theorem that the sequence of $\mathscr{H}_{(-m)}$-valued continuous functions $f_{\nu}(t)$ uniformly converges to 0 as $\nu \rightarrow \infty$, hence we can choose $\lambda_{\nu}>0$ so that
(2) $\sup _{t}\left\|f_{\nu}(t)\right\|_{(-m)} \leqq \lambda_{\nu} \downarrow 0$ as $\quad \nu \rightarrow \infty$.

Since, for any $\psi \in \mathscr{D}_{I_{\nu}}$, we can write

$$
\begin{aligned}
u(\psi)=<u(t, \cdot), \psi(t)>_{t} & =<u\left(\theta^{\nu} t, \cdot\right), \theta^{\nu} \psi\left(\theta^{\nu} t\right)>_{t} \\
& =<u_{\nu}(t, \cdot), \theta^{\nu} \psi\left(\theta^{\nu} t\right)>_{t} \\
& =<D_{t}^{2 l+2} f_{\nu}(t), \theta^{\nu} \psi\left(\theta^{\nu} t\right)>_{t} \\
& =<D_{t}^{2 l+2}\left(\theta^{\nu}(2 l+2) f_{\nu}\left(\theta^{-\nu} t\right)\right), \psi(t)>_{t}
\end{aligned}
$$

so $F_{\nu}(t)=\theta^{\nu(2 l+2)} f_{\nu}\left(\theta^{-\nu} t\right)$ will be an $\mathscr{H}_{(-m)}$-valued continuous function with support $\subset \bar{I}_{\nu}$ such that
(3) $u=D_{t}^{2 l+2} F_{\nu}(t) \quad$ in I_{ν},
(4) $\sup _{t}\left\|F_{\nu}(t)\right\|_{(-m)} \leqq \lambda_{\nu} \theta^{\nu(2 l+2)}$.

If we put $q_{\nu}(t)=F_{\nu+1}(t)-F_{\nu}(t), t \in \bar{I}_{\nu+1} \cap \bar{I}_{\nu}$, then, since $D_{t}^{2 l+2} q_{\nu}=0$ in $I_{\nu+1} \cap I_{\nu}$, so there is a polynomial \tilde{q}_{ν} such that $\tilde{q}_{\nu}(t)=q_{\nu}(t)$ for $t \in \bar{I}_{\nu+1} \cap \bar{I}_{\nu}$, where q_{ν} is determined by taking $t_{0}=\theta^{\nu+2}<t_{1}<\cdots<t_{2 l+1}=\theta^{\nu+1}$ and by putting $\tilde{q}_{\nu}(t)=$ $\sum_{j=0}^{2 l+1} q_{\nu}\left(t_{j}\right) \times \prod_{j \neq k} \frac{t-t_{k}}{t_{j}-t_{k}} . \quad$ By a simple estimation we obtain
(5) $D_{t}^{2 l+2} \tilde{q}_{\nu}=0$,
(6) $\left\|\tilde{q}_{\nu}(t)\right\|_{(-m)} \leqq K \lambda_{\nu} \theta^{\nu}\left(\theta^{\nu(2 l+1)}+t^{2 l+1}\right) \quad$ for $t \in\left[\theta^{\nu+2}, 1\right]$,
where K is a constant independent of ν. Now let us define continuous functions $\tilde{F}_{\nu}(t)$ on $\left[\theta^{\nu+2}, 1\right]$ by putting $\tilde{F}_{0}=F_{0}$ and

$$
\tilde{F}_{\nu}=\left\{\begin{array}{l}
F_{\nu} \quad \text { on } \bar{I}_{\nu} \\
\tilde{F}_{\nu-1}+\tilde{q}_{\nu-1} \quad \text { on }\left[\theta^{\nu+1}, 1\right]
\end{array}\right.
$$

for $\nu=1,2, \ldots$. Note that the restriction of F_{ν} to $\left[\theta^{\nu+1}, \theta^{\nu}\right]$ is equal to $\tilde{F}_{\nu-1}+$ $\tilde{q}_{\nu-1}$. For any $\nu \geqq \nu_{0}, \nu_{0}$ being any given positive integer, we have for $t \epsilon$ $\left[\theta^{\nu_{0}+2}, 1\right]$

$$
\begin{gathered}
\left\|\tilde{F}_{\nu+k}(t)-\tilde{F}_{\nu}(t)\right\|_{(-m)}=\left\|\tilde{q}_{\nu}(t)+\cdots+\tilde{q}_{\nu+k-1}(t)\right\|_{(-m)} \\
\leqq K \sum_{j=\nu}^{\nu+k-1} \lambda_{j} \theta^{j}\left(\theta^{j(2 l+1)}+t^{2 l+1}\right) \leqq 4 K \lambda_{\nu} \theta^{\nu} .
\end{gathered}
$$

This shows that $\left\{\tilde{F}_{\nu}\right\}$ uniformly converges on $\left[\theta^{\nu_{0}+1}, 1\right]$. Let $f(t)=\lim _{\nu \rightarrow \infty} \tilde{F}_{\nu}(t)$, $t \in(0,1] . f$ is an $\mathscr{H}_{(-m)}$-valued continuos functions on $(0,1]$ and
(7) $f(t)=\tilde{F}_{\nu}(t)+\sum_{j=\nu}^{\infty} \tilde{\tilde{p}}_{j}(t), \quad t \in\left[\theta^{\nu+2}, 1\right]$,
whence $D_{t}^{2 l+2} f=u$ in I since $D_{t}^{2 l+2} \tilde{F}_{\nu}=u$ in $\left(\theta^{\nu+2}, 1\right)$ and $D_{t}^{2 l+2} \tilde{q}_{j}=0$. Owing to the estimates (4), (5), we have for $t \in I_{\nu}$
(8) $\quad\left\|\tilde{F}_{\nu}(t)\right\|_{(-m)}=\left\|F_{\nu}(t)\right\|_{(-m)} \leqq \lambda_{\nu} \theta^{\nu(2 l+2)}$

$$
\leqq \lambda_{\nu} \theta^{-4(l+1)} t^{2 l+2}
$$

(9) $\left\|\tilde{q}_{\nu}(t)\right\|_{(-m)} \leqq K \lambda_{\nu} \theta^{\nu}\left(\theta^{\nu(2 l+1)}+t^{2 l+1}\right)$

$$
\leqq 2 K \lambda_{\nu} \theta^{\nu(2 l+2)}
$$

$$
\leqq 2 K \lambda_{\nu} \theta^{-4(l+1)} t^{2 l+2}
$$

$$
\begin{align*}
\left\|\tilde{q}_{\nu+1}(t)\right\|_{(-m)} & \leqq K \lambda_{\nu+1} \theta^{\nu+1}\left(\theta^{(\nu+1)(2 l+1)}+t^{2 l+1}\right) \tag{10}\\
& \leqq K \lambda_{\nu} \theta^{\nu}\left(\theta^{\nu(2 l+1)}+t^{2 l+1}\right) \theta \\
& \leqq \theta\left(2 K \lambda_{\nu} \theta^{-4(l+1)}\right) t^{2 l+2}
\end{align*}
$$

From these, together with (7), we obtain that $f(t)=o\left(t^{2 l+2}\right)$ as $t \downarrow 0$. Thus the proof is complete.

Let $\phi \in \mathscr{D}\left(R_{t}^{+}\right)$be such that $\phi \geqq 0$ and $\int_{0}^{\infty} \phi(t) d t=1$. Let $\rho=Y * \phi$ and put $\rho_{(\varepsilon)}(t)=\rho\left(\frac{t}{\varepsilon}\right)$ for any $\varepsilon>0$. Consider a $u \in \mathscr{D}^{\prime}\left(R_{t}^{+}\right)\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$. Then $\rho_{(\varepsilon)} u$ will always be understood an element of $\mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$. If $\rho_{(\varepsilon)} u$ converges in $\mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ to v_{ϕ} as $\varepsilon \downarrow 0$, then v_{ϕ} does not depend on the choice of ϕ. In fact, this follows from Lemma 2, together with the equations $v_{\phi}=v_{\phi_{k}}, \lambda>0$, which can be easily verified. The limit element v will be referred to as the $\mathscr{D}_{L^{2}}^{\prime}$-canonical extension of u over $t=0$ and denoted by u_{\sim}. It is to be noticed that $\left(u_{\sim} \mid R_{n+1}^{+}\right)_{\sim}=$ u_{\sim}. The same will be the case for $u \in \mathscr{D}^{\prime}\left(R_{t}^{-}\right)\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$. Then its canonical extension over $t=0$ will be denoted by u^{-}.

Proposition 5. Let $u \in \mathscr{D}^{\prime}\left(R_{t}^{+}\right)\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$. If $\mathscr{D}_{L^{2}}^{\prime}-\lim _{t \downarrow 0} u=\alpha$, then u has the $\mathscr{D}_{L^{2}}^{\prime}$-canonical extension u_{\sim}.

Proof. Owing to Theorem 2 we have a local representation of u :

$$
u=Y_{t} \otimes \alpha+D_{t}^{k} f \quad \text { in }(0, a) \times R_{n}
$$

where f is an $\mathscr{H}_{(-m)}$-valued continuous function with the properties described there. Then we have for $t<a$

$$
\begin{aligned}
& \rho_{(\varepsilon)} u=\rho_{(\varepsilon)} \otimes \alpha+\rho_{(\varepsilon)} D_{t}^{k} f \\
& \left.=\rho_{(\varepsilon)} \otimes \alpha+D_{t}^{k}\left(\rho_{(\varepsilon)} f(t)\right)+\sum_{j=1}^{k}(-1)^{j}\binom{k}{j} D_{t}^{k-j}\left(\left(D_{t}^{j} \rho_{(\varepsilon)}\right) f\right)\right)
\end{aligned}
$$

whence, observing that $\rho_{(\varepsilon)} f \rightarrow f$ and $\left(D_{t}^{j} \rho_{(\varepsilon)}\right) f \rightarrow 0$ in $\mathscr{D}^{\prime}(-\infty, a)\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ as $\varepsilon \downarrow 0$, we can establish the conclusion of our proposition.

We shall say that $u \in \mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ is $\mathscr{D}_{L^{2}}^{\prime}$-canonical if $\left(u \mid R_{n+1}^{+}\right)_{\sim}=u$ holds. In what follows, we shall write u instead of $\left(u \mid R_{n+1}^{+}\right)$.. Then we can show the following

Proposition 6. Let $u \in\left(\mathscr{D}_{t}^{\prime}\right)_{+}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ and put $v=Y * u . \quad u$ is $\mathscr{D}_{L^{2}}^{\prime}$-canonical if and only if v has the $\mathscr{D}_{L^{2}}^{\prime}$-boundary value 0 and is $\mathscr{D}_{L^{2}}^{\prime}$-canonical,

Proof. Suppose that u is $\mathscr{D}_{L^{2}}^{\prime}$-canonical. We shall first show that $\mathscr{D}_{L^{2}}^{\prime}$ $\lim _{t \downarrow 0} v=0$. Let ϕ be an arbitrary element of $\mathscr{D}\left(R_{t}^{+}\right)$such that $\phi(t) \geqq 0$ and $\int \phi(t) d t=1$ and γ an element of $\mathscr{D}\left(R_{t}\right)$ such that $\gamma(t)=1$ in a 0 -neighborhood of R_{t}. Then, observing that $<(1-\gamma) u, \check{Y} * \phi_{\varepsilon}>=0$ for $\varepsilon>0$ small enough, we obtain

$$
\begin{aligned}
<Y * u, \phi_{\varepsilon}> & =<\gamma u, \check{Y} * \phi_{\varepsilon}>+<(1-\gamma) u, \check{Y} * \phi_{\varepsilon}> \\
& =<u, \gamma\left(1 * \phi_{\varepsilon}\right)>-<\gamma u, Y * \phi_{\varepsilon}> \\
& =<u, \gamma>-<\rho_{(\varepsilon)} u, \gamma>
\end{aligned}
$$

which implies that $\lim _{\varepsilon \downarrow 0}<Y * u, \phi_{\varepsilon}>=0$, that is, $\mathscr{D}_{L^{2-}}^{\prime 2} \lim _{t \downarrow 0} v=0$ as desired. That v is $\mathscr{D}_{L^{2}}^{\prime}$-canonical can be seen as follows. Owing to Proposition 5, $(Y * u)_{\sim}$ exists. Let $\alpha_{0}, \alpha_{1}, \cdots, \alpha_{k} \in\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}$ be such that

$$
(Y * u)_{\sim}-Y * u=\delta \otimes \alpha_{0}+D_{t} \delta \otimes \alpha_{1}+\cdots+D_{t}^{k} \delta \otimes \alpha_{k}
$$

Differentiating both sides of the equation and noting that $D_{t}\left(\lim _{\varepsilon \downarrow 0} \rho_{(\varepsilon)}(Y * u)\right)=$ $-i u$, we have

$$
D_{t} \delta \otimes \alpha_{0}+\cdots+D_{t}^{k+1} \delta \otimes \alpha_{k}=0
$$

whence $\alpha_{0}=\cdots=\alpha_{k}=0$, that is, $Y * u$ is $\mathscr{D}_{L^{2}}^{2}$-canonical.
The converse is trivial from the equations

$$
\rho_{(\varepsilon)} u=i \rho_{(\varepsilon)} D_{t}(Y * u)=i D_{t}\left(\rho_{(\varepsilon)}(Y * u)\right)-\phi_{\varepsilon}(Y * u),
$$

since, then, $\lim _{\varepsilon \downarrow 0} \rho_{(\varepsilon)} u=i D_{t}(Y * u)=u$. Thus the proof is complete.

Remark. In a previous paper [10], it is really shown that, given the space $\mathscr{H}_{(\sigma, s)}\left(R_{n+1}^{+}\right)[7, \mathrm{p} .51]$, where σ and s are fixed, then (1) the $\mathscr{D}_{L^{2}-\lim _{t \downarrow 0} u} u$ exists for every $u \in \mathscr{H}_{(\sigma, s)}\left(\bar{R}_{n+1}^{+}\right)$if and only if $\sigma>\frac{1}{2}$, (2) the $\mathscr{D}_{L^{2}}^{\prime}$-canonical extension u_{\sim} exists for every $u \in \mathscr{H}_{(\sigma, s)}\left(\bar{R}_{n+1}^{+}\right)$if and only if $\sigma>-\frac{1}{2}$, (3) $u_{\sim} \in \mathscr{H}_{(\sigma, s)}\left(R_{n+1}\right)$ for every $u \in \mathscr{H}_{(\sigma, s)}\left(\bar{R}_{n+1}^{+}\right)$if and only if $|\sigma|<\frac{1}{2}$.

Let $u \in \mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$. If, for $\varepsilon \downarrow 0, u(\varepsilon t, x)$ converges in $\mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ to a limit independent of t, we can write $\lim _{\varepsilon \searrow 0} u(\varepsilon t, x)=1_{t} \otimes \alpha$ with $\alpha \epsilon\left(\mathscr{D}_{L^{2}}\right)_{x}$. When this is the case, we shall call α the section of u for $t=0$ and denote it by $u(0, \cdot)[13, \mathrm{p} .15]$. We shall also say that u has no mass on the hyperplane $t=0$, if $\varepsilon u(\varepsilon t, x)$ converges in $\mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ to 0 as $\varepsilon \rightarrow 0[13, \mathrm{p} .23]$. It is clear that if u has the section for $t=0$, then u and $D_{t} u$ have no mass on $t=0$. Now we can show the following Theorem 3 which is an analogue to Theorem 2. However, the proof will be omitted since it can be carried out in a similar way as shown there.

Theorem 3. Let a be any positive number. Given $u \in \mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$, then $u(0, \cdot)=\alpha \epsilon\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}$ if and only if there exists a $\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}$-valued continuous function $f(t), t \in[-a, a]$, such that for a non-negative integer k,

$$
u=1_{t} \otimes \alpha+D_{t}^{k} f \quad \text { in }(-a, a) \times R_{n}
$$

and

$$
f(t)=o\left(|t|^{k}\right) \quad \text { as } t \rightarrow 0
$$

More precisely, f can be chosen an $\mathscr{H}_{(-m)}$-valued continuous function with $\|f(t)\|_{(-m)}=o\left(|t|^{k}\right)$ as $t \downarrow 0$, for some non-negative integer m.

Proposition 7. Let $u \in\left(\mathscr{D}_{t}^{\prime}\right)_{+}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$. Then u is $\mathscr{D}_{L^{2}}^{\prime}$-canonical if and only if u has no mass on $t=0$.

Proof. Suppose u is $\mathscr{D}_{L^{2}}^{\prime}$-canonical. Then by Proposition 6, $(Y * u)(\varepsilon t, x)$ converges in $\mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ to 0 , whence $D_{t}\{(Y * u)(\varepsilon t, x)\}=-i \varepsilon u(\varepsilon t, x) \rightarrow 0$ in $\mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$. Thus u has no mass on $t=0$.

Conversely, suppose u has no mass on $t=0$. Let $\phi_{1} \in \mathscr{D}\left(R_{t}^{+}\right), \phi_{2} \in \mathscr{D}\left(R_{t}^{-}\right)$ be such that $\phi_{1}(t) \geqq 0, \phi_{2}(t) \geqq 0, \int \phi_{1}(t) d t=\int \phi_{2}(t) d t=1$. If we put $\rho_{1}=Y * \phi_{1}$, $\rho_{2}=Y * \phi_{2}$, then $x=\rho_{1}-\rho_{2} \in \mathscr{D}\left(R_{t}\right)$. Now $x_{(\varepsilon)} u$ converges in $\mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{\left.\left.L^{2}\right)_{x}\right)}\right)\right.$ to 0 as $\varepsilon \downarrow 0$, and $\left(1-\rho_{2(\varepsilon)}\right) u=0$. Since we can write $\rho_{1(\varepsilon)} u=u+x_{(\varepsilon)} u-\left(1-\rho_{2(\varepsilon)}\right) u$, it follows that $\rho_{1(\varepsilon)} u$ converges in $\mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ to u, which completes the proof.

In an entirely similar way we can show the following
Proposition 8. Let $u \in \mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ have no mass on $t=0$. If $u_{1}=u \mid R_{n+1}^{+}$
has the $\mathscr{D}_{L^{2}}^{\prime-c a n o n i c a l ~ e x t e n s i o n ~} u_{1 \sim}$, then $u_{2}=u \mid R_{n+1}^{-}$has the $\mathscr{D}_{L^{2}}^{\prime}$-canonical extension u_{2}^{\sim}, and we can write $u=u_{1 \sim}+u_{2}^{\sim}$.

When u has no mass on $t=0$, we shall obtain
Proposition 9. Let $u \in \mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$. If u has no mass on $t=0$ and $\mathscr{D}_{L^{2-}}^{\prime}$ $\lim _{t \downarrow 0} u_{1}=\mathscr{D}_{L^{2}}^{\prime-} \lim _{t \uparrow 0} u_{2}=\alpha$, where $u_{1}=u \mid R_{n+1}^{+}$and $u_{2}=u \mid R_{n+1}^{-}$, then u has the section α for $t=0$.

Proof. For any $\alpha>0$ there exist integers $k, m \geqq 0$ and $\mathscr{H}_{(-m)}$-valued continuous functions $f_{1}(t)$ and $f_{2}(t)$ defined, respectively, on $[0, a]$ and on [$-a, 0]$, for which

$$
u_{1}=Y \otimes \alpha+D_{t}^{k} f_{1}, u_{2}=(1-Y) \otimes \alpha+D_{t}^{k} f_{2} \quad \text { in }(-a, a) \times R_{n}
$$

where $\left\|f_{1}\right\|_{(-m)},\left\|f_{2}\right\|_{(-m)}=o\left(|t|^{k}\right)$ as $t \downarrow 0$ and we define $f_{1}(t)=0$ for $t<0$ and $f_{2}(t)=0$ for $t>0$. Whence we have

$$
u_{1 \sim}+u_{2}=1_{t} \otimes \alpha+D_{t}^{k}\left(f_{1}+f_{2}\right)
$$

which means that $u_{1 \sim}+u_{2}^{\sim}$ has the section α for $t=0$. Since $u-u_{1 \sim}-u_{2}^{\sim}$ has no mass on $t=0$ and, in addition, its support lies on $t=0$, we must have that $u=u_{1 \sim}+u_{2}$.

Let $u \in \mathscr{D}^{\prime}\left(R_{t}^{+}\right)\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$. We shall say that u has a weak $\mathscr{D}_{L^{2}}^{\prime}$-boundary value α and we write $w-\mathscr{D}_{L^{2}}^{\prime} \lim _{t \downarrow 0} u=\alpha$ if $\left.<u, \phi_{\varepsilon}\right\rangle$ converges weakly in $\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}$ to α as $\varepsilon \downarrow 0$, where ϕ is chosen an arbitrary non-negative function $\epsilon \mathscr{D}\left(R_{t}^{+}\right)$ with $\int_{0}^{\infty} \phi(t) d t=1$.

Proposition 10. Let $u \in \mathscr{D}^{\prime}\left(R_{t}^{+}\right)\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$. Then $w-\mathscr{D}_{L^{2}}^{\prime-\lim _{t \downarrow 0} u \text { exists if and }}$ only if $\lim _{t \downarrow 0} u$ exists and the set $\{u(\varepsilon t, x)\}_{0<\varepsilon \leqslant 1}$ is bounded in $\mathscr{\mathscr { D }}^{t \neq 0}\left(R_{t}^{+}\right)\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$.

Proof. The "only if" part is trivial. The "if" part can be verified as follows: $u_{\varepsilon}=u(\varepsilon t, x)$ is considered as a continuous map of $\mathscr{D}\left(R_{t}^{+}\right)$into $\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}$. We can apply the Banach-Steinhaus theorem to conclude that $<u_{\varepsilon}, \phi>$ weakly converges in $\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}$.

Along the same line as in the proof of Theorem 2 we can prove the following

Theorem 2'. Let a be any positive number. Given $u \in \mathscr{D}^{\prime}\left(R_{t}^{+}\right)\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$, then $w-\mathscr{D}_{L^{2}}^{\prime-l_{t \downarrow 0}} u=\alpha \in \mathscr{D}_{L^{2}}^{\prime}$ if and only if for some non-negative integer m there exists an $\mathscr{H}_{(-m)}$-valued continuous function $f(t), t \in[0, a]$, such that for a nonnegative integer k

$$
u=Y \otimes \alpha+D_{t}^{k} f \quad \text { in }(0, a) \times R_{n}
$$

and

$$
<f(t), \psi>=o\left(t^{k}\right) \quad \text { as } t \downarrow 0
$$

for any $\psi \epsilon\left(\mathscr{D}_{L^{2}}\right)_{x}$.
Let $\phi \in \mathscr{D}\left(R_{t}^{+}\right)$be taken in such a way that $\phi \geqq 0$ and $\int_{0}^{\infty} \phi(t) d t=1$; and let $\rho_{(\varepsilon)}$ be defined as before. Let $u \in \mathscr{D}^{\prime}\left(R_{t}^{+}\right)\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$. We shall say that u has a weak $\mathscr{D}_{L^{2}}^{\prime}$-canonical extension if, for any $\psi \in \mathscr{D}\left(R_{t}\right),\left\langle\rho_{(\varepsilon)} u, \psi\right\rangle$ converges weakly in $\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}$. When this is the case, there exists a unique $v \in\left(\mathscr{D}_{t}^{\prime}\right)_{+}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ such that $\left.\lim _{\varepsilon \downarrow 0}<\rho_{(\varepsilon)} u, \psi\right\rangle=\langle v, \psi\rangle$. Here v is called the weak $\mathscr{D}_{L^{2}}^{\prime}$-canonical extension and denoted by u_{\sim}.

Proposition 11. Let $u \in \mathscr{D}^{\prime}\left(R_{t}^{+}\right)\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$. Then u has the weak $\mathscr{D}_{L^{2}}^{\prime}$-canonical extension u_{\sim} if and only if $\rho_{(\varepsilon)} u$ converges in $\mathscr{D}^{\prime}\left(R_{n+1}\right)$ and the set $\left\{\rho_{(\varepsilon)} u\right\}_{0<\varepsilon \leq 1}$ is bounded in $\mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ for any ϕ.

If the limit in defining the notions such that the $\mathscr{D}_{L^{2}}^{\prime}$-canonical, the section and the like is understood in the weak sense, then we can show the corresponding analogues to Theorem 3 and Propositions 5, 6, 7, 8 and 9.

A sequence $\left\{\phi_{k}\right\}, \phi_{k} \in \mathscr{D}\left(R_{t}\right)$, will be referred to as a δ-sequence if $\phi_{k} \geqq 0$, $\int \phi_{k} d t=1$ and supp ϕ_{k} converges to $\{0\}$ as $k \rightarrow \infty$. Let $u \in \mathscr{D}^{\prime}\left(R_{t}^{+}\right)\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$. If $<u, \phi_{k}>$ converges in $\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}$ for every δ-sequence $\left\{\phi_{k}\right\}$, where $\phi_{k} \in \mathscr{D}\left(R_{t}^{+}\right)$, then the limit is called the strict $\mathscr{D}_{L^{2}}^{\prime}$-boundary value of u. The strict $\mathscr{D}_{L^{2-}}^{\prime}$ canonical extension of u over $t=0$ will be defined in an obvious way. Similarly for the section of u for $t=0$ in the strict sense if $u \epsilon \mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$. With the aid of these concepts, we shall be able to give some refinement of the results already obtained in this section. For instance, the following proposition is a refinement of Theorem 2.

Proposition 12. Let $u \in \mathscr{D}\left(R_{t}^{+}\right)\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$. u has a strict $\mathscr{D}_{L^{2}}{ }^{2}$ boundary value $\alpha \epsilon\left(\mathscr{D}_{L^{2}}\right)_{x}$ if and only if for some non-negative integer m and $a>0$, there exists an $\mathscr{H}_{(-m)}$-valued bounded measurable function $w(t)$ in $t \in[0, a]$ such that

$$
u=w \quad \text { in } \mathscr{D}^{\prime}\left((0, a) \times R_{n}\right)
$$

and

$$
\lim _{t \downarrow 0}\|w(t)-\alpha\|_{(-m)}=0
$$

This can be shown by making use of Lemma 3. But the proof is omitted.

3. Operator of order r which maps $\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}$ into itself

Let r be an arbitrary real number and let OP_{r} be the set of linear maps of $\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}$ into itself which are at the same time continuous operators of $\mathscr{H}_{(s+r)}$ (R_{n}) into $\mathscr{H}_{(s)}\left(R_{n}\right)$ for any real $s . \mathrm{OP}_{r}$ is a locally convex Hausdorff space, where the topology is defined by the operator norms $\|\cdot\|_{(s+r \rightarrow s)}$ of the spaces $\mathscr{L}\left(\mathscr{H}_{(s+r)}, \mathscr{H}_{(s)}\right)$. Let l be a non-negative integer or ∞. We denote by $\mathscr{F}_{(r)}^{l}$ the set of OP_{r}-valued C^{l} functions of $t \in R_{t}$. We shall note that any $\mathrm{OP}_{r^{-}}$ valued C^{l} function $A(t)$ defined on $[0, \infty)$ can be extended to a function $\epsilon \mathbb{C}_{(r)}^{l}$. It is trivial if $l<\infty$. Let $l=\infty$. In [20] R.T. Seeley considered the sequences $\left\{a_{k}\right\},\left\{b_{k}\right\}$ of real numbers such that (i) $b_{k}<0$, (ii) $\sum_{k=0}^{\infty}\left|a_{k}\right|\left|b_{k}\right|^{n}<$ ∞ for $n=0,1, \cdots$, (iii) $\sum_{k=0}^{\infty} a_{k} b_{k}^{n}=1$ for $n=0,1, \cdots$ and (iv) $b_{k} \rightarrow-\infty$ as $k \rightarrow \infty$. Let ϕ be a C^{∞} function on R_{t} with $\phi(t)=1$ for $0 \leqq t \leqq 1, \phi(t)=0$ for $t>2$. We define $A(t)=\sum_{k=0}^{\infty} a_{k} \phi\left(b_{k} t\right) A\left(b_{k} t\right)$ for $t<0$. It is easy to verify that $A(t)$ is a C^{∞} function on $(-\infty, 0)$. We can write

$$
\sum_{k=0}^{\infty} a_{k} \phi\left(b_{k} t\right) A\left(b_{k} t\right)-A(0)=\sum_{k=0}^{\infty} a_{k}\left(\phi\left(b_{k} t\right) A\left(b_{k} t\right)-A(0)\right) .
$$

Then there exists for any given $\varepsilon>0$ an integer $N>0$ such that

$$
\sum_{k=N}^{\infty}\left\|a_{k}\left(\phi\left(b_{k} t\right) A\left(b_{k} t\right)-A(0)\right)\right\|_{(s+r \rightarrow s)} \leqq 2 \max _{0 \leqq t \leqq 2}\|A(t)\|_{(s+r \rightarrow s)} \sum_{k=N}^{\infty}\left|a_{k}\right|<\varepsilon
$$

whence it follows that $\lim _{t \uparrow 0} A(t)=A(0)$. Similarly, with the aid of (ii) and (iii), we can also show that $\lim _{t \uparrow 0} A^{(j)}(t)=A^{(j)}(0), j=1,2, \ldots$.

Let $A^{*}(t)$ be denoted for each t the adjoint with respect to the scalar product $(\phi, \psi)=\langle\phi, \bar{\psi}\rangle$ between $\mathscr{H}_{(s)}\left(R_{n}\right)$ and $\mathscr{H}_{(-s)}\left(R_{n}\right)$. Then $A(t) \in \mathbb{C}_{(r)}^{l}$ implies $A^{*}(t) \in \bigoplus_{(r)}^{l}$.

In the rest of this section $A(t)$ will be understood to belong to $\mathbb{๒}_{(r)}^{\infty}$. Let $\phi \epsilon \mathscr{D}\left(R_{n+1}\right)$. For each $t \in R_{t}, A(t) \phi(t, \cdot) \epsilon\left(\mathscr{D}_{L^{2}}\right)_{x}$ and $A(t) \phi(t, \cdot)$ is a $\left(\mathscr{D}_{L^{2}}\right)_{x^{-}}$ valued C^{∞} function of t, whence $A(t) \phi(t, \cdot)$, when considered as a function of t and x, is an infinitely differentiable function which, in what follows, will often be denoted by $A(t) \phi(t, x)$. Now we shall define $A(t) u$ for every $u \epsilon$ $\mathscr{D}^{\prime}\left(R_{t}^{+}\right)\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$. Let $\left\{\phi_{j}\right\}, \phi_{j} \in \mathscr{D}\left(R_{n+1}\right)$, be a sequence such that ϕ_{j} converges in $\mathscr{D}^{\prime}\left(R_{t}^{+}\right)\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ to u. $A(t) \phi_{j}(t, \cdot) \epsilon \mathscr{D}^{\prime}\left(R_{n}^{+}\right)\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ for each j. Let B be any bounded subset of $\left(\mathscr{D}_{L^{2}}\right)_{x}$. Then, for any $\psi_{1} \in \mathscr{D}\left(R_{t}\right)$ and $\psi_{2} \in B$, we have

$$
\left(A(t) \phi_{j}(t, x), \psi_{1} \otimes \psi_{2}\right)=\left(\phi_{j}(t, x), \psi_{1} A^{*}(t)\left(\psi_{2}\right)\right)
$$

where the set $\left\{\psi_{1} A^{*}(t)\left(\psi_{2}\right): \psi_{2} \in B\right\}$ is equicontinuous in $\mathscr{D}\left(R_{t}^{+}\right) \widehat{\otimes}_{\iota}\left(\mathscr{D}_{L^{2}}\right)_{x}$.

Thus the sequence $A(t) \phi_{j}(t, \cdot)$ will converge in $\mathscr{D}^{\prime}\left(R_{t}^{+}\right)\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ to an element of $\mathscr{D}^{\prime}\left(R_{t}^{+}\right)\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$. The limit is defined as $A(t) u(t, \cdot) \epsilon \mathscr{D}^{\prime}\left(R_{t}^{+}\right)\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$. If $u \epsilon$ $\mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$, then $A(t) u$ will also be defined in an obvious fashion. In any way, owing to the Banach-Steinhaus theorem, the map $u \rightarrow A(t) u$ will be continuous.

Proposition 13. Let $u \in \mathscr{D}^{\prime}\left(R_{t}^{+}\right)\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$. If u has $a \mathscr{D}_{L^{2}}^{\prime-}$ boundary value α, then $A(t) u$ also has a $\mathscr{D}_{L^{2}}^{\prime-b o u n d a r y ~ v a l u e, ~ w h i c h ~ i s ~ e q u a l ~ t o ~} A(0) \alpha$.

Proof. Our assumption implies that $\phi_{\varepsilon} u$ converges in $\mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ to $\delta \otimes \alpha$ as $\varepsilon \downarrow 0$, and therefore $\phi_{\varepsilon} A(t) u=A(t) \phi_{\varepsilon} u$ converges in $\mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ to $A(t)(\delta \otimes \alpha)=\delta \otimes A(0) \alpha$, completing the proof.

Remark. By the same method as above, we can prove the analogues for the canonical extension, the section for $t=0$ and the like.

By $\widetilde{\mathscr{H}}_{(\sigma, s)}$ we mean the set of all $u \epsilon \mathscr{D}^{\prime}\left(R_{n+1}\right)$ with the property that $\phi u \in \mathscr{H}_{(\sigma, s)}\left(R_{n+1}\right)$ for any $\phi \in C_{0}^{\infty}\left(R_{t}\right)$. Here the topology is given as a local space [7, p. 42]. Then we have

Proposition 14. $A(t)$ is a continuous linear map of $\widetilde{\mathscr{H}}_{(\sigma, s+r)}$ into $\widetilde{\mathscr{H}}_{(\sigma, s)}$ for any real σ, s.

Proof. Let $\phi \in \mathscr{D}\left(R_{t}\right)$ be given. It suffices to show that there exists a constant C such that

$$
\|\phi(t) A(t) u\|_{(\sigma, s)} \leqq C\|\phi(t) u\|_{(\sigma, s+r)}
$$

for every $u \in \widetilde{\mathscr{H}}_{(\sigma, s)}$, whence if we put $A_{1}(t)=\phi(t) A(t)$, we have only to show that

$$
\left\|A_{1}(t) u\right\|_{(\sigma, s)} \leqq C\|u\|_{(\sigma, s+r)}
$$

for any $u \in \mathscr{D}\left(R_{n+1}\right), C$ being a constant.
Let $\sigma=0$. Then we have

$$
\begin{aligned}
\left\|A_{1}(t) u\right\|_{(\sigma, s)}^{2} & =\int\left\|A_{1}(t) u(t, \cdot)\right\|_{(s)}^{2} d t \\
& \leqq \sup _{t}\left\|A_{1}(t)\right\|_{(s+r \rightarrow s)}^{2} \int_{-\infty}^{\infty}\|u(t, \cdot)\|_{(s+r)}^{2} d t
\end{aligned}
$$

Let $\sigma=m$, a positive integer. It is well known that, for every s, the norm $\|u\|_{(m, s)}$ is equivalent to the norm

$$
\left(\int\|u(t, \cdot)\|_{(s+m)}^{2} d t+\cdots+\int\left\|D_{t}^{m} u(t, \cdot)\right\|_{(s)}^{2} d t\right)^{1 / 2}
$$

Since $D_{t}^{j}\left(A_{1}(t) u\right)=\sum_{k=0}^{j}\binom{j}{k}\left(D_{t}^{k} A_{1}(t)\right) D_{t}^{j-k} u$ and

$$
\left.\left\|\left(D_{t}^{k} A_{1}(t)\right) D_{t}^{j-k} u\right\|_{(m+s-j)}^{2} \leqq \sup _{t}\left\|D_{t}^{k} A_{1}(t)\right\|_{(m+s+r-j \rightarrow m+s-j)}^{2}\right)\left\|D_{t}^{j-k} u\right\|_{(m+s+r-j)}
$$

we see that $\left\|A_{1}(t) u\right\|_{(m, s)} \leqq C_{2}\|u\|_{(m, s+r)}$ with a constant C_{2}. $\left\{\mathscr{H}_{(\sigma, s+r)}\right\}_{0 \leqq \sigma \leqq m}$ forms a Hilbert scale and $A_{1}(t)$ is continuous of $\mathscr{H}_{(0, s+r)}$ into $\mathscr{H}_{(0, s)}$ and of $\mathscr{H}_{(m, s+r)}$ into $\mathscr{H}_{(m, s)}$. In virtue of the interpolation theorem we can conclude that $A_{1}(t)$ is continuous of $\mathscr{H}_{(\sigma, s+r)}$ into $\mathscr{H}_{(\sigma, s)}$ for $0 \leqq \sigma \leqq m$, where m can be chosen arbitrarily large. Similarly, $A_{1}^{*}(t)$ is continuous of $\mathscr{H}_{(\sigma, s+r)}$ into $\mathscr{H}_{(\sigma, s)}$ for $\sigma \geqq 0$, then its adjoint $A_{1}(t)=A_{1}^{* *}(t)$ is continuous of $\mathscr{H}_{(-\sigma,-s)}$ into $\mathscr{H}_{(-\sigma,-s-r)}$. Thus the proof is complete.

4. Pseudo-commutativity for Calder6n's singular integral operators

For any real $\beta \geqq 0, B_{\beta}\left(R_{n}\right)$ will stand for the class of bounded functions f on R_{n} such that the distributional derivatives $D^{\alpha} f, 0 \leqq|\alpha| \leqq[\beta]$, coincide with bounded functions and such that $D^{\alpha} f,|\alpha|=[\beta]$, satisfy a uniform Hölder condition of order $\beta-[\beta]$. The norm $\|f\|_{\beta}$ of a function f in $B_{\beta}\left(R_{n}\right)$ will be by definition the least upper bound for the absolute value of its derivatives of order $\leqq[\beta]$ and the Hölder constants of the derivatives of order $[\beta]$.

Let us consider a function $h(x, \xi), x \in R_{n}, \xi \in \Xi_{n}$, with the following properties: for any fixed $x \in R_{n}, h(x, \xi)$ is homogeneous of degree 0 in $\xi, \epsilon C^{\infty}\left(\Xi_{n}\right)$ $\{0\}$) and for each $\xi,|\xi|=1, h(x, \xi)$ and its derivatives with respect to coordinates of ξ of orders not exceeding $2 n$ are functions of x belonging to $B_{\beta}\left(R_{n}\right)$, with bounded norms. The least upper bound of these norms is called the norm of h and denoted by $\|h\|_{\beta}$, that is,

$$
\|h\|_{\beta}=\max _{0 \leqq|\alpha| \leqq 2 n}\left\{\sup _{|\xi|=1}\left\|\left(\frac{\partial}{\partial \xi}\right)^{\alpha} h(x, \xi)\right\|_{\beta}\right\} .
$$

Let $a_{0}(x)$ be the mean value of $h(x, \xi)$ on $|\xi|=1$ and $k(x, z)$ is the inverse Fourier transform of $h(x, \xi)-a_{0}(x)$ with respect to ξ. An operator $f \rightarrow K f$ of the form

$$
K f=a_{0}(x) f(x)+\lim _{\varepsilon \rightarrow 0} \int_{|x-y|>\varepsilon} k(x, x-y) f(y) d y
$$

is said to be a B_{β} singular integral operator. We will call h the symbol of K and write $h=\sigma(K)$. We define the norm $\|K\|_{\beta}$ by $\|K\|_{\beta}=\|h\|_{\beta}$ where $h(x, \xi)=$ $a_{0}(x)+\hat{k}(x, \xi)$,

In the case where $n \geqq 2$, let $\left\{Y_{l m}\right\}, m=0,1, \ldots, l=1,2, \ldots, d(m)$, be a complete orthogonal system of spherical harmonics of degree m, where $d(m)=$ $g(m)-g(m-2), g(m)=\binom{m+n-1}{n-1}$ and we set $g(-1)=g(-2)=0$. Then we can expand the B_{β} singular integral operator K in the series

$$
(K f)(x)=a_{0}(x) f(x)+\sum_{m=1}^{\infty} \sum_{l=1}^{d(m)} a_{l m}(x)\left(G_{l m} f\right)(x)
$$

where $G_{l m}$ are the Giraud operators

$$
\left(G_{l m} f\right)(x)=\lim _{\varepsilon \downarrow 0} \int_{|x-y|>\varepsilon}|x-y|^{-n} Y_{l m}(x-y) f(y) d y
$$

and we have the estimates $\left\|a_{0}(x)\right\|_{\beta} \leqq C,\left\|a_{l m}\right\|_{\beta} \leqq C m^{-(3 / 2) n}\|K\|_{\beta},\left\|G_{l m} f\right\|_{(s)} \leqq$ $C m^{(n-2) / 2} \gamma_{m}\|f\|_{(s)}$ with $\gamma_{m}=-i^{m}(2 \sqrt{\pi})^{-n} \Gamma(m)\left(\Gamma\left(\frac{m+n}{2}\right)\right)^{-1}$ and $d(m) \leqq C m^{n-2}$ ([3], [15]).

For $n=1$ we have the expression

$$
(K f)(x)=a_{0}(x) f(x)+a_{1}(x) \lim _{\varepsilon \searrow 0} \int_{|x-y|>\varepsilon} \frac{f(y)}{x-y} d y,
$$

where $a_{0}, a_{1} \in B_{\beta}$.
Let Λ and S be operators with symbols $|\xi|$ and $\left(1+|\xi|^{2}\right)^{1 / 2}$ respectively. Then, for any B_{∞} singular integral operator K, the product $K S^{\gamma}$ is an operator belonging to the class OP_{γ}. In this section we shall study the order of the operator $S^{\gamma} K-K S^{\gamma}$ to give a refinement of Calderón's result [3, p. 72].

Now, the operator S^{α} can be written in the form

$$
S^{\alpha}(x)=G_{-\alpha} * x, \quad x \in\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}
$$

where

$$
G_{\alpha}(x)=\left\{\begin{array}{l}
C_{\alpha} \text { P.f. }\left[|x|^{(\alpha-n) / 2} K_{(n-\alpha) / 2}(|x|)\right] \quad \text { for } \alpha \neq 0,-2,-4, \cdots, \\
(1-\Delta)^{k} \quad \text { for } \alpha=-2 k, k=0,1,2, \cdots,
\end{array}\right.
$$

where $C_{\alpha}=\left\{2^{(n+\alpha-2) / 2} \pi^{n / 2} \Gamma\left(\frac{\alpha}{2}\right)\right\}^{-1}$ and the modified Bessel function of the kind $K_{\frac{n-\alpha}{2}}(|x|)$, which is analytic except for the origin [1, p. 415; 18, p. 47]. third G_{α} belongs to the space $\mathscr{D}_{L^{2}}^{\prime}$ and $\alpha \rightarrow G_{\alpha}$ is analytic [18, p.47]. If $\alpha<0$ then $|x|{ }^{\beta} G_{\alpha}(x) \in L^{1}\left(R_{n}\right)$ for any β with $|\alpha|<\beta$.

We shall first show the following proposition, where we have used the notation [b] to denote the multiplication $x \rightarrow b x$.

Proposition 15. Let $b \in B_{\beta}\left(R_{n}\right), \beta>1$. Then, for any γ such that $-\beta+1$ $<\gamma<\beta$, we have with a constant $C(\beta, \gamma)$ such that

$$
\left\|\left(S^{\gamma}[b] S^{1-\gamma}-[b] S\right) x\right\|_{(0)} \leqq C(\beta, \gamma)\|b\|_{\beta}\|x\|_{(0)}, \quad x \in C_{0}^{\infty}\left(R_{n}\right)
$$

Proof. (a) We first assume that $\gamma \geqq 1$. Put $A_{\gamma}=S^{\gamma}[b]-[b] S^{\gamma}$. If $\gamma=2 k, k$ a positive integer, then we have for any $\chi \in C_{0}^{\infty}\left(R_{n}\right)$

$$
A_{\gamma} \chi=A_{2_{k}} \chi=(1-\Delta)^{k}(b \chi)-b(1-\Delta)^{k} \chi
$$

$$
=\sum_{\substack{|p|+|q| \leq 2 k \\ q<2 k}} C_{p q} D_{x}^{p} b D_{x}^{q} x, C_{p q} \text { being constants, }
$$

whence we obtain with a constant C_{1}

$$
\left\|A_{2 k} x\right\|_{(0)} \leqq C_{1}\|b\|_{\beta}\|x\|_{(2 k-1)}=C_{1}\|b\|_{\beta}\|x\|_{(\gamma-1)}
$$

which, by continuity, remains valid for any $\chi \in\left(\mathscr{D}_{L^{2}}\right)_{x}$. From this it follows that

$$
\left\|A_{\gamma} S^{1-\gamma} \chi\right\|_{(0)} \leqq C_{1}\|b\|_{\beta}\left\|S^{1-\gamma} \chi\right\|_{(\gamma-1)}=C_{1}\|b\|_{\beta}\|x\|_{(0)}
$$

If γ is not an even positive integer, then we can write

$$
A_{\gamma}(x)=\int G_{-\gamma}(x-y)(b(y)-b(x)) d y
$$

where

$$
\begin{gathered}
b(y)-b(x)=\sum_{1 \leqq|p| \leqq[\beta]-1} \frac{i^{|p|}}{p!}\left(D^{p} b\right)(x)(y-x)^{p}+B_{1}(x, y)+B_{2}(x, y), \\
B_{1}=\sum_{|q|=[\beta]} \frac{i^{|q|}[\beta]}{p!}(y-x)^{q} \int_{0}^{1}(1-t)^{[\beta]-1}\left(\left(D^{q} b\right)(x+t(y-x))-\left(D^{q} b\right)(x)\right) d t, \\
B_{2}=\sum_{|q|=[\beta]} \frac{i^{|q|}[\beta]}{q!}(y-x)^{q}\left(D^{q} b\right)(x) \int_{0}^{1}(1-t)^{[\beta]-1} d t .
\end{gathered}
$$

In view of the inequalities

$$
\begin{aligned}
\left|\left((-i x)^{p} G_{-\gamma}(x)\right)^{\wedge}\right| & =\left|\left(i D_{\xi}\right)^{p}\left(1+|\xi|^{2}\right)^{\gamma / 2}\right| \\
& \leqq C_{2}\left(1+|\xi|^{2}\right)^{(\gamma-|p|) / 2} \leqq C_{2}\left(1+|\xi|^{2}\right)^{(\gamma-1) / 2}
\end{aligned}
$$

we obtain
(11) $\left\|\left(D^{p} b\right)(x) \int(y-x)^{p} G_{-\gamma}(x-y) x(y) d y\right\|_{(0)} \leqq C_{2}\|b\|_{\beta}\|x\|_{(r-1)}$.

In a similar way we have with a constant C_{3}

$$
\begin{equation*}
\left\|\int G_{-\gamma}(x-y) B_{2}(x, y) x(y) d y\right\|_{(0)} \leqq C_{3}\|b\|_{\beta}\|x\|_{(\gamma-1)} \tag{12}
\end{equation*}
$$

By assumption $1 \leqq \gamma<\beta$. Hence $|x|^{\beta} G_{-\gamma}(x) \in L^{1}\left(R_{n}\right)$. Then we have with constants C_{4}, C_{5}

$$
\begin{align*}
& \left\|\int G_{-\gamma}(x-y) B_{1}(x, y) x(y) d y\right\|_{(0)} \tag{13}\\
& \quad \leqq C_{4}\|b\|_{\beta}\left\|\int|y-x|^{\beta}\left|G_{-\gamma}(x-y)\right||x(y)| d y\right\|_{(0)}
\end{align*}
$$

$$
\leqq C_{5}\|b\|_{\beta}\|x\|_{(0)} \leqq C_{5}\|b\|_{\beta}\|x\|_{(\gamma-1)} .
$$

From these estimates (11), (12) and (13) we have with a constant $C=$ $C(\beta, \gamma)$

$$
\left\|A_{\gamma} S^{1-\gamma} \chi\right\|_{(0)} \leqq C\|b\|_{\beta}\left\|S^{1-\gamma} x\right\|_{(\gamma-1)}=C\|b\|_{\beta}\|x\|_{(0)}
$$

(b) Next, let $\gamma \leqq 0$. Then $1 \leqq 1-\gamma<\beta$. From (a) we see that $S^{1-\gamma}[b] S^{\gamma}$ $-[b] S$ is a continuous map of L^{2} into itself. Thus its dual operator $S^{\gamma}[\bar{b}] S^{1-\gamma}-S[\bar{b}]$ is also continuous with the same norm. With the aid of the inequality $\|(S[b]-[b] S) x\|_{(0)} \leqq C(\beta, 1)\|b\|_{\beta}\|x\|_{(0)}$, we obtain

$$
\left\|\left(S^{\gamma}[b] S^{1-\gamma}-[b] S\right) x\right\|_{(0)} \leqq(C(\beta, 1-\gamma)+C(\beta, 1))\|b\|_{\beta}\|x\|_{(0)} .
$$

(c) Finally, consider the case where $0<r<1$. Let k be a positive integer such that $1+\frac{2 \gamma}{k}<\beta$ and put $\varepsilon=\frac{\gamma}{k}$. From (a) and (b) it follows that $S^{1+\varepsilon}[b] S^{-\varepsilon}-S^{1+2 \varepsilon}[b] S^{-2 \varepsilon}$ and $S^{-\varepsilon}[b] S^{1+\varepsilon}-[b] S$ are the continuous maps of L^{2} into itself, whence it follows that the latter is a continuous map of $\mathscr{H}_{(1+2 \varepsilon)}$ into itself. In virtue of the interpolation theorem it is immediate that $S^{-\gamma}[b] S^{1+\gamma}-[b] S$ is continuous of $\mathscr{H}_{(\delta)}$ into itself for δ with $0 \leqq \delta \leqq 1+2 \varepsilon$. Thus, if we let $\delta=j \varepsilon, j=1,2, \cdots, k$, it results that $S^{(j-1) \varepsilon}[b] S^{1-(j-1) \varepsilon}-S^{j \varepsilon}[b] S^{1-j \varepsilon}$ is a continuous map of L^{2} into itself with norm $\leqq C_{j}(\beta, \gamma)\|b\|_{\beta}$, which, combined with the equation: $S^{\gamma}[b] S^{1-\gamma}-[b] S=-\sum_{j=1}^{k}\left(S^{(j-1) \varepsilon}[b] S^{1-(j-1) \varepsilon}-\right.$ $\left.S^{j \varepsilon}[b] S^{1-j \varepsilon}\right)$, yields that

$$
\left\|\left(S^{\gamma}[b] S^{1-\gamma}-[b] S\right) x\right\|_{(0)} \leqq C(\beta, \gamma)\|b\|_{\beta}\|x\|_{(0)}
$$

This ends the proof.
Corollary 2. Let $b \in B_{\beta}\left(R_{n}\right), \beta>1$. Then, for any γ, such that $-\beta+$ $1<\gamma+s<\beta$ and $-\beta+1<s<\beta$, we have with a constant $C(\beta, \gamma, s)$

$$
\left\|\left(S^{\gamma}[b]-[b] S^{\gamma}\right) x\right\|_{(s)} \leqq C(\beta, \gamma, s)\|b\|_{\beta}\|x\|_{(\gamma+s-1)}, \quad x \in C_{0}^{\infty}\left(R_{n}\right)
$$

Proof. Putting $\chi_{1}=S^{\gamma+s-1} x$, we have $\left\|x_{1}\right\|_{(0)}=\|x\|_{(\gamma+s-1)}$ and

$$
\begin{aligned}
& \left\|\left(S^{\gamma}[b]-[b] S^{\gamma}\right) x\right\|_{(s)} \\
& \quad=\left(S^{s+\gamma}[b] S^{1-\gamma-s}-[b] S\right) x_{1}-\left(S^{s}[b] S^{1-s}-[b] S\right) x_{1} \|_{(0)} \\
& \quad \leqq C(\beta, \gamma+s)\|b\|_{\beta}\left\|x_{1}\right\|_{(0)}+C(\beta, s)\|b\|_{\beta}\left\|x_{1}\right\|_{(0)} \\
& \quad=C(\beta, \gamma, s)\|b\|_{\beta}\|x\|_{(\gamma+s-1)}
\end{aligned}
$$

where $C(\beta, \gamma, x)=C(\beta, \gamma+s)+C(\beta, s)$, which completes the proof.
Theorem 4. Let $\beta>1$ and K be a B_{β} singular integral operator in the sense of Calderón. Then, for any γ, s such that $-\beta+1<\gamma+s<\beta$ and $-\beta+1$
$<s<\beta$, we have with a constant $C(\beta, \gamma, s)$

$$
\left\|\left(S^{\gamma} K-K S^{\gamma}\right) x\right\|_{(s)} \leqq C(\beta, \gamma, s)\|K\|_{\beta}\|x\|_{(\gamma+s-1)}, \quad \chi \in C_{0}^{\infty}\left(R_{n}\right)
$$

Proof. Let $n \geqq 2$. For any $x \in C_{0}^{\infty}\left(R_{n}\right)$ we have the expansion $K x=$ $a_{0} \chi+\sum_{m=1}^{\infty} \sum_{l=1}^{d(m)} a_{l m} G_{l m} \chi$ in $\mathscr{H}_{(s+\gamma)}\left(R_{n}\right)$. Since S^{γ} is a continuous map of $\mathscr{H}_{(s+\gamma)}\left(R_{n}\right)$ into $\mathscr{H}_{(s)}\left(R_{n}\right)$, the series

$$
S^{\gamma} K \chi=S^{\gamma} a_{0} \chi+\sum_{m=1}^{\infty} \sum_{l=1}^{d(m)} S^{\gamma} a_{l m} G_{l m} \chi
$$

is convergent in $\mathscr{H}_{(s)}\left(R_{n}\right)$. On the other hand, the series

$$
K S^{\gamma} \chi=a_{0} S^{\gamma} \chi+\sum_{m=1}^{\infty} \sum_{l=1}^{d(m)} a_{l m} G_{l m} S^{\gamma} \chi
$$

is convergent in $\mathscr{H}_{(s)}\left(R_{n}\right)$.
With the aid of Corollary 2 we have

$$
\begin{aligned}
\left\|S^{\gamma} a_{l m} G_{l m}-a_{l m} G_{l m} S^{\gamma} \chi\right\|_{(s)} & =\left\|\left(S^{\gamma} a_{l m}-a_{l m} S^{\gamma}\right) G_{l m} x\right\|_{(s)} \\
& \leqq C(\beta, \gamma, s)\left\|a_{l m}\right\|_{\beta}\left\|G_{l m} x\right\|_{(s+\gamma-1)} \\
& \leqq C_{1}(\beta, \gamma, s) m^{-(3 / 2) n}\|K\|_{\beta} m^{(n-2) / 2}\|x\|_{(s+\gamma-1)} \\
& =C_{1}(\beta, \gamma, s) m^{-n-1}\|K\|_{\beta}\|x\|_{(s+\gamma-1)}
\end{aligned}
$$

Since $d(m) \leqq C m^{n-2}, C$ being a constant, we have

$$
\begin{aligned}
\left\|K S^{\gamma} \chi-S^{\gamma} K x\right\|_{(s)} & \leqq C_{2}(\beta, \gamma, s)\|K\|_{\beta}\|x\|_{(s+\gamma-1)}\left(1+\sum_{m=1}^{\infty} m^{-3}\right) \\
& =C_{3}(\beta, \gamma, s)\|K\|_{\beta}\|x\|_{(s+\gamma-1)}
\end{aligned}
$$

where C_{1}, C_{2} and C_{3} are constants independent of χ and K.
In the case where $n=1$, we have the expression $K x=a_{0}(x) x(x)+a_{1}(x) \lim _{\varepsilon \downarrow 0}$ $\int_{|x-y|>\varepsilon} \frac{x(y)}{x-y} d y$. Since the Hilbert transform is a continuous map of $\mathscr{H}_{(s)}\left(R_{n}\right)$ into itself for any s, we obtain the estimate

$$
\left\|\left(S^{\gamma} K-K S^{\gamma}\right) x\right\|_{(s)}=C(\beta, \gamma, s)\|K\|_{\beta}\|x\|_{(\gamma+s-1)}, \quad \chi \in C_{0}^{\infty}\left(R_{n}\right)
$$

Thus the proof is complete.

5. Fine Cauchy problem for a system of pseudo-differential operators

This final section will be devoted to some general investigations about the fine Cauchy problem for a system of pseudo-differential operators. As
for differential operators, by one of the present authors [9], the problem was formulated and investigated from a distribution-theoretic view-point, where the notions such as distributional boundary value and canonical extension over $t=0$ were proved to be fundamental. Our present aim is to generalize the results obtained there to a system of pseudo-differential operators.

For given $\vec{f}=\left(f_{1}, \ldots, f_{l}\right)$ with $f_{j} \in \mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ and $\vec{\alpha}=\left(\vec{\alpha}_{0}, \cdots, \vec{\alpha}_{m-1}\right), \vec{\alpha}_{j}=$ ($\alpha_{j 1}, \ldots, \alpha_{j l}$) with $\alpha_{j k} \in\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}$ we shall consider the Cauchy problem for a system of pseudo-differential operators in the unknown vector distribution $\vec{u}=\left(u_{1}, \cdots, u_{l}\right)$ with $u_{j} \in \mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$:

$$
\left\{\begin{array}{l}
P \vec{u}=D_{t}^{m} \vec{u}+\sum_{j=1}^{m} \vec{A}_{j}(t) D_{t}^{m-j} \vec{u}=\vec{f} \quad \text { in } R_{n+1} \tag{14}\\
\left(\vec{u}(0, \cdot),\left(D_{t} \vec{u}\right)(0, \cdot), \cdots,\left(D_{t}^{m-1} \vec{u}\right)(0, \cdot)\right)=\vec{\alpha}
\end{array}\right.
$$

where $\vec{A}_{i}(t)$ are $l \times l$ matrices of operators $A_{i, j_{k}}(t) \epsilon \bigoplus_{(r)}^{\infty}$ and $\vec{u}(0, \cdot)=\left(u_{1}(0, \cdot)\right.$, $\left.\cdots, u_{l}(0, \cdot)\right), u_{j}(0, \cdot)$ being the section of u_{j} for $t=0$.

Substituting $u_{i, k}=D_{t}^{k-1} u_{i}, i=1,2, \cdots, l, k=1,2, \cdots, m-1$, we obtain the system:

$$
\left\{\begin{array}{l}
D_{t} u_{j, 1}-u_{j, 2}=0 \\
\vdots \\
D_{t} u_{j, m-1}-u_{j, m}=0 \\
D_{t} u_{j, m}+\sum_{i=1}^{m} \sum_{k=1}^{l} A_{i, j k}(t) u_{k, m-i+1}=f_{j}, \quad j=1,2, \cdots, l
\end{array}\right.
$$

with the initial conditions

$$
\left(u_{j, 1}(0, \cdot), \cdots, u_{j, m}(0, \cdot)\right)=\left(\alpha_{j, 0}, \cdots, \alpha_{j, m-1}\right), \quad j=1,2, \cdots, l
$$

which is a special case of the Cauchy problem for a pseudo-differential system written in matrix notation

$$
\left\{\begin{array}{l}
D_{t} \vec{u}+\vec{A}(t) \vec{u}=\vec{f} \quad \text { in } R_{n+1} \tag{15}\\
\vec{u}(0, \cdot)=\vec{\alpha}
\end{array}\right.
$$

where $\vec{u}=\left(u_{1}, \cdots, u_{N}\right), \vec{f}=\left(f_{1}, \cdots, f_{N}\right), \vec{\alpha}=\left(\alpha_{1}, \cdots, \alpha_{N}\right), N=l m$, and $u_{j}, f_{j} \epsilon$ $\mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ and $\alpha_{j} \epsilon\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}$. We shall write $\vec{u} \in \mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ and we shall say that \vec{u} has the section for $t=0$ if this is a case for each component u_{j}. The
 understood in a similar way.

Put $Y_{l}=\frac{1}{(l-1)!} t_{+}^{l-1}, l$ being a non-negative integer, where we set $Y_{0}=\delta_{t}$. Note that Y_{1} is the Heaviside function Y. Let $\vec{u} \in\left(\mathscr{D}_{t}^{\prime}\right)_{+}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$. Then so does $Y * \vec{u}$ and we have

$$
\begin{equation*}
Y_{k} *(\vec{A}(t) \vec{u})=\sum_{j=0}^{k}\binom{k}{j}(-i)^{j} Y_{j} *\left(D_{t}^{j} \vec{A}(t)\left(Y_{k} * \vec{u}\right)\right) . \tag{16}
\end{equation*}
$$

Theorem 5. For given $\vec{f}=\left(f_{1}, \cdots, f_{N}\right) \in \mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ and $\vec{\alpha}=\left(\vec{\alpha}_{1}, \ldots, \alpha_{N}\right) \epsilon$ $\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}$, suppose that there exists a solution $\vec{u}=\left(u_{1}, \cdots, u_{N}\right) \in \mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ for the Cauchy problem (15), then \vec{f} has no mass on $t=0$ and the restrictions $\vec{f}_{1}=$ $\vec{f}\left|R_{n+1}^{+}, \vec{f}_{2}=\vec{f}\right| R_{n+1}^{-}$have the $\mathscr{D}_{L^{-}}^{\prime-c a n o n i c a l ~ e x t e n s i o n s ~} \vec{f}_{1 \sim}, \vec{f}_{2}^{\sim}$ and $\vec{f}=\vec{f}_{1 \sim}+\vec{f}_{2}^{\sim}$. The $\mathscr{D}_{L^{2}}^{\prime}$-canonical extensions $\vec{u}_{1 \sim} \sim, \vec{u}_{2}^{\sim}$ of $\vec{u}_{1}=\vec{u}\left|R_{n+1}^{+}, \vec{u}_{2}=\vec{u}\right| R_{n+1}^{-}$are solutions of equations:

$$
\begin{align*}
& D_{t}\left(\vec{u}_{1 \sim}\right)+\vec{A}(t) \vec{u}_{1 \sim}=\vec{f}_{1 \sim}-i \delta \otimes \vec{\alpha} \tag{17}\\
& D_{t}\left(\vec{u}_{2}^{\tilde{2}}\right)+\vec{A}(t) \vec{u}_{2}^{\sim}=\vec{f}_{2}^{\sim}+i \delta \otimes \vec{\alpha} . \tag{18}
\end{align*}
$$

Conversely, if $\vec{v}_{1} \in\left(\mathscr{D}_{t}^{\prime}\right)_{+}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ and $\vec{v}_{2} \epsilon\left(\mathscr{D}_{t}^{\prime}\right)_{-}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ are solutions of (17), (18) respectively, then $\vec{u}=\vec{v}_{1}+\vec{v}_{2} \in \mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{\left.\left.L^{2}\right)_{x}\right)}\right.\right.$ is a solution for the Cauchy problem (15).

Proof. Let $\vec{u} \in \mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ be a solution for the Cauchy problem (15).
 $=1, \lim _{\varepsilon \downarrow 0} \phi_{\varepsilon} \vec{u}=\delta \otimes \vec{\alpha}, \lim _{\varepsilon \downarrow 0} \check{\phi}_{\varepsilon} \vec{u}=-\delta \otimes \vec{\alpha}$ and, owing to Proposition $5, \lim _{\varepsilon \downarrow 0} \rho_{(\varepsilon)} \vec{u}_{1}=\vec{u}_{1 \sim}$ and $\lim _{\varepsilon \downarrow 0} \check{\rho}_{(\varepsilon)} \vec{u}_{2}=\vec{u}_{2}^{\sim}$ exist. From the equations:

$$
\begin{aligned}
& \rho_{(\varepsilon)} \vec{f}=D_{t}\left(\rho_{(\varepsilon)} \vec{u}\right)+i \phi_{\varepsilon} \vec{u}+\vec{A}(t) \rho_{(\varepsilon)} \vec{u}, \\
& \check{\rho}_{(\varepsilon)} f=D_{t}\left(\check{\rho}_{(\varepsilon)} \vec{u}\right)-i \phi_{\varepsilon} \vec{u}+\vec{A}(t) \check{\rho}_{(\varepsilon)} \vec{u},
\end{aligned}
$$

we obtain

$$
\begin{aligned}
& \vec{f}_{1 \sim}=D_{t}\left(\vec{u}_{1 \sim}\right)+i \delta \otimes \vec{\alpha}+\vec{A}(t)\left(\vec{u}_{1 \sim}\right), \\
& \vec{f}_{2}^{\sim}=D_{t}\left(\vec{u}_{2}^{\sim}\right)-i \delta \otimes \vec{\alpha}+\vec{A}(t)\left(\vec{u}_{2}^{\sim}\right)
\end{aligned}
$$

and therefore $\vec{f}_{1 \sim}+\vec{f}_{2}^{\sim}=D_{t}\left(\vec{u}_{1 \sim}+\vec{u}_{2}^{\sim}\right)+A(t)\left(\vec{u}_{1 \sim}+\vec{u}_{2}^{\sim}\right)$. Since \vec{u} has the section for $t=0$, \vec{u} has no mass on $t=0$ and $\vec{u}=\vec{u}_{1 \sim}+\vec{u}_{2}^{\sim}$ and therefore $\vec{f}=\vec{f}_{1 \sim}+\vec{f}_{2}^{\tilde{r}}$ and \vec{f} has no mass on $t=0$.

Conversely, let \vec{v}_{1}, \vec{v}_{2} be solutions of (17), (18). Then for the interval $(0,1)$ there exist non-negative integers k, m and a $\mathscr{D}_{L^{2}}^{\prime}$-valued continuous function $\vec{g}(t)$ of t with support $C[0,1]$ such that $\vec{v}_{1}=D_{t}^{k} \vec{g}(t)$ in $(0,1) \times R_{n}$. Then, by the equation (16), we have

$$
\frac{1}{i} Y_{k-1} * \vec{v}_{1}=-\sum_{j=1}^{k}\binom{k}{j}(-i)^{j} Y_{j} *\left(D_{t}^{j} \vec{A}(t)\left(Y_{k} \vec{v} *_{1}\right)\right)+Y_{k} * \vec{f}_{1 \sim}+i Y_{k} \otimes \vec{\alpha} .
$$

By Proposition 6, $Y_{k} * \vec{f}_{1 \sim}$ is $\mathscr{D}_{L^{2-}}^{\prime}$ canonical and $\mathscr{D}_{L^{2-}}^{\prime-\lim _{t \downarrow 0}}\left(Y_{k} * \vec{f}_{1 \sim}\right)=0$ for $k \geqq 1$. Evidently $Y_{k} \otimes \alpha$ is $\mathscr{D}_{L^{2}}^{\prime}$-canonical for $k \geqq 1$ and $\lim _{t \downarrow 0}\left(Y_{k} \otimes \vec{\alpha}\right)=0$ for $\mathrm{k} \geqq 2$ and $\lim _{t \downarrow 0}(Y \otimes \vec{\alpha})=\vec{\alpha}$. From the above equation we see that $Y_{k-1} * \vec{v}_{1}$ is also $\mathscr{D}_{L^{2-}}^{\prime}$
canonical. Repeating this procedure we conclude that $\mathscr{D}_{L^{2}}^{\prime 2} \lim _{t \downarrow 0}\left(\vec{v}_{1} \mid R_{n+1}^{+}\right)=\vec{\alpha}$. Since \vec{f} has no mass on $t=0$, so does $\vec{u}=\vec{v}_{1}+\vec{v}_{2}$ and therefore \vec{u} has the section $\vec{\alpha}$ for $t=0$ and $D_{t} \vec{u}+\vec{A}(t) \vec{u}=\vec{f}$.

As an immediate consequence of the preceding theorem we have an analogue to Theorem 1 in [9, p. 18]:

Cororary 3. For any given $\vec{f} \in \mathscr{D}^{\prime}\left(R_{t}^{+}\right)\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ and $\vec{\alpha} \in\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}$, if there exists a solution $\vec{u} \in \mathscr{D}^{\prime}\left(R_{t}^{+}\right)\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ of the Cauchy problem:

$$
\left\{\begin{array}{l}
D_{t} \vec{u}+\vec{A}(t) \vec{u}=\vec{f} \quad \text { in } R_{n+1}^{+} \tag{19}\\
\mathscr{D}_{L^{2-}}^{\prime} \lim _{t \downarrow 0} \vec{u}=\vec{\alpha},
\end{array}\right.
$$

then \vec{f} has the $\mathscr{D}_{L^{2}}^{\prime}$-canonical extension \vec{f}_{\sim} and \vec{u}_{\sim} is a solution of the equation:

$$
\begin{equation*}
D_{t}\left(\vec{u}_{\sim}\right)+\vec{A}(t) \vec{u}_{\sim}=\vec{f}_{\sim}-i \delta \otimes \vec{\alpha} . \tag{20}
\end{equation*}
$$

Conversely, if $\vec{v} \in\left(\mathscr{D}_{t}^{\prime}\right)_{+}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ is a solution of (20), then $\vec{u}=\vec{v} \mid R_{n+1}^{+} \epsilon$ $\mathscr{D}^{\prime}\left(R_{t}^{+}\right)\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ is a solution for the Cauchy problem (19) and $\vec{u}_{\sim}=\vec{v}$.

Remark. For given $\vec{f}=\left(f_{1}, \cdots, f_{l}\right) \in \mathscr{D}^{\prime}\left(R_{t}^{+}\right)\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ and $\vec{a}=\left(\vec{\alpha}_{0}, \cdots, \vec{\alpha}_{m-1}\right) \epsilon$ $\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}$, if there exists a solution $\vec{u}=\left(u_{1}, \cdots, u_{l}\right) \in \mathscr{D}^{\prime}\left(R_{t}^{+}\right)\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ of the Cauchy problem:

$$
\left\{\begin{array}{l}
P \vec{u}=\vec{f} \quad \text { in } R_{n+1}^{+}, \tag{21}\\
\mathscr{D}_{L^{2}-\lim _{t \downarrow 0}} \vec{u}=\vec{\alpha},
\end{array}\right.
$$

$$
\begin{equation*}
P\left(\vec{u}_{\sim}\right)=\vec{f}_{\sim}+\sum_{k=0}^{m-1} D_{t}^{k} \delta \otimes \vec{r}_{k}(0) \tag{22}
\end{equation*}
$$

where $\vec{\gamma}_{k}(t)=-i \sum_{j=k+1}^{m} \sum_{l=1}^{j-k}(-1)^{j-l-k}(j-l) D_{t}^{j-l-k} \vec{A}_{m-j}(t) \vec{\alpha}_{l-1}$ and \vec{A}_{0} is the unit matrix [11, p. 82]. We note that $\vec{\gamma}_{m-k-1}(t)$ may be rewritten in the form

$$
\vec{\gamma}_{m-k-1}(t)=-i \vec{\alpha}_{k}+\sum_{j=0}^{k-1} \vec{B}_{j}(t) \vec{\alpha}_{j},
$$

where $\vec{B}_{j}(t)$ is a linear combination of derivative of \vec{A}_{j} of order up to $k-1$.
Conversely, suppose $\vec{v} \in\left(\mathscr{D}_{t}^{\prime}\right)_{+}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ is a solution of the equation (22): $P \vec{v}=\vec{f}_{\sim}+\sum_{k=0}^{m-1} D_{t}^{k} \delta \otimes \vec{r}_{k}(0)$. Then, by substitutions: $\vec{v}_{1}=\vec{v}, \vec{v}_{2}=D_{t} \vec{v}_{1}+i \delta \otimes \vec{\alpha}_{0}, \cdots$, $\vec{v}_{m}=D_{t} \vec{v}_{m-1}+i \delta \otimes \vec{\alpha}_{m-2}$, we get the equation written in the form:

$$
\left\{\begin{array}{c}
D_{t} \vec{v}_{1}=\vec{v}_{2}-i \delta \otimes \vec{\alpha}_{0}, \\
\quad \vdots \\
D_{t} \vec{v}_{m-1}=\vec{v}_{m}-i \delta \otimes \vec{\alpha}_{m-2} \\
D_{t} \vec{v}_{m}=-\sum_{j=1}^{m} \vec{A}_{j}(t) D_{t}^{m-j} \vec{v}-i \delta \otimes \vec{\alpha}_{m-1}+\vec{f} .
\end{array}\right.
$$

Applying Corollary 3 , we see that the restriction $\vec{u}=\left(u_{1}, \cdots, u_{m}\right)=\left(v_{1}, \cdots\right.$, $\left.v_{m}\right) \mid R_{n+1}^{+}$is a solution for the Cauchy problem (21).

In the same way as in the proof of Theorem 5, we shall show the following

Proposition 16. Let $\vec{f} \in \mathscr{D}^{\prime}\left(R_{t}^{+}\right)\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ have the $\mathscr{D}_{L^{2}}^{\prime}$-canonical extension \vec{f}_{\sim}. If $\vec{u} \in \mathscr{D}_{t}^{\prime}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ is a solution of

$$
D_{t} \vec{u}+\vec{A}(t) \vec{u}=\vec{f} \quad \text { in } R_{n+1}^{+},
$$

then $\vec{u} \mid R_{n+1}^{+}$has the $\mathscr{D}_{L^{2}}^{\prime}$-boundary value.
Proof. We can write $\vec{u}=D_{t}^{k} \vec{g}(t)$ in $(0,1) \times R_{n}$ with an $\mathscr{D}_{L^{2}}^{\prime}$-valued continuous function $\vec{g}(t)$ of t with support $\left([0,1]\right.$. If we put $\vec{v}=D_{t}^{k} \vec{g}(t) \epsilon$ $\left(\mathscr{D}_{t}^{\prime}\right)_{+}\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$, then there exist $\vec{r}_{0}, \cdots, \vec{r}_{l} \in\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}$ such that

$$
D_{t} \vec{v}+\vec{A}(t) \vec{v}=\vec{f}_{-}+\delta_{t} \otimes \vec{r}_{0}+\cdots+D_{t}^{l} \delta_{t} \otimes \vec{r}_{l} \quad \text { in }(-1,1) \times R_{n}
$$

Let k^{\prime} be the smallest positive integer such that $\mathscr{D}_{L^{2}-l_{t \downarrow 0}^{\prime}}\left(Y_{k^{\prime}} * \vec{v}\right)$ exists. Then, applying the equation (16) with k replaced by k^{\prime}, we have

$$
\begin{aligned}
\frac{1}{i} Y_{k^{\prime}-1} * \vec{v}= & -\sum_{j=0}^{k^{\prime}}\binom{k^{\prime}}{j}(-i)^{j} Y_{j} *\left(D_{t}^{j} \vec{A}(t)\left(Y_{k^{*}} * \vec{v}\right)\right)+ \\
& +Y_{k^{*}} * \vec{f}_{\sim}+\frac{1}{i} Y_{k^{\prime}} \otimes \vec{r}_{0}+\cdots+\frac{1}{i} Y_{k^{\prime}-l} \otimes \vec{r}_{l} .
\end{aligned}
$$

Since the right hand of the equation has the $\mathscr{D}_{L^{2}}^{\prime}$-boundary value, so $\mathscr{D}_{L^{2-}}^{\prime}$ $\lim _{t \downarrow 0}\left(Y_{k^{\prime}-1} * \vec{v}\right)$ must exist. Thus $k^{\prime}=1$, which means the existence of $\mathscr{D}_{L^{2-}}^{\prime 2}$ $\lim _{t \downarrow 0}\left(\vec{u} \mid R_{n+1}^{+}\right)$.

Proposition 17. Let $\vec{u} \in \mathscr{D}^{\prime}\left(R_{t}^{+}\right)\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ be a solution of the equation:

$$
D_{t} \vec{u}+\vec{A}(t) \vec{u}=\vec{f} \quad \text { in } R_{n+1}^{+} .
$$

Then the following conditions are equivalent.
(a) \vec{u} is a $\mathscr{D}_{L^{2}}^{\prime}{ }^{2}$ valued continuous function of $t \in\left(t_{1}, t_{2}\right), 0<t_{1}<t_{2} \leqq \infty$.
(b) For any \vec{g} such that $\vec{f}=D_{t} \vec{g}, \vec{g}$ is a $\mathscr{D}_{L^{2}}^{\prime-v a l u e d ~ c o n t i n u o u s ~ f u n c t i o n ~}$ of $t \in\left(t_{1}, t_{2}\right)$.

Proof. (a) $\Rightarrow(\mathrm{b})$. Since $\vec{A}(t) \vec{u}$ is a $\mathscr{D}_{L^{2}}^{\prime}$-valued continuous function of t, if we put $\vec{v}(t, \cdot)=\int_{t_{1}}^{t} \vec{A}\left(t^{\prime}\right) \vec{u}\left(t^{\prime}, \cdot\right) d t$, then \vec{v} is a $\mathscr{D}_{L^{2}}^{\prime}$-valued continuous function and $D_{t}(\vec{u}+\vec{v})=\vec{f}$ and therefore $\vec{g}=\vec{u}+\vec{v}$ is a $\mathscr{D}_{L^{2}}^{\prime}$-valued continuous function of t.
(b) $\Rightarrow(\mathrm{a})$. Let t_{0} be any point such that $t_{0} \in\left(t_{1}, t_{2}\right)$. Then the restriction $\vec{f} \mid\left(t_{0}, t_{1}\right) \times R_{n}$ has the $\mathscr{D}_{L^{2} \text {-canonical extension } \vec{f}_{\sim t_{0}} \text { over } t=t_{0} \text { and, owing } . ~\left(t_{0}\right)}$ to Proposition 16, $\mathscr{D}_{L^{2}}^{\prime 2-\lim } \vec{t}_{t}=\vec{\alpha}_{t_{0}}$ exists. Thus we have

$$
D_{t}\left(\vec{u}_{\sim t_{0}}\right)+\vec{A}(t)\left(\vec{u}_{\sim t_{0}}\right)=\vec{f}_{\sim t_{0}}+\delta_{t_{0}} \otimes \vec{\alpha}_{t_{0}} .
$$

Let k^{\prime} be the smallest positive integer such that $Y_{k^{*} * \vec{u}_{\sim t_{0}}}$ is a $\mathscr{D}_{L^{2}}^{\prime}$-valued continuous function of t in a right neighborhood of t_{0}. Applying the equation (16) with k replaced by k^{\prime}, we can show $k^{\prime}=1$ in the same way as in the proof of Proposition 16. Since t_{0} is arbitrary, we can conclude that \vec{u} is a $\mathscr{D}_{L^{2}}^{\prime}$-valued continuous functtion of t in $\left(t_{1}, t_{2}\right)$. The proof is concluded.

As an immediate consequence we have the following
Corollary 4. Let $\vec{u} \in \mathscr{D}^{\prime}\left(R_{t}^{+}\right)\left(\left(\mathscr{D}_{L^{2}}^{\prime}\right)_{x}\right)$ be a solution of the equation:

$$
D_{t} \vec{u}+\vec{A}(t) \vec{u}=\vec{f} \quad \text { in } R_{n+1}^{+} .
$$

Then the following conditions are equivalent:
(a) \vec{u} is a $\mathscr{D}_{L^{2}}^{\prime-v a l u e d ~ c o n t i n u o u s l y ~ d i f f e r e n t i a b l e ~ f u n c t i o n ~ o f ~} t \in\left(t_{1}, t_{2}\right)$, $0<t_{1}<t_{2} \leqq \infty$.
(b) \vec{f} is a $\mathscr{D}_{L^{2}}^{\prime}$ valued continuous function of $t \in\left(t_{1}, t_{2}\right)$.

References

[1] N. Aronszajn and K. T. Smith, Theory of Bessel potentials I, Ann. Inst. Fourier 11 (1961), 285475.
[2] N. Bourbaki, Espaces vectoriels topologiques, Chap. III, IV, V, Paris, Hermann, 1955.
[3] A.P. Calderón, Integrales singulares y sus aplicaciones a ecuaciones diferenciales hiperbolicas, Universidad de Buenos Aires, 1960.
[4] K. Fujikata and K. Miyazaki, On a space of distributions with support in a closed subset, J. Sci. Hiroshima Univ. Ser. A-I, 26 (1962), 21-25.
[5] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc., 16 (1955).
[6] Y. Hirata, On a theorem in an $(L F)$ space, J. Sci. Hiroshima Univ. Ser. A. 20 (1957), 111-113.
[7] L. Hörmander, Linear partial differential operators, Springer, 1969.
[8] M. Itano, On the distributional boundary values of vector-valued holomorphic functions, J. Sci. Hiroshima Univ. Ser. A-I, 32 (1968), 397-440.
[9] ——On the fine Cauchy problem for the system of linear partial differential equations, J. Sci. Hiroshima Univ. Ser. A-I, 33 (1969), 11-27.
[10] , Note on the canonical extensions and the boundary values for distributions in the space H^{μ}, Hiroshima Math. J., 1 (1971), 405-425.
[11] M. Itano and K. Yoshida, Energy inequalities and Cauchy problem for a system of linear partial differential equations, Hiroshima Math. J., 1 (1971), 75-108.
[12] -, Energy inequalities and the Cauchy problem for a pseudo-differential system, Hiroshima Math. J., 2 (1972).
[13] S. Lojasiewicz, Sur la fixation des variables dans une distribution, Studia Math., 17 (1958), 1-64.
[14] U. Neri, Singular integrals, Lecture notes in Mathematics, Springer, 1967.
[15] L. Schwartz, Produits tensoriels topologiques et espaces nucléaires, Séminaire, Inst. Henri-Poincaré, 1953-1954.
[16] - Théorie des distributions à valueurs vectorielles, Chap. I, Ann. Inst. Fourier, 7 (1957), 1-141.
[17] —, Theórie des distributions à valeurs vectorielles, Chap. II, Ann. Inst. Fourier, 8 (1958), 1-209.
[18] —, Théorie des distributions, Hermann, 1966.
[19] —, Sur le théorème du graphe fermé, C. R. Acad. Sci., 263 (1966), 602-605.
[20] R. T. Seeley, Extension of C^{∞} functions defined in a half space, Proc. Amer. Math. Soc., 15 (1964), 625-626.

Department of Mathematics, Faculty of General Education, Hiroshima University and
Department of Mathematics, Faculty of Science, Hiroshima University

