Oscillation Theorems for Delay Equations of Arbitrary Order

Takaŝi Kusano and Hiroshi Onose

(Received September 14, 1972)

1. Introduction

We consider the n-th order delay equations

$$
\begin{align*}
& x^{(n)}(t)+p(t) f(x(t), x(\delta(t)))=0, \tag{1}\\
& x^{(n)}(t)+p(t) g(x(\delta(t)))=0
\end{align*}
$$

where $p(t)$ is continuous and eventually positive on $R_{+}=[0, \infty)$ and $\delta(t)$ is continuous on R_{+}with $\delta(t) \leqq t, \lim _{t \rightarrow \infty} \delta(t)=\infty$. (These assumptions on $p(t)$ and $\delta(t)$ will be assumed without further mention.) We restrict attention to solutions of (1) or (2) which exist on some positive half-line. A nontrivial solution $x(t)$ is called oscillatory if there exists a sequence $\left\{t_{k}\right\}_{k=1}^{\infty}$ such that $\lim _{k \rightarrow \infty} t_{k}=\infty$ and $x\left(t_{k}\right)=0$ for all k. Otherwise, a solution is called nonoscillatory. A nonoscillatory solution is said to be strongly monotone if it tends monotonically to zero as $t \rightarrow \infty$ together with its first $n-1$ derivatives.

In [2] we established an oscillation theorem for (2) under the assumption that the retarded argument $\delta(t)$ is continuously differentiable and nondecreasing on R_{+}. The purpose here is to give oscillation criteria for (1) and (2) by avoiding this assumption and requiring that $\delta(t)$ has a continuously differentiable and nondecreasing minorant $\delta_{*}(t)$. The use of a differentiable minorant was suggested by Travis [4]. This will allow our theorems to be applied to delay equations of the form $x^{(n)}(t)+p(t) g(x(t-\tau(t)))=0,0 \leqq \tau(t) \leqq M$, where $\tau(t)$ is not assumed differentiable.

2. Main Theorems

We now state our major results.
Theorem 1. With regard to equation (1) assume that:
(i) there exists a continuously differentiable and nondecreasing function on $R_{+}, \delta_{*}(t)$, such that $\delta_{*}(t) \leqq \delta(t)$ and $\lim _{t \rightarrow \infty} \delta_{*}(t)=\infty$;
(ii) $f(x, y)$ is continuous on $R \times R, R=(-\infty, \infty)$, is nondecreasing in y,
and has the sign of x and y when they have the same sign;
(iii) there exist positive numbers M and $\alpha \neq 1$ such that

$$
\liminf _{|y| \rightarrow \infty} \frac{|f(x, y)|}{|y|^{\alpha}}>0 \quad \text { if } \quad|x| \geqq M .
$$

Then if

$$
\begin{equation*}
\int^{\infty}\left[\delta_{*}(t)\right]^{\alpha^{*}(n-1)} p(t) d t=\infty, \quad \alpha^{*}=\min (\alpha, 1) \tag{3}
\end{equation*}
$$

every solution of (1) is oscillatory in the case n is even, and every solution is either oscillatory or strongly monotone in the case n is odd.

Theorem 2. With regard to equation (2) assume that:
(i) there exists a continuously differentiable and nondecreasing function on $R_{+}, \delta_{*}(t)$, such that $\delta_{*}(t) \leqq \delta(t)$ and $\lim _{t \rightarrow \infty} \delta_{*}(t)=\infty$;
(ii) $g(x)$ is continuous and nondecreasing on $R, x g(x)>0$ for $x \neq 0$;
(iii) for some $\varepsilon>0$

$$
\int_{\varepsilon}^{\infty} \frac{d x}{g(x)}<\infty \text { and } \int_{-\varepsilon}^{-\infty} \frac{d x}{g(x)}<\infty .
$$

Let

$$
\begin{equation*}
\int^{\infty}\left[\delta_{*}(t)\right]^{n-1} p(t) d t=\infty . \tag{4}
\end{equation*}
$$

Then if n is even, every solution of (2) is oscillatory, and if n is odd, every solution is either oscillatory or strongly monotone.

Theorem 3. Let equation (2) be subject to (i), (ii) of Theorem 2 and (iii') there exist positive numbers $M, \lambda_{0}, \alpha<1$ such that for $\lambda \geqq \lambda_{0}$

$$
g(\lambda x) \geqq M \lambda^{\alpha} g(x) \text { if } x>0 \text { and } g(\lambda x) \leqq M \lambda^{\alpha} g(x) \text { if } x<0 .
$$

Then if

$$
\begin{equation*}
\int^{\infty}\left[\delta_{*}(t)\right]^{\alpha(n-1)} p(t) d t=\infty \tag{5}
\end{equation*}
$$

the conclusion of Theorem 2 holds.
Remark 1. If, in Theorem 1, $\delta(t)$ is of the form $\delta(t)=t-\tau(t), 0 \leqq \tau(t) \leqq M$, then we can take $\delta_{*}(t)=t-M$, and condition (3) is equivalent to the following

$$
\int^{\infty} t^{\alpha *(n-1)} p(t) d t=\infty, \quad \alpha^{*}=\min (\alpha, 1)
$$

The same remark also applies to Theorems 2 and 3.

Remark 2. Theorem 1 is an extension of our previous result [2, Theorem 1] and includes as special cases (sufficiency parts of) the theorems of Gollwitzer [1]. Theorems 2 and 3 also extends Gollwitzer's Theorems 1 and 2, respectively.

3. Proofs of Theorems

The following lemma is neeeded (see Ryder and Wend [3]).
Lemma. If $x(t) \in C^{n}[a, \infty), x(t) \geqq 0$ and $x^{(n)}(t) \leqq 0$ on $[a, \infty)$, then exactly one of the following cases occurs:
(I) $x^{\prime}(t), \cdots, x^{(n-1)}(t)$ tend monotonically to zero as $t \rightarrow \infty$;
(II) there exists an odd integer $k, 1 \leqq k \leqq n-1$, such that

$$
\begin{aligned}
& \lim _{t \rightarrow \infty} x^{(n-j)}(t)=0 \text { for } 1 \leqq j \leqq k-1, \lim _{t \rightarrow \infty} x^{(n-k)}(t) \geqq 0, \lim _{t \rightarrow \infty} x^{(n-k-1)}(t)>0, \\
& \text { and } x(t), x^{\prime}(t), \cdots, x^{(n-k-2)}(t) \text { tend to } \infty \text { as } t \rightarrow \infty
\end{aligned}
$$

Proof of Theorem 1. The proof is patterned on that contained in our previous paper [2]. Let $x(t)$ be a nonoscillatory solution of (1). We may assume that $x(t)>0$ for large t. The case $x(t)<0$ can be treated similarly. Since $\lim _{t \rightarrow \infty} \delta_{*}(t)=\infty$, there exists a T such that $x\left(\delta_{*}(t)\right)>0$ for $t \geqq T$. In view of (1),

$$
\begin{equation*}
x^{(n)}(t)=-p(t) f(x(t), x(\delta(t)))<0, t \geqq T \tag{6}
\end{equation*}
$$

Therefore, $x^{(n-1)}(t)$ decreases to a nonnegative limit as t increases to ∞. Integrationg (6) from t to ∞, we obtain

$$
x^{(n-1)}(t) \geqq \int_{t}^{\infty} p(u) f(x(u), x(\delta(u))) d u
$$

Since $x^{(n-1)}(t)$ is decreasing and $\delta_{*}(t) \leqq t$, we have

$$
\begin{equation*}
x^{(n-1)}\left(\delta_{*}(t)\right) \geqq \int_{t}^{\infty} p(u) f(x(u), x(\delta(u))) d u, t \geqq T \tag{7}
\end{equation*}
$$

Suppose case (I) of Lemma holds. Multiply both sides of (7) by $\delta_{*}^{\prime}(t)$, integrate from t to s with $T<t<s$, and then let s tend to ∞ in the resulting inequality. Then we have for $t \geqq T$

$$
-x^{(n-2)}\left(\delta_{*}(t)\right) \geqq \int_{t}^{\infty}\left[\delta_{*}(u)-\delta_{*}(t)\right] p(u) f(x(u), x(\delta(u))) d u
$$

Repeating the above procedure we have

$$
\begin{equation*}
(-1)^{n} x^{\prime}\left(\delta_{*}(t)\right) \geqq \int_{t}^{\infty} \frac{\left[\delta_{*}(u)-\delta_{*}(t)\right]^{n-2}}{(n-2)!} p(u) f(x(u), x(\delta(u))) d u \tag{8}
\end{equation*}
$$

Let n be even. Then, from (8), we see that $x^{\prime}(t) \geqq 0$ for $t \geqq T$, i.e., $x(t)$ is nondecreasing for $t \geqq T$. It follows that

$$
\begin{equation*}
x^{\prime}\left(\delta_{*}(t)\right) \geqq \int_{t}^{\infty} \frac{\left[\delta_{*}(u)-\delta_{*}(t)\right]^{n-2}}{(n-2)!} p(u) f\left(x(u), x\left(\delta_{*}(u)\right)\right) d u \tag{9}
\end{equation*}
$$

since $\delta_{*}(t) \leqq \delta(t)$ and $f(x, y)$ is nondecreasing in y. Multiplying both sides of (9) by $\delta_{*}^{\prime}(t)$ and integrating from T to $t, T<t$, we have

$$
\begin{align*}
x\left(\delta_{*}(t)\right) & \geqq \int_{T}^{t} \frac{\left[\delta_{*}(u)-\delta_{*}(T)\right]^{n-1}}{(n-1)!} p(u) f\left(x(u), x\left(\delta_{*}(u)\right)\right) d u \\
& +\frac{\left[\delta_{*}(t)-\delta_{*}(T)\right]^{n-1}}{(n-1)!} \int_{t}^{\infty} p(u) f\left(x(u), x\left(\delta_{*}(u)\right)\right) d u \tag{10}
\end{align*}
$$

If $\alpha>1$, from (10) with the second term on the right side removed, we have

$$
\begin{equation*}
\left[x\left(\delta_{*}(t)\right)\right]^{-\alpha} \leqq\left\{\int_{T}^{t} \frac{\left[\delta_{*}(u)-\delta_{*}(T)\right]^{n-1}}{(n-1)!} p(u) f\left(x(u), x\left(\delta_{*}(u)\right)\right) d u\right\}^{-\alpha} \tag{11}
\end{equation*}
$$

Multiplication of both sides of (11) by $\frac{\left[\delta_{*}(t)-\delta_{*}(T)\right]^{n-1}}{(n-1)!} p(t) f\left(x(t), x\left(\delta_{*}(t)\right)\right)$ and integration from t_{1} to $t_{2}, T<t_{1}<t_{2}$, give

$$
\begin{align*}
& \int_{t_{1}}^{t_{2}} \frac{\left[\delta_{*}(t)-\delta_{*}(T)\right]^{n-1}}{(n-1)!} p(t) f\left(x(t), x\left(\delta_{*}(t)\right)\right)\left[x\left(\delta_{*}(t)\right)\right]^{-\alpha} d t \\
& \leqq\left.\frac{1}{1-\alpha}\left\{\int_{T}^{t} \frac{\left[\delta_{*}(u)-\delta_{*}(T)\right]^{n-1}}{(n-1)!} p(u) f\left(x(u), x\left(\delta_{*}(u)\right)\right) d u\right\}^{1-\alpha}\right|_{t_{1}} ^{t_{2}} \tag{12}
\end{align*}
$$

Since the right side remains finite for all $t_{2}>t_{1}$, the integral on the left converges as $t_{2} \rightarrow \infty$. There are two possible cases: Either $\lim _{t \rightarrow \infty} x(t)=c$ (finite) or $\lim _{t \rightarrow \infty} x(t)=\infty$. In the former case we can choose a $\tau>T$ such that

$$
f\left(x(t), x\left(\delta_{*}(t)\right)\right)\left[x\left(\delta_{*}(t)\right)\right]^{-\alpha} \geqq \frac{1}{2} f(c, c) c^{-\alpha} \text { for } t \geqq \tau
$$

Then from (12) we obtain

$$
\begin{aligned}
& \int_{\tau}^{\infty}\left[\delta_{*}(t)-\delta_{*}(T)\right]^{n-1} p(t) d t \\
& \leqq \frac{2 c^{\alpha}}{f(c, c)} \int_{\tau}^{\infty}\left[\delta_{*}(t)-\delta_{*}(T)\right]^{n-1} p(t) f\left(x(t), x\left(\delta_{*}(t)\right)\right)\left[x\left(\delta_{*}(t)\right)\right]^{-\alpha} d t
\end{aligned}
$$

But this is in contradiction to (3). In the latter case, by (iii), there exists a positive constant K such that

$$
f\left(x(t), x\left(\delta_{*}(t)\right)\right)\left[x\left(\delta_{*}(t)\right)\right]^{-\alpha} \geqq K \text { for } t \geqq \tau
$$

provided τ is sufficiently large. Consequently, from (12) we conclude that

$$
\int_{\tau}^{\infty}\left[\delta_{*}(t)-\delta_{*}(T)\right]^{n-1} p(t) d t<\infty
$$

which again contradicts (3).
If $\alpha<1$, from (10) with the second term on the right removed we have

$$
\begin{equation*}
\left[x\left(\delta_{*}(t)\right)\right]^{-\alpha}\left[\delta_{*}(t)-\delta_{*}(T)\right]^{\alpha(n-1)} \leqq\left\{\int_{t}^{\infty} \frac{p(u) f\left(x(u), x\left(\delta_{*}(u)\right)\right)}{(n-1)!} d u\right\}^{-\alpha} \tag{13}
\end{equation*}
$$

Multiplying both sides of (13) by $p(t) f\left(x(t), x\left(\delta_{*}(t)\right)\right) /(n-1)$! and integrating from t_{1} to $t_{2}, T<t_{1}<t_{2}$, we obtain

$$
\begin{align*}
& \int_{t_{1}}^{t_{2}} \frac{\left[\delta_{*}(t)-\delta_{*}(T)\right]^{\alpha(n-1)}}{(n-1)!} p(t) f\left(x(t), x\left(\delta_{*}(t)\right)\right)\left[x\left(\delta_{*}(t)\right)\right]^{-\alpha} d t \tag{14}\\
& \leqq-\left.\frac{1}{1-\alpha}\left\{\int_{t}^{\infty} \frac{p(u) f\left(x(u), x\left(\delta_{*}(u)\right)\right)}{(n-1)!} d u\right\}^{1-\alpha}\right|_{t_{1}} ^{t_{2}}
\end{align*}
$$

from which we can derive the contradiction

$$
\int^{\infty}\left[\delta_{*}(t)-\delta_{*}(T)\right]^{\alpha(n-1)} p(t) d t<\infty
$$

exactly as in the case $\alpha>1$.
Let n be odd. Then (8) reduces to

$$
-x^{\prime}\left(\delta_{*}(t)\right) \geqq \int_{t}^{\infty} \frac{\left[\delta_{*}(u)-\delta_{*}(t)\right]^{n-2}}{(n-2)!} p(u) f(x(u), x(\delta(u))) d u
$$

and this implies that $x(t)$ is nonincreasing for $t \geqq T$. Let $\lim _{t \rightarrow \infty} x(t)=L$. We shall prove that $L=0$. Suppose $L>0$. We take T so large that $f(x(t), x(\delta(t)))$ $\geqq \frac{1}{2} f(L, L)$ for $t \geqq T$. Integration of (8^{\prime}) multiplied by $\delta_{*}^{\prime}(t)$ from T to t yields

$$
\begin{aligned}
x\left(\delta_{*}(T)\right)-x\left(\delta_{*}(t)\right) \geqq & \int_{T}^{t} \frac{\left[\delta_{*}(u)-\delta_{*}(T)\right]^{n-1}}{(n-1)!} p(u) f(x(u), x(\delta(u))) d u \\
& +\frac{\left[\delta_{*}(t)-\delta_{*}(T)\right]^{n-1}}{(n-1)!} \int_{t}^{\infty} p(u) f(x(u), x(\delta(u))) d u
\end{aligned}
$$

Letting $t \rightarrow \infty$, we have the following contradiction:

$$
\begin{aligned}
x\left(\delta_{*}(T)\right)>x\left(\delta_{*}(t)\right)-L & \geqq \int_{T}^{\infty} \frac{\left[\delta_{*}(u)-\delta_{*}(T)\right]^{n-1}}{(n-1)!} p(u) f(x(u), x(\delta(u))) d u \\
& \geqq \frac{f(L, L)}{2(n-1)!} \int_{T}^{\infty}\left[\delta_{*}(u)-\delta_{*}(T)\right]^{n-1} p(u) d u
\end{aligned}
$$

Therefore, if n is odd, a nonoscillatory solution of (1) must be strongly monotone.

Suppose now case (II) of Lemma holds. We observe that there exists a $t_{0} \geqq T$ such that $x^{(j)}\left(\delta_{*}(t)\right)>0$ for $t \geqq t_{0}, j=0,1, \ldots, n-k-1$. Proceeding as in case (I), we obtain

$$
x^{(n-k)}\left(\delta_{*}(t)\right) \geqq \int_{t}^{\infty} \frac{\left[\delta_{*}(u)-\delta_{*}(t)\right]^{k-1}}{(k-1)!} p(u) f\left(x(u), x\left(\delta_{*}(u)\right)\right) d u
$$

Multiplying both sides of the above inequality by $\delta_{*}^{\prime}(t)$ and integrating from t_{0} to t,

$$
x^{(n-k-1)}\left(\delta_{*}(t)\right) \geqq \frac{\left[\delta_{*}(t)-\delta_{*}\left(t_{0}\right)\right]^{k}}{k!} \int_{t}^{\infty} p(u) f\left(x(u), x\left(\delta_{*}(u)\right)\right) d u
$$

Repeating the above procedure we otain

$$
x^{\prime}\left(\delta_{*}(t)\right) \geqq \frac{\left[\delta_{*}(t)-\delta_{*}\left(t_{0}\right)\right]^{n-2}}{(n-2)!} \int_{t}^{\infty} p(u) f\left(x(u), x\left(\delta_{*}(u)\right)\right) d u
$$

from which we can easily deribve the following inequality analogous to (10):

$$
\begin{align*}
x\left(\delta_{*}(t)\right) \geqq & \int_{t_{0}}^{t} \frac{\left[\delta_{*}(u)-\delta_{*}\left(t_{0}\right)\right]^{n-1}}{(n-1)!} p(u) f\left(x(u), x\left(\delta_{*}(u)\right)\right) d u \tag{15}\\
& +\frac{\left[\delta_{*}(t)-\delta_{*}\left(t_{0}\right)\right]^{n-1}}{(n-1)!} \int_{t}^{\infty} p(u) f\left(x(u), x\left(\delta_{*}(u)\right)\right) d u
\end{align*}
$$

The proof now proceeds exactly as in case (I). The proof is therefore complete.

Proof of Theorem 2. Let $x(t)$ be a nonoscillatory solution of (2) which may be assumed positive for large t.

Let case (I) of Lemma hold and let n be even. Then, proceeding as in the proof of Theorem 1, we obtain an inequality corresponding to (10) which yields

$$
x\left(\delta_{*}(t)\right) \geqq \int_{T}^{t} \frac{\left[\delta_{*}(u)-\delta_{*}(T)\right]^{n-1}}{(n-1)!} p(u) g\left(x\left(\delta_{*}(u)\right)\right) d u
$$

Since $g(x)$ is nondecreasing,

$$
\begin{equation*}
g\left(x\left(\delta_{*}(t)\right)\right) / g\left[\int_{T}^{t} \frac{\left[\delta_{*}(u)-\delta_{*}(T)\right]^{n-1}}{(n-1)!} p(u) g\left(x\left(\delta_{*}(u)\right)\right) d u\right] \geqq 1 \tag{16}
\end{equation*}
$$

Following [3], we multiply both sides of (16) by $\left[\delta_{*}(t)-\delta_{*}(T)\right]^{n-1} p(t) /(n-1)$!, integrate from t_{1} to $t_{2}, T<t_{1}<t_{2}$, to obtain

$$
\begin{equation*}
\int_{t_{1}}^{t_{2}} \frac{\left[\delta_{*}(t)-\delta_{*}(T)\right]^{n-1}}{(n-1)!} p(t) d t \leqq \int_{x_{1}}^{x_{2}} \frac{d x}{g(x)} \tag{17}
\end{equation*}
$$

where

$$
x_{i}=\int_{T}^{t_{i}} \frac{\left[\delta_{*}(u)-\delta_{*}(T)\right]^{n-1}}{(n-1)!} p(u) g\left(x\left(\delta_{*}(u)\right)\right) d u, \quad i=1,2
$$

If $x_{1} \geqq \varepsilon$ for some $t_{1} \geqq T$, then, in view of condition (iii), (17) gives a contradiction to (4). If $x_{1}<\varepsilon$ for all $t_{1} \geqq T$, then

$$
\varepsilon>x_{1} \geqq g\left(x\left(\delta_{*}(T)\right)\right) \int_{T}^{t_{1}} \frac{\left[\delta_{*}(u)-\delta_{*}(T)\right]^{n-1}}{(n-1)!} p(u) d u
$$

which again contradicts (4).
If n is odd, then, as in the proof of Theorem 1, we are led to the contradiction : $\iint^{\infty}\left[\delta_{*}(t)\right]^{n-1} p(t) d t<\infty$.

When case (II) of Lemma holds, an inequality corresponding to (15) enables us to preceed entirely as in case (I). This completes the proof.

Proof of Theorem 3. Let $x(t)$ be a nonoscillatory solution of (2) which is positive for large t.

Suppose case (I) of Lemma holds. If n is even, from the inequality

$$
x\left(\delta_{*}(t)\right) \geqq \frac{\left[\delta_{*}(t)-\delta_{*}(T)\right]^{n-1}}{(n-1)!} \int_{t}^{\infty} p(u) g\left(x\left(\delta_{*}(u)\right)\right) d u
$$

which follows from an inequality corresponding to (10), we obtain

$$
\begin{array}{r}
\int_{t_{1}}^{t_{2}} \frac{\left[\delta_{*}(t)-\delta_{*}(T)\right]^{\alpha(n-1)}}{(n-1)!} p(t) g\left(x\left(\delta_{*}(t)\right)\right)\left[x\left(\delta_{*}(t)\right)\right]^{-\alpha} d t \tag{18}\\
\leqq-\left.\frac{1}{1-\alpha}\left\{\int_{t}^{\infty} \frac{p(u) g\left(x\left(\delta_{*}(u)\right)\right)}{(n-1)!} d u\right\}^{1-\alpha}\right|_{t_{1}} ^{t_{2}}
\end{array}
$$

which corresponds to (14), where $t_{2}>t_{1}>T$. In view of (iii'), the integral on the left side of (18) exceeds

$$
M g(1) \int_{t_{1}}^{t_{2}} \frac{\left[\delta_{*}(t)-\delta_{*}(T)\right]^{\alpha(n-1)}}{(n-1)!} p(t) d t
$$

But this contradicts (5), since the right side remains bounded as $t_{2} \rightarrow \infty$. Let n be odd and assume the existence of a nonoscillatory solution $x(t)$. If $\lim _{t \rightarrow \infty} x(t)$ $=L>0$, then it is not hard to show that $\int^{\infty}\left[\delta_{*}(t)\right]^{n-1} p(t) d t<\infty$, and a fortiori $\int^{\infty}\left[\delta_{*}(t)\right]^{\alpha(n-1)} p(t) d t<\infty$, in contradiction to (5).

When case (II) of Lemma occurs, we can derive a contradiction on the basis of an inequality corresponding to (15). The proof is thus complete.

References

[1] H. E. Gollwitzer, On nonlinear oscillation for a second-order delay equation, J. Math. Anal. Appl. 26 (1969), 385-389.
[2] T. Kusano and H. Onose, Oscillation of solutions of nonlinear differential delay equations of arbitrary order, Hiroshima Math. J. 2 (1972), 1-13.
[3] G. H. Ryder and D. V. V. Wend, Oscillation of solutions of certain ordinary differential equations of nth order, Proc. Amer. Math. Soc. 25 (1970), 463-469.
[4] C. C. Travis, Oscillation theorems for second-order differential equations with functional arguments, Proc. Amer. Math. Soc. 31 (1972), 199-202.

> Department of Mathematics, Faculty of Science, Hiroshima University and Department of Mathematics, College of General Education, Ibaraki University

