On a Class of Differential Operators with Polynomial Coefficients

Yoshimichi Tsuno
(Received January 20, 1973)

§ 1. Intoduction

In this paper, we study the existence and approximation of holomorphic solutions of a differential operator with polynomial coefficients. In general, we cannot expect the existence of holomorphic solutions even if the coefficients of an operator have no common zero ([7], [9], [10]). For example, in the complex two dimensional space \mathbf{C}^{2}, the equation

$$
\left[x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}-1\right] u(x, y)=x
$$

has no solution even in the space of formal power series.
An outline of this paper is as follows. In Section 2, we give some sufficient condition on a differential operator $L(\zeta, D)$ with polynomial coefficients under which $L(\zeta, D) \phi$ and ϕ have the same exponential type for every entire function ϕ (Theorem 1). This condition is then applied in Section 3 to show the existence and approximation of holomorphic solutions in some circular domain (Theorem $3)$.

The author wishes to thank Professor T. Kusano for his kind advice.

§ 2. Exponential type of entire solutions

Let $L(\zeta, D)$ be a differential operator with polynomial coefficients in \mathbf{C}^{n}. Then we can write

$$
\begin{equation*}
L(\zeta, D)=\sum_{\mathrm{finite}} c_{\lambda \mu} \zeta^{\lambda}\left(\frac{\partial}{\partial \zeta}\right)^{\mu} \tag{1}
\end{equation*}
$$

where λ and μ are multi-indices, $c_{\lambda \mu} \in \mathbf{C}, \zeta^{\lambda}=\zeta_{1}^{\lambda_{1}} \cdots \zeta_{n}^{\lambda_{n}}$ and $\left(\frac{\partial}{\partial \zeta}\right)^{\mu}=\left(\frac{\partial}{\partial \zeta_{1}}\right)^{\mu_{1}}$ $\ldots\left(\frac{\partial}{\partial \zeta_{n}}\right)^{\mu_{n}}$. We decompose L as follows:

$$
\begin{equation*}
L=L_{l}+L_{l+1}+\cdots+L_{l+k}, \quad(k \geqq 0), \tag{2}
\end{equation*}
$$

where $L_{j}=\sum_{|\lambda|-\lceil\mu \mid=j} c_{\lambda \mu} \zeta^{\lambda}\left(\frac{\partial}{\partial \zeta}\right)^{\mu}$. We note that l may be a negative integer.

Definition 1. In the decomposition (2) of L, we shall call L_{l} the leading part of L. When the leading part L_{l} is written as

$$
L_{l}(\zeta, D)=\sum_{v \text { finite }} c_{v} \zeta^{v+v_{0}}\left(\frac{\partial}{\partial \zeta}\right)^{v}
$$

for some multi-index $v_{0}=\left(v_{1}^{(0)}, \ldots, v_{n}^{(0)}\right), L_{l}$ is called v_{0}-simple. In this case, l is equal to $\left|v_{0}\right|=v_{1}^{(0)}+\ldots+v_{n}^{(0)}$. The v_{0}-simple leading part L_{l} is said to be of degree m, if for any multi-index α such that $|\alpha|$ is sufficiently large the following inequality holds:

$$
\begin{equation*}
\left|L_{l}\left[\zeta^{\alpha}\right]\right|=\left|\Sigma c_{v} \zeta^{v+v_{0}}\left(\frac{\partial}{\partial \zeta}\right)^{v} \zeta^{\alpha}\right| \geqq C|\alpha|^{m}\left|\zeta^{v_{0}+\alpha}\right|, \tag{3}
\end{equation*}
$$

where $C>0$ is a constant independent of α and ζ.
Remark. In the one dimensional case ($\mathrm{n}=1$), for every differential operator with polynomial coefficients $L(\zeta, D), \zeta^{\tau} L(\zeta, D)$ has a v_{0}-simple leading part for some integers $\tau \geqq 0$ and $v_{0} \geqq 0$, and in this case, the degree of its leading part is the highest order of differentiation in the leading part.

Example. Let $L(\zeta, D)=\left(\frac{\partial}{\partial \zeta_{1}}\right)^{m} \zeta_{1}^{m}+\cdots+\left(\frac{\partial}{\delta \zeta_{n}}\right)^{m} \zeta_{n}^{m}$. Then L is 0 -simple and its degree is equal to m. In fact,

$$
\begin{aligned}
L\left[\zeta^{\alpha}\right] & =\left(\frac{\partial}{\partial \zeta_{1}}\right)^{m} \zeta_{1}^{m+\alpha_{1}} \zeta_{2}^{\alpha_{2}} \cdots \zeta_{n}^{\alpha_{n}}+\cdots+\left(\frac{\partial}{\delta \zeta_{n}}\right)^{m} \zeta_{1}^{\alpha_{1}} \cdots \zeta_{n-1}^{\alpha_{-1}} \zeta_{n}^{m+\alpha_{n}} \\
& =\left\{\sum_{j=1}^{n}\left(m+\alpha_{j}\right)\left(m+\alpha_{j}-1\right) \cdots\left(\alpha_{j}+1\right)\right\} \zeta^{\alpha} .
\end{aligned}
$$

Hence

$$
\left|L\left[\zeta^{\alpha}\right]\right| \geqq\left(\sum_{j=1}^{n} \alpha_{j}^{m}\right)\left|\zeta^{\alpha}\right| \geqq \frac{1}{n^{m-1}}\left(\alpha_{1}+\cdots+\alpha_{n}\right)^{m}\left|\zeta^{\alpha}\right| .
$$

For an entirely holomorphic function $f(\zeta)$, we have the following
Proposition 1. (Fuks [2], p. 339) Let $f(\zeta)=\sum_{\alpha} c_{\alpha} \zeta^{\alpha}$ be entirely holomorphic, and $\sigma=\inf \left\{\tau>0| | f(\zeta)\left|\leqq C_{\imath} \exp \tau\right| \zeta \mid\right.$ for some $\left.C_{\tau}\right\}$, where $|\zeta|=\max _{1 \leqq j \leqq n}\left|\zeta_{j}\right|$. Then

$$
e \sigma=\varlimsup_{|\alpha| \rightarrow \infty}|\alpha|\left|c_{\alpha}\right|^{1 /|\alpha|} .
$$

Remark that σ is called the exponential type of $f(\zeta)$ (with respect to the norm $|\zeta|)$. For the more precise relation between the Taylor coefficients of $f(\zeta)$ and the type with respect to a norm $\rho(\zeta)$ on \mathbf{C}^{n}, we refer to Fuks [2] and Martineau [5].

Now, we state the main theorem in this section.
Theorem 1. Let $L(\zeta, D)$ be a differential operator with polynomial coefficients and let its leading part be v_{0}-simple for some multi-index v_{0} and of degree $m(m \geqq 0)$. Further we assume the following condition (A).
(A)

$$
\begin{aligned}
\text { in } L_{l+j}= & \sum_{|\lambda|-|\mu|=l+j} c_{\lambda \mu} \zeta^{\lambda}\left(\frac{\partial}{\delta \zeta}\right)^{\mu} \quad(j=1, \ldots, k), \\
& c_{\lambda \mu}=0 \text { if }|\mu|>m-j-1 .
\end{aligned}
$$

Then, every entire function $\phi(\zeta)$ such that $L(\zeta, D) \phi$ is of exponential type , σ is also of exponential type σ.

Proof. It is sufficient, by Proposition 1, to examine the growth of the Taylor coefficients of $\phi(\zeta)$. We set $\phi(\zeta)=\Sigma a_{\alpha} \zeta^{\alpha}$, and $L(\zeta, D) \phi=\psi(\zeta)=\Sigma b_{\beta} \zeta^{\beta}$. Then

$$
\begin{aligned}
L_{l} \phi & =\sum_{v} c_{v} \zeta^{v+v_{0}}\left(\frac{\partial}{\partial \zeta}\right)^{v} \sum_{v} a_{\alpha} \zeta^{\alpha} \\
& =\sum_{\alpha} a_{\alpha} L_{l}\left[\zeta^{\alpha}\right] \\
& =\sum_{\alpha} a_{\alpha} c(l ; \alpha) \zeta^{\alpha+v_{0}},
\end{aligned}
$$

where $c(l ; \alpha)$ is the coefficient of $\zeta^{\alpha+v_{0}}$ in $L_{l}\left[\zeta^{\alpha}\right]$. Since L_{l} is of degree m, we obtain by (3),

$$
\begin{equation*}
|c(l ; \alpha)| \geqq C|\alpha|^{m} \text { for sufficiently large }|\alpha| \tag{4}
\end{equation*}
$$

Similarly,

$$
\begin{aligned}
L_{l+j} \phi & =\sum_{\alpha} a_{\alpha}\left(\sum_{|\lambda|-|\mu|=l+j} c_{\lambda \mu} \zeta^{\lambda}\left(\frac{\partial}{\partial \zeta}\right)^{\mu} \zeta^{\alpha}\right) \\
& =\sum_{\alpha} a_{\alpha} \sum_{\lambda, \mu} c_{j}(\lambda, \mu ; \alpha) \zeta^{\lambda+\alpha-\mu}
\end{aligned}
$$

where $c_{j}(\lambda, \mu ; \alpha)$ is the coefficient of $\zeta^{\lambda+\alpha-\mu}$ in $L_{l+j}\left[\zeta^{\alpha}\right]$. By the condition (A), there exists a constant $C^{\prime}>0$ which is independent of α such that

$$
\begin{equation*}
\left|c_{j}(\lambda, \mu ; \alpha)\right| \leqq C^{\prime}|\alpha|^{m-j-1} \quad \text { for } \quad \text { any } \alpha \tag{5}
\end{equation*}
$$

Now, we compare the coefficients of $\zeta^{\lambda_{0}+v_{0}}$ in the both sides of the equation $L_{l} \phi=\psi-\left(L-L_{l}\right) \phi$. Then we have

$$
\begin{equation*}
c\left(l ; \lambda_{0}\right) a_{\lambda_{0}}=b_{\lambda_{0}+v_{0}}-\sum_{j=1}^{k} \sum_{\substack{|\lambda|-1 \\ \lambda+\alpha-\mu \mid=l+j \\ \lambda_{0}+v_{0}}} a_{\alpha} c_{j}(\lambda, \mu ; \alpha) \tag{6}
\end{equation*}
$$

We set $a_{p}=\max \left\{\left|a_{\alpha}\right| ;|\alpha|=p\right\}$ and $b_{p}=\max \left\{\left|b_{\beta}\right| ;|\beta|=p\right\}$. Then, by (5), for some constants C_{j}^{\prime},

$$
\begin{aligned}
\left|c\left(l ; \lambda_{0}\right)\right|\left|a_{\lambda_{0}}\right| & \leqq b_{\left|\lambda_{0}+v_{0}\right|}+\sum_{j=1}^{k} \sum_{\substack{|\lambda|-|\mu|=l+j \\
\left\{+\alpha-\mu=\lambda_{0}+v_{0}\right.}}\left|a_{\alpha} c(\lambda, \mu ; \alpha)\right| \\
& \leqq b_{\left|\lambda_{0}+v_{0}\right|}+\sum_{j=1}^{k} C_{j}^{\prime}\left(\left|\lambda_{0}\right|-j\right)^{m-j-1} a_{\left|\lambda_{0}\right|-j}
\end{aligned}
$$

If $\left|\lambda_{0}\right|=p$, we have by (4),

$$
C p^{m} a_{p} \leqq b_{p+l}+\sum_{j=1}^{k} C_{j}^{\prime} p^{m-j-1} a_{p-j}
$$

Consequently we have the following inequality for sufficiently large p

$$
\begin{equation*}
a_{p} \leqq C_{0} p^{-m} b_{p+l}+\sum_{j=1}^{k} C_{j} p^{-j-1} a_{p-j} \tag{7}
\end{equation*}
$$

where $C_{0}, C_{1}, \ldots, C_{k}$ are independent of p. Now, if $\psi(\zeta)$ is of exponential type σ, by Proposition 1 we have for every $\tau<\sigma$,

$$
b_{p} \leqq\left(\frac{e \tau}{p}\right)^{p} \quad \text { for sufficiently large } p
$$

Then we can choose a constant $M_{0}>0$ such that

$$
b_{p} \leqq M_{0}\left(\frac{e \tau}{p}\right)^{p} \text { for every } p \geqq 0
$$

If we suppose that $a_{q} \leqq M_{q}^{\prime}\left(\frac{e \tau}{q}\right)^{q}$ for $0 \leqq q \leqq p-1$, then

$$
\begin{aligned}
& a_{p} \leqq C_{0} p^{-m} M_{0}\left(\frac{e \tau}{p+l}\right)^{p+l}+\sum_{j=1}^{k} C_{j} p^{-j-1} M_{p-j}^{\prime}\left(\frac{e \tau}{p-j}\right)^{p-j} \\
& =\left(\frac{e \tau}{p}\right)^{p}\left\{C_{0} M_{0} p^{p-m}(p+l)^{-(p+l)}(e \tau)^{l}+\right. \\
& \left.\quad \sum_{j=1}^{k} C_{j} M_{p-j}^{\prime} p^{p-j-1}(p-j)^{-(p-j)}(e \tau)^{-j}\right\} .
\end{aligned}
$$

Let \tilde{M}_{p} be the $\max \left\{M_{p-1}^{\prime}, M_{p-2}^{\prime}, \ldots, M_{p-k}^{\prime}\right\}$. Then

$$
a_{p} \leqq\left(\frac{e \tau}{p}\right)^{p}\left\{C_{0} M_{0}(e \tau)^{l} p^{-(m+l)}+\tilde{M}_{p} \sum_{j=1}^{k} C_{j}(e \tau)^{-j}\left(\frac{p}{p-k}\right)^{p} \frac{1}{p-k}\right\} .
$$

For sufficiently large p, we have

$$
\sum_{j=1}^{k} C_{j}(e \tau)^{-j}\left(\frac{p}{p-k}\right)^{p} \frac{1}{p-k} \leqq 1
$$

because $\left(\frac{p}{p-k}\right)^{p}$ converges to e^{k} as $p \rightarrow \infty$. Therefore, if we set $M_{p}=\widetilde{M}_{p}$ $+C_{0} M_{0}(e \tau)^{l} p^{-(m+l)}$, then

$$
a_{p} \leqq M_{p}\left(\frac{e \tau}{p}\right)^{p} .
$$

By induction, for some integer N and a constant M_{N},

$$
a_{p} \leqq\left\{M_{N}+C_{0} M_{0}(e \tau)^{l} \sum_{q=N}^{p} q^{-(m+l)}\right\}\left(\frac{e \tau}{p}\right)^{p} \quad \text { for } \quad \text { any } p \geqq N
$$

Then if $m \geqq 2, \sum_{q=N}^{p} q^{-(m+l)}$ is bounded, so that, $\varlimsup_{p \rightarrow \infty} p a_{p}^{1 / p} \leqq e \tau$. For the case $m=1$ or 0 , the condition (A) shows that $L_{l+j}=0$ for $1 \leqq j \leqq k$. Hence $a_{p} \leqq \frac{C_{0}}{p} b_{p+l}$ $\leqq \frac{C_{0} M_{0}}{p}\left(\frac{e \tau}{p+l}\right)^{p+l}$, so we also have $\varlimsup_{p \rightarrow \infty} p a_{p}^{1 / p} \leqq e \tau$. Since τ is an arbitrary number larger than σ, the exponential type of $\phi(\zeta)$ is, in any case, less than or equal to σ. Since the exponential type of $\psi(\zeta)$ is σ, it follows that $\phi(\zeta)$ must be of exponential type σ. This completes the proof.

We give an example which shows that the conclusion of Theorem 1 fails to hold if the condition (A) is not satisfied.

Example. Let $L\left(\zeta, \frac{d}{d \zeta}\right)=\frac{d}{d \zeta} \zeta-\zeta, \zeta \in \mathbf{C}^{1}$. Then L has a 0 -simple leading part of degree 1 , but the condition (A) is not satisfied. We set, as before, $\phi(\zeta)=$ $\sum_{n=0}^{\infty} a_{n} \zeta^{n}, \psi(\zeta)=\sum_{n=0}^{\infty} b_{n} \zeta^{n}$ and $L\left(\zeta, \frac{d}{d \zeta}\right) \phi(\zeta)=\psi(\zeta)$. Then comparing the coefficients of the both sides, we have

$$
a_{n}=\frac{b_{n}}{n+1}+\frac{a_{n-1}}{n+1} \quad \text { for } \quad n \geqq 0, \quad\left(a_{-1}=0\right)
$$

If $b_{n}=n^{-n}(n \geqq 1)$ and $b_{0}=1$, by induction

$$
a_{n}=\frac{1}{(n+1)!}\left\{\frac{n!}{n^{n}}+\frac{(n-1)!}{(n-1)^{n-1}}+\cdots+\frac{2!}{2^{2}}+\frac{1!}{1^{1}}+1\right\} .
$$

From Stirling's formula $n!=n^{n} e^{-n} \sqrt{2 \pi n} e^{\delta_{n} / 12 n}\left(0<{ }^{3} \delta_{n}<1\right)$,

$$
a_{n} \geqq \frac{1}{(n+1)!}\left\{\frac{1}{e^{n}}+\frac{1}{e^{n-1}}+\cdots+\frac{1}{e}+1\right\}=\frac{1}{(n+1)!}\left\{\frac{1-\left(\frac{1}{e}\right)^{n+1}}{1-\frac{1}{e}}\right\}
$$

Then,

$$
\overline{\lim }_{n \rightarrow \infty} n a_{n}^{1 / n} \geqq \lim _{n \rightarrow \infty}\left(\frac{n^{n}}{(n+1)!}\right)^{1 / n}\left\{\frac{1-\left(\frac{1}{e}\right)^{n+1}}{1-\frac{1}{e}}\right\}^{1 / n}=e
$$

On the other hand, $\lim _{n \rightarrow \infty} n b_{n}^{1 / n}=1$. That is, ψ is of exponential type e^{-1}, while the exponential type of ϕ is larger than or equal to 1 .

Remark. When we regard $L(\zeta, D)$ in Theorem 1 as an operator from the space of the entire functions of exponential type into itself, the codimension of the image of L is, in general, infinite. Since only the terms $\left\{b_{\alpha+v_{0}}\right\}$ determine a_{α}, if ψ is contained in the image of L, then the coefficients $\left\{b_{\mu}\right\}$ where μ cannot be represented by the form $\alpha+v_{0}$ for some α, must satisfy some conditions. In particular, if $v_{0}=(0, \ldots, 0)$, that is, L has a 0 -simple leading part, for every ψ of exponential type with $b_{\mu}=0$ for $|\mu|<N$ (N is chosen so that (4) holds for $|\alpha| \geqq N$), we can construct a solution ϕ of exponential type. Therefore the codimension of the image of L is finite and the basis of the complementary space consists of polynomials. Moreover if $c(l ; \alpha)=c(0 ; \alpha) \neq 0$ for every α, L becomes a (topological) isomorphism.

Next we consider the case where ψ is holomorphic in a polydisc. The following proposition, a generalization of Cauchy-Hadamard's formula, is well known.

Proposition 2. (Biermann-Lemaire) The formal power series $f(\zeta)=$ $\Sigma c_{\alpha} \zeta^{\alpha}$ is holomorphic in a polydisc $\Delta(r)=\left\{\zeta| | \zeta_{j} \mid<r, j=1, \ldots, n\right\}$ if and only if

$$
\varlimsup_{|\alpha| \rightarrow \infty}\left|c_{\alpha}\right|^{1 /|\alpha|} \leqq \frac{1}{r}
$$

We shall prove the following
Theorem 2. Suppose that the operator $L(\zeta, D)$ has a v_{0}-simple leading part of degree $m(\geqq 0)$. Further we assume that

$$
\begin{align*}
& \text { in } L_{l+j}=\sum_{|\lambda|-|\mu|=l+j} c_{\lambda \mu} \zeta^{\lambda}\left(\frac{\partial}{\partial \zeta}\right)^{\mu} \quad(j=1, \ldots, k) \text {, } \\
& c_{\lambda \mu}=0 \text { if }|\mu|>m-j .
\end{align*}
$$

Then every formal power series $\phi(\zeta)$ such that $L(\zeta, D) \phi$ is holomorphic in a polydisc $\Delta(r)(0<r \leqq+\infty)$, is also holomorphic in $\Delta(r)$.

Proof. We use the same method as in the proof of Theorem 1. Then we have, instead of (7),

$$
a_{p} \leqq C_{0} p^{-m} b_{p+l}+\sum_{j=1}^{k} C_{j} p^{-j} a_{p-j}
$$

(notations are the same as those of Theorem 1). If $b_{p} \leqq M_{0} \rho_{p}$ for $p \geqq 0$ and $a_{q} \leqq M_{q}^{\prime} \rho^{q}$ for $1 \leqq q \leqq p-1$, then

$$
\begin{aligned}
a_{p} & \leqq \rho^{p}\left\{C_{0} M_{0} p^{-m} \rho^{l}+\sum_{j=1}^{k} C_{j} p^{-j} M_{p-j}^{\prime} \rho^{-j}\right\} \\
& \leqq\left\{\tilde{M}_{p}+C_{0} M_{0} p^{-m} \rho^{l}\right\} \rho^{p}
\end{aligned}
$$

for sufficiently large p such that $\sum_{j=1}^{k} \frac{C_{j}}{(\rho p)^{j}} \leqq 1$, where $\tilde{M}_{p}=\max \left\{M_{p-1}^{\prime}, \ldots \ldots\right.$, $\left.M_{p-k}^{\prime}\right\}$. Therefore if $m \geqq 1$, we have

$$
\begin{aligned}
a_{p} & \leqq\left\{M+C_{0} M_{0} \rho^{l} \cdot \sum_{q=1}^{p} \frac{1}{q^{m}}\right\} \rho^{p} \\
& \leqq\left\{M+C_{0} M_{0} \rho^{l}(1+\log p)\right\} \rho^{p}
\end{aligned}
$$

for some constant $M>0$. Then $\varlimsup_{p \rightarrow \infty} a_{p}^{1 / p} \leqq \rho$. For the case $m=0, L_{l+j}=0$ because of the condition (A^{\prime}). Hence $a_{p} \leqq C_{0} M_{0}{ }^{p+l}$, so we also have $\varlimsup_{p \rightarrow \infty} a_{p}^{1 / p} \leqq \rho$. This means that ϕ is holomorphic in $\Delta(r)$.

In the following example, L has a 0 -simple leading part of oreder 1 , but does not satisfy the condition (A^{\prime}). Then we can construct a function ϕ not entire for which $L\left(\zeta, \frac{d}{d \zeta}\right) \phi$ is entire.

Example. $\quad L\left(\zeta, \frac{d}{d \zeta}\right)=\frac{d}{d \zeta} \zeta-\frac{d}{d \zeta} \zeta^{2}$, and $\phi(\zeta)=\frac{1}{1-\zeta}$.
We consider the topological structure of the space of entire functions of exponential type. Let B be any nonnegative number. We denote by $\widetilde{\operatorname{Exp}}(B)$ the space of all entire functions f which satisfy

$$
\begin{equation*}
|f(\zeta)| \leqq C \exp B|\zeta| \tag{8}
\end{equation*}
$$

for some constant C and every $\zeta \in \mathbf{C}^{n}$, where $|\zeta|=\max _{1 \leqq j \leqq n}\left|\zeta_{j}\right|$. For $f \in \widetilde{\operatorname{Exp}}(B)$, we define $\|f\|_{B}$ as the infimum of the constant C in (8). Then $\widetilde{\operatorname{Exp}(B) \text { becomes }}$ a Banach space. The space of inductive limit of these $\widetilde{\operatorname{Exp}}(B)$ as $B \rightarrow r$ and $B<r$ is denoted by $\operatorname{Exp}(r)$. It is the space of all entire functions of exponential type less than $r(0<r \leqq+\infty)$.

Proposition 3. Let $L(\zeta, D)$ be the same operator as in Theorem 1. Suppose that $L_{l}(\zeta, D) \zeta^{\alpha} \neq 0$ for any $\zeta^{\alpha} \neq 0$. Then the map $L(\zeta, D): \operatorname{Exp}(r) \rightarrow \operatorname{Exp}(r)$ is injective and has a closed range.

Proof. Let the filter $\left\{\psi_{k}\right\}$ converge to ψ_{0} in $\operatorname{Exp}(r)$, and $\psi_{k}=L(\zeta, D) \phi_{k}$ for some $\phi_{k} \in \operatorname{Exp}(r)\left(k \in \Lambda\right.$, some ordered set). Since $\left\{\psi_{k}\right\}$ converge to ψ_{0} uniformly on every compact set in \mathbf{C}^{n}, the Taylor coefficients $b_{\mu}^{(k)}$ of $\psi_{k}=\Sigma b_{\mu}^{(k)}$ ζ^{μ} converge to those $b_{\mu}^{(0)}$ of $\psi_{0}=\Sigma b_{\mu}^{(0)} \zeta^{\mu}$. By the assumption, each of the Taylor coefficients $a_{\lambda}^{(k)}$ of $\phi_{k}=\Sigma a_{\lambda}^{(k) \zeta^{\lambda}}$, is expressed as a finite linear combination of $\left\{b_{\mu}^{(k)}\right\}$, so that L is injective and $\left\{a_{\lambda}^{(k)}\right\}$ ($\forall \lambda$ fixed) becomes a converging filter, that is, there exists a formal power series $\phi_{0}(\zeta)=\Sigma a_{\lambda}^{(0)} \zeta^{\lambda}$ which satisfies $L(\zeta, D) \phi_{0}$
$(\zeta)=\psi_{0}(\zeta)$. Since $\psi_{0} \in \operatorname{Exp}(r)$, by Theorem $1, \phi_{0}$ must be of exponential type less than r. This completes the proof.

§3. Existence and Approximation

Let Ω be a domain in \mathbf{C}^{n}. We denote by $H(\Omega)$ the space of all holomorphic functions in Ω with compact convergence topology. An elements S of the dual space $H^{\prime}(\Omega)$ is called an anlytic functional in Ω, for which we define the Fourier transform \hat{S} as follows:

$$
\hat{S}(\zeta)=S_{z}\left(e^{<z, \zeta>}\right),
$$

where $\langle z, \zeta\rangle=\sum_{j=1}^{n} z_{j} \zeta_{j}$. A compact set K in Ω is called a carrier of S if there exists a constant C_{ω} for every neighborhood ω of K such that

$$
|S(f)| \leqq C_{\omega} \sup _{z \in \omega}|f(z)|, \quad f \in H(\Omega)
$$

The next proposition is well known.
Proposition 4. (Ehrenpreis-Martineau [5]-Hörmander [4]) If $S \in H^{\prime}(\Omega)$ is carried by a compact set K in Ω, then $\widehat{S}(\zeta)$ is an entire function and for every $\delta>0$, there is a constant C_{δ} such that

$$
|\widehat{S}(\zeta)| \leqq C_{\delta} \exp \left(H_{K}(\zeta)+\delta|\zeta|\right), \quad \zeta \in \mathbf{C}^{n},
$$

where $H_{K}(\zeta)=\sup _{z \in K} \operatorname{Re}<z, \zeta>$. Conversely, if K is a compact convex set and $M(\zeta)$ an entire function satisf ying the above inequality for every $\delta>0$, there exists an analytic functional S carried by K such that $\hat{S}(\zeta)=M(\zeta)$.

We then study the topological structure of the space of analytic functionals. Let Ω be a convex domain in \mathbf{C}^{n}, and let $\left\{K_{j}\right\}$ be a sequence of compact convex sets in Ω such that

$$
K_{j} \subset K_{j+1}, \quad \text { and } \quad \bigcup_{j=1}^{\infty} K_{j}=\Omega .
$$

The space of all entire function $f(\zeta)$ in \mathbf{C}^{n} such that $|f(\zeta)| \leqq C \exp \left(H_{K_{j}}(\zeta)\right), \zeta \in \mathbf{C}^{n}$ is denoted by $\widetilde{\operatorname{Exp}}\left(K_{j}\right)$. As before, $\widetilde{\operatorname{Exp}}\left(K_{j}\right)$ becomes a Banach space, and $\widetilde{\operatorname{Exp}}$ $\left(K_{j}\right) \subset \widetilde{\operatorname{Exp}}\left(K_{j+1}\right) . \quad \operatorname{Exp}(\Omega)$ is defined as the inductive limit of these spaces. Since Fourier transformation is injective on the space of analytic functionals in a Runge domain, it follows by Proposition 4 that $H^{\prime}(\Omega)$ is algebraically isomorphic to $\operatorname{Exp}(\Omega)$.

Lemma. Fourier transformation from $H^{\prime}(\Omega)$ to $\operatorname{Exp}(\Omega)$ is continuous.
Proof. Since $H^{\prime}(\Omega)$ is a $(D F S)$ space, it is sufficient to show that Fourier transformation is sequentially continuous. Let $S_{j} \in H^{\prime}(\Omega)$ be any sequence converging to 0 in $H^{\prime}(\Omega) . \quad H(\Omega)$ is an $(F S)$ space, so that it becomes quasi-normable (Grothendieck [3] p. 325, Prop. 1). Then, there exists a neighborhood V of 0 in $H(\Omega)$ such that S_{j} converges to 0 uniformly on V. We may take V as the set $\left\{f \in H(\Omega)\left|\sup _{z \in K_{N}}\right| f(z) \mid \leqq M\right\}$ for some constant M and a compact convex set K_{N} in Ω. In this case, $\hat{S}_{j}(\zeta)$ converges to 0 in $\widetilde{\operatorname{Exp}}\left(K_{N}\right)$, hence in $\operatorname{Exp}(\Omega)$.

From this lemma and the open mapping theorem (due to Ptak), we have
Proposition 5. If Ω is a convex domain in \mathbf{C}^{n}, then $H^{\prime}(\Omega)$ is topologically isomorphic to $\operatorname{Exp}(\Omega)$. (See also Ehrenpreis [1], Martineau [6].)

Let $\mathrm{P}\left(z, D_{z}\right)=\Sigma c_{\lambda \mu} z^{\mu}\left(\frac{\partial}{\partial z}\right)^{\lambda}$ be a differential operator with polynomial coefficients. Then, the Fourier transform of the adjoint operator P^{\prime} of $P\left(z, D_{z}\right)$ is $L\left(\zeta, D_{\zeta}\right)=\Sigma c_{\lambda \mu} \zeta^{\lambda}\left(\frac{\partial}{\partial \zeta}\right)^{\mu}$. In fact, for any $S \in H^{\prime}(\Omega)$,

$$
\begin{aligned}
\left(\widehat{P^{\prime}\left(z, D_{z}\right)}\right)(\zeta) & \left.=<P^{\prime} S, e^{<z, \zeta>}\right\rangle \\
& =<S, P\left(z, D_{z}\right) e^{<z, \zeta>}> \\
& \left.=\Sigma c_{\lambda \mu}<S, \zeta^{\lambda}\left(\frac{\partial}{\partial \zeta}\right)^{\mu} e^{<z, \zeta \gg}\right\rangle \\
& =\Sigma c_{\lambda \mu} \zeta^{\lambda}\left(\frac{\partial}{\partial \zeta}\right)^{\mu} \hat{S}(\zeta) .
\end{aligned}
$$

In order to prove the existence and approximation of the holomorphic solution, we use the next proposition due to F. Treves.

Proposition 6. (Treves [8]) Let E_{0}, F_{0}, E, F be locally convex topological linear spaces and E, F be Fréchet spaces. In the following commutative diagram (all maps are continuous and linear), we assume that the ranges of u_{0},

u and i are dense in the corresponding spaces and that in E_{0}^{\prime}, the dual space of E_{0}, the range of u_{0}^{\prime}, the adjoint operator of u_{0}, is equal to the polar of the null space of u_{0}. Then the following two properties are equivalent.

1) u is surjective and $i\left(N\left(u_{0}\right)\right)$ is dense in $N(u)$,
2) $y_{0}^{\prime} \in F_{0}^{\prime}$ such that $u_{0}^{\prime}\left(y_{0}^{\prime}\right) \in R\left(i^{\prime}\right) \Rightarrow y_{0}^{\prime} \in R\left(j^{\prime}\right)$,

For every $r(0<r \leqq+\infty)$, we define the domain $\Omega(r)$ in \mathbf{C}^{n} as

$$
\Omega(r)=\{z \mid\|z\|<r\},
$$

where $\|z\|=\left|z_{1}\right|+\ldots+\left|z_{n}\right|$. Then, by Proposition $5, H^{\prime}(\Omega(r))$ is isomorphic to $\operatorname{Exp}(r)=\left\{f(\zeta) \in H\left(\mathbf{C}^{n}\right)| | f(\zeta)|\leqq C \exp \tau| \zeta \mid\right.$ for some $\left.\tau<r\right\}$ where $|\zeta|=\max _{1 \leqq j \leqq n}\left|\zeta_{j}\right|$, for if $K=\{z \mid\|z\| \leqq \tau\}$, then $H_{K}(\zeta)=\tau|\zeta|$.

Theorem 3. Let $P\left(z, D_{z}\right)=\Sigma c_{\lambda \mu} z^{\mu}\left(\frac{\partial}{\partial z}\right)^{\lambda}$ be a differential operator with polynomial coefficients. We assume that $L\left(\zeta, D_{\zeta}\right)=\Sigma c_{\lambda \mu} \zeta^{\lambda}\left(\frac{\partial}{\partial \zeta}\right)^{\mu}$ satisfies all the conditions in Proposition 3, that is, Lhas a v_{0}-simple leading part L_{l} (for some multi-index v_{0}) of degree $m(\geqq 0)$, and $L_{l}\left(\zeta^{\alpha}\right) \neq 0$ for any $\zeta^{\alpha} \neq 0$, and the condition (A) in Theorem 1 is fulfilled. Then for every $r(0<r \leqq+\infty)$, we have

1) $P\left(z, D_{z}\right): H(\Omega(r)) \rightarrow H(\Omega(r))$ is surj ective and
2) for $u \in H(\Omega(r))$ such that $P\left(z, D_{z}\right) u=0$, there exists a sequence $\left\{u_{j}\right\}$ in $H\left(\mathbf{C}^{n}\right)$ such that $P\left(z, D_{z}\right) u_{j}=0$ and $\left\{u_{j}\right\}$ convergers to u in $H(\Omega(r))$.

Proof. We first prove the case $r=+\infty$. In this case, 2) is trivial. To show 1), it is sufficient to prove that the adjoint operator P^{\prime} of P is injective and has a weakly closed range. Since $H\left(\mathbf{C}^{n}\right)$ is reflexive, a subspace in H^{\prime} is weakly closed if and only if it is strongly closed. By Proposition 5, P^{\prime} is injective and has a closed range if and only if $L: \operatorname{Exp}(r) \rightarrow \operatorname{Exp}(r)$ is injective and has a closed range, which follows from Proposition 3. In the general case, we apply Proposition 6 with $E_{0}=F_{0}=H\left(\mathbf{C}^{n}\right), E=F=H(\Omega(r)), i$ and j being natural injections, and $u_{0}=u=P\left(z, D_{z}\right)$. Since $\Omega(r)$ is convex, the ranges of i and j are dense. By the first step of this proof, u_{0} is surjective, so that all the assumptions of Proposition 6 are fulfilled. Therefore it is surfficient to show that every $S \in H^{\prime}\left(\mathbf{C}^{n}\right)$ such that $P^{\prime}\left(z, D_{z}\right) S \in H^{\prime}(\Omega(r))$ is also an analytic functional in $\Omega(r)$. But this follows from Theorem 1. The proof is complete.

References

[1] L. Ehrenpreis; Fourier analysis in several comples variables, Wiley-Interscience, New York, 1970.
[2] B. A. Fuks; Theory of analytic functions of several comples variables, Amer. Math. Soc. Transl. Math. Monograph, 8 (1963).
[3] A. Grothendieck; Espaces Vectoriels Topologiques, Soc. Math. de São Paulo, Brasil, (1958).
[4] L. Hörmander; An Introduction to Complex Analysis in Several Variables, Van Nostrand, Princeton, 1966.
[5] A. Martineau; Sur lesfonctionelles analytiques et la transformation de Fourier-Borel, J. Analyse Math., 9 (1963), 1-164.
[6] A. Martineau; Equations différentielles d'order infini, Bull. Soc. Math. France, 95 (1967), 109-154.
[7] H. Suzuki; On the global holomorphic solutions of the first order differential equations, (in Japanese) (to appear).
[8] F. Treves; Locally Convex Spaces and Linear Partial Differential Equations, Springer-Verlag, 1967.
[9] Y. Tsuno; Differential Operator without Dense Range, Hiroshima Math. J., 2 (1972), 67-70.
[10] I. Wakabayashi; Non-existence of Holomorphic Solutions of $\frac{\partial u}{\partial z_{1}}=f$, Proc. Japan Acad., 44 (1968), 820-822.

Department of Mathematics,
Faculty of Science,
Hiroshima University

