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Introduction.

One of the primary objectives of an axiomatic potential theory, or a
theory of harmonic spaces, is a unified treatment of potential theoretic parts
in the theories of various second order elliptic (and some parabolic) partial
differential equations (see [2], [3]). Differential equations are considered on
a space with differentiate structure and in the theory of such equations the
notion of Dirichlet integrals or that of energy plays an important role. If
the equation is, for example, given by Lu = Δu — Pu = 0 on a domain Ω in the
Euclidean space Rn, then the Dirichlet integral of a function / is D[_fJ =

{ Σ(df/dxi)2dχ and the energy of / is ElfJ=DLf2 + [ fPdx. These values
J Ω JΩ

appear, for instance, in Green's formula, which is a basic tool in the theory of
such an equation.

A harmonic space, however, is defined on a locally compact Hausdorff
space on which we do not, in general, require any differentiable structure.
Thus, on an abstract harmonic space, we cannot define the notion of Dirichlet
integral or energy by means of differentiation of functions as above. Never-
theless, it is expected that the structure of harmonic space might yield a
certain notion, which is reduced to the ordinary Dirichlet integral or energy
in the special case where the structure is given by a differential equation on
a differentiable manifold.

The purpose of the present and the subsequent papers is to introduce
such a notion on a self-ad joint harmonic space. Here, a self-ad joint harmonic
space means a harmonic space with a symmetric Green function G(x, y).
Recall that the canonical form of a self-adjoint second order partial differen-
tial equation is given by Lu^=Δu — Pu = 0. Suppose this equation is consider-
ed on a domain ΩCRn and suppose there is the corresponding Green function
G(x, y) such that LxG(x, y)=—dy (δy: the Dirac measure). Then, for a

positive measure /x on Ω such that Uμ(x) = \ G(x, y)dju(y) belongs to C2, we

have LUμ=—μ. Thus, if a C2-function/ on Ω is expressed in the form

(*) f=u+Uμ-Uv (u: a solution of Lu = 0\
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then Lf=-ju + ι>. On the other hand, L(f2) = 2f(Lf) + 2{Σ(df/dχd2+f2P}
-fP, so that

Therefore, expressing f2 = ur+Uμ'—UvXLu=Q) we have

which shows that E[_f~] can be "calculated" without differentiation, once we
have a Green function. This is the basic idea of our definition of energy.

In the present paper, we define the notion of energy for functions of the
form (*) with bounded u, Uμ and Uv (Chapter II) and then for general
harmonic functions (Chapter III), on a self-adjont harmonic space. In the
subsequent paper(s), we shall extend the definition to more general functions.

The most interesting feature of the present theory may be found in the
fact that many results (e. g., Theorems in Chapters II and III), whose known
proofs in the classical case essentially depend on differentiation, remain valid
in our general case where the notion of differentiation loses its meaning.

Notation. Given a non-compact locally compact Hausdorff space Ω and a
subset A of Ω, we use the following notation:

A : the closure of A in Ω dA: the boundary of A in Ω.
Ωa: the one point (Alexandroff) compactification of Ω.
Aa: the closure of A in Ωa daA: the boundary of A in Ωa.
ξa : the point at infinity, i.e., Ωa — Ω = {ξa}'
Every function considered is extended real valued. The space of all

finite continuous functions on A is denoted by C(A). By a measure on i?5 we
mean a non-negative Radon measure on Ω. The support of a measure β is
denoted by S(ju). For a function / on Ω and a set A, the restriction of / to A
is denoted by/|^4; for a measure β on Ω and a Borel set A9 the restriction of
β to A is denoted by β \ A.

CHAPTER I. Self-adjoint Harmonic Space

§ 1.1. Brelot's harmonic space.

Let Ω be a connected, locally connected, non-compact, locally compact
Hausdorff space with a countable base and let φ = {^f{ω)}ω:optnCΩ be a structure
of harmonic space on Ω satisfying Axioms 1, 2 and 3 of M.Brelot [2J. Functions
in Jf(ω) are called harmonic on ω. The notions of superharmonic functions
on an open set ω and of potentials on Ω are defined with respect to this
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harmonic structure (see pΓ|, Q3], E5]). For a super harmonic function s on
i?, let

σ(s) = Ω —\J{ω: open, s\ω € Jf(ω)},

which is called the (harmonic) support of 5.

In this paper, we shall assume the following additional axioms:
Axiom 4. The constant function 1 is superharmonic.
Axiom 5. There exists a positive potential on Ω.
Axiom 6. For each y e Ω, if pu p2 are positive potentials on Ω such that

ΰ(pι)=(ϊ(p2)={y}, then they are proportional (cf. [5]).

By Axiom 4, we have the following minimum principle ([2; Part IV,
Theorem 3 (ii)H): Let ω be an open set in Ω and 5 be a superharmonic func-
tion on ω. If liminf*_f,*eω s(χ)'^>0 for any ξ e daω, then s^>0 on ω.

Given an open set ωCΩ, the Dirichlet problem with respect to φ can be
discussed by Perron-Brelot's method (see, e.g., [1], [2]) : For an extended
real valued function ψ on daω, we set

superharmonic, bounded below on

for all ξ € daω
aω ί

and y;= -&%. We denote: 5£=inf ?% and ff£=

LEMMA 1.1. Any open set ω is resolutive, i.e., for any φ e C(daώ), H% = H%
and is harmonic on ω.

This is a consequence of [1 Corollary 3 and Theorem 8].

We denote the function Hl=H% by H% for resolutive φ. For each x e co,
there exists the harmonic measure βω

x on daω such that

(1.1)

for all φaC(daω). By Axiom 4, βω

x(daω)^l. Since ωa is metrizable, a μω

x-
summable function φ on daω is resolutive and satisfies (1.1) (cf. [2; Par t IV,
Proposition 21]).

If ω0 is a domain in Ω, then ξ> | ωo = {^(ω)}ω:openCωQ is a harmonic structure
on ω0 and satisfies Axioms 1—6. Thus we have notions of potentials on ω0, etc.

§ 1.2. Self-adjoint harmonic space.

DEFINITION. A harmonic structure ξ> on Ω satisfying Axioms 1, 2, 3, 5
and 6 is called self-adjoint if there exists a function G(x, y): Ω x Ω -> (0, + 00]
such that

( i) G(*, γ) = G(y, x) for all Λ;, j 6 i2;
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(ii) For each ye Ω, Gy(x)=G(x, y) is a potential on Ω and β(Gy) = {y}.

If ξ> is self-ad joint, then (Ω, ξ>) is called a self-ad joint harmonic space.

By Axiom 6, we can easily show:

PROPOSITION 1.1. If Ίg is self-adjoint, then the function G(x, y): Ω x Ω ->
(0, + oo] satisfying (i) and (ii) above is uniquely determined up to a multipli-
cative constant.

We call G(x, y) a Green function for φ. By [5; Proposition 18.Γ], we see
that G(x, y) is lower semi-continuous on Ω x Ω.

REMARK. R.-M. Herve showed that, under Axioms 1,2,3,5 and 6, there is
a function p(χ, y): Ω x Ω -• (0, + °°H such that x -> p(x9 y) is a potential with
support {y} for each ye Ω and y-+p(x, y) is continuous on Ω — {x} for each
x e Ω ([5; Theoreme 18.1]). The above definition simply means that φ is
self-adjoint if we can choose p(x, y) to be symmetric.

Hereafter, we assume that (ώ, φ) is a self-ad joint harmonic space satisfy-
ing Axioms 1 -̂6 and G(x, y) is a fixed Green function. For ye Ω, we shall
often use the notation Gy: Gy(x) = G(x,y).

LEMMA 1.2. For any ye Ω and any open set ω containing y,

SUp G(

PROOF. Let ω0 be a relatively compact open set such that y e ω0 C ̂ >o C o).
Then α=sup* e a ω o G(x, y)< + <^=>, since y-+G(x, y) is finite continuous on dω0.
By [5; Lemme 3.1], we have a^>G(x, y) for all x e Ω —

LEMMA 1.3. For each yeΩ, there is a non-negative superharmonic func-
tion 5* on Ω such that whenever xn->ξa and l i m i n f ^ ^ G ^ , j ) > 0 , we have

lim s*(xn)= + oo.

This is a special case of [ 1 ; Lemma 1].

LEMMA 1.4. Let ω be an open set in Ω. Then

( i ) [ G{ξ, y)djuω

x(ζ)^G(x, y) for all x e ω, ye Ω;

(ii) [ G(i, y)dβ°(ξ)=\ G(x, ξ)dμ%ξ) for all x, ye ω.

PROOF. For each ye Ω, let φy(ξ) = Gy(ξ) iίξedω, = 0 if ξ = ξa.
(i) Since Gy is a positive superharmonic function on Ω, Gy\ω e &%y for
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any ye Ω. It follows that φy is /^-summable and Gy(x)^>H%y(χ)=\ G(f, y)
J dω

dβω

x(ξ) for any x e ω and y e Ω.

(ii) Let x e ω be fixed. Since y -> G(f, 7) is harmonic on ω for each

ξ e 9ft), w(y)==\ G(£, y)dμω

x(ξ) is harmonic on α>. By (i) above, Lemma 1.2 and

the minimum principle, we see that w is bounded on ω. Then, it follows from
(i) that w—ε(s* | ω) e ξf%x for any ε>0, where s* is the superharmonic function

given in the above lemma. Hence, w<,Hψχ, i.e., \ G(f, y)dμ%(ξ)<ί\ G(χ, ξ)
Jdω Jdω

dμω

y(ξ) for any x, y e ω. By symmetry, we obtain the equality.

PROPOSITION 1.2. For any domain ω in Ω, φ | ω is also self-adjoint and
there exists a Green function Gω(x, y) for φ | ω such that

(1.2) Gω(x, y) = G(x, y) + hy{x) (*, y € ω)

with hy e je(ω). In fact hy is given by

(1.3) h,(x)=\ G(ί, y)d&ξ).

PROOF. Let Gω(χ, y) be defined by (1.2) and (1.3). By (ii) of the above
lemma, we have hy(x)=hx(y)9 so that Gω(χ, y)=Gω(y, x) for x, ye ω. If we
fix y e a), then, by (i) of the above lemma, hy^Gy on ω. On the other hand, if
u is harmonic on ω and u <J Gy on α>, then u — ε(s* | ω) e s?%y for any ε > 0 as in
the proof of (ii) of the above lemma. Thus, u<;H°y=hy, which shows that hy

is the greatest harmonic minorant of Gy on ω. Hence, Gω

y^Gy—hy is a poten-
tial on α). Obviously, Gω

y is harmonic on ω — {y}. Therefore, Gω(x, y) is a
Green function for § | ω and § | ft) is self-adjoint.

§ 1.3. Potentials on a self-adjoint harmonic space.

For a measure μ. on Ω, let

Then, P* is a potential on i2 unless it is constantly infinite ([5 Theoreme

18.3]). Since G(x9 y) is symmetric, we have \ Uμdv = \uvdμ for any measures

LEMMA 1.5. // μ(Ω)< + ©o5 ίfeβ^ C/̂  is a potential.

This is proved using Lemma 1.2 by a standard method in the classical
theory (cf. [5; Corollaire de la Proposition 17.1 J).
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Now, by C5; Theoreme 18.2, 2)], we know

LEMMA 1.6. Any potential on Ω is expressed as Uμ by a uniquely determin-
ed measure β.

Note that the uniqueness follows from Axiom 6. By this lemma we see
that any superharmonic function s having a harmonic minorant on Ω can be
uniquely expressed as s = u + Uμ with u e Jf(Ω) and a measure ju on Ω. This
measure β is called the associated measure of s.

The associated measure of the constant function 1 will be denoted by π
thus I=h1 + Uπ with hλ e Jf(Ω). Obviously, Uπ^l. Note that π = 0 if and
only if 1 e

LEMMA 1.7. / / β(Ω) < + oo, then [ Uμdπ < + oo.
JΩ

PROOF. [ Uμdπ = [ Uπdβ<β(Ω)< + °°.
JΩ JΩ

For a domain ω and a measure β on ω, we use the notation

Uμ(x) = \ G"(x,γ)dβ(γ) (xeω).
J ω

In case β is a measure on Ω, we shall write Uί instead of £/£|ω.

LEMMA 1.8. Let β, v be measures on Ω such that Uμ, Uv are potentials and
let ω be an open set in Ω. If Uμ\ω=Uv\ω + u with u e Jf(ω), then β\ω = p\ω.

PROOF. By considering each component of ω, we may assume t h a t ω is a
domain. Then Uμ and Uv

ω are potentials on ω and, by Proposition 2.1, we see
that Uμ=U£+ui and Uv=Uv

ω + vι on ω with uu vχe^{ω). Hence, by the
assumption of the lemma, Uμ=Uv

ω + h with h e Jί?(ω). It follows that E72= Uv

ω.
Then, applying Lemma 1.6 on ω, we have β\ω = v\ω.

By this lemma, we see that, given any superharmonic function s on Ω,
there corresponds a unique measure β on Ω such that s\ω=Uμ+uω with
uω e Jf(ω) for any relatively compact domain ω. This measure β is again
called the associated measure of s. In this case, we have σ(s) = S(β) in parti-
cular, σ(Uμ) = S(β). Also, note that 1 = H"+ Ul on ω for any domain ω.

LEMMA 1.9. For any relatively compact open set ω in Ω, pω=inf {s; non-
negative superharmonic on Ω, s^>l on ω} is a potential on Ω. The associated
measure λω of pω has the following properties:

( i ) Z7λ*<:i on Ω and Uλ» = l on ω;

(ii) S(λω) C &, and hence λω(Ω) < + oo
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(iii) λω\ω = π\ω.

PROOF. By [2 Part IV, Proposition 10 and a result in p. 124], we see
that pω is a potential. Then, property (i) is obvious. By [2; Part IV, Theorem
8], pω is harmonic on Ω — ω. Hence, S(λω) C ά>. Since Ux \ ω = 1 = Uπ \ ω + hλ \ ω,
we obtain (iii) by Lemma 1.8.

LEMMA 1.10. Uμ <S Uv implies ju(Ω) <;

PROOF. For any relatively compact open set ω in i2, ju(a))<;\ Vx<ύdβ —
JΩ

Uμdλω^[ Uvdλω = [ Ux*dv<,v(Ω). Hence ju(Ω)^
Ω JΩ JΩ

CHAPTER II. Energy of Bounded Functions

§2.1. The spaces HBE and BE*

LEMMA 2.1. If u e Jίf(Ω) and α:J>l, then — \ u \ a is superharmonic on Ω.

PROOF. | U \a is a continuous function and for any regular domain ω and
x 6 ω,

Hence, — | u \a is superharmonic.

The associated measure of — u2 will be denoted by βu for u e jf(Ω). If u
is bounded, i.e., | u \ <JM, then we have u2=h—Uμu with h e Jf(Ω) and 0 <J Uμu

We consider the class

HBE=HBE(Ω)=IU e Jί"(Ω); bounded, μu(Ω)< + oo and ( u2dπ< + °°\.

From (u + v)2 + (u — v)2 = 2(u2 + v2), it follows that μu+υ + μu-υ = 2(βu + βΌ)

for u, v e J>f(Ω). Therefore, we see that HBE is a linear space. Let

)Ξ={#; measure on Ω such that Uμ is bounded and /x(Ω)< + £*=>},

μ-Uu; u 6 HBE, A, i> <• MB}.

BE is a linear space of bounded functions on Ω and HBE is a linear subspace
of BE. We shall define the notion of energy for functions in BE. For this we
need some preparations.

For u, v e Jί?(Ω), let u\/v (resp. uΛv) be the least harmonic majorant of
max(tt, v) (resp. the greatest harmonic minorant of min(u, i;)) on Ω whenever
it exists. If u, v are bounded, then uVv and uΛv exist.
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LEMMA 2.2 If u e HBE, then u Vθ, u Λθ e HBE.

PROOF. Since u\/0 = {u\/(-u) + u}/2 and uΛ0={u-u\/(-u)}/2, it is
enough to show that uV( — u) e HBE. Let u2=h— Uμu. Then Λ1/2I> | u |. For

any regular domain ω and x e ωΛ hll2dβ°<([hdβxj
ll2==h(χ)112. Hence h1'2 is

superharmonic on Ω. It follows that Λ1/21> ̂  V ( — u) ;> | u |, i.e., A ^> [> V ( — ^)H2

;>a 2 . Obviously, uV( — u) is bounded. Λ — [ B V ( - ^ ) D 2 is non-negative
superharmonic and majorized by h — u2=Uμu. Hence, it is a potential, so that
[_uV(-u)y=h-U% where V = A«VC-«)

 S i n c e Uv<^Uμu, Lemma 1.10 implies

that v(Ω)<,juu(Ω)< + oo. Finally, since ί u2dπ< + °o and ( Uμudπ< + °°
J Ω J Ω

(Lemma 1.7), \ hdn< + ̂ , and hence, \ [>V( — u)J2dπ< + oo. Therefore

LEMMA 2.3 // /, ge BE, then fg is expressed as fg= u + Uμ—Uv with
u 6 je(Ω) and β>v e MB.

PROOF. Let B= {u + Uμ— Uv u e JP(Ω\ / / , K MB}. Then B is a linear
space of real valued functions on Ω. Since fg={(f+g)2—f2 — g2}/2, it is
enough to prove that f eBE implies f2eB. If / = u + Uμ—Uv with u e HBE

and A, v e M5, t h e n / = Λ - / 2 with f1 = uVθ+ Uμ and / 2 = (-i0V0+ U\ By
the above lemma, / i , / 2 e β £ . Since/2 = 2(/f+/ | ) — (/i+/ 2 ) 2 , we may assume
that f=u + Uμ with u J>0 (u 6 H s^, # e Afβ).

LetM=supxeΛ/(Λ;). Then 0 ^ M < + oo. Let s = M2-(M-f)2. Then
f2 = 2Mf—s. Obviously, 2Mf e β. We shall show that s e B. First we remark
that 0<;S<;M2. Since M—f is non-negative upper semi-continuous, 5 is lower
semi-continuous. For any regular domain ω and x e ω,

where we used the superharmonicity of / for the last inequality. Therefore,
s is non-negative superharmonic on Ω. Let s — k+Uμ' with k e JF(Ω). Since
s is bounded, Uμ' is bounded. Let u2=h- Uμu with h e jr(Ω). Then, from

it follows that
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or

Thus, noting that Uμ <; M, we have

-(aMUμ+U"')^h

It follows that h — 2Mu + h = 0, i.e., k = 2Mu—h. Hence,

Hence, by Lemma 1.10, we have βf(Ω)<^2Mβ(Ω) + βu(Ω)< + oo, since β e MB

and u 6 HBE Therefore, βf e MB, and hence s e B.

LEMMA 2.4. If f e BE, then \ f2dπ< + oo.

PROOF. AS in the proof of the previous lemma, we may assume that

f=u + Uμ with u € HBε, u^O and β e MB. Let f<LM. T h e n / 2 ^ u

2 + 2fUμ

<:U2 + 2MUμ. By definition, ( u2dπ< + oo. By Lemma 1.7, [ Uμdπ < + °o.
) Ω J Ω

Hence [ f2dπ< + oo.
JΩ

§ 2.2. Definition of energy for functions in BE-

If a function / is expressed as f=u + Uμ—Uu with u e J^{Ω) and β, v
being measures such that ju(Ω), v(Ω) are finite, then the signed measure β — v
is determined by the function / (Lemma 1.6). Thus this signed measure is
denoted by σf. In this case, \σf\(Ω)<;β(Ω) + v(Ω)< + oo, sothatσf(Ω)( =
— v(Ω)) is well-defined. Obviously, the mapping/-xJ/ is linear.

DEFINITION. For /, g e BE, we define

(2.1)

which is called the mutual energy of / and g. The energy of / e BE is defined
by

(2.2) £[/>£[/,/].

^EΛ g] f° r /> g€Ϊ*E is well-defined by virtue of Lemmas 2.3 and 2.4.
The mapping (/, g) -• E[_f9 g] is obviously a symmetric bilinear form on
BE X B .̂

The above definition is based on the observation made in the introduction.



322 Fumi-Yuki MAEDA

In fact, if Ω is a domain in a Euclidean space Rn (n^>3), then the solutions of
Δu — Pu (P^>0; locally Holder continuous) form a self-adjoint harmonic struc-
ture on Ω which satisfies Axioms 1^6 (cf. [b; Chap. VII]). In this case, if
/, g are bounded C2-functions with finite Dirichlet integrals on Ω such that

\ f2P dx and \ g2P dx are finite, then the right hand side of (2.1) is equal
JΩ J Ω

to the ordinary mutual energy

JΩ dxi dxi )Ω

Remark that the measure π in this case is Pdx.

PROPOSITION 2.1. Ifue HBE, then

so that E

PROOF. Since tfw = 0 and σu2= —juu, this proposition immediately follows
from (2.1) and (2.2).

THEOREM 2.1. If β£ MB, then Uμ e BE and

=[ U'dβ.
JΩ

PROOF. Obviously, Uμ e BE for βζMB and 0V* = A. Hence it is enough
to prove that

(2.3) <

For any α>0, mm{Uμ/a^ 1) is a potential. Let βa be its associated measure.
Then 0<: U> ̂ .1 and U** f 1 as a j 0. By Lemma 2.3, (Uμ)2= U^- U*12 with
βu β2 6 MB. Since <r(̂ )2 = Ai-A2,

=lim \
a-+o J

( ) β a [ (U")2djua.
-»0 JΩ a->o JΩ

Let ωa = {x e Ω; Uμ(χ)>a}. Then ωa is an open set and Uμa = l on ωa. Hence,
by Lemma 1.8, βa \ ωa = π | ωa. Therefore,

\ (Uμ)2dβa = \ (Uμ)2dβa + \ (Uμ)2dπ.
JΩ JΩ-ωa Jωa
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Since ωa | Ω as a | 0, ( (Uμ)2dπ -• { (Uμ)2dπ as α->0. On the other hand,
Jωa JΩ

since

Uμdμa = [
Ω JΩ

Therefore, limα-,0 \ (Uμ)2djua = 0, and hence we obtain (2.3).
JΩ-ωa

COROLLARY. If fi= Uμi—Uv\ i = l, 2, wife μu β2, vu »2 £ MB, then fu f2

e BE and

\ \2dσfl (σfi = /ii-vh ί = l, 2).

§ 2.3. Orthogonality.

In this section, we shall prove

THEOREM 2.2. Ifue HBE and μ e MB, then

The proof of this theorem will be given by a series of lemmas. For each
ye Ω and α>0, let ωa>y = {x e Ω; GO, y)>α}. We see that ωa,y is a domain
whenever a<G(y, y) (cf. [4; n°YΓ]).

LEMMA 2.5. π(ωa>y)<; and \imaπ(ωa>y) = 0.

PROOF.

M G(x, ^ £
(X Jωaty

Suppose εo=limsupα^o aπ(ωaty)>$. Fix a x >0. We choose {an} by induction
as follows: Suppose αi, , an are already chosen. Then we can find α w + i>0
such that an+ι<an, an+ιπ(ωanty)<εo/3sLndan+iπ(ωan+ίty)>2εo/3. Letωn = ωanty

for simplicity. Then

l^Uπ(y)^ Σ [ G(x, y)dπ(x)
n=l

^ Σ an+1{π(ωn+ι)-π(ωn)} ^ Σ -§-=
1 l O
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a contradiction. Hence we have the lemma.

LEMMA 2.6. βχa>y({£a}) = 0 for any x e ωa>y.

PROOF. Let ω=ωa>y for fixed y and a. Let φ be the characteristic func-
tion of {ξa} on daω. For the superharmonic function s* in Lemma 1.3, we see
that ε(s* I ω) e sr% for any ε>0. Hence 0<,H%^es* on ω for any ε>0, so that
Hω

φ = 0, i.e., /£({£,}) = 0 for all x e ω.

Now we consider the mapping φ e C(daωa>y) -> \ H%a^dπ. By Lemma

2.5, the integral exists and is finite for each φ. It is easy to see that this
mapping is a non-negative linear functional on C(daωa>y). Hence there is a
measure va,y on daωa>y such that

(2.4) [ φ dva,y= [ Hω

ψ«>v dπ

for all φ e C(daωa>y). We can show that (2.4) holds for any bounded β°a>y-
measurable function φ on daωa>y.

LEMMA 2.7. / / u is a bounded harmonic function on Ω, then

\ udva>y= \ u dπ.
Jdωa,y ' Jωa,y

PROOF. Let ω = ωΛty and let φ(ξ) = u(ξ) if ξ e dω and = 0 if ξ = ξa. Then
φ is a bounded A^-measurble function on daω. Hence, by (2.4),

udva>y= \ φ dva>y = \ Hφ
Jdaω ' Jω

dπ.

Now, by Lemma 2.6, we see that H° = u, since u is harmonic. Hence we have
the lemma.

For each yc Ω and α > 0 , let va,y=tf°y

a'v- By Lemma 2.6, βa,y({ίa}) = 0
and vαo,({fα}) = 0. Therefore, βa>y and va>y can be regarded as measures on Ω.

LEMMA 2.8. Let

Λ>y +

Then, 0<,wa,y<;2 on Ω and wa>y = l on ωa>y.

PROOF. Fix y and a and let β = jua,y> v = Va,y, ω — &a,y and w = wa>y. By

Lemma 1.4, Uμ(χ)^G(x, y) for all x € Ω and Uμ(x)= [ G(£, y) dβω

x(ζ)=a[

dβω

x f or x € α). Hence 0^Uμ^aon Ω and, by Lemma 2.6 we see that Uμ = aH\
on ω. For any x e Ω, let <px(ξ) = G(χ, ξ) if f e 9α) and = 0 if f = ?β. Then φx
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is non-negative lower semi-continuous on daω. Choose φn e C(daω) such t h a t
φn^0 and φn | φx on daω. Then

U\x)=\ G(*, £)<&(£) = [ φx dv
JΩ Jdω

= lim I φn dv
n-^°° Jdω

= lim( H%ndπ=\ϊm\ ({φndμωΛdπ(z).
n-*°° Jω n-*°° Jω\J /

Since φn^φx, { φndμω

z<G{x, z) (cf. Lemma 1.4, (i)). Hence Uv(x)<,\ G(x, z)

dπ(z)=Uπ]ω(x). Thus, 0^Uπlω-Uv^Uπ^l on Ω. It follows that 0 < ; w ^ 2.
Furthermore, for each x e ω9 φx is a bounded function on 9αω, and hence

[/ V O)=( ff^iTΓ. By Proposition 1.2, Hω

ψχ(z) = G(χ, z)-Gω(χ, z). Hence,

Uv=Uπlω- Ul on α>. On the other hand, since UZ = l~Hω

ly we have Uπ]ω— Uu

= 1-Hl on α>. Thus w = (l/a)Uμ-Uι'+U7rlω = Hω

1 + (l-Hω

1) = l on α>.

LEMMA 2.9. If μ is a measure with β(Ω)< + oo5

Ω JΩ >J ) JΩ

for any y€Ω.

PROOF. In the notation of the previous lemma, we have

\ wa>ydju, since {wa>y}a is uniformly bounded, wa>y = l on ωa>y and ωa>y t Ω as

a I 0. Now

[
a JΩ

The last integral tends to \ Uμdπ as a-+0. Hence we obtain the lemma.
JΩ

LEMMA 2.10. Let {Ωn} be an exhaustion of Ω, i.e., a sequence of relatively

compact open sets in Ω such that ΩnCΩn+u n = l9 2, ••, and \J~=ιΩn = Ω. Then,

for any u e HBE and ytΩ,

(2.5) u(y) = limί G(x, y)u{x)dλΩn(x)
-Ωn

PROOF. Fix γ€ Ω and choose m such that y€ Ωm. Let β =
(x, y). Then, 0</?< + oo (Lemma 1.2). Put p = min(Gy, β). Since
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and p is bounded, p e BE. Since u is bounded, | up\ <,Mp for some M. Then,
it follows from Lemma 2.3 that up= Uμi — Uμ2 with juu β2 £ MB. For simplicity,
let λn = λΩn, βa=βa,y and va=va,y> First we see that

βi(Ω)-β2(Ω)=\iml[ t Λ ^ - ί t/

= lim( (£/*-£/»)<«, = lim( «P ^»

Since Aw | Ώn = π \ Ωn and ^p is 7r-summable (Lemma 1.7), we have

lim\ up dλn = \ϊm\ up dλn+\ up dπ.
n-+°oJΩ n-+°° JΩ-Ωn JΩ

On the other hand, by the previous lemma,

βι(Ω) — β2{Ω) = \im\ \ up dβa—\ up dva\+\ up dπ,
a-+o I a JΩ

 2
 JΩ

 x ) JΩ
 M

Hence,

(2.6) lim\ up dλn = \ϊm\ \ up dβa — \ updvΛ.
n^JΩ-Ωn X a-+0 { (X JΩ * JΩ 2 )

For 0<a<β,p=Gy=a on dωajy. Since S{βa), S(va)Cdo>a,y, the right hand

side of (2.6) is equal to l i m ^ 0 |\ u dβa — a\ u ώ i . By Lemmas 2.6 and

2.7, we have \ u dβa = u(γ) and \ udva = \ u dπ. Since u is bounded,
JΩ J JΩ Jωa,y

limα_0 oc \ u dπ = 0 by Lemma 2.5. Therefore, by (2.6)

lim\ up dλn = u(γ),
n-+°°jΩ-Ωn

which is the required formula (2.5), since p = Gy on Ω — Ωn for nl>jn.

Finally, we prove:

LEMMA 2.11. Let {Ωn} be an exhaustion of Ω. For any u 6 HBE and
βeMBy

l imί uUμdλΩ = ( u dβ+ [ uUμdπ.
n-+°°JΩ n JΩ JΩ

PROOF. For simplicity, let λn^λΩn. Since λn\ Ωn = π \Ωn and ullμ is π-
summable (Lemma 1.7),

limί uUμdλn = lim[ uUμdλn+[ uUμdπ.
n->°°JΩ n-+°°JΩ-Ωn JΩ
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Hence, it is enough to show that

(2.7) { u dβ = lim{ uUμdλn.
JΩ jΩΩ

Ω

Now, since uUμ is bounded and λn(Ω)< + °o5 Fubini's theorem can be applied,
so that

Ω-Ω
uUμdλn={ u(x)\[ G(x, y) dβ(y)\ dλn{x)

J Ω-Ωn KJΩ J )

Since u is bounded and Uλn is /^-summable (note that β(Ω)< + °o)3 Lebesgue's
convergence theorem implies

limί uUμdλn={ Ilimί G(χ, γ)u(χ)dλn(χ)\dju(γ\
n-+°°JΩ-Ωn JΩ U-̂ oo JΩ-Ωn

 y )

the right hand side of which is equal to \ u dμ by (2.5) of the previous lemma.
JΩ

Hence we obtain (2.7).

PROOF of Theorem 2.2. Since \uUμ\< MUμ for some M> 0, u Uμ = Uμi — Uμ2

with juu βi 6 MB by Lemma 2.3. Hence, by the above lemma,

<WC2)=( udβ+[ uΐlμdπ.
JΩ JΩ

Since (7u = 0 and 6uu = β,

§2.4. An estimate.

As an application of Lemma 2.11, we shall prove

PROPOSITION 2.2. For any u e jf(Ω) and any domain

(2.8)

We need one more lemma to prove this proposition.

LEMMA 2.12. For any u e Jί?(Ω) and any relatively compact domain ωCΩ,
u2\ωeBE(ω).

PROOF. Since ω is relatively compact, u \ ω is bounded, and hence u2\ω is
bounded. By Lemma 2.1, — u2 and —uA a re superharmonic. The associated
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measure of — u2 is μu by definition. Let v by the associated measure of — u4.
Since μu and v a r e measures on Ω, βu(ω)< + oo and v O ) < + °°. Let u2\ω =
h—UZu and u4\ω = k— ϋl with h, k z Jf(ω). Since z*2|ω is bounded, E72« is
bounded, so t h a t βu\ω e MB(ω). From u2\ω<JM for some M a n d

it follows that

-3Mt/£«<:&-ft2<: VI on α>.

Since A;—h2 is superharmonic on a), the above inequalities imply that k—h2 is
a potential on ω. Let k—h2 = U£. Then βr = βh- Since Ui'<*Ui>, Lemma 1.10
implies /**(«>) = /*/(α>)^ *>(<*>)<+ °°. Since 7r(α))< + °° and A is bounded,

\ h2dπ< + °°. T h e r e f o r e , h e HBE(O)), a n d h e n c e u2\ωe BE(ω).
J ω

PROOF of Proposition 2.2. First we suppose π(Ω)< + °o and u2 e BE, and

prove (2.8) for ω = Ω. It is trivial if ^ = 0; thus let uφO. Let u2=h-Uμu

with h e je{Ω). Then h>0 on i2, and hence ^2/Λ is a finite continuous func-

tion on Ω. For any regular domain ω and for any x e ω9

Therefore —u2/h is superharmonic on Ω. Since u2/h<^l on Ω, we have
u2/h<l-Uπ, i.e., u2<,h-hU\ It then follows that U**^hU*. Thus, for
an exhaustion {£w} of Ω, letting λn = λΩn, we have

(2.9) βu(Ω) = \\m[ Ux*dβu = \im[ C^-^^limf hUπdλn.

By our assumption, π e MB and h e HBE Hence, by Lemma 2.11, the last term

of (2.9) is equal to \ h dπ+ \ hUπdπ. Therefore

^[ h dπ^>[ u2dπ.
Ω JΩ

Next, let ω be any domain. For any relatively compact domain ωf contained
in ω, 7r(a/)< + °° and, by the previous lemma, u2\ωr e BE(β')- Therefore,

applying the above result to § | ω\ we have μu(ωf) ^ \ u2dπ. Hence

A«(β>) = sup/ί l ί(β)/)^sup\ u2dπ = \ u2dπ,

where the suprema are taken over all relatively compact domains ωf contained
in ω.
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REMARK. Proposition 2.2 implies that (2.8) holds for any Borel set ω.

CHAPTER III. Energy-finite Harmonic Functions

§3.1. Energy of harmonic functions.

If u € jf(Ω)9 then there corresponds the measure μu, which is the associat-
ed measure of — u2. Thus we can define the value

which is in [0, +00H. By Proposition 2.1, this value coincides with E\jf\
defined in the previous chapter for u e HBE Thus, it is also called the energy
of u on Ω. If E\\Γ\< + oo5 then we call u an energy-finite harmonic function.
Let

HE = HE(Ω) = {u e H(Ω); £[V] < + <*>}.

Obviously, HBE={u e HE; bounded}. By virtue of Proposition 2.2, we see
that juu(Ω)/2<^E[_uJ<;βu(Ω) for any u e Jf(fl), and hence HE={u € Jί?(ΰ);

We define ||κ|| for u e HE as follows: In case 1 6 Jf (ώ),

||u||

for a fixed #0 6 ώ; in case 1 i

PROPOSITION 3.1. | | M | | = 0 if and only if u = 0. In case 1 e Jίr(Ω),E[_uΊ =
if and only if u= const.

PROOF. If 1 e JF(Ω), then π = 0 and βc = 0 for any constant c. Hence
£[c] = 0. Now suppose E[_uJ = 0 (u e HE). Then βu = 0, so that u2 6 ^f(fi).
Hence [_u — u(xo)y = u2 — 2u(xo)u-\-u(xo)

2 is superharmonic on Ω. Since it is
non-negative and vanishes at x0, it must vanish identically, i.e., u = u(χ0). In
case 1 e J^(Ω) and | |u | |=0, U(Λ;0)=I0 by the definition of | |u||; incase 1 ί Jί?(Ω),
u(xo) must be zero since no non-zero constant is harmonic.

LEMMA 3.1. Ifue HE, then u2 has a harmonic majorant on Ω, so that

u

2 = h- Uμu with h e Jίf(Ω).

PROOF. Since /*«(£)<+ °°, Uμu is a potential (Lemma 1.5). It then
follows that u2+ Uμu is harmonic.
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LEMMA 3.2. HE is a linear subspace of Jf(Ω) and if u, v e HE, then uv is
expressed as uv=h+Uμ—Uu with he jf(Ω), ju(Ω)< + °° and

PROOF. From (u + v)2 + (u — v)2 = 2(u2 + v2), it follows that βu+v + βu-v =
2(βu + βv) (cf. §2.1). Hence βu+XΩ) + βu_v(Ω) = 2(βu(Ω) + βv(Ω))< + o*. There-
fore, u + v 6 HE. It is obvious that au e HE for any u e HE and a real number
a. Thus HE is a linear subspace of J^(Ω). Since uv={(u + v)2 — u2 — v2}/2,
Lemma 3.1 implies that v=h + Uμ— Uv with h e ^f(i2), v = μu+v/2 and β = (βu +
βυ)/2.

By the above lemma, σuυ is defined for any u, υ e HE and (TUV(Ω) is a finite
value. We define

Lu, vΊ=-γ-{-(?uv(Ω)+ ^

for u, v e HE and call it the mutual energy of u and v. It is easy to see that
E\jι, v} is a symmetric bilinear form on HE x HE and E\JL, uΓ\=E[_u]. Hence,
together with Proposition 3.1, we have

PROPOSITION 3.2. HE is a pre-Hilbert space with respect to the inner
product

E[_u, vj + u(xo)υ(xo), if I £

{ Elu, i;] if 1 i JίT(Ω\

for which (u, u) = \\u\\2.

We remark here that, in case 1 6 tff(Ω\ Proposition 3.1 implies that
E\jι, cf] = 0, and hence E[u + c^=E\jf\, for any constant c and u e HE.

% 3.2. Lattice structure of HE.

LEMMA 3.3. If u e HE, then uV( — u) exists and belongs to HE Furthermore,

PROOF. Let u2=h-Uμu with hejίT(Ω) (Lemma 3.1). Then, as in t h e

proof of Lemma 2.2, we see t h a t h1'2 is superharmonic on Ω majorizing \u\.

Hence, uV( — u) exists and h^>[uV( — u)y^>u2. Then [>V(— u)J2=h— U\
where v = βuy^uy Thus, Uv<,Uμu, and by Lemma 1.10, v(Ω)<,βu(Ω)< + oo.
Let {Ωn} bean exhaustion of Ω and let λn = λΩn. Since λn\Ωn = π\Ωn and
U% Uμu are 7Γ-summable (Lemma 1.7), we have

(Uμ--Uv)dλn
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= lim( (U"--U")dλtt+{ (U»«-Uu)dπ

Hence, \ [_uV(— u)Ί2dπ< + °° and
j Ω

{ u2dπ,
Ω JΩ

i.e., uV(-u)e HE and E[jιV(-uy]<LE[jf\.

REMARK. The above proof also shows that βu\/{-u

THEOREM 3.1. HE is a vector lattice with respect to the operations V and
Λ. For any u, υ e HE,

PROOF. Since u = uVθ + uΛθ and uV( — u) = uVθ — uΛO, the above
lemma implies that ^Vθ, uAθeHE for any u e HE and

For any u, v e HE, uVv = v + [_(u — v)V0J and uΛv = v + [(u — v)Λθ] exist and
belong to HE. Furthermore,

The following lemma will be used in the next section:

LEMMA 3.4. If u e HE and ω is a non-empty relatively compact open set
in Ω, then

(3.1) inf mm{(uV0)(x), [(-u

PROOF. Let v be the associated measure of the superharmonic function
in(tf, 0). Then,

(3.2)

and since (uVθ) + (uΛθ) = u—msLx(u, 0) + min(^, 0), we have

(3.3) max(u, 0) =
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Hence, \u\=uV( — u) — 2U\ Let u2 = h—Uμu with he Jί?(Ω). Wehaveshown
(see the proof of Lemma 3.3) that

On the other hand,

Hence

(3.4) {Uv)2<-\-U^.
4

Now, by (3.2) and (3.3) we see that min{uV0, (-u)V0} = U\ Thus (3.1) is
equivalent to

Now, using (3.4) and noting that S(λω)Cώ, we have

{ Lx)J} λω{Ω).
xξω

3.3. Bounded family in HE-

The following results are known as consequences of Axioms 1, 2 and 3
(see [3J and

(A) Harnack's inequality: For a compact set K in 42, there is a(K) ;> 1
such that

sup u(χ)<^a(K) inf u(x)
χ€K χ€K

for all u e Jίr+(Ω) = {u e

(B) For a fixed x0 e Ω, 3f+Q(Ω) = {u e Jf+(Ω); u(χo)^l} is compact with
respect to the locally uniform convergence topology. In particular, this
family is locally uniformly bounded on Ω.

Now we consider the family

THEOREM 3.2. H\, {u\/0\ u e H\} and {uAO; u e H\} are locally uni-
formly bounded on Ω.
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PROOF. Since | u | <:max{z*V0, (-z^)VO} and uAθ= -L(-u)V0J, it is
enough to show that {uVO; u e HE} is locally uniformly bounded. Since this
is a subfamily of j^+{Ω\ the above (B) shows that we only have to prove that
{(uV0)(χ0); u e HE} is bounded. Suppose it is not bounded. Then there are
un 6 HE such that (u»VO)(io)^/i, rc = l, 2, .

Case 1. 1 e jf(Ω): In this case, since | u(χ0) \<=\\u\\ <J1,

Let ω be any relatively compact open set containing x0. Then, by (A), i
(unV0)(x)^>n/a(ώ) and mΐx6ω[( — un)Vθ~l(χ)^>(n — l)/α(ά>), so that

inf ^

The left hand side is less than {uUn(Ω)/Uω(Ω)}1'2 by Lemma 3.4. Since

w | |2<;2, we have

V)1 '2

for all n = l, 2,.., which is a contradiction since λω(Ω)>0.

Case 2. 1 $ JίT(Ω), i.e., πφO: Let ^ = (M«VO)/(WMVO)(Λ;O). Then
vn e ^f+(ώ) and vn(χo) = l By (B), there is a subsequence {#„.} which conver-
ges to v e ^(i2) locally uniformly on Ω. In particular, v(xo) = l. Now, using
Theorem 3.1, we have

Hence \vldπ<;2\\vn\\2<^2/n2. Thus, we may assume that vn.->0 7Γ-almost

everywhere on Ω. Hence v = 0 π-almost everywhere on Ω. Since π ^ O ,
v 6 jf(Ω) and tfSsO, it follows that v = 0, which contradicts the fact v(xo) = 1-

COROLLARY. If un e HEand \\un\\ -^0 (n-+oo),then un-+0, unVθ^O and
unA0 -• 0 locally uniformly on Ω.

LEMMA 3.5. For any u e HE, let h* be the least harmonic majorant of u2.
Then {h* u e HE} is locally uniformly bounded on Ω.

PROOF. Let ω be any non-empty relatively compact open set in Ω. By
the above theorem, there is M>0 such that \u(x)\<,M for all x e ώ and
ueHE. Since u2=h*-Uμu and βu(Ω)<,2\\u\\2<,2 for each u e H\, we have,
by using (A),
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sup A* O ) <La(ώ) inf h*(x)

<:a(ώ){M2+ inf Uμ*(x)}

Hence {&* u e H\} is locally uniformly bounded.

§ 3.4. Completeness of the space HE.

PROPOSITION 3.3. Let {un} be a sequence in HE such that {\\un\\}is bounded.
If {un} converges to u locally uniformly on Ω, then u e HE and

\\u\\<;limmΐ \\un\\.

PROOF. Obviously, u e jf(Ω). By Lemma 3.5, we see that {Λ*J is locally
uniformly bounded. Let Λw=A*n. By (B) and the definition of liminf, we can
choose a subsequence {un.} such that {hn.} converges to Λ* e 3f(Ω) locally
uniformly on Ω and limy^ooH^^H^liminf^ooll^^ll. Since un*<zhnp we have
z*2£SΛ*, so that u2 has a harmonic majorant. Let u2 = h$ — Uμu with h$ e Jf(Ω).
Obviously, A^^A*. Now, for simplicity, let βj=juUn. Since Uμi = hn. — un

2.,
{Uμj} converges to h* — u2 locally uniformly on Ω. Hence, for any relatively
compact open set ω,

[ [ Uμ»dλω=[ (h*-u2)dλω
Ω JΩ

( ) ω U"dλω= lim[ Ux dβ3
Ω y->oo J Ω j^oo J Ω

<; liminf
y-oo

Hence, juu(Ω)<.liminfMoo jUj(Ω). Also, by Fatou's lemma, we have \ u2dπ

^liminfy^ool un

2dπ. Therefore, ||M||^liminfy-oo ||u,,.|| = liminf^oo \\un\\ < + ©o5

JΩ J J

and this also shows that u e HE.

COROLLARY. HE is compact with respect to the locally uniform conver-
gence topology.

PROOF. The above proposition implies that HE is closed with respect to
the locally uniform convergence topology. On the other hand, Theorem 3.2
and (B) show that H\ is relatively compact with respect to this topology.
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THEOREM 3.3. HE is complete with respect to the norm || ||, so that it is a
Hilbert space.

PROOF. Let {un\ be a Cauchy sequence in HE with respect to the norm
|| ||. Then, it follows from Theorem 3.2 that {un} converges locally uniformly
on Ω. By Proposition 3.3, z^^lim,^, un belongs to HE. Furthermore, apply-
ing Proposition 3.3 to un — um for any fixed m, we obtain

\\u-um\\<L\\mmϊ\\un-um\\

for each m. Since \\un — um\\ -> 0 as ra, πι—•oo, it follows t h a t \\u — um\\ —• 0 as

m -> oo. Hence HE is complete.

§ 3.5. Density of HBE in HE.

LEMMA 3.6. Given u e 3f(Ω) and α>0, let

(u— α, 0)]2 and wa=a2 —

Then —υa and wa are superharmonic functions on Ω. If u2 has a harmonic
majorant, then —va and wa have harmonic minorants. Furthermore, if we
express va = ka — UVa and wa=ha + UTa with ka, ha e Jf(Ω), then vα + r a = βu

PROOF. It is easy to see that — υa is superharmonic (cf. the proof of
Lemma 2.1). Now, wa(x)=a2 if u(x)^>a and wa(χ) = 2au(x) — u(χ)2 if
u(x)<a. Since 2au — u2<^a2 and a2, 2au — u2 are superharmonic on Ω, we
see that wa is superharmonic on Ω. If u2 has a harmonic majorant, then
υa<:U2 implies that va has a harmonic majorant and wa^>2au — u2 implies
that wa has a harmonic minorant. Since va—wa = u2 — 2au, we have

ka-ha-Uv"-Uτ«=h-2au-Uμu,

where h is the least harmonic majorant of u2. This equality implies vα + rα

= βu by Lemma 1.6.

PROPOSITION 3.4. Ifue HE, u^>0 and α>0, then u/\a (= the greatest
harmonic minorant of min(zx, a)) belongs to HE and

E[u/\a~}<LE\jΓ\.

PROOF. Let fa = 2a(uΛά) — (uΛa)2. Then fa is superharmonic on Ω
and its associated measure is βuAa Since / α = α 2 — (a— ̂ Λα) 2 ^0, (uΛa)2

has a harmonic majorant. Let fa = ht+UμuAa with h%ej^(Ω). Since
uAct^min(u, a)<*a, we have O^α —min(u, a)<La—u/\a, so that

fa=a2 — (a—uAct)2<,a2 — (a — minU, α)) 2=wa,

or
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in the notation of the above lemma. It follows that ht<,ha. On the other
hand,

a = (a— uΛά)2 — (a — min(z*, a))2

= [_2a— u/\a—min(α,

Since min(a, a) — uΛα is a potential, the above inequality implies that h%^>ha.
Thus, h*=ha, and hence Uμ—<,UT«. Therefore juuAa(Ω)<,ra(Ω). By the
above lemma, ra(Ω)^juu(Ω). Hence /jίuAa(Ω)^juu(Ω). Since 0<L

\ (uΛa)2dπ<^\ u2dπ. Hence E\ju/\a\<*E\jf\< + 00 and uΛa e HE.
J Ω J Ω

PROPOSITION 3.5. If u £ HE and u ^ O , then \ima^+00\\u — uAa\\=0 and
u locally uniformly on Ω as α—• -f 00.

PROOF. First note that u — uΛa=(u— ά)V0. By Lemma 3.1,

with kte 3f(Ω). Since 0^max(u-α, 0)<.(u-ά)V0, kt-Uμu-u^^va for the
function va given in Lemma 3.6. Hence, in the notation of Lemma 3.6, we
have kt^>ka. On the other hand, kl!2^>ma,x(u— α, 0) and kH2 is superharmonic
(cf. the proof of Lemma 2.2). Hence U / 22>O-α)V0, i.e., ϋ; α ^[( i ί-α)\/0] 2 .
Thus ka^ki, and hence ka = k%. Therefore, for the measure va in Lemma 3.6,
we have Uμu-uAa<,UUa, so that juu-uAa(Ω)<;Va(Ω). Since ί)α = 0 on {u<a},

Therefore

By Lemma 3.6, va({u^>a}) <, juu({u^>a}). Hence

Mu-uΛ«(Ω)^Mu({u^a}) -> 0 (α->

Then, by Proposition 2.2, we have

>0 (a-+ +00).

In case 1 i jf(Ω), it means that \\u — uΛa\\ -> 0, and it follows from the
Corollary to Theorem 3.2 that uΛa-+ u locally uniformly on Ω. Thus what
remains to show is u — lima^+0Ou Λα in case 1 e je(Ω). Since u /\a is monotone
increasing with a and u/\a<,u, v = \ima^+0OuAa exists, v e Jf+(Ω) and v<^u.
Let c = u(χ0) — v(xo). Then c^O. Since E[_u — c — uf\<x]=E\jι — u/\a} -• 0
( α ^ + 00) and (uΛa)(χo)->u(xo) — c, wΛα tends to w —c locally uniformly
on J2 by the Corollary to Theorem 3.2. It follows that v = u — c Now, u/\a
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= (u/\ct)Aa<Lv/\a<, u/\a, so that u/\a=v/\a. Hence u/\(a + c)^=(υ + c)
= (vΛa.)-\-c = (uΛa.) + c. Letting α—̂  + 00, we have v — υ + c = u.

COROLLARY 1. HBE is dense in HE; HE is a completion of HBE

COROLLARY 2 (Virtanen-Ozawa) // HE contains a non-constant function,
then it contains a non-constant bounded function.

PROOF. Let u e HE be non-constant. Then either u\/0 or uAO is non-
constant. Thus we may assume that u>0. Then 2?[jΓ|>0. By the above
proposition, there is α>0 such that E\jι — u/\a]<E\jf\. Then E[_uΛcf]>0>
so that u/\a is non-constant (cf. Proposition 3.1), while it is bounded.
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