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In his paper [9, Theorem 1, p. 667] G. Peyser proved that when P is a hyper-
bolic differential polynomial with constant coefficients, P+ Q is always hyper-
bolic for an arbitrary differential polynomial Q with constant coefficients of order
<m—d (0<d<m) if and only if the degree of degeneracy of P<d. Obviously
P is strictly hyperbolic if and only if d=0. We can extend the result to the case
where P is a hyperbolic differential polynomial with variable coefficients €%
(R, .+ 1) having constant leading coefficients and Q is an arbitrary differential poly-
nomial with variable coefficients € Z(R,,, ;).

The main purpose of this paper is to obtain some refinements of our previous
paper [11] by taking into account the degree of degeneracy mentioned above.
Our method of approaching the Cauchy problem relies largely upon the L2-
estimates as developed in [11]. Section 1 is devoted to the preliminary discussions
by means of which our energy inequalities will be derived as shown in section 2.
It is to be noticed that the energy inequalities obtained here coincide with those
established in [11] provided that the degree of degeneracy in question equals
m—1. After recalling the Cauchy problem taken in the sense of M. Itano [3]
we shall establish in section 3 with the aid of the energy inequalities obtained above
the uniqueness and the existence of the solutions, which present generalizations
of the results in [11, Theorem 2.1, p. 453]. The final section deals with a generali-
zation of G. Peyser’s result.

1. Preliminaries

m—1
Let P be a differential polynomial in R,,,; written in the form P=D"+ 3,
vo=0

a(t, x)D*, a,€ (R, ,), where D=(D,, D,), D,=(D,, D,, ..., D,) withD,=
) 1 8 ‘
a PiTi
Vis...» V). Throughout the present paper we shall assume that the principal
part P,, of P has constant coefficients and that P is hyperbolic with respect to ¢,
when each point (¢, x) is fixed. For simplicity we shall call ‘‘hyperbolic” instead

|

<

I

.~.l._

, j=1,2, ..., n, and v denotes a multi-index v=(vy, v')=(v,,
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of “‘hyperbolic with respect to ¢”. Let P;, j=0, 1,..., m, be the homogeneous
parts of order j of P and P,(z, £) be the polynomial associated with P,, where
(tr, &=(z, &, &35, &) 1s a point of the dual Eucliean space Z,,,. We shall
then use the following notations:

PO (1, f):%Pm(r, H=m(m—-1)...(m—k+ l)zi:l:‘“_)"f_"(ﬁ)),

P Pz, &) =P (z, &)/(r—A17X(&)),
where A77%(¢), j=1, 2,..., m—k, stand for the roots of polynomials P{¥(z, &)
in 7, which are listed in non-decreasing order. From the definitions of P{¥) and
P51 we have
m—k+1
2 Pl — Pl=1)
@ W I Py
Let p, v be multi-indices with |u| = Z": pi=m—1,|v|=m, and let u€ CH(R,+,).
=0

We can then write
3) (D"uD¥u — D*uD¥u) = D,Go(D, D)uii + 3.D,G (D, D)uil,
=1

where G«(D, D)uii, j=0, 1,..., n, are Hermitian differential quadratic forms in
the derivatives of order m—1 of u(t, x) [1, pp. 74-75, also 2, pp. 187-189].
From the relation (3) we have immediately

— 0 n 0
_ =1y . PR, =< gm— — Amk
4) Im P, Pu P"'ku_atAo k(u)+1§10-xiAj @)

with Hermitian differential quadratic forms A7 *(u), j=0, 1,..., n, in the deriva-
tives of order m—k of u. Then we can show that

S An*(u)dx 20,
Ser

where S, is a hyperplane t=¢ in R, ;.

In fact, since AF *(u) is written in the form J; 2. av kDvyDry, it
fvl=m—k |p|=m—k

follows from Parseval’s formula that
1
m—k —_— m—
) {, Aradx= g kx@ae,
where

Kmk@)= 5 31 ayher o Drea(y, E)DRA, 8.

|vi=m—k |pl=m-k
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Putting u(t, x) =e'<*¢>4(t, £), we have AF *(v)=Km ¥@). Since A" *(v), j=
1, 2,..., n, are independent of x, the equation (4) means

(6) —lmP;k-l)u-FEE:%Km-k(a).

On the other hand, in view of the relations (1) and (2), we see that

—Im P~ Do PlPv=~Im P~ 1(D,, §)a(z, &) PP (D,, E)A(z, §)

—Immjfklﬂ(l’r—l',""‘(i))P"‘ (D, O, &) PESO(D,, BYA(2, )

j=1
g (k=1) 2
=5 PUTO(D,, O, &)1,
Consequently, we obtain

m—k+

(M Kmk(@) = ZI IP“‘ D(D,, &)a(t, )2,
=

which completes the proof.

From the relation (2) it follows that
m—k+1
|PYO(D,, &)a(t, &)< (m—k+1) Zl | PSGD(D,, O)a(s, ©)12.
=

Combining this with the relations (5) and (7) yields the following

LeMMmA 1. LetusC%(R,.,). Then

S [an")(D)ulzdxngs Arkuydx,  k=1,2,..,m.
Ser e

m—1
Let Q=D"+ 3, IIZ b,D¥ be a differential polynomial with constant
vo=0 |v|=m

coeflicients. Owing to G. Peyser, Q is called properly hyperbolic if
i) the roots of the polynomial Q,(z, &) in 7 are all real for all é€E,,
i) Q,_x(t, &) are expressed as follows:

(8) Qm k(T 5)_’ Z bk](é)Q(k 1)(1: é)’ k=1’ 2,“-, m

with bounded functions by (&), (€&, [5, p. 480]. Clearly, a properly hyper-
bolic operator is hyperbolic. S. L. Svensson has shown that a hyperbolic operator
Q is also properly hyperbolic [10, p. 154], which will be used in our later discus-
sion. Let o ,(R,) be a Sobolev space [2, p. 45] with norm v— ||v||,:
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o112 = gy 1+ €120 24,

Let Ss(D,) (or simply S*) be a convolution operator with a symbol S5(&)=(1+
|€|2)s/2. Then, for any be #(R,) and any real o, [b]S*—S*[b] is a bounded
operator with norm ||[[b]1S*—S*[b]||(grs-s+1) from 52 ,y(R,) into 3, _,41)(R,),
where we have used the notation [b] to denote the multipicator: ¢—b¢ [6, p. 389].

LEMMA 2. Let s be an arbitrary real number. Then there exists a constant
C, independent of u such that

S |Ss(Pm_ku)|2dx§csS AnK(Suydx, ueC2(R,,,), k=1,2,., m.
S.» Ser
Proor. Let the operator P be frozen at a point (¢y, x,) and let Q denote

the associated differential polynomial with constant coefficients. Then we have
with a constant C independent of u

©) S 1Qn-il2dx s CSS“A's-«u)dx.

In fact, since Q is hyperbolic and Q,, =P, it follows from (8) that

m—k+1

104Dy, DA, O)2 < lbk_,<e:)|2'"j‘=2":‘|P;.':;“(D,, o, &2

Jj=0
m—k+1 (k=1)
<C"3, P50, 000, D12,

From (5), (7) and Parseval’s formula, we obtain (9).
Next, we can write with an integer N

N
Pm—k(ta X, D)=_Zlcj(t’ X)Pm—~k(tj’ xja D)’ Cjeg(Rn+l)’
=
where P, _(t;, x;, D) denotes the operator frozen at (¢;, x;). Since

N
S’(Pm_ku) =J§1(Sst(t, x) - Cj(t, X)Ss)Pm_k(tj, Xj, D)u

N
+ch(ta X)Pm—k(tj’ xja D)Ssua
Jj=1

and S°c(t, x)—c,(t, x)S* is a bounded operator from #_;)(R,) into 5 o)(R,),
it follows that

N
Ss‘,lss(Pm._ku)lzdxgC;jé}lgs',IS‘*Pm_k(tj, x,, Dyu|2dx +
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N
+oy S \Po_i(t, x;, D)S*u|2dx
Jj=1JS¢
N
SC 3 1Puilty 3, DISldx,
J=1J8¢

where Ci, C’ and C/ are constants such that
C;=ml"_1x s';‘P“Ss[cj] —[e;1801E- 1509
c’ = max §Lip|cj(t, x)|?,

and
C? =max(C,, C’).

From this estimate and (9), we have with C;=C-C/
Ss [S(st_ku)lzdngsS An—+(Ssu)dx,
t’ S/

as desired.
For our later need we recall the following (cf. [1, p. 72])

LeEMMA 3. Let r(t') and p(t') be two real valued functions defined in the
interval 0<t' < T and suppose that r(t') is continuous and p(t') is non-decreasing.
Then the inequality

r(t) < Clp(t)+ S:r(t)dt) (C is a constant)

implies

r(t)< Cect p(t).

2. Energy inequalities

Let P be a hyperbolic differential polynomial with variable coefficients € %
(R, +,) having constant leading coefficients. We say that the degree of degeneracy
of P<d when the polynomial P,(t, £) in 7 has the highest multiplicity of roots
<d+1 for any ¢ E,—{0}.

By making use of Lemmas 1, 2 and 3, first we show that the following Propo-
sition 1 which gives an extension of G. Peyser’s result [8, Theorem 2.1, p. 484].

ProrosITION 1. Let T be an arbitrary positive number. Then there exists
a constant Cp independent of u but depending on s such that
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k:ilgs AnH(Ssu)dx < CT( 3 gs Ank(Ssu)dx

k=1
+S'S ISS(Pu)Idedt) 0<t'<T, ucCg(R,,,).
0JRn

Proor. Let v=Su. Then, from the relation (6) and Parseval’s formula,

we have
[, Arwax—{ agr@ax=({ ~1mpy=vo-PPoaxa.
Ser So 0JRn,

Since

T Im P~y POy dxdt

¢
SO

N

g(S'S |P(,’,‘,‘1)v|2dxdt+y& | PYv|2d xdt,
0JR, 0JRn
it follows that

2 (. arrwansa( 5] arwxs (| (pwolaxa

¢t
k=1 0

m (t’
+ Zg S IPE,,")U|2dxdt>.
k=1J0 /R,
Therefore, owing to Lemma 1 we now obtain

(10) 3 SS AFHo)dx S 2m< 3 gs AT *(v)dx

= k=1

¢
0

+ S:gk,.lpmvl tdxdit kilg SR..A'g_k(U)dth)

On the other hand, in view of the relation P,,,v=S‘(Pu)—)’j S5(P,,—xu) together
k=1

with Lemma 2, we have with a constant Cj.
"
S S | P,v|2dxdt
0JRn

P
0

<(m+ 1)<S:§Rn|S‘(Pu)|2dxdt + é"lg SR" 1S‘(P,,,_ku)|2dxdt)

<(m+ I)CS<S:SR"]SS(Pu)|2dxdt + élg:SR"Ag-k(u)dxdt).

Combining this estimate with (10) yields with a constant C; =2m(m+1)C;
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m ’

5, arroaxscs( S| ayrwax+ (| isPui2asar

t
k=1JS k=1 0
+ ZS'S A;',""(v)dxdt).
k=1J0JR,

If we put () =3, SS A+ (v)dx and p(t) =3 S ABH()dx+ S' S |S5(Pu)| 2dxdt,
= e k=1JSo 0JRn
then Lemma 3 shows that our proposition holds.

In the previous paper [11] we established an energy inequality of the form

S u(e, OPdxsC (% S (D*u)(0, x)|2dx
Rn [v] R,

vism—1
+S‘ S |(Pu)(t, x)lzdxdt>, 0<t'=sT, ucsC%(R,s,)
0JRn

for a hyperbolic differential polynomial P with constant coefficients, where Cr
denotes a constant independent of u. Now, if we take into account the degree
of degeneracy of P, we can derive a more precise estimate. The following is a
modification of L. Garding’s lemma [1, p. 76].

PROPOSITION 2. Let the degree of degeneracy of P,,<d. Then there exists
a constant C>0 independent of u such that

S A'()'_"(u)dx;CI IZ S [DYu(t’, x)|2dx, k=d+1,d+2,..., m
Se¢r vi=m—k JS;

for any ue C§(R, ;).

Proor. Since the degree of degeneracy of P,, < d, the polynomials P{~1)(z, &)
int, k=d+1, d+2, .., m, have simple real zeros for any £ € £, — {0}, that is, there
exists a constant 6 >0 such that
(1) |i1|1f | ARk 1(E) — Am= k(&) | 26, h+ j,

él=1

where A77k+1(&), j=1,2,..,m—k+1, are roots of the polynomial P{~V(¢).
Hence, as L. Garding showed in his paper [1, p. 76]

m—k+1
(12) D“'oa(t,é)_: jgl ﬂ_‘;?k(é)PSnlfj'l)(Du é)a(ti é)a V0=0, la CERX} m—k
for each ¢{e5,—{0}. Here we have written
m—k+1
Bow(&) =[&|mHrEvo(Ap= 1 (w)) e [ m(m — 1)---(m—k+2)9,(/*';1""“(@
J

— A7k (),
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where w=¢/|€|.  This equality together with (11) yields a constant C(6)>0 such
that

IBYo(O)| < C(B)|&|~mHktvo,  j=1,2,...,m—k+]1.

Consequently, in view of Cauchy-Schwarz’s inequality and (12) we have

[Droute, "3 1B, [P (D0 DG, O

m—k+
)

< C@)|E)2emiro™ 3 pUe(D Bage, &2,

Jj=1

and therefore

m—k
K=K (@) 2 C 20 |E[2m=k=o) [ Dyoq(t, £)|2
vo=0

with a constant C =1/C(6) independent of u. Then, owing to Parseval’s formula,

we can write

g An(w)dxzC X S ((DYu)(t', x)|dx,
Se’ |v|=m—k

Ser
which was to be proved.

Summing up Propositions 1 and 2, we can state the following.

THEOREM 1. Let P be a hyperbolic differential polynomial with variable
coefficients € B(R,+,) having constant leading coefficients and the degree of
degeneracy of P<d. Then there exists a constant Cy independent of u such that

m—1-—d . m—1 .
[E, a)] j§0 [ID{u(t’, ')||(2s+m—1—d—j)§CT(JZ:O”D{“(O, MW etm-1-)

.
+SOII(Pu)(t, MEdt), O0=t'ST,ucCg(R,:).

Here we note that [E q 4] gives a more precise estimate than the one obtained
in [11, p. 449], as clearly this is nothing less than [E - ,].

3. The Cauchy problem for hyperbolic differential equations

Let us consider the Cauchy problem for P in R},,; ={(t, x)€RxR,: >0}
with initial hyperplane t=0. Here the Cauchy problem is understood in the sense
of M. Itano [3]: to find a solution € 2’(R}, ;) such that

(13) Pu=f in R¥,,
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lim(u, D,u,..., D" u)=a
tio

for preassingned f € 2'(R},,) and @ =(ag, %,..., Uy—1)ED'(R,) X D'(R,) X -+ X
2'(R,), where limu denotes the distributional boundary value of ue 2'(R},,

which is deﬁneci li(r)l [3] according to S. Lojasiewicz [7] as follows: Let ¢ € CF(R})
be arbitrarily chosen so that ¢(t)=0 and gd)(t)dt:l and let d)e(t):%d)(é), e>0.
If 1£%¢5u existsin 2'(R, ), then it must be of the form §,®a. « is defined to be

limu. An important notion ‘‘canonical extension” was introduced by M. Itano.
L0

t
Let p(t)=30¢(t’)dt’ and p(£)=p<£>. If, for u€ 2'(R},,), lailrrgp(e)u exists in 9’

(R,+,), the limit is called the canonical extension of u over t=0 and denoted by
u. [3, p. 12]. To fix the idea, let us recall some results obtained there. If there
exists a solution ue 2'(R},,) of (13), then u and f must have the canonical exten-
sions u., f. and the Cauchy problem (13) is rewritten with v=u_ in the form:

(14) Po=7.+"%, DE@7,(0),

where

vo

m —k . 3 .
yk(t)= —i Z X (_ 1)VO_J'k(Vo;J)DtVO'J"kavo(t,x’ Dx)aj—l'

vo=k+1 j=

Here a, (1, x, D,) abbreviates >3 a(t, x)D}" for vo<m and a,=1. Con-

[v |Sm—vo
versely, any solution ve .@’(R,’; 1) of the equation (14) is the canonical extension
of a solution of (13).
According to L. Hérmander [2, Chap. 2] we shall use the notations 5,

(R}41), # (5,5)(R}+1) and the like. Let us denote by 4, ,,(R}+;) the space of
distributions u € 2'(R}, ) such that ¢u belongs to # , (R} ,) forall¢ € CF(R),
and let #¢, (R}, ,) be the adjoint space of # _, _,,(R},) with respect to an ex-

tension of the sesquilinearform from gwg uvdxdt, ue C®(R}.,), ve€CF(R, ).
OJRn
The scalar product between them will be denoted by (-|*). It is to be noticed that

the space J#¥, (R} ) consists of all the elements u e f(a,s)(ﬁjﬂ) with support
c [0, T]x R, for some T>0, which may depend on u. As for these spaces, we
note that

i) If o->%, uEH , (Ris1) is considered asa continuous function of 1€
[0, o) with values in 5, ,_,2)(R,) [4, Proposition 4, p. 410].

i) Ifo> ———é—, the canonical extension u.. does exist for any u € 5# , (R4 1)
[4, Proposition 5, p. 413].
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if)) .. (Riy,) and #,,,(RY, ) are identified for !0]<%, and in this case
the canonical extension u. belongs to # . (R}, ;) for any u €#, (R} 1) [4,
Proposition 7, p. 146].

iv) If k is a positive integer, then limu =limD,u =--- =limD¥ 'u =0 for any
tl0 tio tlo

uE.}?(k,s)(R;’H) [4, Corollary 3, p. 419].
Similary for # , ,(R}.,) and i(,,s) (R, 1)

From now on we shall write H =0 -1y (R,) X 3 (g4 m—2)(Rp) X -+ X
H# ((R,) and Hiyy =52 (R,) X S (54 1y(R,) X -+ X H# (51 m—1)(R,). We shall continue
to denote by P a hyperbolic differential polynomial with variable coefficients
€ #(R, ) having constant leading coefficients and assume that the degree of
degeneracy of P<d.

First we show the following.

ProrosiTION 3. For any given g EJ?*(O’S) (R}, ) there exists a solution
EH*o,—s+m-da-1y (Ry+1) such that P*v=g in R}, .

PrOOF. Lets’=s—m+d+1. Consider a subspace AC# o, ¢ \(R}s1) xHy,
consisting of (P¢, ¢,), ¢ CZ(R},,), where ¢,=(¢(0, x), D,¢(0, x), ., D" 1¢
(0,x)). Let I be the linear form A= (P@, ¢o)—(P|g), where (¢|g) denotes the scalar
product between o o (R} 1) and #* g _ (R} ). It follows from Theorem 1 that
the energy inequality [E, 4] holds for P. Hence we see that the map (P¢, ¢,)—
¢ is continuous from 4 into f?(o,s)(RL 1), which means that [/ is continuous. Con-
sequently, owing to Hahn-Banach theorem, I can be extended to a continuous
linear form on ¢ (R,+{) X H, and therefore there exist a vE#* ¢, _,(Ri41)
and a ,@EH“(_S_,,) such that

(¢l9)=(Po|v)+(8,8).
Letting = CF(R}, ), we have §,=0. Hence,

(¢lg) =(Po|v) =(¢|P*v),
which implies that P*v=g in R}, ,. This ends the proof.

Let us write # _)(Ri+1) =\UH# (4, 5(R}+1). Now we can show the following
g,

PROPOSITION 4. If u€ o ) (R}s,) satisfies Pu=0in R}, with initial data
lim(u, D,u,..., D u)=0, then u must vanish.
ti0

Proor. From our assumption it follows that uE.;/?(O_S)(R:+ 1) foran s [2,
Theorem 4.3.1, p. 107]. Consider an arbitrary g = C§ (R}, ;). Owing to Proposition
3there exists a solution vE #* 4 _oym(Ri+,)of the equation P*v=g. In a
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similar way we see that ve .i(m,_s,(ﬁ;’ﬂ). Now, C®(R},,) is dense in 9?(,,,,_3,
(IE;““), so we can choose a sequence {v,}, v;€ C®(R},,), converging in #,
(R}+q) to v. Consequently,

(u|g) =(u|P*v) =lim(u|P*v;) =lim(Pu|v;) =0,
jow Jj=o
which means that u=0. Thus the proof is complete.

Let P be a hyperbolic differential polynomial as before. Then the formal
adjoint operator P* is also hyperbolic and has the same degree of degeneracy as
P, which will be shown in Proposition 6 below. We shall use the notation &2 (# )
to denote the space of continuous functions in ¢ with values in 5 (R,).

PROPOSITION 5. Forany givenf € # (R} ,) and & €Hy, there exists-one
and only one solution u€ # _ (R}, ,) to the Cauchy problem (13). In addition,
we have

Dtjuegto('%(sﬁ'm—d—l—j))’ j=0, 1,..., m—d—l.
Furthermore, if the inequalities

|| TL‘; (Dia,(t, )¢ v°| SCA+[EHV2(L+12 + [ 2)ma- D2, j=1,2,.,k

hold with a constant C for a positive integer k, and if fE€# ;4 (Riy) and
a€H (44, then the solution u must satisfy

D{uegy('}f(s+k+m—d—l—j))’ i=0,1,...,k+ m—d—1.
Proor. First we shall show that the set
G={(P¢, $,): ¢EC?)°(EI+1)}

is everywhere dense in o (R}+q) x H,, Where o =(4(0, x), D,¢(0, x),...,
D= 1¢(0, x)). For this end we let (v, B) e H*0,-5(Riy 1) X H{_,_,.+1)be such that

(Polv)+(#olB)=0  for any (P4, §o)<G.
Since (P¢$|v)=0 for any ¢ = CE (R}, ), we have (¢|P*v)=0, which means that
(15) P*»=0 in R}, ;.
On the other hand, from ve#{o,_s)(ﬁjﬂ) there exists a T>0 such that v=0

for tng. Consequently,

(16) lim(v, D,,v..., D 1) =0.
T
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As noted before, P* is hyperbolic and therefore by the same method as in Propo-
sition 4 the Cauchy problem (15) with (16) is uniquely solvable. Hence we have
v=0. Since the set {§,: = C¥(R},,)} is everywhere dense it follows from
(60/3)=0 that §=0. Now we can choose a sequence {dn}, d»=CH(R},), such
that

Po,—f in .}?7(0’5)(1—{',‘;+ 1)
and
(¢h(0: X), Dt¢h(0’ x)"”, D:"_ ld’h(o’ X))-)d’ in H(s)'

In view of the estimate [E,] each {D/¢,}y=1.2.., j=0, 1,...., m—d—1, is a
Cauchy sequence in &?(# s+m-a—1-j)) and therefore converges there to some
v;. Since v, satisfies the Cauchy problem (13), it follows then from the uniqueness
of the solution that v, must coincide with u, and it is clear that Dju=v =0, 1,...,
m—d—1, which means that

Diu€&(# gim-a-1-5)> J=0,1,..., m—d—1.

Thus the first assertion of Proposition 5 holds. Next we shall show the second
assertion in the case k=1. Since f € # ; (R}41) C# 0,5+ 1)(Ri+1), it follows that

) Diu€&(# sim-a-j), Ji=0,1,....m—d—1.
Put v=D,u. v must satisfy the equation

Pv=D, - IZ (D,a(t, x))D u in R}, .
v|Sm

On the other hand, from the relation

m—1 —
Dru=f—-3 2, a,D’u and lLmfE€s ) (Rj+1)
tlio

vo=0 [v|=m
it follows that

}iJ'%l(U, Dyw,..., DF~'v)eHy,,.

Consequently, owing to the first part of Proposition S we obtain
Dive&X(H# sim-a-1-j)» J=0,1,.., m—d—1.

Combining this with (17) yields
Diuc &(H# gem-a-1-5) J=0,1,...,m—d,

as desired. In the general case, repeating this procedure k times, we shall reach
the second assertion of Proposition 5. The proof is complete.
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Let (D,—iM(D,))"! be a convolution operator associated with symbol (t—
iME)~L, where A&)=(1+|£2)1/2. It defines an isomorphism between 9%(”)
(R%,,) and éof’(,J,l,s)(R;’H) [2, p. 53]. In an obvious fashion we can extend it
to an isomorphism between f(a,s)(ﬁ;‘+l) and .;?%(,H,S)(R;,‘H).

The following Theorem 2 is a refinement of Proposition 5 and a generaliza-
tion of a result in the previous paper [11, Theorem 2.1, p. 453].

THEOREM 2. Let o be a real number such that 6 =o' +k, where k is a non-

negative integer and —% <o’§%. Suppose that the inequalities

|I IZ (Dla,(t, x)& 10| S C(1+[E[2) V/2(1+ 22 + [¢[2)md= 1212,
vism
ji=1,2,.., k+d+1,

hold with a constant C. Then, for any given f & 9?(“)(1?:“) and a€H gy,
there exists one and only one solution ue.)?(_m)(ﬁjﬂ). In addition, u must
satisfy

D{ueg?('}f{s+d+m—d—l—j))s Jj=0,1,..., k+m—1.
Proor. First we consider the case k=0 and show that
DIu€EX(H gtsim-d—1-j) j=0,1,..., m—1

Let us take an &¢>0 such that a’—%<s<c7’+l and put ¢”=0'—¢. From

2
fE# (4, o§(REs 1) CTH (40 54y (RE4y) it follows that f € # , o4ry (Rir1). Now
we can write f. in the form

So=D{ o+ Difr+ - +farrs
where we have defined for j=0, 1,...,d+1
L= (=MD )Y (D= iMD )Y VS €A (4o ary gremy(REs1).
Consider the Cauchy problems
Py;=f; in R},
{}il%l(vj, Dyj,..., D~ 1v;) =0, j=0,1,...,d,

and

{Pvd+1=fd+l in Rf,q,

}llt(l;l(vd+ 1> Dvas15eees DP 1044 ) =20
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From Proposition 5, we obtain for j=0, 1,..., d+1

vajEé’?(.f(s+,+m_j_h)), h=0, 1,..., m'—l.

Since fjei(au+d+l,s+5_j)(R_:+l) and a”+—;—>1, we have

(18) D f;€80(H s40-1/2-j-m)s
and
(19) limD} f; =0

ti0

for h=0,1,...,d and j=0, 1,...,d+1. From (18) and the relations DI"v;=f;—
2 a(t, x)D"v,,

vo=0 |v]|Sm
Dtlvjeg?(‘%(sﬁ-d"“m—j—h))’ h=0, 1,..., m+d,

forj=0, 1,..,d+1. Putu=Di*1vg+Dfv;+---+v4,1+w. Then,

J

(20) Pw=g  in Ry,
where
g dvi-j ) _ _
g= —‘§ (G JI) 2 (Dra,(t, x)) DD 1=i"hy, € # 441, s40-a)(Ris1)-

0 h=1 v|s=m

m—1

By virtue of (19) and the relations D'v;=f;— 2. 3. aJ(t, x) D"v;, we have

vo=0 |v|Sm

lifrx(vj, Dywj,..., Dr+d*1-ip ) =0, j=0,1,...,d.
tl0

Consequently, from the relation u=D#*'v,+ D%, + .- +vy+w, We see that

21 lim(w, Dw,..., D 1w)=0.

tlo

Observing that w is the solution to the Cauchy problem (20) with (21), we obtain
from Proposition S

Drjweg’?(”(s+a+m—d—j))7 j=0,1,..., m.
Since u=D#"1vy+Dév,+---+v,4,+w, it follows that
D{uEé’?(#(s+a+m—d—l—j))’ j=0a 1’-‘-9 m—1.

Next we shall show the general case 6 =0"'+k by induction on k. As the case
k=0 has been shown, we may assume that k>0. Suppose that the assertion of
Theorem 2 is true for k—1. Since fE#, ;) (Rir1) CTH(g-1,5+1) (Rir1), it



On the Cauchy Problem for Linear Hyperbolic Differential Equations 433

follows from the assumption of our induction that

22) Diucé?(H# yisim-a-1-5)  J=0, L., k+m=2.

Applying D, to the both sides of the equation Pu =f, we have
P(D,u)=D,f o v|Z§: 'SD,av(t, x))Du.

From limf€#,.,_1,2)(R,) and the relation Df'u =f— 2 IZ a,Du, we obtain
ti0 =
Itig)l(D,u, DZu,..., Dfu)eH ., 1)

Since D, ——I IZ] (D,a (t, x))D“uei(,_l,s)(E:H), it follows from the assumption
v|SEm

of our induction that
(23) D{(Dlu)eglo('#(s*'d‘d—j))’ j=0, 1,..., k+m—2.

The relations (22) and (23) show that the assertion of Theorem 2 holds. This com-
petes the proof.

Hereafter in this section we shall assume that P is a hyperbolic differential
polynomial with constant coefficients. Consider the convex cone I'*(P, N) which
was introduced by L. Hérmander [2, p. 137], N=(1, 0,...,0)e&,,,.

Owing to his results obtained there [2, Corollary 5.3.3, p. 130] we see that
if (to, Xo) is an arbitrary point of R}, , and if € 2'(R}, ) satisfies the conditions:

Pu=0 in the interior of ((t, xo)—I'*(P, N))NR},,,

and

lifn(u, Du,..., D~ 'u)=0 on ((t,, xo)—I'*(P, N))n {t=0},
tio

then u vanishes in the interior of ((ty, xo)—I'*(P, N))N R},,. Now the assump-
tion on the coefficients a,(t, x) stated in Theorem 2 clearly holds.

With these and the partition of unity in mind, we can rewrite Theorem 2
as the following

CoROLLARY 1. Let P be a hyperbolic differential polynomial with const-
ant coefficients having the degree of degeneracy <d. Let 6=c'+k be chosen
as in Theorem 2. For any given fes#{2%\(R}+1) and acHS,) there
exists one and only one solution u €3#(°%,\(R},)= Uéf'“s) (R}+1) to the

Cauchy problem (13). In addition, u must satisfy
D,’ueé’? (‘;fzgiﬁ-m—d—l—j))a ]=0a 1’“', k+m_1-

For non-negative integers k, j, let us denote by C*J(R, ) the space of func-
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tions u which are continuous with their partial derivatives D u, vo <k, |v|<k+j.
As a refinement of Corollary 2.1 [11, p. 455], we can state the following

COROLLARY 2. Let P(D) be a hyperbolic differential polynomial stated

in Corollary 1. Let r=[’2—1}+1. For any given feC%r4*1(Ri,,) and

aeCrtdtm(R yx Crtdtm=1(R yx ..- x C"*4(R,), the solution wu exists in
C™(R}+1).

ProOF. In view of Sobolev’s lemma (cf. [2, Theorem 2.3.7, p. 44]) we have
CKr(R,) C#Ie5(RICCHR,), k=0, 1,....

Combining this with Corollary 1, we obtain the conclusion of Corollary 2.

4. Some remarks on hyperbolic differential polynomial with multiple
characteristics

This section is devoted to give some comments on the hyperbolic differential
polynomial P considered as before. First let us extend G. Peyser’s result [9,
Theorem 1, p. 667], as stated in the introduction. Here we shall use the follow-
ing result [2, Theorem 5.5.7, p. 134, also 10, Theorem 1.3, p. 151]: Let L(D) be
a differential polynomial with constant coefficients, and assume that the principal
part L, of L is hyperbolic. Then L is hyperbolic if and only if L is weaker than
L,, that is, there exists a constant C such that |L(t, &)| < CL(z, &).

THEOREM 3. Let d be a non-negative integer <m. Then P+Q is hyperbo-
lic for an arbitrary differential polynomial Q with variable coefficients of %
(R,+,) of order<m—d if and only if one of the following conditions is satisfied.

i) The degree of degeneracy of the hyperbolic differential polynomial
P<d,

i) P(D) is strictly hyperbolic.

Proor. First we note that conditions i) and ii) are equivalent, which is
immediately verified from the definitions of the strict hyperbolicity and the de-
gree of degeneracy. Now let us prove the ¢if” part.

Since P is hyperbolic, the principal part P, is also hyperbolic. We shall
then show that there exists a constant C such that |P(t, x, 1, &)| < CP,(t, £), which
means that P+ Q is hyperbolic when each point (¢, x) is fixed. Let us write with
an integer N

24) P(t, x, D)=3" by(t, )P(t;, x;, D), b€ B(Rys,),
i=1

where P(t;, x;, D) is the operator frozen at (¢;, x;). Since P(t;, x;, D), j=1, 2,...,
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N, are hyperbolic differential polynomials with the principal part P,(D), there
exists a constant C’ such that

|P(t), x), T, O)|SC' Pz, &),  j=1,2,.,N.
Taking into account the relation (24), we obtain with a constant C”
N N
|P(ta X, T, é)lé( llbj(t’ x)ll)l/Z(leP(tj’ xj’ T, €)|2)1/2
Jj= Jj=
<C"P. (1, &).

On the other hand, since P{¥(D) is strictly hyperbolic, P+ Q is hyperbolic.
By the same reasoning as above, we have

[P(, ©)+0(1, x, 7, O < C" P, )< C"P, (1, &),
where C” is a constant. Consequently,
|P(t, x, T, O)+Q(t, x, T, &)
<|P@, x, T, O +[PP(z, O +|PW(z, &)+ Q(, x, 7, &)|
<(1+C"+C™P (1, b),

as desired.

We now proceed to prove the “only if”” part. Let T be an arbitrary positive
number. We shall then derive the following inequality with a constant Cg
independent of u:

m—d—1 . m—d—1 .
3 ID, Wonam - SCo2 1DIO, )l mams-p+

[ 1pgute, g 0sr<T, ueCER,),
0 ’

which means that P\ is strictly hyperbolic [5, p. 101]. From the relation (6)
and Parseval’s formula we have

’

t

S Arg—k(u)dx_g A'S_"(”)dx=sg —Im P, Dy PPydxds.
Ser So Rn

0

It follows from Lemma 1 that

t’ -
S S —ImP¥ Vy- PPudxdt
0Jr

g(g;gk IPE,{“”ulzdxdt+S S [Pﬁ,,"’ul%ixdt)

¢
0JR
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gm<g'g lpsnk-1>u|2dxdt+g'g A'g-k(u)dxdz>
0JRn 0JR .

n

Consequently, we obtain

b SS‘A'S"‘(u)dx§m< 3 gSOA'g"‘(u)dx+k§+

k=d+1 k=d+1

+ 5 S'S A’{,""(u)dxdt)
k=d+1J0 JRp .

v
S g | Pk Dy |2d xdt +
1J0JRn

Put r(t)= 3 S Ap—+(u)dx and p(t)= 5 g AR (u)dx +
Lk o k=d+1J5So
| P~y |2dxdt. From Lemma 3, we have with a constant C}
k=d+1J0 JRp
memT

(25) Z’tlgs 'A'g"‘(u)dngT(ki SSOA'g_k(u)der

k=d+

+ i Stg |P$,,’“”u|2dxdt> 0<t<T.
0JRn )

k=d+1

Let P+ Q be temporarily frozen at a point (¢, x,) and let us denote it by M(D).
Since M is a hyperbolic differential polynomial with the principal part P,(D),

we can write with bounded functions b, (&), (€&,

5m)

m—k+1
M, _(z, &)= ,Zl b (OPYV(, &),  k=1,2, ..
i=
where M,,_ (D) is a homogeneous part of M(D). Owing to Cauchy-Schwarz’s
inequality and (7), we obtain

Moo (D (1, O3 by OIS PETO(D, D0, DI

< C'K"K(#),

where C’ is a constant independent of u. Now we shall write with an integer N

N
Pm—k"‘Qm—k=Z1 Cj(t’ x)(Pm—k(tja xj: D)+Qm—k(tj, xja D))a cje'@(Rn+ 1)'
=
with an operator P, _(t;, x;, D)+ Q,,_i(t;, x;, D) frozen at (t;, x;). From the
considerations just above, it follows that

26) [ Pucst Qo dx
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N
§C”Z SS ‘|(Pm—k(tj: xjs D)+Qm—k(tja xja D)ulzd'x

=1
gC"’SK(ﬁ)de::C’”S AT*(w)dx.
Se’

with constants C”, C"” =1 independent of u. Since Q is an arbitrary differen-
tial polynomial of order <m—d, Q can be chosen so that

(27) (Pp-k+Qm-Ju=Du,  |p|=m—k.
From (26) and (27), we obtain

m—d—1 ) m
28) 3 IDfu) fa-1-ps € 5§ A,

k=d+1JS,

In view of (25) and (28), we have with C}=C"C%
m_d—1 . ./ m—d—1 X
J_;O I1D{u(t’, INen-a-1-H= CT( j§0 1 D{u(0, *) |En-a-1-1
L m—d-10t"
+SO||(PL{”M)(t, Mot + 2 SOIID{u(t, |En-a-1-5dt), 0St'<T.
=
Consequently, it follows from Lemma 3 that

m—d—1 . m—d—1 .
.I;O [Dfu(t’, ')H(zm—d—l—j)§CT< j;o | Dfu(0, ')||(2m—d—1—j)

+{ 1@, lioyar), 0srST

witn a constant C; independent of u, which completes the proof.

Finaly we shall show the following

PrROPOSITION 6. Let P be a hyperbolic differential polynomial as before.
Then the formal adjoint operator P* is also hyperbolic and has the same degree
of degeneracy as P.

Proor. First, we shall write with an integer N
P =j§,‘1 cj(t, x)P(t;, x;, D), c;EB(R,4 1)
Here P(t;, x;, D) denotes the operator frozen at (t;, x;). Consequently,
P*= ﬁlp*(t,., x;, DYey(t, %)

Jj=
N
= j;l IVIZS’SDVEj/V!)P*(V)(tj’ xj, D),
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where P*(t;, x;, D) stand for the formal adjoint operator of P(t;, x;, D) and we
put

P*w)(tj’ xja T, f):ﬁIVIP*(tI’ xj’ T, é)/atvoaé‘l’l"'afr‘;"'

Owing to Cauchy-Schwartz’s inequality, we have,
N
@) 1P x5 IS B (ST DI 5 P (2, %, O
J= vism vism

Since P*(t;, x;, D) is hyperbolic and its principal part is equal to P,, it follows
that
(Z,1P* 0 x50 OIS C Py,

|v
From this inequality and (29), we obtain with a constant C
|P*(t, x, 7, {)| < CP,,

which implies that P* is hyperbolic.
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