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Introduction

The classical theory on Dirichlet problem shows that certain classes of
harmonic functions on the unit disc are given by the Poisson integral (cf. [1]).
Recently S. Helgason proved in [5] that any eigenfunction of the Laplace-Beltrami
operator corresponding to the Poincaré metric can be given as the Poisson trans-
form of a hyperfunction. On the contrary, it was proved in [3] that, on the eu-
clidean space, one should consider the space which properly contains the hyper-
functions on the sphere to obtain arbitrary eigenfunctions of the laplacian.

The present paper shows that the harmonic functions of the Laplace-Beltrami
operator on the hermitian hyperbolic spaces are given as the Poisson transforms
of the hyperfunctions on the boundary (Theorem 4.5 in §4). For the case of real
hyperbolic spaces we shall discuss in [11].

The construction of this paper is as follows.

In §1, we show that on a compact riemannian manifold, there exists an
isomorphism of the space of hyperfunctions onto the space of Fourier coefficients
of hyperfunctions with respect to the Laplace-Beltrami operator. In §2, we
show that any harmonic function can be expanded in an absolutely convergent
series of K-finite harmonic functions, and in §3 we determine the K-finite harmonic
functions by solving differential equations. In the final section we define the Pois-
son transform of hyperfunctions which is a natural generalization of Poisson
integral. Then, making use of an isomorphism in §1, we prove Theorem 4.5.

§1. Hyperfunctions on compact real analytic riemannian manifolds

We shall show in this section that the hyperfunctions on a compact real
analytic riemannian manifold can be characterized by the eigenvalues of the
Laplace-Beltrami operator on the manifold.

Let M be a compact real analytic riemannian manifold, g a riemannian
metric on M and 4 the Laplace-Beltrami operator corresponding to g.

Let L2(M) be the space of square integrable functions on M with respect to
the measure du corresponding to g, ( , ) its unitary inner product and || | its norm.
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We denote by /(M) the space of analytic functions on M equipped with the

usual topology. :
As is well-known, the eigenvalues of 4 are non-negative and we can choose

analytic functions ¢,(n=N) so that they form a complete orthonormal base of
L2(M) and the corresponding eigenvalues 4, satisfy

0S4y SA < Sh <.

LemMmA 1.1. For seC with Re(s)>—;—dim M, the series

Sa+a

is convergent and holomorphic in s.
For the proof of the lemma, see [10].

LeMMA 1.2. For t>0, the series

i e"'\/l—n
n=1

is convergent.

Proor. Take an s€R such that s>%dim M. Then there exists a real

number m >0 satisfying

(A+4)etVin<m

for any n=1. Therefore

Ms

eVIn<m 2‘1(1+1,,)‘3,

n=1

which is convergent by Lemma 1.1.
Let C*(M) be the set of indefinitely differentiable functions on M. It is
well-known that any ¢ C®(M) has an absolutely and uniformly convergent

expansion
¢ = n§1 an¢m
where a,=(¢p, ¢,). Since Ap= i a,A.d,, the series
n=1

5 /L,
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is also absolutely and uniformly convergent and defines an element of C*(M).
We denote it by 41/2¢. It is easy to show

Lemma 1.3. For f and h in C®(M),
(472f, hy=(f, 4*/%h).

Analogously, for any t=0, we can define a mapping exp(—t41/2) by
exp(—14112)p= 5 a,e Vi,
n=1
for ¢= f} a,p, in C*(M). Then we have
n=1

LemMA 1.4. For f and h in C*(M),
(exp(—t41/2) f, h)=(f, exp(—t4'/2)h).
We introduce two systems of semi-norms| |4z(H>0) and | |[;(A>0) on
C*(M) defined by
- 1 K

and
— 1 1/2\ym
I$lls= sup —r (412",

where Z* denotes the set of non-negative integers. For H>0 and h>0, we
define

AL o,uf(M)={pC=(M)||§|g <o}
and
AL (M)={peC*M)| ||$|l,< oo}
Then we have
LeEMMALS. For ¢ € C*(M), we have the following two inequalities.
@ lola=ldllm
(i) ¢l =+ 218lu

Proor. (i) Taking the supremum of the equality

(2k)1!H' ; ”Ak¢”=(2—k)!Ti/ﬁ_)27”(A”2)"¢”,

we obtain the required inequality
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Ipla=lIolla-

(i) In case of m=2] where [ is a non-negative integer,

1
714 12)ymgp||

=—(2—I)TI(F)—,||A’¢I|

Taking the supremum of the last term, we have

L (412 ||< | ] o (1.1)

m!hm

In case of m=2Il+1,

(iglcarmmgl)’

m!'hm

((A1/2)21+1 ¢ (A1/2)21+1 )
B {@I+1)1}2p221HD

(Al+1/2¢, Al+1/2¢)
T {@I+D1pEpeenn

Using Lemma 1.3 and Schwarz’s inequality, we have

(tglicdymgl)’

m!h™

__ (4"1¢, 4'¢)
“{@+ D)1} eED

4*14]lll4'¢]]
=@+ 1} 2R2EED

_____ll4a™1e| latell  {20+D}! _@2D!
TRUADIGE)FTT@DIE)T T @I+D! T+ D!

As 0< 22(51 }) <2, taking the supremum, we have

(Solicarmmel) <2 ¢l

mlhm
Therefore, we get

L (412 < Y2 |l (1.2)

m!hm
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(1.1) together with (1.2) gives

R TN

forneZ*. Takingthe supremum of the above inequality, we obtain the required
inequality

Plh=<+/2 1k,
which finishes the proof.

Lemma 1.5. implies that the inductive limit of &7 z(M), denoted by
l_n; .szio u(M) and that of o7, (M), denoted by l_m o (M) are identical with their

topologles On the other hand, «&/(M)= l_n_; .szlo ,,(M) with its topology (see [9]).
Therefore we have the following proposmon Wthh will be useful for our purpose.

ProrosiTION 1.6. «(M)= _m o (M).
Now, we define a subset Z#, of CN by

.7‘,:{((1")"21[0,, EC’ f la"let\/ﬂ— < oo fOI' some t>0}
- n=1

and a mapping @ of «/(M) into C™ by

¢(¢) = (an)ng 1

where ¢ (M) and a,=(d, ¢,). F, is a vector space over C and @ is a
C-linear mapping of /(M) into CN.

ProrposITION 1.7. @ is an isomorphism of /(M) onto & ,.

Proor. At first we prove that the image of @ is contained in &#,. Take
and fix an arbitrary element ¢ in /(M) and put a,=(¢, ¢,). Then ¢ has an
expansion

¢= 3 ad,

which converges absolutely and uniformly in M. On the other hand, Proposi-
tion 1.6 implies that there exists an h>0 such that «7,(M) contains ¢. There-
fore

sup !hm 42| =|$|ls < oo,

and

9= sup 1!l 5 a Tl
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P

I & a2l

m' hm
for any meZ*. Hence, for any meZ " and any ne N,
i WAl S 1l
Multiplying 27" and summing the above inequality with respect to m, we have
e/512h| 0, | <2|g s (13)
for neN. Putting here t=1/4h, we obtain

w J———
33 la, et
n=1
<2plly 3 e~vET2hev TRl 4H
n=1

© —
=2, 5 eI
n=1

which is finite by Lemma 1.2. This means that &(¢) lies in &,.
Next, we show the surjectivity of . Take and fix an arbitrary (a,),>, in

F, There exists a t>0 such that
(] J—
Z lanle‘“'"/t <oo.
n=1

On the other hand, for any ne N, ¢, /(M) and

Iull= sup (/2"

1 m
= 2 e V)
=e~/l_n/‘_

Hence, we obtain

N+1 N+1
| 2 andulle = 2 1@l [I@alle
n=N n=N
N+1 —
< 3 [a,]e/ml
n=N

which implies that the sequence
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( ng:l a"¢">N 21

is a Cauchy sequence in the Banach space «7(M). Therefore there exists a
unique element ¢ in /(M) such that ¢= f} a,¢, in the topology of &/(M). In
n=1

particular, f} a,p, converges to ¢ absolutely and uniformly in M. So, we have
¢(¢)=(a,,),,;_1, which means the surjectivity of ®.

Finally, we prove the injectivity of . Assume &(¢)=0 for p € /(M). Then
(¢, $,)=0for neN. On the other hand, ¢ has an expansion

o= 5 (4. 69,

which is absolutely and uniformly convergent. So we have ¢=0. This com-
pletes the proof.

COROLLARY 1. For ¢/ (M), the series
PSS

converges to ¢ in the topology of o/(M).
ProOOF. We have shown in the proof of the above proposition.

COROLLARY 2. For ¢/, (M) and t such that 1/2h>t=20, the series

5@ ¢ g,

converges in the topology of «/(M) and defines an element of «/(M), which we
denote by exp(t41/2)¢. In addition,

llexp(t41/2)$||<2(p I,

Proor. From (1.3) in the proof of Proposition 1.7,

(@, B <2||lpevFnT2H
for n=1 and ¢=o(M). So, taking an s such that 0<s<1/2h~t, we have

& ——- —
n§11(¢’ qsn)e'\/;'" |esJ1”
< 3 QU e VET2R)ec v
n=1

=2y 35 (s t/2VE
n=1
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Since t+s5—1/2h <0, Lemma 1.2 implies that (¢, ¢,)etvin),>, € F,. By Proposi-
tion 1.7, we deduce that the series

PHCAEATDS

converges in /(M) and defines an element exp (¢4'/2)¢ of o/ (M) as (M) is
complete. Since exp (t41/2)¢p= f] (¢, ¢,)etving, is convergent absolutely and
n=1

uniformly in M,
lexp(tat/2)g || < 33 A2

a2

m=0 m!h™
Sl
<2($1h

which finishes the proof.
Let #=%(M) be the space of all continuous linear functionals of /(M)

into C. M being compact, # is identical with the space of Sato’s hyperfunc-
tionsons on M (for detail, see [12]), and henceforth we call the elements of &

hyperfunctions on M.
We define a subset &%, of CN by

'?-b:'{(an)nzllanEC" io: Ianle—‘\/ﬂ<°° for any t>0}
- n=1

and a mapping ¥ of #(M) into C by
W(T) =(an)n§ 1»

where T (M) and a,=T(p,), ¢ denoting the complex conjugate of ¢. F,
is a vector space over C and ¥ is a C-linear mapping of #(M) into C™.
We can now state the theorem characterizing the hyperfunctions on M.

THEOREM 1.8. ¥ is an isomorphism of # onto F,.

Proor. At first we prove that the image of ¥ is contained in &#,. It is
enough to show that for every t>0

o0 —
2 la,lemVin< oo,
n=1
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where a,=T($,) and T Z(M). Take an hy>0 such that 1/h,<t. As ¢,
/(M) for every h>0 and T is continuous on .«7,(M), there exists a constant
¢ such that

las| =]T(¢n)l
= cllalln
= 1 m/2
¢ Sup i 142l
=c sup (\/l")m
meZ+t m'h'g
éce\/l_n/ho .

Hence,

o)
2, lay| e™tV2n
n=1

e*/ln/hﬂ e tVan

M8

A

c

[]

1

n

=c Y e(/ho—t)VIn

Ms

I}
-

Since 1/hy—t<0, by Lemma 1.2, we have
5 lag et
n=1

<c 3 eli/ho=nVi,
n=1

A

o,

Next, take and fix an arbitrary (a,),>; in &, and an arbitrary h>0. Then
by Corollary 2 to Proposition 1.7, exp(a%mﬂ)gb e & (M) for ¢e.,(M).
Using Lemma 1.4, we have

G ) =(0m oxp( = 4172 exp (- 4172)5)
(- dy o))

=<exp<— Tllz‘A 1/2>¢,,, (exp(TIh—A 1/2 )qﬁ)—).
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Therefore, we have

5 1a,l1(¢n B

<5l 0o (o 4 )
< 5 o oo 472 (sn(y 472
(£ laulemi44) 2]l (1.4)

which means that the series

5 adn ®)

is absolutely convergent. We put

T($)= 3 adn §).

It is clear that T'is a C-linear mapping of /(M) into C and T(¢,)=a,. Further-
more (1.4) shows that T is continuous on «7,(M). Since h is arbitrary, T is con-
tinuous on (M), which proves the surjectivity of ¥.

Finally we prove the injectivity of ¥. Assume that ¥Y(T)=0 for Te4%.

That is, T(¢,)=0 for n=1. Since f} (¢, ¢,)¢p, converges to ¢ in the topology
n=1
of /(M) for any ¢ in &/(M) (Corollary 1 to Proposition 1.7),

T(¢)= 5 (@, 6" T(3)

=0,

which means that T=0. This completes the proof of the theorem.

RemARK. The following two conditions are equivalent.

@ §1|anle_"“—"< o0 for any t>0.

00 J—
() 2] las|?esVin< oo for any s>0.
n=1

00 J—
In fact, assume that (i) is satisfied. Since ] |a,le™*V4"/2 < oo, there exists
=1
an integer N such that for n= N, "

la,|esvini2 <1,
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Then, for such n, we have

a2 €75 <, /02

0 J—
which implies that }] |a,|2e™Vin< o,
n=1

Conversely, using the Schwarz’s inequality,

0 © —
5 lanletvin= 3 (layfet AT )e T2
n=1 n=1

© — © —
S( 2 [a,|2 e7VAn) (2] e7tVAn),
n=1 n=1

which is finite by Lemma 1.2.
Therefore, #,={(a,)s=1]a,€C, i |a,|2e~tvin for any t>0}.
- n=1

§2. Poisson transforms of K-finite functions

In this section we assume that G is a connected real semisimple Lie group
with finite center and of real rank one. Let g, be the Lie algebra of G, go=
fo+po a Cartan decomposition, 6 the corresponding Cartan involution and g
the complexification of g,. Let a,, be a maximal abelian subspace of p, and
extend a,, to a Cartan subalgebra a, of go. Then ap=a; +a,, where a;,=
apNf,. Onaccount of our assumption on G, a,, is one-dimensional. Com-
plexify o, o, 0, a,, and a;  to f, p, a, a, and a; in g respectively and introduce
compatible orders in the spaces of real-valued linear functions on a, +./—1a,,
and a,,. Let P be the set of positive roots of (g, a) under this ordering. For
a root a, let g* denote the root subspace of a. Put P, be the set of a= P with

aofEa, n= 3 g% ng=nng, and p=% 2. . Then G=KAN is an Iwasawa

a€P+ aeP+

decomposition, where K, 4 and N are the analytic subgroups of G with Lie alge
bras f,, a,, and n, respectively. For x&G, let H(x) be the unique element
such that x€ K (exp H(x))N. Let X=G/K and B=K/M, where M is the centra-
lizer of Ain K. We define a real analytic function P(xK, kM) on the manifold
X x B by

P(xK, kM)=¢ 2eHGE"1k),

We denote by & the set of equivalence classes of irreducible unitary represen-
tation of K and by &§ the subset of &, which consists of the representation of class
one with respect to M. For each y< &k, we take and fix a representative (77, W?)
€y and choose an orthonormal base {w], ..., wi4,} of W? so that w] is an M-
fixed vector when ye &2, where deg y is the dimension of W?. Since rank (G/K)
=1, w] is unique up to a scalar for ye&Q. Put t];(k)=(z"(k)w}, w}) and ¢];=
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Jdegy t}; for yeék and ¢}=¢!, for ye&, (,) denoting the unitary inner
product of W?. We denote by V, the space of elements in C®(K) which trans-
form according to y by the left regular representation n(k) of K. It is easy to
see that

degy v
”(k)flsz?j: 1§1 Tli(k)(ﬁlyj
for ye &y and ke K, and

¢i(km)= ¢’ (k)

foryeép, ke K and meM. Hence for ye &y, ¢p?;€V, and for ye £2, we can
regard V, as a subspace of C*(B). As is well-known, {¢};|1=i, j <degy} is
an orthonormal base of V, for ye .

Let g be the G-invariant riemannian metric on X induced by the Killing form
of g, and 4 be the Laplace-Beltrami operator corresponding to g. We identify
the functions on X with those on G which are right K-invariant. Let B be the
universal enveloping algebra of g. We regard elements of B as left G-invariant
differential operators on G. Then, as is well-known, 4 can be identified with the
Casimir operator 2 on G by

(4f) (xK)=(2f) (x)

for xeG.
We put

#={feC~(X)|4f=0}
and
H,={fe#|f transforms according to y}.
Now, we define the Poisson transform £ ¢ of ¢ =C~(B). Put
(@H)0)=| P&K, kM) $(k) dk,
where xeG, keK and dk is the normalized Haar measure on K. On this
mapping £, the following results hold.

ProrosiTiON 2.1. (1) The image of C*(B) by 2 is contained in # and
for ye &R, the restriction of 2 on V, is an isomorphism onto .
@) If #,5{0}, then ye&Q.

For the proof of the above proposition, see Lemma 1.2 and Theorem 1.4
in Chap. IV in [5].
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We put fI=2¢!. Then we have

ProPOSITION 2.2. (1) For fes#, there exists a unique complex number
a! for every ye &g and 1<i<degy such that

1= %, 5 alfi),

which is absolutely convergent for any z in X.
(2) Put ¢p3(k)=f(kz). Then

¢7‘ Z \/deg'}’ eZ ny(Z)(ﬁ”,

7et

which is absolutely and uniformly convergent in K.

3 l¢5l12=" 2

yES K

(o a1 E @D,

where || || denotes the norm of L*(K).

Proor. By the theory of Fourier expansion of smooth functions on compact
Lie groups (see [14]),

¢7= 2. 2. bl; (2)el) @.1)

YESK i, j

where the series converges absolutely and uniformly in K and

b12)= | Sk FT,dk
Since
(Leb) () =bl,(k2)
= el (0b1(2)

b, lies in »#,. Putting k=identity in (2.1), we have an absolutely convergent
series

@)= 3, bi)/degy. @2)
de
f Zg;y bl;=~0, it follows from Proposition 2.1 that y£2 and
i=1

—_ degy degy
Vdegy 2 bli= 2. aif? @3)
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for some a}. Since z is arbitrary, replacing z by kz in (2.3), we have

v degy Zbli(kz)=/degy Teli(k~)bli(2)
= Zbh(Doh(k)

and

alfika)= Tal Pz, koM)](ko)dko
=5 a1| PG, k- keM$lko)dko

i z\/dig yainKP(z’ koM)$1i(k) i (ko)dko

aif1(2)p1i(k). (2.4)

= .Z\/degy

As ¢}, are linearly independent,

Putting i=1 in the above equality, we obtain from (2.2) an absolutely convergent
series

f@= 2 2alfi(2),

yeek i

which proves (1).
Next, from (1) and (2.4) we have

P5(l=f(k2)= 2, 2.aifi(kz)

yes% i

aif1(2)¢1;(k),

Ygx,,zj\/ degy

which proves (2) and (3) immediately. This completes the proof.

Now we transform the Casimir operator Q. For A=a*, the dual space of
a, let 1 denote the restriction of A on a,. Let P, denote the set of & P such
that @=~0. For each root a, select X, =g* and normalize it in such a way that
<X, X_,>=1 where <, > is the Killing form of g. Then [X,, X_,]=H,
where H, is the element in a such that <H, H,> =a(H) for any H=a. Choose
bases H; and H,, ..., H,, for a, and a; respectively so that <H;, H;> =4,; for
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1<i,j<m. Then H,, ..., H, together with X,, X_, (0= P) form a base for
g. It is easy to see that uf=0 on X for ueB¥ and f=C~(X). Hence we can
transform Q modulo Bf.

It is clear that

Q=H“1,+-+H3,+ ZP(XaX—a+X—aXa)

I

Hi+ ) (X, X_,+X_,X,) mod Bf, 2.5

aeP 4

since X,, X_,and H;liein k forae P— P, andi>1. ForacsP,,let X,=Z,+7Y,
where Z,ct and Y, p and put XZ=A4d(a)Xs where a=expH and Hea} =
a,,—{0}. Then

Xe=2Z3+Ye.
On the other hand
Xa=e*Z )Y,
and we have
Zi+Yi=erZ 4 exY, (2.6)
Since 6(Za+Y3)=24"'—Y4% ', we have also
28 =Y l=ga(NZ ey, 2.7
In (2.6), replacing H by — H, we have
23 '+ Yi l=e aZ e ey 2.8)
(2.8) together with (2.7) gives
Y,=(cotha(H))Z,— (sinh a(H))"1Z2™". 2.9)
By the way, since
XX =X (Z_,+Y.)
=XZ_,+X,Y_,
=X,Y_,
=(Z,+Y)Y_,,
we get from (2.9) that

X X _,={(1+cotha(H))Z,—(sinh a(H))"1Za" '} Y_,
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=(1+cothu(H))[Z,, Y-, ]+ (1 +cotha(H))Y_,Z,
—(sinho(H))"1Za7'Y_,
=(1+cotha(H)) [Z,, Y_,]—(sinha(H))"1Z a7 'Y_,.
Hence we have
X_X,=(1—cotha(H))[Z_,, Y,]+(sinha(H))"1Z2,"Y,.
Replacing H by — H, we find that
X_X,=(1+cotha(H))[Z_,, Y,]—(sinha(H))"1Z2,Y,.
Therefore,
0(X - X;)= —(1+cotha(H)) [Z_,, Y,]
+(sinha(H))"1Z2,Y,,
since [Z_,, Y, ]Jep. From (2.10) and (2.11), we have
X X _,+0(X_.X,)
=(1+cotha(H))([Z,, Y_,1+[Y, Z_.])
—(sinha(H))"Y(Zo7'Y_,—2%,'Y)).
Since

[Ze Y-J+[Ye Z-0= 5 {[X0 X1~ [0X,, 0X ]}

=%{Ha_6Ha} =HE!

We have
X X_,+0(X_,Xp
=(+cotha(H))H;—(sinha(H))"1(Z47'Y_,+Z ;' Y,).

It is easy to see 0Q2=CQ. Therefore from (2.5) and (2.12)

9=%{9+99)

=H+5 5 XX O X))+ (XX, +0X )}

(2.10)

(2.11)

(2.12)
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=H}+-L 5 {(1+cotha(H)H, — (sinha(H)1(Z2 ™' Y_, ~ 2;'Y,)
aeP 4

+(1 —cotha(H))H _;+ (sinh a(H))~1(Z2,'Y,— 24" Y_,)}.
Noticing H_,= — H,, we get
Q=H%}+ 3 {(cotha(H))H;+ (sinha(H))"(Z ¢,'Y,—Z3"'Y_)}.
aeP 4

Since Y, =(cotha(H))Z,— (sinha(H))"1Z2"* from (2.9), we find that
Q=H}+ 3 (cotha(H))H,— X (sinha(H))"2(Z2 'Z2,'+2Z2,'Z2™").
aeP 4+

aeP 4

Let Ly(X €g) be the differential of the left regular representation of G and
extend it to the representation of 8. Then

(X' f) () =(L~xf) (%)
for xeG, feC*(G) and X=g. Hence
Qf) (@=[{H}+ 2, (cotha(H)H,

— 3 Ginha(H) 2L,z 12,271 (@)

Let p, be the restricted root such that %yo is not a restricted root. Let
P, (resp. P,,,) be the set of positive root a such that @ is equal to p, (resp.
2po). Let p and g denote the number of roots in P,  and P,, respectively.
We normalize H, in a,, so that uo(Ho)=1. Then <H,, Hy>=2(p+4q) and
H,=(p+8q)"1/2H,. Put a,=exptH, for tR. Then t can be regarded as
the coordinate function on the one-dimensional Lie group 4. It is evident
that H, =(2p+8q)~'H, and

B 1 d? pcotht d
(Qf)(at)—{z(PHq) T T 2(p+ag) di

gcoth 2z d}
Taprag Tar /@

1
—[{magﬂol‘laz-au_ «Za

+ (sinhlzt)2 an Llal—a+2-azn}f] (ap).

P2uo
Therefore, we have

ProPOSITION 2.3. For f € C*(X),
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(©2f) (a)=Df (a)

-~ Lo @)

1 1
B {(sinhzt)2 ~ (sinh 7)2 }(szf )(a,),
where a,=exptH,,
= 1 d? d
D= 2(P+4q) {7;2— + (pcotht + 2qcoth21)_m_} ,

W= ZP: (Zaz—a+z—aza)

and
W= Z (Zaz—a+z—aza)'

a€P2 g

§3. Hermitian hyperbolic spaces

From now on, we deal with the case that X =G/K is a hermitian hyperbolic
space. That is, we deal with the case of G=SU(n, 1). We compute w; and w,
defined in section 2. At first we review the structure of the Lie algebra go=

su(n, 1). Put
. { Z 0 > Zeu(n), zeu(l)
° < 0 z Tr(Z)+2z=0 }

ol e

Then go=%,+p, is a Cartan decomposition and negative conjugate transpose
is the corresponding Cartan involution. Lie algebra f=%§ and p=p§ in
g=g§5=sl(n+1, C) are given as follows:

{ Z 0 \|Z nxncomplex matrix, zeC"
0 z lTr(Z)+z=0 ’

a 'y

and

I=

é,neC"}-
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Let b, be the set of diagonal elements of f,. Then b, is a Cartan subalgebra
of go and h=bh§ which consists of the diagonal elements of f is a Cartan sub-
algebra of g and . Let e;(1 =< j<n+1) be the linear functional on §) whose value
on a diagonal matrix is the j-th diagonal entry. Then roots of (g, h) are the
differences ¢;—e;(1=<i, j=<n+1). Choose an order so that the positive roots
are ¢;—e;(1=i<j=n+1). Let Q, Q, and Q, be the sets of positive, compact
positive and non-compact positive roots respectively. Then, putting f;;=e¢;—e;
(1=, j=n+1),

Q ={Bl1<si<jsn+1},

Qu={Bll<i<j=n}
and

Qn={Bin+1ll<i=n}.

The root subspace g#/ of f;; is equal to CE;; where E;;(1 <1, j<n+1) is the matrix
unit. Hence we have the following decompositions:

g=b+ X d%,
*+peQ

=b+ 2 o,
tpeQu
p=_2 ¢
+peQn

The Killing form < , > in g is given by
<X, Y>=2(n+1)Tr(XY), X and Yeg,

where Tr denotes the trace of the matrix of order n+1. For Ah*, let H, be the
element in § such that <H,, H>=A(H) for Hel. If A, uebh*, put <A, u>
=<H,, H,>. For simplicity, we write f, for f ,.;.

Put h.=,/—1RH, and h_={Heho|<Hz, H>=0}. Then ho=5h, +h_
(direct sum). Put Ej =E,,,, and E_y =E,,, ;. Then <Ej , E. ; >=2<p,,
Bo>"1, Ej,—E. g e/ —1fpand \/—1(Ej,+E.p)E/—1po. Put a,,=R(Ej,
+ELg), ap,=b_, ap=0a;,+a,,, a=a§ and u=exp%(E;,o——E’_,,o). Then Ad(u) is

the identity on a,,, Ad(u) apo=\/——lb+, Ad(u)a=DHh and a, is a #-stable Cartan
subalgebra of g, ([7], [13]). It is easy to see that a,,, ao and a,, satisfy the con-
ditions in section 2. Hence we can take the above subalgebras as those defined
in section 2. We can assume that P, the set of positive roots of (g, a) defined
in section 2, is *Ad(u)Q. It is easy to see that pu, is equal to the half of the
restriction of «y='4d(u)p, on a,,. Putting o;;=*Ad(u)p;;, we have
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Py={tg=0; 41, 0 (1<i<n+1), a5, (1<j<n+1)},
Py ={ay, ajue (1<i, j<n+1)}

and

P2Ilo = {aO}‘

Put E; =(2n+2)"'/2E;; and X,, =Ad(u')Es, (1<i, jsn+1). Since E €
g’ and <E, ,E_; >=1, X, €g*v and <X, ,X_, >=1. Therefore for
calculation of w; and w,, we have only to see the f-component Z, of X, for
any root a. Practising the above calculation, we have

LemMmA 3.1.
Z,,=Z_,,=—{(n+ 1)/2}1/2H,,0,

Za“=_‘/2_2Ep“(1<i<n+1),

Z_,“=_‘/2_2E_,,“(1<i<n+1),
2 .
Zeyoi==N2Ep (1< j<n+D),
2 .
Z 4 = —\/T.Eﬂ”(1<j <n+1).

Let m be the Lie algebra of M which is the centralizer of A in K. Then

m=_3 g*= 2 gfy
tacP—Py 1<i,j<n+1

because Ad(u) is the identity on a,,. Let M be the subalgebra of B generated
by m. By Lemma 3.1, we have that

Wy = Z (Zaz—a+z—aza)

aePyy,

—2(2EL Va3, =+ OA,

and

W, = Z (ZaZ—¢+Z—aZa)

aeP 4

=CO2+ Z: (Zaz—a+Z—aZa)

acPy,

=w,+ Z+1(EﬂntE—ﬂxt+E—ﬂntEﬂ1i)

1<i<n
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=W, + Z (EﬂE—ﬂ +E_ﬂEﬂ)m0d fm.
BeQx

Let v be the negative of the restriction of <, > on f,. Then v is an Ad(K)-
invariant inner product of f,. Let w be the Laplace-Beltrami operator cor-
responding to the riemannian metric induced by v. Since <Eg, E_;> =1 for
BEQ, <bi, h_>=0and <./n+1H,, \/n+1H, > =1, we have

wﬁp% (E4E_p+E_4E;)+(n+1)Hp, 2 mod M.
€Qx
Therefore w; =wg mod M and w,=(n+1)H, 2.

As M normalizes A4, f(a exptY)=f((exptY)a) for ac A4, teR and Yem.
Therefore we have

(Luf) (@)=0 (3.1)

for ueM and feC=(G/K). Let Z,=(n+1)" l(Z]E,,—nE,,,LI,,Jrl) and Z,=
(n+1)y"Y(n—1DE;+(n—DE, 41 ps1— ZZE,,} Then Z, lies in the center of I,

Z,, lies in m and Hy =(2n+2)"1(2Z, +Z,,.), as Hp,=(2n+2)"Y(Ey;—Epy 104 1)-
Hence

L,,=(n+1)Ly,>
=(4n+4)—1(4Lz‘2: +4LmLZc + sz;').

By (3.1), we conclude that
(Lo, ) (@=(Lokf) (a) (32
and
(Loaf) (@)=(n+1)"1(Lz21) (). 3.3)
Let Lbe the set of dominant integral form of (f, ). Then
L={A=le,+1,e;+--+1,e,},

where [(1<i<n) are integers such that I, =1,>..-=1,. As is easily seen, for
G=SU(n, 1), there exists a bijection y—A, of &¢ onto L. Let L° denote the
image of &g by this bijection. Since 4,(€&Y) vanishes on §_, we have

={A,=1Q2e;+e,+:- +e,)|I€Z*}.

From now on, we identify L® with Z* and write z,, V;, 5#,, ¢!, f} and deg(l)
instead of t,, V,, &#,, ¢}, fI and degy. Put p,=2"! 3 B. Then, as is well-
B
known, for f e, we have =
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Lo f=<A+2px, A>f (34
and
Ly f=A(Z)f. (3.5
Put H=H,,. Then H;=IQ2n+2)"Y(Ey;—E,4,+1)- Since 2p=1§i<2j§n(ei—ej),
we have
<2pi, A;>=2p(H))
=(n—1e,(H)
=n-1)Q2n+2)"1,
and

<A, Ay>=A[(H)
=1Q2e,+e,+--+e)(H)
=(n+1)"ti2.
Hence, we have
<A;+2pp, A;>=2n+2)"{212+(n-1Dl}.
On the other hand, since Z,=(n+ 1)‘1(i§ E;—nE, ;4 ,+1), We have
A(Z)=12e;+e;,+--+e,) (Z,)
=l
Therefore, from (3.2), (3.3), (3.4) and (3.5) we have
LemMA 3.2. For f,€5#,, the following equations hold.
(Lo f) (@=Q2n+2)"1{21* +(n—- DI} f(a)
(Lo, f) (@)=(n+1)"112f(a).
The above lemma together with Proposition 2.3 gives

ProrosiTION 3.3. Let I L%, fes#, and F be the restriction of f on A.
Then F satisfies the following differential equation

DF=0,

where
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- - 4

D=7+ 2{(n—1)coth t +coth 21}
_[w_uz{ 1 1 }]
(sinh 7)* Ginh7)? ~ (sinh 20)% § |

Proor. Since Qf =0 and p=2(n—1), g=1 in case of SU(n, 1), we have this
proposition immediately from Proposition 2.3 and Lemma 3.2. This completes
the proof.

We introduce a new parameter z. Put z=(tanh¢)2. Then the differential
equation in Proposition 3.3 turns into

d

2F dF
2 _ —_ Il
z(1-2) 2 +(1-2)(n—2) r

_17—25{12(1_2)+2(n— 1DI}F=0.

A fundamental system of solutions of the above differential equation is given by
z!/2 and z72--DF(—(n—1), —l—(n—1), —1—n+2;2),

where F(—(n—1), —1—(n—1), —1—n+2; z) is the hypergeometric function.
Since F(z) must be a C*-function in ¢, there exists a complex number ¢ such that
F(z)=cz!/2, Thus we have

LeEMMA 3.4. For fes#,, there exists a complex number ¢ such that for
teR,

f(a)=c(tanh )’

By Lemma 3.4, there exists a complex number ¢! for l€L® and 1<i<
deg(]) such that

fYa)=cl(tanh ) .

On the other hand, A. W. Knapp proved ([6], Theorem 1.1) that in case of rank(X)
=1

}i_l’g(ﬂ(b) (ka)=¢(k) ae.kekK
where ¢ is an integrable function on B=K/M. Therefore we have
; =t1£1£1°ci(tanh 1l =¢l(e)
= \/ deg(1) ;.

Thus we obtain
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PROPOSITION 3.5. For I L0,
fl(a,)=+/deg(]) (tanh1)!,
fia)=0 (2=i=deg()).

§4. Poisson transforms of hyperfunctions
In this section we keep to the notation in the previous sections. Let
‘g;b_ {(al)l StSdeg(l)lag EC,[ZL:O Z laﬂe—b/T' < oo fOI' any t>0},

€ 12

where ;= <A;+2p;, A;>=Q2n+2)"1{212+(n—1)I}. By an easy computation,
we have the following

LemMA 4.1. For every non-negative integer I,

For s>0, put
U={z=kaKeX|keK, |tanht|<e 25}.
We assume that z=ka,Ke U, and consider the series S= Z Z la} |fi(z)| in
U, for (a}) e #,. Since fi(ka,)= Zf’ (a7l (k) {j(k) and lrfl(k)lsl we have
Ss 2 2 lalllfia)l.
leL® i, j
Using Proposition 3.5, we have
S< 3 Xlail/deg(Dr!
leL® i
= %, Tlall{(/deg) /2, @1

where r=|tanh¢.
Since deg(l) is a polynomial function in I (Weyl’s dimension formula),

lim(deg(l))1/2'=1. Therefore there exists an integer I, such that
-0
(deg())1/?le 25 ems

for any I>1,. Then from (4.1) we have

lo _—
< 2 Zlally/degyr
=0 i
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+ 3 Slall {deg(t 2t}

I=lo+1

=

™Ms

% lal]/deg(D)

0

+ 2 Zlaile,

I=lo+1

for zeU,. On the other hand, from Lemma 4.1, [=./4;. Therefore, we obtain
an inequality
lo o —
S=< 2, Dlallydeg(D+ X 3lalles/A
=0 i I=lo+1 i
for ze U, and (a})e #,. This implies that the series
deg(l)
5, & afie)

leL® i=

converges absolutely and uniformly in U,. Since fles#=#(X) (IeL® 1<i
<deg(l)) and every compact subset is contained in U, for some s>0, it follows
that ZOZa5 fi(z) lies in #. Thus we have

leLO i

LEMMA 4.2. For (al)e F,, the series ZOZa’ifg(z)
IeLoT

converges absolutely and uniformly in every compact set of X and defines a
harmonic function on X.

Conversely, if f € #°, by Proposition 2.2, we have an expansion
@)= T, Zalfi(z)
and obtain

LEmMMA 4.3. The sequence (al) in the above expansion lies in F,.

Proor. From Proposition 2.2 in §2, we have

1712 = 2, gy (514 DE @1

leL

2 % Nlall g 1@

i

Putting z=a, and using Proposition 3.5, we have

163122 3, Elall* gosydeg(dr
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= 3, Tl

leL® i
where r=|tanh¢|. Since 0<r<1 and I<./n+1,/4, (Lemma 4.1), we have

167172 3, Zlatj2(-2 ) i (42)

For an arbitrary s>0, choose a tR so that r2v**T=¢~s, Then from (4.2) we
obtain

165122 3, 5lafl2ei

which means, by the remark following Theorem 1.8 in §1, that (a!) lies in &,.
This completes the proof.

Now we define the Poisson transform of a hyperfunction on B. Let T 4.
Since P(z, b) is a real analytic function in b, we can operate T on P(z, b)
and T(P(z, b)) is a function on X. We denote this function by 2(T) and call
it the Poisson transform of T. By Theorem 1.8, there exists an isomorphism
¥ of # onto &#,. Then we have

LEMMA 44. Let Te# and (a))=Y¥Y(T). Then, for any z€X,

degl
2= 3 3 afie).

Proor. Fix an arbitrary z in X. Then from Corollary 1 to Proposition
1.7, P(z, b) has an expansion

deg( I
PG b= 3,5 010 P kmltoak 43

which converges in 7(B). Since P(z, b) is real-valued and fiz)=
SKP(Z, kM)¢l(k)dk, taking complex conjugate of (4.3), we have
Pz b)= 3 T fiFH),
which also converges in &/(B). Therefore
T(P(z, )= 3 5 {T@).

From the definition of ¥(T), al!=T($}), which finishes the proof.
Now we are in position to state the main

THEOREM 4.5. Poisson transform 2 is an isomorphism of %(B) onto
H#(X), where X is a hermitian hyperbolic space.

Proor. Lemma 4.2 together with Lemma 4.4 implies that the image of £
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is contained in . Lemma 4.3 implies the surjectivity of 2. Let T satisfy
2(T)=0. Then putting Y(T)=(a}), we have

23 2aifi(2)=0
leL®
for any ze X. Replacing z by ka,, we have from (2.4) and Proposition 3.5,
2. 2.(tanh)'aidi(k)=0
leL® i

for ke K. Since ¢! are linearly independent, we can deduce that a!=0 for
leL%and 1<i<deg(l). Hence T=0. Thiscompletes the proof of the theorem.

ReMARK. We can identify a C®-function ¢ on B with the hyperfunction
defined by

A(B)E Y- SK.p(k)qs(k)dk.

Then the Poisson transform of a hyperfunction ¢ coincides with the Poisson
transform of a C®-function ¢ defined in §2.

Added in proof.

Theorem 4.5 is valid although one needs two parameters of integers to
characterize £, which contains L° properly. The proof in general case in-
volves some technical skill and will be found in the forthcoming paper of the
second author.
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