Minoru Waкiмото (Received May 21, 1973)

§1. Introduction

This note is concerned with the irreducibility of representations of SU(2, 1)induced from one-dimensional representations of its minimal parabolic subgroup. Let $B=MA_+N$ be the minimal parabolic subgroup of G associated with an Iwasawa decomposition KA_+N of the group G=SU(2, 1). Let $g_0=\mathfrak{su}(2, 1)$ be the Lie algebra of G, and \mathfrak{a}_+ (resp. \mathfrak{n}_0) the subalgebra of g_0 corresponding to A_+ (resp. N), and we define a linear form ρ on \mathfrak{a}_+ by

$$\rho(H) = 2^{-1} \operatorname{Trace} \left(ad_{\mathfrak{n}0}(H) \right)$$

for every $H \in \mathfrak{a}_+$. Then a unitary character σ of M and a complex number λ define a representation $\mu_{\sigma\lambda}$ of B by

$$\mu_{\sigma\lambda}(m(\exp H)n) = \sigma(m)\exp(\lambda\rho(H))$$

for $m \in M$, $H \in \mathfrak{a}_+$ and $n \in N$. Let $\tilde{X}^{\sigma\lambda}$ be the space of all C-valued C^{∞} -differentiable functions f on G such that

$$f(xb) = \mu_{\sigma,\lambda+1}(b^{-1})f(x)$$

for every $x \in G$ and $b \in B$. The group G acts on $\tilde{X}^{\sigma\lambda}$ by left-translations, and there exists a canonical G-invariant non-singular pairing between $\tilde{X}^{\sigma\lambda}$ and $\tilde{X}^{\sigma,-\bar{\lambda}}$. The universal enveloping algebra \mathfrak{U} of the complexification g of g_0 acts on $\tilde{X}^{\sigma\lambda}$ as infinitesimal representations of left-translations, and stabilizes the subspace $X^{\sigma\lambda}$ of $\tilde{X}^{\sigma\lambda}$ consisting of all K-finite elements. The K-module $X^{\sigma\lambda}$ has the irreducible decomposition

$$X^{\sigma\lambda} = \bigoplus_{\tau \in E_{K}^{\sigma}} X_{\tau}^{\sigma\lambda}$$

where E_{K}^{σ} is the set of all equivalence classes of irreducible unitary representations of K which contain σ when restricted to the subgroup M, and $X_{\tau}^{\sigma\lambda}$ denotes the K-submodule of $X^{\sigma\lambda}$ equivalent to τ . We shall make investigations into the irreducibility of the U-module $X^{\sigma\lambda}$ by using its K-module structure and a canonical pairing (,) of $X^{\sigma\lambda}$ and $X^{\sigma,-\overline{\lambda}}$ The set E_{K}^{σ} contains a one-dimensional Minoru WAKIMOTO

representation of K, which we shall denote by τ_0 . Choose $f_0 \in X_{\tau_0}^{\sigma\lambda}$ and $f'_0 \in X_{\tau_0}^{\sigma, -\chi}$ such that $(f_0, f'_0) = 1$. There exists a K-submodule H^* of \mathfrak{U} such that

i)
$$\mathfrak{U}f_0 = H^*f_0$$
, $\mathfrak{U}f'_0 = H^*f'_0$

and

ii) $H^* \otimes X_{\tau_0}^{\sigma\lambda}$ is K-isomorphic to $X^{\sigma\lambda}$.

Now the set of matrix elements

$$a_{nm} = (u_{nm}f_0, u_{nm}f_0')$$

gives us an information about the irreducibility of the \mathfrak{U} -module $X^{\sigma\lambda}$, where $\{u_{nm}: n \text{ and } m \text{ are non-negative integers}\}$ is a set of highest weight vectors of the K-module H^* constructed in a standard way. These matrix elements are calculated by using Casimir elements of g and f, and our main result can be stated as follows:

THEOREM. 1) The U-module $X^{1_M,\lambda}$ is irreducible if and only if $|\lambda|$ is not a positive integer, and

2) when $\sigma \ge 1_M$, the \mathfrak{U} -module $X^{\sigma\lambda}$ is irreducible if and only if $\lambda - v$ is not an integer, where 1_M denotes the trivial representation of M and v is a parameter of a unitary character σ of M which will be introduced in § 2.

§ 2. A characterization of E_K^{ν}

Throughout this paper, we put G = SU(2, 1) and $g_0 = \mathfrak{su}(2, 1)$. Let θ be a Cartan involution of g_0 and $g_0 = \mathfrak{t}_0 + \mathfrak{p}_0$ be the Cartan decomposition of g_0 associated to θ , where \mathfrak{t}_0 is a maximal compact subalgebra of g_0 . Let \mathfrak{h}_0 be a Cartan subalgebra of g_0 contained in \mathfrak{t}_0 . We denote by g, \mathfrak{t} , \mathfrak{p} and \mathfrak{h} the complexifications of g_0 , \mathfrak{t}_0 , \mathfrak{p}_0 and \mathfrak{h}_0 respectively. Let Δ be the non-zero root system of g with repect to \mathfrak{h} . For a root α in Δ , we set

$$\mathfrak{g}^{\alpha} = \{ X \in \mathfrak{g}; ad(H)X = \alpha(H)X \text{ for every } H \in \mathfrak{h} \}.$$

Then the set Δ is the disjoint union of Δ_t and Δ_p , where Δ_t (resp. Δ_p) is the set of all compact (resp. non-compact) roots:

For each $\alpha \in \Delta$, the element H_{α} in \mathfrak{h} is defined by

$$B(H_{\alpha}, H) = \alpha(H)$$

for every $H \in \mathfrak{h}$, where B is the Killing form of g. Let \mathfrak{h}_R be the real linear subspace of \mathfrak{h} generated by $\{H_{\alpha}; \alpha \in \Delta\}$, and \mathfrak{h}_R^* its dual vector space. Then a lexicographic linear order in \mathfrak{h}_R^* determines a positive root system Δ^+ . We set

$$\Delta_t^+ = \Delta^+ \cap \Delta_t =$$
 the set of all positive compact roots,

and

 $\Delta_{\mathfrak{p}}^+ = \Delta^+ \cap \Delta_{\mathfrak{p}}^-$ the set of all positive non-compact roots.

Since G = SU(2, 1) is a simple Lie group of Hermitian type, a lexicographic linear order in \mathfrak{h}_R^* can be so chosen that $\Delta_t \cup \Delta_\mathfrak{p}^+$ and $\Delta_t \cup \Delta_\mathfrak{p}^-$ are additively closed subsets of Δ . We fix a linear order in Δ as above. Let $\Pi = \{\alpha_1, \alpha_2\}$ be the fundamental root system of Δ with respect to this linear order, where we may assume that α_1 is compact and α_2 is non-compact. For a root $\alpha \in \Delta$, we define a linear form α^* on \mathfrak{h}_R by

$$\alpha^* = 2 < H_{\alpha}, H_{\alpha} > ^{-1}\alpha,$$

where \langle , \rangle is the inner product on \mathfrak{h} via the Killing form B of \mathfrak{g} . The set $\{\alpha_1^*, \alpha_2^*\}$ is a basis of \mathfrak{h}_R^* , and let $\{\varepsilon_1^*, \varepsilon_2^*\}$ be its dual basis of \mathfrak{h}_R . The inner product \langle , \rangle on \mathfrak{h} defines a linear isomorphism of \mathfrak{h}_R^* onto \mathfrak{h}_R , and under this linear isomorphism, we have

$$\alpha_1 = 2\varepsilon_1^* - \varepsilon_2^*$$

and

$$\alpha_2 = -\varepsilon_1^* + 2\varepsilon_2^*.$$

LEMMA 2.1. For each $\alpha \in A$, a vector $X_{\alpha} \in \mathfrak{g}^{\alpha}$ can be chosen so that

1)
$$B(X_{\alpha}, X_{-\alpha}) = 1$$
,

2)
$$\sigma X_{\alpha} = -X_{-\alpha}$$
 if $\alpha \in \Delta_t$,

3)
$$\sigma X_{\alpha} = X_{-\alpha}$$
 if $\alpha \in \Delta_{\nu}$,

where σ denotes the conjugation of g with respect to g_0 .

PROOF. For each $\alpha \in \Delta$, we select $E_{\alpha} \in g^{\alpha}$ such that

$$B(E_{\alpha}, E_{-\alpha}) = 1$$
 for all $\alpha \in \Delta$.

Since h is a Cartan subalgebra of g contained in t, we have $\sigma(g^{\alpha}) = g^{-\alpha}$ for every $\alpha \in \Delta$. So there exists a non-zero scalar $a_{\alpha} \in C^* = C - \{0\}$ such that

$$\sigma E_{\alpha} = a_{\alpha} E_{-\alpha}$$

Since $B(\sigma E_{\alpha}, \sigma E_{-\alpha}) = \overline{B(E_{\alpha}, E_{-\alpha})} = 1$, we have

Minoru Wakimoto

 $a_{\alpha}a_{-\alpha}=1.$

Also, by $\sigma^2 = 1$, we have

 $a_{\alpha}\overline{a_{-\alpha}}=1.$

So a_{α} is real, and by setting $X_{\alpha} = |a_{\alpha}|^{-\frac{1}{2}}E_{\alpha}$, we have

$$B(X_{\alpha}, X_{-\alpha}) = 1,$$

and

$$\sigma X_{\alpha} = |a_{\alpha}|^{-\frac{1}{2}} \sigma E_{\alpha} = |a_{\alpha}|^{-\frac{1}{2}} a_{\alpha} E_{-\alpha} = (|a_{\alpha}|^{-1} a_{\alpha}) |a_{\alpha}|^{\frac{1}{2}} E_{-\alpha}$$
$$= (\operatorname{sgn} a_{\alpha}) |a_{-\alpha}|^{-\frac{1}{2}} E_{-\alpha} = (\operatorname{sgn} a_{\alpha}) X_{-\alpha},$$

where sgn a (a is a non-zero real number) designates the signature of a.

2) Suppose that α is a compact root. If $\sigma X_{\alpha} = X_{-\alpha}$, then $X_{\alpha} + X_{-\alpha}$ belongs to \mathfrak{k}_0 . Since B is negative definite on \mathfrak{k}_0 , we have

$$B(X_{\alpha}+X_{-\alpha}, X_{\alpha}+X_{-\alpha})<0.$$

This implies $B(X_{\alpha}, X_{-\alpha}) < 0$, which contradicts $B(X_{\alpha}, X_{-\alpha}) = 1$. Thus we have $\sigma X_{\alpha} = -X_{-\alpha}$ for every $\alpha \in \Delta_t$.

3) Suppose that α is a non-compact root. If $\sigma X_{\alpha} = -X_{-\alpha}$, then $X_{\alpha} + X_{-\alpha}$ belongs to $\sqrt{-1}\mathfrak{p}_0$. Since B is negative definite on $\sqrt{-1}\mathfrak{p}_0$, we have

$$B(X_{\alpha}+X_{-\alpha}, X_{\alpha}+X_{-\alpha})<0,$$

which is inconsistent with $B(X_{\alpha}, X_{-\alpha}) = 1$. Thus we have $\sigma X_{\alpha} = X_{-\alpha}$ for every $\alpha \in \mathcal{A}_{\mathfrak{p}}$. Q.E.D.

We define the number $N_{\alpha\beta}$ ($\alpha, \beta \in \Delta$) by

$$[X_{\alpha}, X_{\beta}] = N_{\alpha\beta} X_{\alpha+\beta} \qquad \text{if } \alpha + \beta \in \Delta,$$
$$N_{\alpha\beta} = 0 \qquad \text{if } \alpha + \beta \in \Delta.$$

Then

LEMMA 2.2. $|N_{\alpha\beta}|^2 = 2^{-1}q(1-p)\alpha(H_{\alpha})$, where $\beta + n\alpha$ $(p \le n \le q)$ is the α -series containing β .

PROOF. Let $\tau = \sigma \theta$ be the conjugation of g with respect to a compact real form $g_{\mu} = \tilde{t}_0 + \sqrt{-1}p_0$. Then the vectors in Lemma 2.1 satisfy

$$\tau X_{\alpha} = -X_{-\alpha}$$

for every $\alpha \in \Delta$. Now we have

$$\tau[X_{\alpha}, X_{\beta}] = [\tau X_{\alpha}, \tau X_{\beta}] = [-X_{-\alpha}, -X_{-\beta}]$$
$$= [X_{-\alpha}, X_{-\beta}] = N_{-\alpha}, -\beta X_{-(\alpha+\beta)},$$

and

$$\tau[X_{\alpha}, X_{\beta}] = \tau(N_{\alpha\beta}X_{\alpha+\beta}) = \overline{N_{\alpha\beta}\tau}X_{\alpha+\beta} = \overline{-N_{\alpha\beta}}X_{-(\alpha+\beta)}.$$

Hence

$$N_{-\alpha,-\beta} = \overline{-N_{\alpha\beta}}.$$

From Lemma 5.2 (Chap. III) of Helgason [2], we have

$$N_{\alpha\beta}N_{-\alpha,-\beta} = -2^{-1}q(1-p)\alpha(H_{\alpha}).$$

Thus we have

$$|N_{\alpha\beta}|^2 = 2^{-1}q(1-p)\alpha(H_{\alpha}).$$
 Q.E.D.

By Lemma 2.1, the element $H_0 = \sqrt{\langle \alpha, \alpha \rangle/2} (X_{\alpha_1 + \alpha_2} + X_{-(\alpha_1 + \alpha_2)})$ is in \mathfrak{p}_0 . Let Int(g) denote the group of all inner automorphisms of g.

LEMMA 2.3 There exists an element w in Int(g) such that $w(H_{\alpha_1+\alpha_2})=H_0$ and $w(H_{\alpha_1}-H_{\alpha_2})=H_{\alpha_1}-H_{\alpha_2}$.

PROOF. We shall show that

$$w = \exp\left(-\frac{\pi}{2\sqrt{2 < \alpha, \, \alpha > \alpha}} ad \left(X_{\alpha} - X_{-\alpha}\right)\right)$$

has the required properties, where $\alpha = \alpha_1 + \alpha_2$. We set

$$Z = -\frac{\pi}{2\sqrt{2 < \alpha, \alpha > \alpha}} (X_{\alpha} - X_{-\alpha}).$$

Then we have

$$ad(Z) (H_{\alpha_{1}} - H_{\alpha_{2}}) = 0$$

$$ad(Z) (H_{\alpha}) = 2^{-1} \pi \sqrt{2^{-1} < \alpha, \alpha > (X_{\alpha} + X_{-\alpha})}$$

$$(adZ)^{2} (H_{\alpha}) = -(\pi/2)^{2} H_{\alpha}.$$

So we have

$$(\exp ad(Z))(H_{\alpha_1}-H_{\alpha_2})=H_{\alpha_1}-H_{\alpha_2},$$

and

$$(\exp ad(Z)) (H_{\alpha_1+\alpha_2}) = \cos(\pi/2) + \sqrt{\langle \alpha, \alpha \rangle/2} \sin(\pi/2) (X_{\alpha} + X_{-\alpha})$$
$$= \sqrt{\langle \alpha, \alpha \rangle/2} (X_{\alpha} + X_{-\alpha}).$$

Q.E.D.

We set

$$a_{+} = \mathbf{R}H_{0},$$

$$a_{-} = \sqrt{-1}\mathbf{R}(H_{\alpha_{1}} - H_{\alpha_{2}}) = \sqrt{-1}\mathbf{R}(\varepsilon_{1}^{*} - \varepsilon_{2}^{*}),$$

$$a_{0} = a_{-} + a_{+},$$

$$\mathfrak{z}_{0} = \mathbf{R}(\sqrt{-1}\varepsilon_{2}^{*}),$$

$$\mathfrak{t}'_{0} = \mathbf{R}(\sqrt{-1}H_{\alpha_{1}}) + (\mathfrak{g}^{\alpha_{1}} + \mathfrak{g}^{-\alpha_{1}}) \cap \mathfrak{g}_{0},$$

and let a_{\pm}^{c} , a_{\pm}^{c} , a, \mathfrak{z} , \mathfrak{t}' be the complexifications of a_{+} , a_{-} , a_{0} , \mathfrak{z}_{0} , \mathfrak{t}'_{0} respectively. Then a_{0} is a θ -stable Cartan subalgebra of g_{0} with a maximal vector part. Let Λ be the non-zero root system of g with respect to a. Since $w\mathfrak{h} = \mathfrak{a}$, each element μ in $\mathfrak{h}^{*} = \operatorname{Hom}_{c}(\mathfrak{h}, C)$ is transformed to a linear form $w\mu$ on \mathfrak{a} :

$$(w\mu)(H) = \mu(w^{-1}H)$$
 for every $H \in \mathfrak{a}$.

Under this transformation, we have $\Lambda = w(\Delta)$. We set

$$g^{w\alpha} = wg^{\alpha} \qquad (\alpha \in \Delta),$$

$$H_{w\alpha} = wH_{\alpha} \qquad (\alpha \in \Delta),$$

$$\beta_i = w\alpha_i \qquad (i = 1, 2),$$

and

 $\Lambda^+ = w(\Delta^+).$

Since $a_{+} = \mathbf{R}(\beta_{1} + \beta_{2})$ and $<\beta_{i}, \beta_{1} + \beta_{2} > >0$ for i = 1, 2, this linear order in Λ is compatible relative to (a_{R}, a_{+}) where $a_{R} = wb_{R} = \sqrt{-1}a_{-} + a_{+}$. We set

$$\mathfrak{n}_0 = \left(\sum_{\beta \in \mathcal{A}^+} \mathfrak{g}^\beta\right) \cap \mathfrak{g}_0.$$

Let K, A_+ and N be the analytic subgroups of G generated by \mathfrak{k}_0 , \mathfrak{a}_+ and \mathfrak{a}_0 respectively. The centralizer M of \mathfrak{a}_+ in K is connected and coincides with $A_- = A \cap K$, where A is the Cartan subgroup of G corresponding to \mathfrak{a}_0 .

The set \hat{M} of all unitary characters of M is given by $\{\sigma_{\nu}; \nu \in \frac{1}{2} \mathbb{Z} \text{ (i.e., } 2\nu \in \mathbb{Z})\}$, where σ_{ν} is the unitary character of M whose derivative is the restriction of

 $v(\varepsilon_1^* - \varepsilon_2^*)$ to \mathfrak{a}_- . We define a linear form ρ on \mathfrak{a}_+ by

$$\rho(H) = 2^{-1} \sum_{\beta \in A_+} \beta(H) = (\beta_1 + \beta_2)(H).$$

Then the set \hat{A} of all characters of A is given by $\{\xi_{\lambda}; \lambda \in C\}$, where ξ_{λ} is the character of A defined by $\xi_{\lambda}(\exp H) = \exp(\lambda \rho)(H)$ for every $H \in \mathfrak{a}_{+}$. For $\nu \in \frac{1}{2} \mathbb{Z}$ and $\lambda \in \mathbb{C}$, we set

$$\widetilde{X}^{\nu\lambda} = \begin{cases} f \in C^{\infty}(G); f(xman) = \sigma_{\nu}(m^{-1})\xi_{\lambda+1}(a^{-1})f(x) \\ \text{for every } x \in G, \ m \in M, \ a \in A_{+} \text{ and} \\ n \in N \end{cases}$$

and define a G-module structure $\tilde{\pi}^{\nu\lambda}$ on $\tilde{X}^{\nu\lambda}$ by

$$(\tilde{\pi}^{\nu\lambda}(x)f)(y) = f(x^{-1}y)$$

for x, $y \in G$ and $f \in \tilde{X}^{\nu\lambda}$. The representation $\tilde{\pi}^{\nu\lambda}$ determines the infinitesimal representation $\tilde{\pi}^{\nu\lambda}_{*}$ of g_0 on $\tilde{X}^{\nu\lambda}$, which can be extended to the representation of the universal enveloping algebra $\mathfrak{U} = \mathfrak{U}(\mathfrak{g})$ of \mathfrak{g} . Let $X^{\nu\lambda}$ be the subspace of $\tilde{X}^{\nu\lambda}$ consisting of all $\tilde{\pi}^{\nu\lambda}(K)$ -finite vectors in $\tilde{X}^{\nu\lambda}$. The space $X^{\nu\lambda}$ is stable under $\tilde{\pi}^{\nu\lambda}(K)$ and $\tilde{\pi}^{\nu\lambda}_{*}(\mathfrak{U})$. Let $\pi^{\nu\lambda}$ (resp. $\pi^{\nu\lambda}_{*}$) denote the representation of K (resp. \mathfrak{U}) on $X^{\nu\lambda}$.

Let E_K be the set of all equivalence classes of irreducible unitary representations of K. For $v \in \frac{1}{2} \mathbb{Z}$, we set

$$E_{K}^{\nu} = \{ \tau \in E_{K}; [\tau | M : \sigma_{\nu}] \geq 1 \},$$

where $[\tau|M:\sigma_{\nu}]$ denotes the multiplicity of σ_{ν} in the representation $\tau|M$ which is the restriction of τ to the subgroup M. Let K' (resp. Z) be the semisimple part (resp. the center) of K. Then K' and Z are isomorphic to SU(2) and U(1), and are the analytic subgroups of K generated by f'_0 and \mathfrak{z}_0 respectively. A unitary representation of K is determined by a representation of K' and a character of Z. A representation of K' is characterized by its highest weight, while unitary characters of Z are parametrized by integers. So the set E_K is characterized by $\{a\varepsilon_1^* + b\varepsilon_2^*; a \in \mathbb{N}_0, b \in \mathbb{Z}\}$, where \mathbb{N}_0 is the set of all non-negative integers. The irreducible representation of K corresponding to $a\varepsilon_1^* + b\varepsilon_2^*$ is denoted by $\tau_{(a,b)}$.

PROPOSITION 2.4. For a half integer $v \in \frac{1}{2} \mathbb{Z}$, $E_{K}^{v} = \{\tau_{(a,b)}: a \in \mathbb{N}_{0}, b \in \mathbb{Z}, b = a - 3k - 2v$ for some integer k such that $0 \leq k \leq a$

PROOF. Since $\alpha_1 = 2\varepsilon_1^* - \varepsilon_2^* \in \mathfrak{f}'$ and $\varepsilon_2^* \in \mathfrak{z}'$, we decompose $a\varepsilon_1^* + b\varepsilon_2^*$ to the

sum of *t*'-part and *3*'-part:

$$a\varepsilon_1^* + b\varepsilon_2^* = a(\varepsilon_1^* - \varepsilon_2^*/2) + (b + a/2)\varepsilon_2^*.$$

Since t' is isomorphic to $\mathfrak{su}(2)$ and $\alpha_1 = 2\varepsilon_1^* - \varepsilon_2^*$, the weights of $\tau_{(a,b)}$ are given by

$$\{(a-2k)(\varepsilon_1^*-\varepsilon_2^*/2)+(b+a/2)\varepsilon_2^*; k \in \mathbb{Z}, 0 \leq k \leq a\}.$$

By the condition that $\tau_{(a,b)} \in E_K^{\nu}$, there exists an integer $k(0 \le k \le a)$ such that $(a-2k)(\varepsilon_1^* - \varepsilon_2^*/2) + (b+a/2)\varepsilon_2^*$ is equal to $\nu(\varepsilon_1^* - \varepsilon_2^*)$ when restricted to $\mathfrak{a}_- = \sqrt{-1}\mathbf{R}(\alpha_1^* - \alpha_2^*)$ So we have

a-b-3k=2v

for some integer $k(0 \leq k \leq a)$.

COROLLARY 2.5. $[\tau|M:\sigma_v] = 1$ for every $\tau \in E_K^v$.

From Proposition 2.4, we can see that $\tau_{(0,-2\nu)}$ belongs to E_K^{ν} , in other words, there exists a (unique) one-dimensional unitary representation in E_K^{ν} . Hence-forward we fix a half integer $\nu \in \frac{1}{2} \mathbb{Z}$ and, for the sake of simplicity, we write τ_0 instead of $\tau_{(0,-2\nu)}$.

For $\tau \in E_K$, let $X_{\tau}^{\nu\lambda}$ denote the isotypic component of $X^{\nu\lambda}$ of type τ , that is, $X_{\tau}^{\nu\lambda}$ is the sum of all K-submodules of $X^{\nu\lambda}$ which is isomorphic to τ . Then, by the Frobenius' reciprocity theorem, $X^{\nu\lambda}$ is the direct sum of K-submodules $\{X_{\tau}^{\nu\lambda}; \tau \in E_K^{\nu}\}$:

$$X^{\nu\lambda} = \bigoplus_{\tau \in E_K^{\nu}} X_{\tau}^{\nu\lambda}.$$

And, by Corollary 2.5, $X_{\tau}^{\nu\lambda}$ is the irreducible K-submodule of $X^{\nu\lambda}$ isomorphic to τ .

There exists a K-invariant non-singular pairing (,) between $X^{\nu\lambda}$ and $X^{\nu,-\bar{\lambda}}$, which is given by

$$(f, g) = \int_{K} f(k) \overline{g(k)} dk$$

for $f \in X^{\nu\lambda}$ and $g \in X^{\nu, -\bar{\lambda}}$, where dk is the Haar measure on K normalized by $\int_{K} dk = 1$. This pairing (,) is \mathfrak{U} -invariant in the sense that the following equality holds:

$$(\pi_*^{\nu\lambda}(u)f, g) = (f, \pi_*^{\nu, -\bar{\lambda}}(u^s)g)$$

for every $u \in \mathfrak{U}$, $f \in X^{\nu\lambda}$ and $g \in X^{\nu, -\overline{\lambda}}$, where $u \to u^s$ is the **R**-linear automorphism of the linear space \mathfrak{U} such that i) $X^s = -X$ for $X \in \mathfrak{g}_0$, ii) $(\alpha u)^s = \overline{\alpha} u^s$ for $\alpha \in \mathbf{C}$

398

Q.E.D.

and $u \in \mathfrak{U}$, and iii) $(uv)^s = v^s u^s$ for every $u, v \in \mathfrak{U}$. Since the K-module $X^{v, -\overline{\lambda}}$ is isomorphic to $X^{v\lambda}$, it decomposes into the direct sum of irreducible K-sub-modules:

$$X^{\nu,-\overline{\lambda}} = \bigoplus_{\tau \in E_{K}^{\nu}} X_{\tau}^{\nu,-\overline{\lambda}}.$$

Choose $f_0 \in X_{\tau_0}^{\nu\lambda}$ and $f'_0 \in X_{\tau_0}^{\nu, -\bar{\lambda}}$ such that $(f_0, f'_0) = 1$.

The space p admits the canonical K-module structure. Let p' be the K-module dual to p, and S' = S(p') (resp. S = S(p)) the symmetric algebra over p' (resp. p). The algebra S' may be regarded as the polynomial ring on p, while S as the ring of differential operators on S' with constant coefficients, and each algebra carries the canonical K-module structure extended from that on p or p'. We set

$$J = \{x \in S; kx = x \text{ for every } k \in K\}$$

and

 $J_+ = \{x \in J; \text{ the constant part of } x \text{ is zero}\}$

$$=J\cap\sum_{i=1}^{\infty}S^{i}$$
,

where S^i is the subspace of S consisting of all homogeneous elements of the degree *i*. And we define the space H' of all harmonic polynomials on p by

$$H' = \{ f \in S'; xf = 0 \quad \text{for every } x \in J_+ \}$$

The K-modules p and p' are isomorphic via the Killing form B of g, and this isomorphism can be extended to the K-isomorphism of S' onto S. The image of H' under this isomorphism is denoted by H.

It is well known that there exists a linear isomorphism β of the symmetric algebra S(g) over g onto the universal enveloping algebra \mathfrak{U} such that (i) $\beta(X^k) = (\beta(X))^k$ for every $X \in \mathfrak{g}$ and $k \in \mathbb{N}_0$ and (ii) (with the obvious identification) β is the identity map on g. This mapping is called the symmetrization and has the following property:

$$\beta(X_1...X_k) = (k!)^{-1} \sum_{\sigma \in \mathfrak{S}_k} X_{\sigma(1)}...X_{\sigma(k)}$$

for $X_1, \ldots, X_k \in \mathfrak{g}$, where \mathfrak{S}_k denotes the permutation group of k-numbers $\{1, \ldots, k\}$.

We set $H^* = \beta(H)$. Note that the restriction $\beta | H$ of β on H is a K-isomorphism of H onto H^* .

LEMMA 2.6. ([5], Proposition 10)

Minoru Wakimoto

 $\pi_*^{\nu\lambda}(\mathfrak{U})f_0 = \pi_*^{\nu\lambda}(H^*)f_0.$

Let φ_{λ} (resp. $\varphi_{-\bar{\lambda}}$) be a linear mapping of H^* to $X^{\nu\lambda}$ (resp. $X^{\nu, -\bar{\lambda}}$) defined by

 $\varphi_{\lambda}(u) = \pi_{*}^{\nu\lambda}(u)f_{0},$

and

$$\varphi_{-\bar{\lambda}}(u) = \pi_{*}^{\nu} - \bar{\lambda}(u) f_{0}'.$$

LEMMA 2.7. f_0 is \mathfrak{U} -cyclic in $X^{\nu\lambda}$ if and only if Ker φ_{λ} is zero.

PROOF. By Kostant-Rallis [4] and Corollary 2.5, the K-module H^* decomposes into the direct sum of irreducible K-submodules $\{H^*_{\tau}; \pi \in E^0_K\}$;

$$H^* = \bigoplus_{\tau \in E_K^0} H^*_{\tau}$$

Since τ_0 is one-dimensional, the mapping of E_K^0 to E_K^v defined by $\tau \rightarrow \tau \otimes \tau_0$ is bijective. This proves the lemma.

Q.E.D.

PROPOSITION 2.8. $X^{\nu\lambda}$ is \mathfrak{U} -irreducible if and only if $\operatorname{Ker} \varphi_{\lambda} = \{0\}$ and $\operatorname{Ker} \varphi_{-\overline{\lambda}} = \{0\}$.

PROOF. By the existence of a U-invariant non-singular pairing of $X^{\nu\lambda}$ and $X^{\nu,-\bar{\lambda}}$, $X^{\nu\lambda}$ is U-irreducible if and only if $X^{\nu,-\bar{\lambda}}$ is U-irreducible. If $X^{\nu\lambda}$ is U-irreducible, f'_0 and f_0 are U-cyclic, and so by Lemma 2.7, we have Ker φ_{λ} ={0} and Ker $\varphi_{-\bar{\lambda}} =$ {0}. Conversely, assume that Ker $\varphi_{\lambda} =$ {0} and Ker $\varphi_{-\bar{\lambda}} =$ {0}. Let V be a U-invariant subspace of $X^{\nu\lambda}$. Since each element in $X^{\nu\lambda}$ is K-finite, V is a K-invariant subspace of $X^{\nu\lambda}$. Let V^{\perp} be the orthogonal complement of V in $X^{\nu,-\bar{\lambda}}$ with respect to (,). Then it occurs that i) $X^{\nu\lambda}_{\tau_0} \subset V$ or ii) $X^{\nu,-\bar{\lambda}}_{\tau_0} \subset V^{\perp}$. Since, by our assumption, f_0 and f'_0 are U-cyclic in $X^{\nu\lambda}$ and $X^{\nu,-\bar{\lambda}}$ respectively, i) implies $V = X^{\nu\lambda}$, while ii) implies $V^{\perp} = X^{\nu,-\bar{\lambda}}$ or equivalently V ={0}. Therefore $X^{\nu\lambda}$ is U-irreducible.

Q.E.D.

§ 3. K-highest weight vectors in $X^{\nu\lambda}$

The space H decomposes into the direct sum of irreducible K-submodules:

$$H = \bigoplus_{\tau \in E_K} H_{\tau},$$

and E_{K}^{0} is given by

$$E_{K}^{0} = \{ \tau_{(a,a-3k)}; a, k \in \mathbb{N}_{0} \text{ and } k \leq a \}.$$

In this section, we shall describe highest weight vectors in H_{τ} and $\varphi_{\lambda}(H_{\tau})$.

We set $X_{+} = X_{\alpha_{1}+\alpha_{2}}$ and $X_{-} = X_{-\alpha_{2}}$. The vector X_{+} (resp. X_{-}) is a highest weight vector of the K-module \mathfrak{p}_{+} (resp. \mathfrak{p}_{-}), where $\mathfrak{p}_{+} = \sum_{\alpha \in A_{\mathfrak{p}}^{+}} \mathfrak{g}^{\alpha}$ and $\mathfrak{p}_{-} = \sum_{\alpha \in A_{\mathfrak{p}}^{+}} \mathfrak{g}^{-\alpha}$. As one can see easily, \mathfrak{p}_{+} (resp. \mathfrak{p}_{-}) is the irreducible K-module characterized by $\tau_{(1,1)}$ (resp. $\tau_{(1,-2)}$).

LEMMA 3.1. For $n, k \in \mathbb{N}_0$ $(0 \le k \le n)$, $X_-^k X_+^{n-k}$ is a highest weight vector in $H_{\tau_{(n,n-3k)}}$.

PROOF. It is enough to prove that $X_{-}^{k} X_{+}^{n-k}$ is in *H*. By Kostant-Rallis [4], *H* is the linear subspace of S(p) generated by $\{X^{m}; X \text{ is a nilpotent element in p, } m \in \mathbb{N}_{0}\}$. And $aX_{-} + bX_{+}$ is a nilpotent element in p for any $a, b \in \mathbb{C}$. So we have

$$(aX_-+bX_+)^n \in H$$

for every $a, b \in C$. Thus we have $X_{-}^{k}X_{+}^{n-k} \in H$.

LEMMA 3.2. For $n, m \in N_0$,

$$\pi_*^{\nu\lambda}(\beta(X_-^nX_+^m))f_0 = \pi_*^{\nu\lambda}(X_-^nX_+^m)f_0.$$

PROOF. It suffices to show that

$$\pi_*^{\nu\lambda}([X_+, X_-])\pi_*^{\nu\lambda}(X_-^k X_+^l)f_0 = 0$$

for every $k, l \in N_0$. And this equality holds, since $[X_+, X_-]$ is a scalar multiple of X_{α_1} and $\pi_*^{\nu\lambda}(X^k_-X^l_+) f_0$ is a highest weight vector in $X_{\tau(k+l_1,l-2k)}^{\nu\lambda}$.

Q.E.D.

Summing up Lemma 2.7, Lemma 3.1 and Lemma 3.2, we have the following:

LEMMA 3.3. f_0 is \mathfrak{U} -cyclic in $X^{\nu\lambda}$ if and only if

$$\pi^{\nu\lambda}(X^n_-X^m_+)f_0=0$$

for every $n, m \in N_0$.

We set

$$f_{nm} = \pi_*^{\nu,\lambda} (X_-^n X_+^m) f_0,$$

$$f'_{nm} = \pi_*^{\nu,-\bar{\lambda}} (X_-^n X_+^m) f'_0,$$

Q.E.D.

and

$$a_{nm} = (f_{nm}, f'_{nm})$$

for $n, m \in N_0$. Then we have

PROPOSITION 3.4. $X^{\nu\lambda}$ is U-irreducible if and only if $a_{nm} \neq 0$ for every $n, m \in \mathbb{N}_0$.

PROOF. This is an easy consequence of Proposition 2.8, Lemma 3.3 and the fact that (,) is a K-invariant non-singular pairing of $X^{\nu\lambda}$ and $X^{\nu, -\bar{\lambda}}$.

Q.E.D.

§ 4. The calculation of a_{nm}

Let Ω be the Casimir element in \mathfrak{U} , and we set

$$\omega = \sum_{\alpha \in \Delta_{\mathfrak{p}}^+} X_{-\alpha} X_{\alpha}.$$

Then, by a simple calculation, we have

$$\omega = 2^{-1} \left\{ \Omega - (H_1^2 + H_2^2) - 2H_{\rho} \right\} - \sum_{\alpha \in A_t^+} X_{-\alpha} X_{\alpha},$$

where $\{H_1, H_2\}$ is an orthonormal basis of $\sqrt{-1}\mathfrak{h}_0$ with respect to the Killing form B, and ρ' is a linear form on \mathfrak{h} defined by

$$\rho' = 2^{-1} \sum_{\alpha \in \Delta^+} \alpha = \alpha_1 + \alpha_2.$$

LEMMA 4.1. $\pi_*^{\nu\lambda}(\Omega)$ is a scalar operator given by

$$v^2/9 + (\lambda^2 - 1)/3.$$

PROOF. Let H'_1 (resp. H'_2) be an element in $\sqrt{-1} \mathfrak{a}_-$ (resp. \mathfrak{a}_+) normalized by $B(H'_i, H'_i) = 1$ (i = 1, 2). Then

$$\Omega = H_1^2 + H_2^2 + \sum_{\beta \in A^+} (X_{\beta} X_{-\beta} + X_{-\beta} X_{\beta})$$

= $H_1^2 + H_2^2 - 2\rho + 2 \sum_{\beta \in A^+} X_{\beta} X_{-\beta},$

where $X_{\beta} \in \mathfrak{g}^{\beta}$ ($\beta \in \Lambda$) is chosen so that $B(X_{\beta}, X_{-\beta}) = 1$. It is known that $\pi_{*}^{\gamma\lambda}(\Omega)$ is a scalar operator. In order to obtain this scalar, we calculate $[\pi_{*}^{\gamma\lambda}(\Omega)f_{0}](e)$. Since each element in $X^{\gamma\lambda}$ is invariant under the right translation by N, we have

$$\begin{split} \left[\pi_{*}^{\nu\lambda}(\Omega)f_{0}\right](e) &= \left[\pi_{*}^{\nu\lambda}(H_{1}^{2})f_{0}\right](e) + \left[\pi_{*}^{\nu\lambda}(H_{2}^{2}-2H_{\rho})f_{0}\right](e) \\ &= \left\{\nu^{2}\|\varepsilon_{1}^{*}-\varepsilon_{2}^{*}\|^{2} + (\lambda+1)^{2}\|\rho\|^{2} - 2(\lambda+1)\|\rho\|^{2}\right\}f_{0}(e) \\ &= \left\{\nu^{2}\|\varepsilon_{1}^{*}-\varepsilon_{2}^{*}\|^{2} + (\lambda^{2}-1)\|\rho\|^{2}\right\}f_{0}(e), \end{split}$$

where $\| \|$ denotes the norm on a_R defined by the Killing form *B*. For $g_0 = \mathfrak{su}$ (2, 1), the norm of each root is $1/\sqrt{3}$. So we have

$$\|\rho\|^2 = \|\beta_1 + \beta_2\|^2 = 1/3$$

and

$$\|\varepsilon_1^* - \varepsilon_2^*\|^2 = \|(\alpha_1 - \alpha_2)/3\|^2 = 1/9.$$

Thus we have

$$\pi_*^{\nu\lambda}(\Omega) = \nu^2/9 + (\lambda^2 - 1)/3.$$
 Q.E.D.

In the following, for the sake of simplicity, we write uf_{nm} or uf'_{nm} instead of $\pi_*^{\nu,\lambda}(u)f_{nm}$ or $\pi_*^{\nu,-\overline{\lambda}}(u)f'_{nm}$. We set

$$\mu_{nm} = (n+m)\varepsilon_1^* + (-2\nu+m-2n)\varepsilon_2^*.$$

Then, by a simple calculation, we have

$$< \mu_{nm}, \ \alpha_1 > = (n+m)/6 \\ < \mu_{nm}, \ \alpha_2 > = (-2\nu + m - 2n)/6 \\ < \mu_{nm}, \ \rho' > = (-2\nu + 2m - n)/6 \\ < \mu_{nm}, \ \mu_{nm} > = 9^{-1} \{ 4\nu^2 - 6\nu(m-n) + 3(m^2 - mn + n^2) \}.$$

LEMMA 4.2. For $n, m \in N_0$,

$$\omega f_{nm} = (1/6) \{\lambda^2 - (\nu + n - m - 1)^2 - n(m+1)\} f_{nm}.$$

PROOF. Since f_{nm} is a highest weight vector in $\tau_{(n+m,-2\nu+m-2n)}$, we have

PROPOSITION 4.3. For $n, m \in N_0$,

$$a_{n,m+1} + a_{n+1,m} = (-1/6)a_{nm}[\lambda^2 - (\nu + n - m)^2 - (n+1)(m+1)].$$

PROOF. By the definition of a_{nm} , we have

$$a_{n,m+1} = (X_{+}f_{nm}, X_{+}f'_{nm}) = (X_{+}^{s}X_{+}f_{nm}, f'_{nm})$$

$$= -(X_{-(\alpha_{1}+\alpha_{2})}X_{\alpha_{1}+\alpha_{2}}f_{nm}, f'_{nm}),$$

$$a_{n+1,m} = (X_{-}f_{nm}, X_{-}f'_{nm}) = (X_{-}^{s}X_{-}f_{nm}, f'_{nm})$$

$$= -(X_{\alpha_{2}}X_{-\alpha_{2}}f_{nm}, f'_{nm})$$

$$= -\{(X_{-\alpha_{2}}X_{\alpha_{2}}f_{nm}, f'_{nm}) + (H_{\alpha_{2}}f_{nm}, f'_{nm})\}$$

$$= -(X_{-\alpha_{2}}X_{\alpha_{2}}f_{nm}, f'_{nm}) - (\alpha_{2}, \mu_{nm} > a_{nm})$$

$$= -(X_{-\alpha_{2}}X_{\alpha_{2}}f_{nm}, f'_{nm}) - (1/6)(-2\nu + m - 2n)a_{nm},$$

where we have used Lemma 2.1. So we have

$$a_{n,m+1} + a_{n+1,m}$$

= $-(\omega f_{nm}, f'_{nm}) - (1/6) (-2\nu + m - 2n) (f_{nm}, f'_{nm})$
= $-(1/6) a_{nm} [\lambda^2 - (\nu + n - m)^2 - (n+1) (m+1)].$
Q.E.D.

PROPOSITION 4.4. For $m \in N$,

$$6(m+1)a_{0m} = -m\{\lambda^2 - (\nu - m)^2\}a_{0,m-1}.$$

PROOF. We calculate $(X_{-\alpha_1}f_{0m}, X_{-\alpha_1}f'_{0m})$. By Lemma 2.1, we have

$$(X_{-\alpha_{1}}f_{0m}, X_{-\alpha_{1}}f'_{0m}) = (X_{-\alpha_{1}}^{s}X_{-\alpha_{1}}f_{0m}, f'_{0m})$$

$$= (X_{\alpha_{1}}X_{-\alpha_{1}}f_{0m}, f'_{0m})$$

$$= ((X_{-\alpha_{1}}X_{\alpha_{1}} + H_{\alpha_{1}})f_{0m}, f'_{0m})$$

$$= (H_{\alpha_{1}}f_{0m}, f'_{0m})$$

$$= <\mu_{0m}, \alpha_{1} > a_{0m}$$

$$= (m/6)a_{0m}.$$

Since

$$X_{-\alpha_1}f_{0m} = X_{-\alpha_1}X_+^m f_0 = (X_{-\alpha_1}X_+^m - X_+^m X_{-\alpha_1})f_0$$

$$= \sum_{k=1}^{m} X^{k-1} [X_{-\alpha_1}, X_+] X^{m-k} f_0$$

= $N_{-\alpha_1, \alpha_1 + \alpha_2} \sum_{k=1}^{m} X^{k-1} X_{\alpha_2} X^{m-k} f_0$
= $N_{-\alpha_1, \alpha_1 + \alpha_2} \sum_{k=1}^{m} X_{\alpha_2} X^{k-1} X^{m-k} f_0$
= $m N_{-\alpha_1, \alpha_1 + \alpha_2} X_{\alpha_2} f_{0, m-1}$,

we have

$$(X_{-\alpha_1}f_{om}, X_{-\alpha_1}f'_{om}) = m^2 |N_{-\alpha_1,\alpha_1+\alpha_2}|^2 (X_{\alpha_2}f_{0,m-1}, X_{\alpha_2}f'_{0,m-1})$$

= $m^2 |N_{-\alpha_1,\alpha_1+\alpha_2}|^2 (X_{\alpha_2}^s X_{\alpha_2}f_{0,m-1}, f'_{0,m-1})$
= $-m^2 |N_{-\alpha_1,\alpha_1+\alpha_2}|^2 (X_{-\alpha_2}X_{\alpha_2}f_{0,m-1}, f'_{0,m-1}).$

Applying Lemma 2.2 to $g_0 = \mathfrak{su}$ (2, 1), we have

$$|N_{-\alpha_1, \alpha_1+\alpha_2}|^2 = 1/6.$$

So we have

$$a_{0m} = -m(X_{-\alpha_2}X_{\alpha_2}f_{0,m-1}, f'_{0,m-1})....(1).$$

On the other hand, we have

$$a_{0m} = (f_{0m}, f'_{0m}) = (X_{+}f_{0,m-1}, X_{+}f'_{0,m-1})$$

= $(X_{+}^{s}X_{+}f_{0,m-1}, f'_{0,m-1})$
= $-(X_{-(\alpha_{1}+\alpha_{2})}X_{\alpha_{1}+\alpha_{2}}f_{0,m-1}, f'_{0,m-1})$ (2).

From (1), (2) and Lemma 4.2, we have

$$(1+m)a_{0m} = -m(\omega f_{0,m-1}, f'_{0,m-1})$$

=(-m/6) { $\lambda^2 - (v-m)^2$ } $a_{0,m-1}$.
Q.E.D.

COROLLARY 4.5. For $m \in N_0$,

$$a_{0m} = (-1/6)^m (1/(m+1)) \prod_{k=1}^m \{\lambda^2 - (\nu - k)^2\}.$$

THEOREM 4.6. For $n, m \in N_0$,

$$a_{nm} = (-1/6)^{n+m} B(m+1, n+1) \left[\prod_{k=1}^{m} \{ \lambda^2 - (\nu-k)^2 \} \right] \left[\prod_{k=1}^{n} \{ \lambda^2 - (\nu+k)^2 \} \right],$$

where B(x, y) is the betha function: B(m+1, n+1) = m!n!/(m+n+1)!.

PROOF. We shall prove the theorem by induction on n. For n=0, the above formula coincides with Corollary 4.5. Now we assume that the theorem holds for a fixed $n \in N_0$ and for any $m \in N_0$. Then, by Proposition 4.3, we have

$$\begin{split} a_{n+1,m} &= -a_{n,m+1} - (1/6)a_{nm}[\lambda^{2} - (\nu+n-m)^{2} - (m+1)(n+1)] \\ &= -(-1/6)^{m+n+1}B(m+2, n+1) \left[\prod_{k=1}^{m+1} \{\lambda^{2} - (\nu-k)^{2}\}\right] \left[\prod_{k=1}^{n} \{\lambda^{2} - (\nu+k)^{2}\}\right] \\ &- (1/6) (-1/6)^{m+n}B(m+1, n+1) \left[\prod_{k=1}^{m} \{\lambda^{2} - (\nu-k)^{2}\}\right] \left[\prod_{k=1}^{n} \{\lambda^{2} - (\nu+k)^{2}\}\right] \\ &\times [\lambda^{2} - (\nu+n-m)^{2} - (m+1)(n+1)] \\ &= -(-1/6)^{m+n+1}(m!n!/(m+n+2)!) \left[\prod_{k=1}^{m} \{\lambda^{2} - (\nu-k)^{2}\}\right] \left[\prod_{k=1}^{n} \{\lambda^{2} - (\nu+k)^{2}\}\right] \\ &\times [(m+1) \{\lambda^{2} - (\nu-m-1)^{2}\} - (m+n+2) \{\lambda^{2} - (\nu+n-m)^{2} - (m+1)(n+1)\}] \\ &= (-1/6)^{m+n+1}(m!(n+1)!/(m+n+2)!) \left[\prod_{k=1}^{m} \{\lambda^{2} - (\nu-k)^{2}\}\right] \left[\prod_{k=1}^{n+1} \{\lambda^{2} - (\nu+k)^{2}\}\right] \\ &\times [(\nu+k)^{2}], \end{split}$$

and this completes the proof.

Q.E.D.

From Theorem 4.6 and Proposition 3.4, we have

COROLLARY 4.7. 1) The U-module $X^{0\lambda}$ is reducible if and only if λ is a non-zero integer, and

2) when $v \neq 0$, the \mathfrak{U} -module $X^{\nu\lambda}$ is reducible if and only if $\lambda - \nu$ is an integer.

Added in Proof.

Recently the author is announced from Prof. K. Okamoto that Prof. N.R. Wallach has proved the same results in a quite different way and that he has also obtained the decomposition of the elementary series representations of SU(2, 1).

References

- Harish-Chandra: Representations of a semisimple Lie group on a Banach space. I, Trans. Amer. Math. Soc., 75 (1953), 185-243.
- [2] S. Helgason: Differential Geometry and Symmetric Spaces, Academic Press, New York, 1962.
- [3] B. Kostant: On the existence and irreducibility of certain series of representations, Bull. AMS, 75 (1969), 627-642.

- [4] B. Kostant and S. Rallis: Orbits and representations associated with symmetric spaces, Amer. J. Math., 93 (1971), 753-809.
- [5] M. Wakimoto: On the irreducibility of some series of representations, Hiroshima Math. J., 2 (1972), 71-98.

Department of Mathematics, Faculty of Science, Hiroshima University