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1. Introduction

We are here concerned with the oscillatory behavior of solutions of higher-
order retarded differential equations of the form

(A) y(n)W + y(g(x))F(ly(g(x))Y, x)=0,

where the following conditions are always assumed to hold:
(a) g(x) is continuous for x > 0, g{x) ̂  x and lim g(x) = oo

JC-+OO

(b) yF(y2, x) is continuous for x>0 and \y\ < oo, and F(t9 x) is nonnegative
for ί^O and x>0.

Equation (A) is classified according to the nonlinearity of F(t, x) with respect
to t, namely (A) is called superlinear if F satisfies

(1.1) F(tί9 x)^F(t2, x), t1<t2, X<EΞ(0, oo),

and sublinear if F satisfies

(1.2) F(tux)^F(t2, x), ί !<ί 2 , xe(0, oo).

Moreover, (A) is called strongly superlinear if there is an ε>0 such that

(1.3) t?F(tu x)£t?F(t29 x), ί !<ί 2 , xe(0, oo),

and strongly sublinear if there is an ε>0 such that

(1.4) t\F(tl9 x)>P2F(t29 x), tί<t2, X E ( 0 , oo).

(See e.g. Nehari [29], Coffman and Wong [8].) The prototype of equation
(A) is

(B) y(»Xx) + P(x)\y(g(x))\"sgn y(g(x)) =0,

where p(x)7^0 for x>0 and α>0, which may be considered as a generalization
of the Emden-Fowler equation. Equation (B) is superlinear, strongly super-
linear, sublinear or strongly sublinear according as α ^ l , α>l , α ^ l or α < l .
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It will be tacitly assumed that under the initial condition

and

equation (A) has a solution which can be extended to the interval [x0, oo). A

nontrivial solution y(x) of (A) is said to be oscillatory if there exists a sequence

{**}?= l s u c n t n a t limxfc = oo and y(xk)=0 for all h. Otherwise, a solution is
fc->oo

said to be nonoscillatory; thus a nonoscillatory solution has to be of constant

sign for all large x. A nonoscillatory solution is called strongly monotone if

it tends monotonically to zero as x-*oo together with its first n —1 derivatives.

The problem of oscillation and nonoscillation of solutions of retarded dif-

ferential equations is of great importance both in theory and in applications,

and has drawn increasing attention in the last few years. Among numerous

papers dealing with this problem (and accessible to the present author), we refer

in particular to [1-5, 9, 17, 23, 32, 36, 41-43, 45, 48, 49] concerning second

order oscillations, and to [10, 18-22, 24, 26-28, 30, 33-35, 37-40] concerning

oscillations of higher order.

The purpose of this paper is to present a number of results concerning the

oscillation and asymptotic behavior of solutions of equation (A). In Section

2 we prove two theorems on the asymptotic behavior of solutions of (A). In

Section 3 we prove oscillation theorems for (A) which give conditions that all

solutions of (A) be oscillatory in the case n is even, and be either oscillatory or

strongly monotone in the case n is odd. In Section 4 we study the problem of

maintaining the oscillations of all solutions of (A) under the effect of a forcing

term.

Our results include as special cases oscillation and nonoscillation theorems

not only for the retarded differential equation (B) but also for the ordinary dif-

ferential equation

(C) y<"Xχ)+y(χ)F(ly(χ)y,χ)=o,

which has been the subject of investigations initiated by Nehari [29] and continu-

ed by Kiguradze [14], Coffman and Wong [6-8] and others. It seems to the

author that most of the results obtained here are new even in the reduced case of

equation (C).

2. Asymptotic Behavior

In this section we shall study the asymptotic behavior for x-»oo of solutions

of the retarded differential equation (A). Our basic results give necessary and

sufficient conditions for equation (A) to have a nonoscillatory solution which is

asymptotic to a nonzero constant as x->°o? and to have a nonoscillatory solu-
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tion which is asymptotic to bxn~1(bφ0) as x-»oo. The special case n=2 and

g(x) = χ was discussed by Nehari [29] and Coffman and Wong [8].

THEOREM 2.1 Let equation (A) be either superlinear or sublinear. Then,

a necessary and sufficient condition in order that:

(i) for n even, there exists a bounded nonoscillatory solution of (A),

(ii) for n odd, there exists a bounded nonoscillatory solution of (A) with

\imy(x)=aφθ,
jc-+oo

is that

(2.1) \">x»-1F(c2

9 x)dx<oo for some c>0.

PROOF. (Necessity). Our proof has basic elements in common with those

of Kartsatos [11] and Ladas [22].

Let y(x) be a bounded nonoscillatory solution of (A). Assume that y(x)

>0 for x^x0. The case y(x)<0 can be treated similarly. Since \img(x) =oo,
JC-*OO

there exists an xί'^x0 such that g(x)^>x0 and so y(g(x))>0 for x^>xlt There-

fore, by (A), we have y(n)(x)<L0 for x ^ x t . Since y(x) is bounded and positive,

for x^xx and for fc = l, 2,..., w-1. It follows that

(2.2) (-l)fc+1j/<"-fc>(x)>0, x^xl9 fc=0, l , . . . , n - l .

Since y'(x) is of constant sign for x^xx, it follows that the limit Mm y(x) = y(oo)
JC-» OO

exists and is finite. If n is even, then y'(x)>0 by (2.2), so that y(oo)>Q. If n

is odd, then y'(x)<0 by (2.2), so that either y(oo)>Q or j(oo)=0;the latter

possibility is excluded by (ii). So we assume that y(oo)>0 for n even or odd.

Since limy(g(x)) = y(°°) and y(oo) is finite, for some positive constant c>0,

there exists an x 2 ^ x i s u c n t n a t

(2.3) ^-Sy(g(χ))^c for all

Let (A) be sublinear. Then, from (1.2), (2.3) and (A), we have

(2.4) y^(x) + γF(c2, JC)^O.

Multiplying both sides of (2.4) by xn~ι and integrating from x2 to x, we obtain

(2.5)

Successive integration by parts of the first integral in (2.5) gives
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(2.6)

where

which is positive because of (2.2). Since y(x) is a bounded function, from (2.5)

and (2.6), we conclude that

-±S° x»-iF{c\ x)dx«χ>,

which implies (2.1).

Let (A) be superlinear. Then, from (1.1), (2.3) and (A), we have

from which, exactly as in the sublinear case, we conclude that

which again implies (2.1). This proves the necessity part of the theorem.

{Sufficiency). The proof is based on the arguments developed by Staikos

and Sficas [38], The main tool is the following fixed point theorem which is

a special case of Tychonoff's theorem [46].

FIXED POINT THEOREM. Let Z be a Frechet space and Y be a convex

and closed subset of Z. // S is a contίnouus mapping of Y into itself and the

closure SY is a compact subset of Y9 then there exists at least one fixed point

yeΞYofS, i.e. y=Sy.

Now, suppose that condition (2.1) holds and we construct a solution y(x)

of (A) which satisfies limy(x)=a, where a is some nonzero constant. To this

end, it suffices to prove the existence of a continuous solution of the integral

equation

(2.7)

Sublinear Case: Suppose that (A) is sublinear. Let a>c be arbitrary but

fixed and put δ = a — c. We choose T so large that

(2.8) (
JT

for every m = 0 , l, . . . ,n — 1 , and put τ=min#(x). Let Z be the vector space of
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all continuous real-valued functions on [τ, oo) which are constants on [τ, T]

and n — 1 times continuously differentiable on [T, oo). The space Z endowed

with the topology &" given by the family of seminorms {pa: αε(T, oo)}:

pa(z) = max \z(»-ιKx)\ + nΣ\
xe[7\α] k=0

becomes a Frechet space.

Let us now consider the set Y of all y e Z with

(I) \y(x)-a\^δ forallx^τ,

(II) \y^m\x)\^δ fora l lx^T (m = l, 2,..., n-1).

Clearly, Y is a nonvoid convex and closed subset of the space Z.

We define a mapping S: Y-+Z by the formula

, s)ds

_

where we have used the notation

ί y(g(x)) if

{ y(T) if

Since (A) is sublinear, we have for any y^Y

(2.9) Ip(x)F(lp(xj]\ x)\ ̂ (a + δ)F((a-δ)\ x)<(2a-c)F(c\ x\ x^T9

and thus, the mapping S is well defined.

We shall show that S has the properties as required in the fixed point theorem,

(a) S maps Y into Y. In fact, by (2.8) and (2.9), we have for z = Sy and

and

2f s ) d s

-l)(n-2) (n-m)

(b) SYis a compact subset of Y. It follows from the definition of S that
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for any y^Y, which shows that the (n — l)th derivatives of the functions z £ 5 7

are equicontinuous at each point of the interval of [T, oo). Hence, by the Arzela-

Ascoli theorem, any sequence {zk} in SY contains a subsequence {wk} such that

the sequence {wĵ 1"1*} converges uniformly on every compact subinterval of

[T, oo). Since, by (I) and (II), the sequences M m ) ( T ) } , m = 0 , 1,..., n-2 are all

bounded, there exists a subsequence {υk} of {wJ for which every sequence {vk

m)(T)}9

m = 0 , 1,..., n — 2, is convergent. Thus, we conclude that

(c) S is continuous. Let {yk} be a convergent sequence in Y, i.e. F — Vιmyk
k-κχ)

y, y e Y. Then, for every m = l, 2,..., n —1 and x ^ Γ , we have

Λm)(Ύ\-.(_ Λ\n-l-m

where ZΛ = SJ;Λ. It is easy to see that

k(s) = $(s) for all s ̂  T,

, s)ds

and consequently, by the continuity of yF(y2, x)9 it holds that

limPk(s)F(ίPk(s)l2, s) = j>(s)F([^(s)]2, s), sΐE Γ.
fc-*oo

On the other hand, we have by (2.9)

\(s-x)n-χ-mPk(s)F(lpk(s)Y, s)\^{2a-φ-xy-^F{c\ s\

so that we can apply the Lebesgue dominaged convergence theorem to obtain

(2.10) \imzk

m\x)=z^\x)
k-*oo

for every m = 0 , l,. . .,n —1 and x ^ Γ , where z=Sy. It is easily verified that for

m — n — 1 in (2.10) the convergence is uniform on every compact subinterval of

[T, oo) and hence for all m = 0 , 1,..., n — 1 . Thus, we conclude that

We can now apply the fixed point theorem to conclude that the mapping

S has a fixed point y^Y, which is obviously a solution of the integral equation

(2.7) for all sufficiently large x, and hence asymptotic t o α a s x - + o o , Thus the

required solution of (A) is obtained for the sublinear case.
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Superlinear Case: Let (A) be superlinear. In this case, we take a so that

0<a<c, put δΞΞc-a, choose Tso that

5_7^)«-l-m/7(c2)

for m = 0, 1,..., n — 1 , and then proceed exactly as in the sublinear case, except

that we use instead of (2.9) the following inequality

which holds for all y e Y. Then we can obtain a solution of (A) with the desired

property. This completes the proof of the sufficiency part of the theorem.

REMARK. From the above proof we see that the statements (i) and (ii) of

Theorem 2.1 together are equivalent to saying that equation (A) has a nonoscil-

latory solution which is asymptotic to a nonzero constant as x->>oo.

COROLLARY 2.1. Let α>0. Assume that p(x)^0. Then, equation (B)

has a nonoscillatory solution which is asymptotic to a nonzero constant as

x-»oo if and only if

foo

\ xn~1p(x)dx<oo.

COROLLARY 2.2. Equation (C), superlinear or sublinear, has a nonoscil-

latory solution which is asymptotic to a nonzero constant as x->oo if and only

if (2.1) holds.

REMARK. In the case n—2, Corollary 2.1 was proved by Wong [49, Theorem

(2.1)] and Corollary 2.2 by Nehari [29, Theorem I] and Coffman and Wong

[8, Theorem 1]. For other related results the reader is referred to Kiguradze

[15], Burkowski [3], Staikos and Sficas [38] and others.

THEOREM 2.2. Assume that: Either

(i) equation (A) is superlinear', or

(ii) equation (A) is sublinear and g'(x)^0.

Then, a necessary and sufficient condition for (A) to have an unbounded solu-

tion with the asymptotic property

(2.11)

is that

(2.12) ("[ff(x)]"-1F(c2[ff(x)]2<»-1),*)dx<oo for some c>0.
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PROOF. Our proof was suggested by Coffman and Wong [8].
(Necessity). Suppose that there exists an unbounded solution y(x) of (A)

satisfying (2.11). We may assume that b>09 because a parallel argument holds
if b<0.

From (2.11) it follows that there exists an x o >0 such that for x^x0

(2.13) ^ 0

Since lim#(x) = oo, there exists a n x ^ x 0 such that g(x)^x0 for x^x^ In view

of (A), we have j ( / l )(x)^0 for x^x l 9 so y(n~1\x) is nonicnreasing for
Hence, if <y(π"1)(x2)<0 for some x 2 ^x 1 , then we have y^-ί\x)^y^n-ί)

for x^x 2, which implies that limy(x) = — oo, a contradiction to (2.13). Thus,
χ-*oo

we conclude that y(n~1\x)^0 for x^x x . Integrating (A) from xt to x gives

(2.14) y<n-1Xχ)=y°ι-1Kχi)-[xy(g(s))F(ty(g(s))y, s)ds.

Now, letting x-*oo in (2.14) and using y^n~ίXx)'^0, we obtain

(2.15) ί°°y(g(x))F{\_y{g(x))Y, x)dx<oo.
JXί

If (A) is superlinear, then, using (1.1) and (2.13) in (2.15), we have

<; (" y(g(x))F(ly(g(x))Y, x)dx«»,
Jxi

proving (2.12).
If (A) is sublinear, then, using (1.2) and (2.13) in (2.15), we have

Λ\x)dx

y(g(x))F(iy(g(x))V,

again proving (2.12).
(Sufficiency). We assume that (2.12) holds and show that there exists a

solution of (A) with the property (2.11). Choose x0 so large that

(2.16) (°° [ f l f ί x ) ] " " 1 ^ 2 ^ ^ ) ] ^ " - 1 ) , x)dx<\.

Superlinear Case: Let equation (A) be superlinear. We construct a solu-
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tion y(x) of (A) satisfying the initial conditions

(2.17)

By hypothesis this solution can be continued to [x0, oo). We claim that

>c/2 for x ^ x 0 . Otherwise, let x t be the point in (x0, oo) such that

>c/2 for xo<^x<x 1 and j ί / l " 1 ) (x 1 )=c/2. Integrating the inequality

^c/2 n - 1 times from x0 to x and using (2.17), we have

Therefore,

in particular, y(g(x))^0 for X Q ^ X ^ X ^

Now, integrating (A) once from x0 to x and using (2.17) and the fact that

)^O, we find

(2.18) y(»-i\x) = c- [X y(g(s))F(ly(g(s))y, s)ds^c, for
Jxo

Integration of (2.18) n — 1 times then gives

from which there follows:

y(g(χ))=09 g(x)^

in particular,

(2.19) y(g(χ))^cig(x)γ~\

Using (1.1) and (2.19) in (2.18), and taking (2.16) into account, we obtain for x0



342 Hiroshi ONOSE

which gives a contradiction to y(n~1 \xt) = c/2. Therefore, we must have y(n~1 \x)
^c/2, x^x0. This inequality together with (2.17) shows that y(x) is nonnegative
for all x^x0. Observing that the integral in (2.18) is nonnegative, we see that
the limit Umy(n~1\x)=b exists and is a finite number: cβ^b^c. Thus, we

JC->OO

have shown that the solution y(x) under consideration has the desired asymp-
totic property (2.11).

Sublinear Case: Now let equation (A) be sublinear. Take a constant
c' such that c'fcn — l) !>c, put c'{ή) = c'j{n — 1)! for simplicity, and define x'o by

c'(nyH*-»x0
0 ~" c'{ή) 1 / ( π ~ ι > - c 1 / ( / I ~ * >'

We remark that x'0->x0 as c'->oo. Let xx and xΊ be such that g(xι)=x0 and

fif(xΊ)=x'o Since g'(x)^>0 and lim^(x) = oo, we may assume without loss of

generality that g'(x)>0 in a neighborhood J of x t. Choose c' sufficiently large

that xi <Ξ J. Observe that

(2.20) c[0(x)]"-x ̂  c'(n)[flf(x) - x 0 ] w " S

if x^xΊ, i.e. g(x)^x'Q.
We show that the constant c' can be chosen such that

(2.21) f l £ ^ ^ / r ( ^ ( r t ) ^ w _ X o ] ( ) 5 x)dx£

In fact, using (1.2) and (2.20), we obtain

Γ to(?yy"^""1/Γ(c/(||)2

( ΐ Γ " ' ^ c 2 ί g ^ > - ^oJ 2<""''» S)ds

~F(c*\_g{x)Y^\ s)ds.

Letting x-^oo, the inequality (2.21) then follows from the above, (2.16) and the
fact that xi->X! as c'-»oo.

We fix such values of x0 and c\ and construct a solution of (A) satisfying
the initial conditions



Oscillation and Asymptotic Behavior of Solutions of Retarded Differential Equations 343

y(x) = 0,

(2.22)

We claim that y^n~ι\x)>cf for all x^x0. Suppose that there exists an x2^(x0,

oo) such that y<n~ί\x)>c' for xo^x<x2 and yin~1\x2)
:=cf. Integrating (A)

and using (2.22), we have

(2.23) y<"-*Kx)=2c'-\X y(g(s))F([_y(g(s))γ, s)ds for xo^x^x2.
Jxo

An argument similar to that we used for the superlinear case shows that c'

(x)<^2cf for xo^x^x2. This can be integrated as follows:

c'(n)(x - xoy- * ̂  y(x) ̂  2c'(n)(x - x o ) n " \ xo

Therefore, we have

c'(ή)[β(x) - x 0 ] " - ' £ y{9(*)) ^ 2c'(π)[flf(x) - x o ] - - λ

(2.24) for

y(g(χ))=o for g(χ)^Xo.

Using (2.24) in (2.23) and in view of (1.2), we obtain

if * i

(2.25) :F(--i)(χ)^2Cψ-^ISί|i^^/^c'(/ι)2^^^

In view of (2.25), (2.21), we find <y( / |-1 )(x2)^3c72. This contradicts y ( π~1 )(x2)

—cf. Therefore, it follows that y(^n~i\x)>cf for all x^x0. Now proceeding

as in the superlinear case, we conclude that y(x) has the property: lim y(x)jxn~1

JC-*OO

= 6, c'^b^2c'.
This completes the proof of Theorem 2.2.

COROLLARY 2.3. Let α>0. Assume that p(x)^0. Assume, moreover,

that g'(x)^>0. Then, equation (B) has an unbounded solution which is asymp-

totic to bxn~ι (bφO) as x->oo if and only if

COROLLARY 2.4. Equation (C), superlinear or sublinear, has an unbound-
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ed solution which is asymptotic to bxn~x (bφO) as x—>oo if and only if

(2.26) i\*xn-1F(c2x2(<n-1\ x)dx<oo for some c>0 .

REMARK. Corollary 2.3 was given for the case n =2 by Wong [49, Theorem

(2.2)] and for the case of arbitrary n ^ 2 by Kusano and Onose [20, Theorem 3]

without the assumption g'(x)^0. Corollary 2.4 extends results of Nehari [29,

Theorem II] and Coffman and Wong [8, Theorem 2] for the second order equa-

tion (C). For related results see Burkowski [4], Kiguradze [15, 16], Ladas [22],

Marusiak [27, 28], Waltman [47] and others.

3. Oscillation Theorems

In this section, we prove several oscillation theorems for the retarded dif-

ferential equation (A). As witness the recent results of Kusano and Onose [18-

20], Sevelo and Odaric [32], Sevelo and Vareh [33, 34] and Wong [49], in

order to obtain sharp oscillation criteria it is natural to exclude linear equations

from our considerations. Here, we focus our attention on the equation (A) which

is in the strongly superlinear case or in the strongly sublinear case, and establish

sufficient conditions (Theorems 3.1, 3.2 and 3.3) and necessary and sufficient

conditions (Theorems 3.4 and 3.5) in order that all solutions of (A) be oscillatory

when n is even, and be either oscillatory or strongly monotone when n is odd.

Before stating the theorems, we give the following lemmas, which can be

found in [31].

LEMMA 3.1. Suppose that y(x)^Cm\_a, oo), y(χ)}>0 and y(m\x) is monotone

on [<2, oo). Then, exactly one of the following is true:

(i) lim/">(*) =0;
χ->σo

(ii) limy(m\x)>0 and y'(x),..., j ( m ~ 1 } (x) tend to oo as x-*oo.
χ-> oo

LEMMA 3.2. Suppose that y{x)^Cn\_a, oo), y(x)^0 and y^n\x)^0 on

[a, oo). Then, exactly one of the following is true:

(I) y'(x),..., y^""1^) tend monotonically to zero as JC-»OO;

(II) there exists an odd integer k, l ^ f c ^ n — 1, such that limy(n~J\x)
JC->OO

=0 for l^j^k-1, liπiy^-^OO^O, limy^-k-1\x)>0, and y(x), y'(x)9...9
χ-*oo χ-*oo

y(n~k~2\x) tend to oo as x-*oo.
First, we consider the strongly superlinear case.

THEOREM 3.1. Let equation (A) be strongly superlinear. Assume that

cjf(x)^:0 for x>0. A sufficient condition in order that;
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(i) for n even, every solution of (A) be oscillatory,

(ii) for n odd, every solution of (A) be either oscillatory or strongly mo-

notone,

is that

(3.1) {™[_g(x)']n-iF(c2,x)dx = oo for any o O ,

PROOF. Our proof is based on the use of techniques introduced by Kusano

and Onose in [18].

Let y(x) be a nonoscillatory solution of (A). Without loss of generality,

we may suppose that y(x)>0 for x ^ x 0 . Since lim#(x) = oo, there is an X ^ X Q
JC-*OO

such that y(g(x))>0 for xΞ>xx. From (A) we have

(3.2) yi"\x) = -y(g(x))F(ly(g(x))y, x)<IO

for x ^ x 1 ? so that, by Lemma 3.1, ̂ " " ^ ( x ) decreases to a nonnegative limit as

x->oo. Integration of (3.2) from x to infinity yields

y, s)ds,

from which, using the nonincreasing character of ̂ " " ^ ( x ) , we obtain

(3.3) y^

Suppose that Case (I) of Lemma 3.2 holds. Multiplying both sides of (3.3)

by g'(x) and integrating from x to u, xt<x<u, we have

(3.4)

\"ίg(s)-g(x)-]y(g(s))F(ίy(g(s))r,s)ds.
Jx

Letting M->OO in (3.4) we have

ig(s)-g(x)Mg(s))F(ly(g(s))Y, s)ds.

Proceeding in this way, we arrive at

(3.5) (-l)"y'(g(x))^"Ws)~0^

Let n be even. We integrate (3.5) multiplied by g'(x) from T t o x, xx<T

<x, to obtain
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(3.6) y(g(x))7z fc [g(*}

(~ f ( f f " ' y(g(s))F(ίj>(g( J ) ) ] 2, s)ds.

Since g'(x)^0 by hypothesis and y'(x)^0 for x^g(T) by (3.5), we get

(3.7) ίy(g(χ))r^[y(g(T))y forx^r.

Using (3.7) and the strong superlinearity of (A), i.e.,

ίϊ Fίfi.jO^/i Ffo.*). h<t2, ε>0,
we obtain

y(g(χ))F(ly(g(χ)ϊ]2, x)

=ly(g(χW+2°-ίy(g(χ))r2°F(iy(g(χ))y, x)

(3.8) ^ ίy(g(χ))l 1+2eΐy(g(τ))T2°F(ly(g(T))y, x)

=c1-*ly(g(χWF(c2, x),

where c =y(g(T)) and α = 1 + 2ε. It follows from (3.6) and (3.8) that

(3.9)

Multiplying both sides of (3.9) by L ^ _ ! ) / O(0(*))]β^(c2> x) and in-

tegrating from x t to «, T< 7\ <w, we find

fM lgW-g(T)y-1

)τι (n-l)l

(3.10)

Since α>l , the right side remains finite as u-»oo; consequently, the integral on

the left converges as M->OO :

-F(c2, x)dx< oo,Γ00 [flf(χ)-g(Γ)]»-^
J T l ( Λ - 1 ) !

which contradicts (3.1).

Let n be odd. Then (3.5) reduces to

(3.11)

which implies that ^'(x)^0 for x^>g(T). Hence, y(x) decreases to a limit

Suppose that h>0. Integrating (3.11) multiplied by g'{x) from K to x, g(T)

9 we have
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(3.12)

\x

κ

 lg(%-$yί

We observe that the strong superlinearity of (A) implies that yF(y2, x) is a nondec-

reasing function of y>0. Therefore, we obtain

(3.13) y(g(χ))F(ly(g(χm2, χ)^hF(h\ x),

since y(g(x))^h>0 for x^T. It follows from (3.12) and (3.13) that

, s)ds

\ s)ds,

which is again a contradiction to (3.1). Thus we must have h=0, and this com-

pletes the proof of Case (I).

Suppose that Case (II) of Lemma 3.2 holds. We note that there exists an

x2^>x1 such that yu\x)>0 for x^x2 and j = 0 , 1,..., n — k— 1. Proceeding as

in Case (I), we have

J " ί 9 ( S l 0 [ * J ] k ~ 1 , s)ds.

Multiplying the above inequality by g'(x) and integrating from x2 to x, we obtain

)] 2 , s)ds.

Repetition of this procedure yields

y (gW) ̂ ίg(x)^2)2Pn2\y(9ωmίy(9ism 2> s)ds>
and upon an integration of the above, we find

s)ds.

Now the proof proceeds exactly as in Case (I).

COROLLARY 3.1. Leta>\. Assume that p(x)^0, g'(x)^0 and the follow-

ing condition holds;
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Then, every solution of (B) is oscillatory if n is even, and is either oscillatory

or strongly monotone if n is odd.

COROLLARY 3.2. Let equation (C) be strongly superlίnear. Assume

that the following condition holds:

(3.14) \ xn~ίF(c2, x)dx = oo for any c>0,

Then, every solution of (C) is oscillatory if n is even, and is either oscillatory

or strongly monotone if n is odd.

REMARK. Corollary 3.1 was obtained independently by Kusano and Onose

[18], and Sevelo and Vareh [34].

In the above theorem it was assumed that gf(x)}>0. In the next theorem

an attempt is made to avoid this smoothness assumption on g(x) and produce

an oscillation criterion which applies at least to the case where the delay τ(x) =

x — g(x) is bounded.

THEOREM 3.2. Let (A) be strongly superlinear and let there exist a func-

tion g*(x) such that

0*0)^0, g*(x)^g(x) and lim^O) = oo.
χ-*σo

Assume that

(3.15) \<Ω[j9*(xy]n~1F(c2

9 x)dx = oo for any c>0.

Then, every solution of (A) is oscillatory if n is even, and is either oscillatory

or strongly monotone if n is odd.

PROOF. The proof patterns after that of Kusano and Onose [19].

Let y(x) be a nonoscillatory solution of (A) which can be assumed positive,

say y(x)>0 for x^x0. Since limg*(x) = oo, there exists an X ^ X Q such that
X-*Ό0

g(x)^g*(x)^x0 and y(g(x))>0 for x^xt. Proceeding in the same manner

as the proof of Theorem 3.1, we obtain for x^xt

(3.16) y(»-iχg*(x))^ \™y(g(s))F(ly(g(s))y, s)ds,
Jx

which corresponds to (3.3).
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We consider Case (I) of Lemma 3.2. Multiply both sides of (3.16) by g*(x),
integrate from x to u and let u tend to infinity. Repeated application of this
procedure then gives

(3.17) ( - D " y ( 0 (*))

C ^ ( ^ f ] W " 2 2 ? s)ds'
which corresponds to (3.5) in the preceding proof.

Let n be even. Then, by (3.17), y'(x)^0 for x^x^ Let Tbe fixed so that
T>xt. Using (1.3), g(x)^>g*(x) and the nondecreasing character of y(x), we
obtain

y(g(χ))F(ly(g(χW, x)

=Ly(g(χ))l1+2ε-ίy(g(χ))T2eF(ly(g(χ))y, x)
(3.18)

^Ly(g*(χmi+2°ΐy(9*(χm-2εF(ly(g*(χ))y, x)

x))γF(c2, x),

where c=y(g*(T)) and α = l+2ε. From (3.17) and (3.18) it follows that

(3.19) y'(g^x))^c^J-^{s)-^^n~\y{gi,(s))YF{c\ s)ds.

It is a matter of easy computation to derive from (3.19) the following inequality

which contradicts (3.15).
Let n be odd. Then, (3.17) becomes

(3.20) -y'{g+(χ))^^^Λs)-gΛχ)yy(g(s))F(ly(g(sm2, s)ds,

and this implies that y(x) is nonincreasing for all sufficiently large x, say for x ̂  T.
Let limy(x) = h^0. Suppose that h>0. Integrating (3.20) sultiplied by g'*

χ-» oo

from K to x with g(T)^K<x, and using the inequality

\ x)

which is implied by the strong superlinearity of (A), we find

(3.21) y(g*(K))-y(g*M) ^^^^κίg^)-g^κ)y-'F(h2, s)ds.
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Letting x->oo in (3.21), we get a contradiction to (3.15). Therefore, we must

have 7ι=0.

The proof for Case (II) of Lemma 3.2 also proceeds, with necessary modifi-

cations, in a manner similar to the corresponding part of the proof of Theorem 3.1.

So, we omit the details.

Now, we turn to the strongly sublinear case.

THEOREM 3.3. Assume that equation (A) is in the strongly sublinear

case. Then, a sufficient condition in order that:

(i) for n even, every solution of (A) be oscillatory,

(ii) for n odd, every solution of (A) be either oscillatory or strongly mono-

tone, is that

(3.22) \X>l9(x)ln~ίF(c2lg(x)']2(<n-1\ x)dx = oo for any c>0.

We need the following lemma due to Kiguradze [16].

LEMMA 3.3. // y(x) is a function such that it and all its derivatives up

to order (n — 1) inclusive, are absolutely continuous and of constant sign in the

interval [x l 5 oo), and y(x)y^n\x)^0, then thereisan integer I, 0<^l<^n — 1, which

is odd if n is even and even if n is odd, such that for x}>xt we have

(3.23)
(-iy+J-iy(χ)/J\χ)^0, j = l+l,..., n,

and ifl>0,

(3.24) \y{x)\^ Λ^^^^\yin-iK2n-l-iχ)V

PROOF of Theorem 3.3. Let y(x) be a nonoscillatory solution of (A). We

may assume that y(x)>0 for x ^ x 0 . There is an xx^x0 such that y(g(x))>0

for x ^ x 1 # In view of (A), yin\x)^0 for x ^ x 1 ? so we can find an integer I such

that (3.23) holds.

Assume that />0. Then, by (3.23), y'(x)^0 for x ^ x x . It follows from

Kiguradze's formula (3.24) and the nondecreasing character of y(x) that for x^xx

9 ( J n + l ) ( π l ) / v γ \n-ί
x ) = ( « i ) ( « / )

Therefore,

(3.25)
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where i4=2< l~"+1)<"~1)/(π--l)...(ιt-J). Since lim #(x) = oo, there is an x 3 ^ x 2
x-*<x>

such that g(x)~^x2 for xi>x3. From (3.25) and the fact that y<-"~ιXx) is nonin-

creasing, we then have

(3.26) JteWte^foί*)]"-1/"-1**), x^x3.

On the other hand, since y(π)(x)2Ξ0 for x ^ x t , by Taylor's theorem, there

exists a constant α ϊ ϊ l such that y{x)^axn~i for x ^ x x , which implies

(3.27)

Using (3.27) in (1.4), i.e.,

t\F(tu x)^t°2F(t2, x), ty<t2, ε>0,

we have

(3.28) Ly(g(x))y°F(ly(g(x))y, x ) ^ β 2 [ff(x)]2< - 1 ) F(β2[ f f(*)]*( -»), x).

Now, suggested by Coffman and Wong [8], we consider

(3.29) = 2 ε [ > < » - ! > ( x ) ] 2 - ' # ) ) F ( [ J ( J W ) ] 2 , x)

= 2 ε | y - ! > ( x ) ] 2 - 1 [X^(x))] 1 - 2

Using (3.26) and (3.28) in (3.29), we obtain

1\ x), x2>x3,

where k=2εa2Ά1~2e and we have assumed that ε<l/2 without restricting gener-

ality. Integrating the above inequality from x 3 to x, we have

(3.30) Cx

k\

Since .y(l1"J >(x) > 0 for all large x, it follows from (3.30) that

which is a contradiction to (3.22). Thus, we conclude that J=0. Obviously,

this is possible only when n is odd. In view of (3.23), y(x) decreases to a limit
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/ιΞ>0 as x-»oo. Let h>0. Then, since the strong sublinearity implies the sub-

linearity, it follows from Theorem 2.1 that

\ xn~1F(c2, x)dx<oo for some c>0.

Noting that g(x) ^ x and c2 ^ c2 \_g{x)~] 2 (π~*> for all large x, and using the sublineari-

ty of (A), we obtain from the above

\CO\j9(xy]n~1F(c2[j9(x)']2(n'1)

9 x)dx<oo for some c>0,

contradicting (3.22). Therefore, we must have h =0, that is, y(x) must tend mono-

tonically to zero together with its first n — 1 derivatives. This completes the proof.

COROLLARY 3.3. Lei α< 1. Then, a sufficient condition that every solution

of(B) be oscillatory if n is even, and be either oscillatory or strongly monotone

if n is odd is that

(3.31)

COROLLARY 3.4. Let equation (C) be strongly sublinear. Then, a suffi-

cient condition that every solution of(C) be oscillatory if n is even, and be either

oscillatory or strongly monotone if n is odd is that

(3.32) [*>xn-1F(c2x2<»-1\ x)dx = co for any c>0.

REMARK. Corollary 3.3 was proved independently by Kusano and Onose

[18-20] and Sevelo and Vareh [34].

Combining Theorems 2.2 and 3.3 we obtain the following

THEOREM 3.4. Let equation (A) be strongly sublinear. Assume that

g'(x)^0for x>0. Then, a necessary and sufficient condition in order that every

solution of (A) be oscillatory in the case n is even, and be either oscillatory or

strongly monotone in the case n is odd is that (3.22) be valid.

PROOF. The sufficiency part follows from Theorem 3.3. The necessity

part is contained in Theorem 2.2, because the strong superlinearity of (A) implies

the superlinearity of (A).

A question naturally arises as to whether (3.1) is a necessary and sufficient

condition for oscillation of all solutions of (A) which is in the strongly superlinear

case. A partial answer to this question is given in the following theorem.

THEOREM 3.5. Let equation (A) be strongly superlinear. Assume that
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g(x) satisfies

(3.33)

Then, a necessary and sufficient condition that every solution of (A) be oscillatory

if n is even, and be either oscillatory or strongly monotone if n is odd is that

(3.14) be valid.

PROOF. Since the strong superlinearity of (A) implies the superlinearity of

(A), the necessity part is contained in Theorem 2.1. To prove the sufficiency,

we observe from (3.33) that yβ^g(x)jx, i.e. yx/2^g(x) for all sufficiently large

x. Put g*(x)=yxj2. Then, condition (3.14) can also be written as

\ [ ^ H C W ] 1 1 " 1 ^ 2 * x)dx = oo for any c>0.

Applying Theorem 3.2, we conclude that every solution of (A) is oscillatory if n

is even, and is either oscillatory or strongly monotone if n is odd.

REMARK. The condition (3.33) was proposed by Wong [49]. It contains

as special cases the following:

(i) g(x)=x-τ(x), 0^τ(x)^M;

(ii) g'(x)^0 and limg'(x)=y>0.

The following corollaries are immediate consequences of Theorems 3.4 and

3.5.

COROLLARY 3.5. With regard to equation (B) assume that either (i) α < l

and g'(x)}>0, or (ii) α > l and g(x) satisfies (3.33).

Then, a necessary and sufficient condition that every solution of(B) be oscil-

latory ifn is even, and be oscillatory or strongly monotone ifn is odd is that (3.31)

be valid in the case (i), and that

Γoo

\ xn~1p(x)dx = oo

in the case (ii).

COROLLARY 3.6. A necessary and sufficient condition that every solution

of (C) be oscillatory if n is even, and be oscillatory or strongly monotone if

n is odd is that (3.14) be valid in the strongly superlinear case, and (3.32) be

valid in the strongly sublίnear case.

REMARK. Corollary 3.5 (i) was given in a stronger form by Wong [49, Theo-

rem (3.1)] and Kusano and Onose [20, Theorem 3] where the assumption g'(x)^0

is not required. Corollary 3.5 (ii) is an extension of a result of Wong [49, Theorem
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(3.2)]. Gollwitzer's result [9] is contained in Corollary 3.5. Corollary 3.6 gene-

ralizes results of Licko and Svec [25] and Kiguradze [15, Theorems 3,4]. Re-
lated results can be found in Kiguradze [14, 16], Ryder and Wend [31], Staikos
and Sficas [37-39] and others.

We close this section by stating two propositions concerning the ordinary
differential equation (C), which are duals to one another in the sense specified in
Coffman and Wong [8].

COROLLARY 3.7. Let equation (C) be strongly superlinear. Then, the
following statements are equivalent:

(i) Equation (C) has a bounded solution which is asymptotic to a non-
zero constant as x-»oo;

(ii) Equation (C) has a nonoscillatory solution which is not strongly mono-
tone;

(iii) For some c>0, (2.1) holds.

COROLLARY 3.8. Let equation (C) be strongly sublinear. Then, the follow-
ing statements are equivalent:

(i) Equation (C) has an unbounded solution which is asymptotic to bxn~ι

(bφQ) as x->oo;
(ii) Equation (C) has a nonoscillatory solution which is not strongly mono-

tone;
(iii) For some c>0, (2.26) holds.

REMARK. Corollary 3.7 follows from Corollaries 2.2 and 3.6 and extends
a result of Coffman and Wong [7] (see also [8, Theorem E]). Corollary 3.8
is derived by combining Corollaries 2.4 and 3.6; it contains a theorem due to
Coffman and Wong [8, Theorem 2].

4. Forced Oscillations

Of mathematical and physical importance is the problem of maintaining
the oscillation of all solutions of equation (A) under the effect of a forcing term.
In the case of differential equations without delay, that is, when g(x) = x, this
problem was studied by Kartsatos [12, 13] and Teufel [44]. An attempt was
made by Kusano and Onose [21] to extend part of Kartsatos' results to retarded
differential equations.

In this section, we present theorems to the effect that all solutions of the equa-
tion

(D) y

are oscillatory if the forcing term q(x) is sufficiently small or periodic (in the sense
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specified below).

First, we consider the maintenance of the oscillations of the strongly super-

linear equation (A).

THEOREM 4.1. Let F(t, x) satisfy (1.3). Assume that g'(x)^0 and

(4.1) [C°ίg(x)Y~ίF(c2

9x)dx = oo for any c>0.

Let there exist a function βEC"[(0, oo), R]9 R=(-oo, oo), such that Q(n\χ) =

q(x)for x>0 and either

(I) limQ(x)=0; or

(II) there exist constants qu q2 and sequences {x'm}, {x'^} with the follow-

ing property: l i m x ^ l i m x ^ o o , Q(x'm) = qu Q(x'J=q2, 4i^Q(*)^<?2

m-*oo m-*ao

for x>0.

Let (I) hold. Then, every solution y(x) of (D) is oscillatory or such that

limy(x)=0.
χ-» oo

Let (II) hold. Then, if n is even, every solution y(x) of (D) is oscillatory,

while if n is odd, every solution is either oscillatory or such that lim[y(x) —
αc-*oo

GO0] = - 4 i or -q2.

PROOF. We follow closely the arguments developed by Kartsatos [12, 13]

and Kusano and Onose [21].

Case (I). Let y(x) be a nonoscillatory solution of (D) such that y(x)>0

for x^>x0. Choose a n x ^ x 0 such that y(g(x))>0 for x^xt. If we put Y(x) =

— Q(x), then Y(x) is a solution of the equation

(4.2) Y<»>(*) + lY(g(x)) + Q(g(x))lF(lY(g(x)) + Q(g(x))V, x) =0

with the property: Y(g(x)) + Q(g(x))>0 for x^xx. From (4.2) it follows that

(4.3) Y<»>(x)^0 for x^xt.

Suppose that y(x) is unbounded for all large x; then, so is Y(x) and, in view

of (4.3), it is easily verified that Y(x) and all its first n — 1 derivatives are eventually

of fixed sign. In particular, we have Y'(x)^0, x^xt and limY(x) = oo. There-
jc-» oo

fore, we can choose an x 2 ^ x i a n d an ε>0 such that

(4.4) Y(g(x)) + Q(g(x)) > Y(g(x)) -ε,

Put Z(x)=Y(x)-ε. Then, we see that limZ(x) = oo. On the other hand, Z(x)

satisfies the retarded differential equation

(4.5) Z^\x) + Z(g(x))F1(tZ(g(x))r9 x) =0,
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where

( 4 6 ) F ( z z χ)_(4.6) F,(Z , x)

Equation (4.5) is again strongly superlinear. From (4.4) and (4.6) we find F^Z2,
2 , x), Z>0, which in view of (4.1) gives

W * ) ] " " 1 ^ 2 , x)dx = oo for c>0.

Thus it follows from Theorem 3.1 that Z(x) has to be oscillatory or tends to zero

as x->oo. But this contradicts the fact that limZ(x) = oo.
χ->oo

Next suppose that y(x) remains bounded as x->oo, Then, Y(x) is also bound-

ed and from (4.3) we conclude that

(4.7) (-iy+JYU\x)£09 xϊ>xl9 j = l,..., n.

Let n be even. Then, (4.7) implies Y'(x) ^ 0 for x ̂  xx. If Y(x) > 0 eventually,

then the limit UmY(x)=η exists and is a positive number. Introducing the func-
JC-» OO

tion Z(x)=7(x) —e, 0<ε<?7/2, and arguing as in the case y(x) is unbounded,

we arrive at a contradiction. Consequently, we must have y(x)^0, i.e., X x ) ^

Q(x) for all large x. Of course, this is possible only when Q(x)>0 eventually,

and in this case we have liniy(x)=0. Let n be odd. Then, Y'(x)^0, x^xί9

χ-*ao

by (4.7), so that Y(x) decreases to a limit η as x-»oo. Again it cannot happen

that η>0. Since Y(x) + Q(x) is eventually positive, we conclude that η=09 which

implies lim.y(x)=0.

A parallel argument holds if we assume that y(x) is eventually negative.

This completes the proof of Case (I).

Case (II). Let y(x) be a nonoscillatory solution of (D) such that y(g(x))>0

for x^x x .

Assume that y(x) is unbounded; then, as in the corresponding part of the

proof of Case (I), we can show that Y(x) = y(x) — Q(x) has the property: Y;(x) ^ 0,

x ^ x 1 ? limY(x) = oo, and there exists an x2^Xχ such that

(4.8)

The function W(x)=Y(x)+q1 satisfies the retarded differential equation

(4.9) W<'\x) + W(g(x))F2&W(g(x))y, x) =0,

where
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In view of (4.8) we have F2(W2, x)^F(W2, x). This implies that

Γ oo

\ Lg(χY\n~ 1F2(c2, x)dx = oo for any c>0,

so, by Theorem 3.1 applied to (4.9), W(x) must be either oscillatory or tending
to zero as x-*oo. This contradicts the fact limW(x) = oo.

Λ-+00

Assume now that y(x) is bounded. If n is even, then Y(x) = y(x) — Q(x) also
satisfies 7'(x)^>0 for x^xί9 and (4.8) holds for all large x. Thus, we arrive again
at equation (4.9) which implies a contradiction to lim {.Y(x) + qί]>0. If n is
odd, then Y(x) = y(x)-Q(x) satisfies Y'(x)^0 for x^x^ If we suppose that
Y(x2) + qi^0 for some x2^xl9 then Y(x)-\-qί^0 for all x^x2, contradicting
the eventual positivity of Y(x) + Q(x). Hence, we have y(x) + ̂ ! > 0 for all x^xx

and, applying Theorem 3.1 to equation (4.9), we conclude that lim [Y(x) + qι] =0,
that is, lim[Xx)-β(x)] = - ^ 1 .

The case where y(x) is eventually negative can be treated quite analogously.
This completes the proof of Case (II).

The maintenance of the oscillations of the strongly sublinear equation (A)
is contained in the following

THEOREM 4.2. Let F(t9 x) satisfy (1.4). Assume that

(4.10)

and

^ x)dx = oo for any c>0.

Let q(x) be as in Theorem 4.1. Then, the conclusion of Theorem 4.1 holds.

The proof of this theorem may be omitted.

COROLLARY 4.1. Consider the equation

(E) y(nXχ)+p(χ)\y(g(χ))\ΛsE*y(g(χ))=q(χ),

where p(x)^09 α>0, ccΦl, and q(x) is as in Theorem 4.1. If

( n - * )p(x)dx = oo, <χ* = m i n (α, 1),

then the conclusion of Theorem 4.1 holds for equation (E).



358 Hiroshi ONOSE

COROLLARY 4.2. Consider the equation

(F) yM(χ)+Aχ)Πly(χ)l2, *)=*(*),

where q(x) is as in Theorem 4.1. Assume that either (i) F(t9 x) satisfies (1.3) and

\ xn~1F(c1

9 x)dx = oo for any c>0,

or (ii) F(ί, x) sαίίs/ϊes (1.4), (4.10) and

n-ιF(c2x2<<n-ι\ x)dx = oo for any c>0.

Then, the conclusion of Theorem 4.1 holds for equation (F).

REMARK. Corollary 4.2 overlaps with but is not covered by the results of
Kartsatos [12, 13].
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