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1. Introduction

We consider the n-th. order delay equations

(1) χW(t) +P{t)f{x(t\ *($(*))) = 0,

(2) x

where p(t) is continuous and eventually positive on R+ = [0y oo) and δ(t) is
continuous on R+ with δ(t)<^t, lim δ(t) = oot (These assumptions on p(t) and

δ(t) will be assumed without further mention.) We restrict attention to
solutions of (1) or (2) which exist on some positive half-line. A nontrivial
solution x(t) is called oscillatory if there exists a sequence {tk}°k=ι such that
lim ί* = oo and x(tk) = 0 for all k. Otherwise, a solution is called nonoscilla-

tory. A nonoscillatory solution is said to be strongly monotone if it tends
monotonically to zero as ί-^oo together with its first n — 1 derivatives.

In [2] we established an oscillation theorem for (2) under the assumption
that the retarded argument δ(t) is continuously differentiate and nondecreas-
ing on R+. The purpose here is to give oscillation criteria for (1) and (2) by
avoiding this assumption and requiring that δ(t) has a continuously differenti-
able and nondecreasing minorant δ*(t). The use of a differentiate minorant
was suggested by Travis [_4Γ\. This will allow our theorems to be applied to
delay equations of the form x{n)(t)+p(t)g(x(t — r(ί))) = 0, 0<Lv(t)<;M, where
r(0 is not assumed differentiate.

2. Main Theorems

We now state our major results.

THEOREM 1. With regard to equation (1) assume that:
( i ) there exists a continuously differentiate and nondecreasing function

on R+, δ*(t), such that δ*(t)<:δ(t) and lim δ*(t) = oo;
f->oo

(ii) f(x, γ) is continuous on Rx R, i? = (— oo5 oo)5 is nondecreasing in j ,
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and has the sign of x and y when they have the same sign
(iii) there exist positive numbers M and aφl such that

lim inf^-j—^—>0 if

\y\-~ \y\

Then if

(3)

every solution of (1) is oscillatory in the case n is even, and every solution is
either oscillatory or strongly monotone in the case n is odd.

THEOREM 2. With regard to equation (2) assume that:

( i ) there exists a continuously differentiable and nondecreasing function
on R+, δ*(t), such that δ*(t)<,δ(t) and lim δ*(t) = oo

(ii) g(x) is continuous and nondecreasing on R, xg(x)>0 for x-
(iii) for some ε>0

x <oo and

Let

(4)

Then if n is even, every solution of (2) is oscillatory, and if n is odd, every
solution is either oscillatory or strongly monotone.

THEOREM 3. Let equation (2) be subject to (i), (ii) of Theorem 2 and
(iii7) there exist positive numbers M, λ0, a<l such that for Λ> λ0

g(λx)^>Mλag(x) if x>0 and g(λx)^Mλag{x) if x<0.

Then if

(5)

the conclusion of Theorem 2 holds.

Remark 1. If, in Theorem 1, δ(t) is of the form δ(t) = t — r(t), 0<,r(t)<;M,
then we can take δ*(t) = t—M, and condition (3) is equivalent to the following

«>, α*=min (a, 1).

The same remark also applies to Theorems 2 and 3.
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Remark 2. Theorem 1 is an extension of our previous result Q2, Theorem
1] and includes as special cases (sufficiency parts of) the theorems of
Gollwitzer [1]. Theorems 2 and 3 also extends Gollwitzer's Theorems 1
and 2, respectively.

3. Proofs of Theorems

The following lemma is neeeded (see Ryder and Wend

LEMMA. / / x(t) e Cn[_a, °o)5 x(t);>0 and x{n\t)<=0 on [a, oo), then exactly
one of the following cases occurs:

(I) x'(t)y, χ{n~l)(t) tend monotonίcally to zero as £—•oo;
(II) there exists an odd integer k, l^k<Ln — l, such that

lim x(n~j\t)=0for l ^ / ^ A - 1 , lim *( l |-*>(f)^0, lim x^n~
/-•oo f->oo ί->oo

and x(t), #'(*)>•••> xin~k~2\t) tend to oo as ί-»oo.

PROOF OF THEOREM 1. The proof is patterned on that contained in our
previous paper [2J. Let x(t) be a nonoscillatory solution of (1). We may
assume that x(t)>0 for large t. The case #(i)<0 can be treated similarly.
Since lim £*(*) = oo, there exists a T such that x(δ*(t))>0 for t^>T. In view

of (1)Γ~

(6) χ(n\t) = -P(t)f(x(t\ *(*(*))) < 0, ί ̂  T.

Therefore, Λ;(M"υ(ί) decreases to a nonnegative limit as t increases to
Integrationg (6) from t to <*>, we obtain

^fixiu), x{δ(u)))du.

Since x{n~λ)(t) is decreasing and δ*(t)<;t, we have

(7) x(n-ιKδ*(t))^~p(u)f(x(u), χ(δ(u)))du, t^ T.

Suppose case (I) of Lemma holds. Multiply both sides of (7) by δ*(t\
integrate from t to s with T<t<s, and then let s tend to oo in the resulting
inequality. Then we have for t ;> T

Repeating the above procedure we have



266 Takasi KUSANO and Hiroshi ONOSE

Let n be even. Then, from (8), we see that x'(t)^>0 for *;> Γ, i.e., χ(t)
is nondecreasing for t^:T. It follows that

(9) *
P(u)f(x(u), x(d*

since δ*(t)<?δ(t) and f(x, y) is nondecreasing in y. Multiplying both sides
of (9) by δ*(t) and integrating from T to t, T< t, we have

^J^pp(u)f(x(u), x(δ*(u)))du
(10)

If α > l , from (10) with the second term on the right side removed, we
have

Multiplication of both sides of (11) by Cg*0) J ^ ^ * *p(t)f(χ(t), χ(δ*(t)))

and integration from ti to t2, T<tx<t2, give

(12)

Since the right side remains finite for all t2>tu the integral on the left
converges as ί2-^°° There are two possible cases: Either lim x(t) = c (finite)

f->OO

or lim x(t) = °o. In the former case we can choose a r > Γsuch that

f(x(t), x(δ*(t)))tx(δ*(t))Ta^^-f(c, c)c-a for ί^r.

Then from (12) we obtain

But this is in contradiction to (3). In the latter case, by (iii), there exists a
positive constant K such that
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f(χ(t\ x(δ*(t)))Ex(δ*(t))Ta>K for ί^r,

provided r is sufficiently large. Consequently, from (12) we conclude that

which again contradicts (3).

If <z<l, from (10) with the second term on the right removed we have

Multiplying both sides of (13) by p(t)f(x(t\ x(δ*(t)))/(n — l)\ and integrating
from tx to t2, T<tι<t2, we obtain

(14)
p(u)f(x(u\

from which we can derive the contradiction

exactly as in the case a>l.

Let n be odd. Then (8) reduces to

and this implies that χ(t) is nonincreasing for t^> T. Let lim x(t)=L. We

shall prove that L=0. Suppose I > 0. We take Γ so large that f(χ(t), χ(δ(t)J)

^ i / ( i , £) for ί ̂  Γ. Integration of (87) multiplied by δί(t) from Γ to ί yields

p(u)f(x(uX x(S(u)))du.

Letting t -> °o, we have the following contradiction:
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Therefore, if n is odd, a nonoscillatory solution of (1) must be strongly
monotone.

Suppose now case (II) of Lemma holds. We observe that there exists a
t0^ T such that χu\δ*(t))>0 for t^>t0, ; = 0 , 1,-., n — k — 1. Proceeding as
in case (I), we obtain

~ ̂ l^ffi1*'1 P(u)f(x(u\ x(δ*(u)))du.

Multiplying both sides of the above inequality by δ*(t) and integrating from
to tθ ί,

L δ Λ t ) ^ ( t ) y ^ x ( u \ x{δ*(u)))du.

Repeating the above procedure we otain

from which we can easily deribve the following inequality analogous to (10):

^*(">-^°)T- 1 p(u)f(x(u\ x(δ*(u)))du
Q y )

(15)
[ ^ ( O ^ ) ] - 1 ^ p ( u ) f ( x ( u χ x(d*(u)))du.

The proof now proceeds exactly as in case (I). The proof is therefore
complete.

PROOF OF THEOREM 2. Let χ(t) be a nonoscillatory solution of (2) which
may be assumed positive for large t.

Let case (I) of Lemma hold and let n be even. Then, proceeding as in
the proof of Theorem 1, we obtain an inequality corresponding to (10) which
yields

Since g(x) is nondecreasing,

(16) g(x(δ*(t)))/g

Following [3], we multiply both sides of (16) by
integrate from tλ to ί2, T<tι<t2, to obtain

( 1 7 )
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where

£ ̂ ^ff^"1 i = l, 2.
If χi^>ε for some £ij> Γ, then, in view of condition (iii), (17) gives a contra-
diction to (4). If χι<ε for all £î > Γ, then

^py-1

 p(u)du

which again contradicts (4).

If n is odd, then, as in the proof of Theorem 1, we are led to the contra-

diction: [ [d*(tj]n-lp(t)dt<oo.

When case (II) of Lemma holds, an inequality corresponding to (15)
enables us to preceed entirely as in case (I). This completes the proof.

PROOF OF THEOREM 3. Let x(t) be a nonoscillatory solution of (2) which
is positive for large t.

Suppose case (I) of Lemma holds. If n is even, from the inequality

^

which follows from an inequality corresponding to (10), we obtain

Γ 2

(18)

which corresponds to (14), where ί 2 >*i> T. In view of (iii'X the integral on
the left side of (18) exceeds

p(t)dt.

But this contradicts (5), since the right side remains bounded as ί2-
>o°. Let

n be odd and assume the existence of a nonoscillatory solution x(t). If lim x(t)

=L>0, then it is not hard to show that \ \jS*(ty\n~ιp(t)dt<°o, and a fortiori

o, in contradiction to (5).

When case (II) of Lemma occurs, we can derive a contradiction on the
basis of an inequality corresponding to (15). The proof is thus complete.
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