
HIROSHIMA MATH. J.
3 (1973), 277-332

A Finite-Difference Method on a Riemann Surface

Hisao MIZUMOTO

(Received April 27, 1973)

Introduction.

In the present paper we aim to discuss a method of finite-differences from
the point of view of applications to the function theory. Since we speak of har-
monic and analytic differentials and functions on a Riemann surface, we need to
construct a theory of finite-differences on a Polyhedron.

Let u be a function defined at the points of the complex plane whose coordi-
nates are integers. As a definition of a discrete harmonic function u on a plane,
the so-called five-point formula

is generally used. How we define the conjugate discrete harmonic function and
a discrete analytic function so that their definition match with the above definition
of a discrete harmonic function, is an important problem. It is desirable, based
on the definitions, to construct a theory of rich contents of discrete harmonic and
analytic functions. As the works with this intention, we can mention Blanc [3],
Lelong-Ferrand [10], [11], Isaacs [7], [8], Duffin [5], Hundhausen [6], etc.

Blanc [3] introduced the concepts of a reseau Riemannien and a reseau conjugue
on a plane, and introduced very general definitions of a discrete harmonic function
and its conjugate function. He developed an interesting analogy with the type
problem of a Riemann surface, and also he [2] developed an analogy with Nevan-
linna's first and second fundamental theorems. However, it seems that he did
not intend to make an effective use of a conjugate harmonic function on a reseau
conjugue. Our definitions of a harmonic function and its conjugate function
are similar to Blanc's.

Let/be a complex-valued function defined at the points of the complex plane
whose coordinates are integers. Then Lelong-Ferrand [10], [11] introduced
the following definition of a discrete analytic function / :

If we set/=u + jw* where u and w* are real, then it is seen that the discrete analyti-
city of/implies that u and u* are discrete harmonic and satisfy a pair of difference
equations which are analogous to the Cauchy-Riemann equations. She developed
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several interesting analogies with ordinary analytic functions. With the last
definition of analyticity, Duffin [5] brought new developments which included
the Cauchy integral formula, Liouville's theorem, Harnack's inequality, poly-
nomial expansions and Hubert transforms.

Isaacs [7], [8] developed a theory of discrete analytic functions based on
the following definitions of analyticity:

or

Hundhausen [6] introduced a more general criterion of discrete analyticity
based on a discrete formulation of Morera's theorem and showed a new approach.

In Chapter I of the present paper, we aim to construct a theory of discrete
harmonic and analytic differences on a polyhedron, where our definition of a
polyhedron differs from the ordinary one based on a triangulation and admits
also a polygon and a lune as 2-simplices (cf. §1.1). A function (a zero order
difference), a first order difference and a second order difference on a polyhedron
are defined as functions which take a complex value at each oriented 0-simplex,
1-simplex and 2-simplex respectively (cf. § 2. 1). In order to set the definitions of
a conjugate harmonic difference (function) and an analytic difference (function)
which answer our purpose, we introduce concepts of a conjugate polyhedron and
a complex polyhedron (cf. §1. 3). The method of differentials on a Riemann
surface (cf. Chapter V of Ahlfors & Sario [1]) has been very valuable in the pro-
cess of construction of the present theory. Many methods and results analogous
to the theory of harmonic and analytic differentials (functions) of the continuous
case are developed, and a model of the function theory is constructed on a complex
polyhedron.

In Chapter II, we shall concern ourselves with the problem of approximating
harmonic and analytic differentials on a Riemann surface by harmonic and analytic
differences respectively. We define a Riemann surface based on a normal quad-
rangulation (cf. § 1. 8). More generally, we define a normal quadrangulation of
a subregion of a generic Riemann surface W by trajectories and orthogonal trajec-
tories of a quadratic differential Ψ, and further we define an exhaustion of W by
a sequence of normal subdivisions by Ψ (cf. § 1. 9~ § 1.11). Then we shall discuss
the norm convergence of smooth extensions of harmonic and analytic differences
on the sequence of normal subdivisions to harmonic and analytic differentials
on JF respectively (cf. Theorems 7. 1, 7. 2, 7. 3, 8. 1 and Corollary 8. 1, and cf.
§ 7. 1 for the definition of smooth extension).

Courant-Friedrichs-Lewy [4] showed that a solution of the Dirichlet problem
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on a plane region can be uniformly approximated by a corresponding solution

of the discrete case. Their method is essentially to show the equi-continuity of

a sequence of discrete harmonic functions. Lelong-Ferrand [11] discussed the

problem of approximating uniformly an analytic function on a plane by discrete

analytic functions in the sense of the definition (1). For this problem she made

use of the Cauchy integral theorem for a discrete analytic function. In our present

method, the harmonicity of the limit differentials of smooth extensions of discrete

harmonic differences and its conjugate differences is simultaneously shown and

thus the analyticity of the limit differentials of smooth extensions of discrete

analytic differences is also shown. Our method is based on the facts that the

smooth extensions of a discrete harmonic difference and its conjugate difference

are closed differentials in the sense of Ahlfors & Sario (cf. Chapter V of [1]),

their limit differentials in the sense of the Dirichlet norm are a pair of closed and

conjugate closed ones, and thus a pair of harmonic and conjugate harmonic ones.

The method of orthogonal projection of differences and differentials is also effec-

tively used (cf. Theorem 7. 3 and Corollary 8. 1).

Finally, as an application of our results to numerical calculation, we shall

discuss in § 9 the problem of determining Riemann's period matrix of a closed

Riemann surface. With respect to the problems of this type, Opfer [14], [15]

dealt with the problem of determining the modulus of a doubly connected domain

by means of finite-difference method, and Mizumoto [12], [13] dealt with the

corresponding problem for a general multiply connected domain.

Chapter I Theory of differences on a polyhedron.

§ 1. Foundation of topology.

1. Polyangulation. Let E2 be the euclidean plane. By a euclidean 0-sim-

plex we mean a point on E2. By a euclidean 1-simplex we mean a closed line

segment or a closed circular arc. By a euclidean 2-simplex we mean a closed

polygon surrounded by a finite number (^2) of segments and circular arcs.

A lune (biangle) and a triangle are also admitted as a euclidean 2-simplex.

Let F be a 2-dimensional orientable manifold. By 0-simplex q9 1-simplex

a and 2-simplex M on F we mean a pair of euclidean 0-simplex qe, 1-simplex ae

and 2-simplex Me respectively, and one-to-one bicontinuous mappings φ of qe,

ae and Me respectively into F. We shall write q = [qe, </>], a=[ae, φ~\ and M =

[M e , </>]. The images of qe

9 ae and Me under φ are called the carriers of q, a

and M respectively, and are denoted by \q\, \a\ and \M\ respectively; that is, φ(qe) =

\q\, φ(ae) = \a\ and φ(Me) = \M\. M is called a polygon on F, and the images of

the edges and vertices of Me are called edges and vertices of M. Each edge of

M is a 1-simplex and each vertex of M is a 0-simρlex, We say that a point p
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belongs to q9 a and M when p ε \q\, p^\a\ and p ε \M\ respectively.

Let us suppose that a collection K of polygons (2-simplices) is defined on F

such that each point p on F belongs to at least one polygon in K and such that

the following conditions (i), (ii), (iii) are satisfied:

(i) if p belongs to a polygon M of K but is not on an edge of M, then M is

the only polygon containing p and \M\ is a neighborhood of/?;

(ii) if p belongs to an edge a of a polygon M1'm K but is not a vertex of

Mί9 then there is exactly one other polygon M 2 in K such that \a\ c IMJ Π |M 2 | ,

M t and M 2 are the only polygons containing p, and \MX\ U |M 2 | is a neighborhood

of p;

(iii) if p is a vertex of Mί9 there is a finite number of polygons Mί9..., M κ (*c

^ 2), each having p as a vertex, such that each successive pair of polygons Mj9

MJ+ί O' = l,..., κ\ Mκ + 1=Mί) have at least one edge in common, Mί9...9Mκ

are the only polygons containing /?, and \Mι\ U ... U \MK\ forms a neighborhood

of p9 where it is permitted that some pair of polygons have two or more edges in

common. Then, K is called a polyangulation of F or a. polyhedron,1) and F on

which a polyangulation is defined, is called a polyαngulαted manifold. If each

polygon M of a polyhedron X is a quadrangle, then X is called a quadrangulation

of F or quadratic polyhedron, and F is called a quadrangulated manifold.

Let Ω be a compact bordered subregion of F whose boundary consists of

edges of K. Then the collection of polygons of K having their carriers in Ω is

called a compact bordered polyhedron. If F is closed (open resp.), then K is

said to be closed {open resp.).

Let K and L be two polyhedra. If every polygon of L is a polygon of K9

then L is called a subpolyhedron of X, X is said to contain L, and it is denoted

by LaK. Furthermore, if \L\ is a regular (canonical resp.) subregion of \K\

(see p. 26, p. 61 and p. 80 of [1] for the definition), then L is said to be regular

(canonical resp.).

Let a sequence of polyhedra {Kn}™=0 be an exhaustion of an open polyhedron

K. If each Kn is regular (canonical resp.), then {Kn}%=0 is said to be regular

(canonical resp.).

2. Homology. On a polyhedron we can define a homology in the same

manner as the case of a triangulated polyhedron. An ordered n-simplex (n=0,

1, 2) is defined in the similar way. An ordered n-simplex (n=0, 1, 2) is denoted

by the same notations q, α, M, etc. as an n-simplex. The orientation of simplices

induces an orientation of the manifold F.

For a fixed dimension n (n =0, 1, 2) a free Abelian group Cn(K) is defined by

the following conditions (i), (ii):

1) Throughout the present paper, the terminology "polyhedron" will be taken for this sense,
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(i) all ordered n-simplices are generators of Cn(K);

(ii) each element of Cn{K) can be represented by the form of finite sum

Σxjijy Σxjaj> ΣxjMj
j j j

for n =0, 1, 2 respectively, where Xj are integers. Each element of Cn(K) is called

an n-dimensional chain or an n-chaίn.

The boundary d of an n-simplex for n = 0 , 1 is also similarly defined. For

n = 2 , the boundary of a 2-simplex M is defined by

where aί9...9aκ are edges of M with the orientation induced by the orientation

of M. The boundary of a chain is defined by

for n = 0 , 1, 2, respectively. A 1-chain whose boundary is zero, is called a cycle.

Provided any confusion does not occur, for the present case of polyhedron

we shall use the same usual terminologies of homology (see Ch. I, § 4 of Ahlfors

& Sario [1] for the definition of terminologies).

3. Complex polyhedron. If two open or closed polyangulations K and

K* of a common manifold F satisfy the following conditions (i), (ii), then K* (K

resp.) is called the conjugate polyhedron of K (K* resp.):

(i) To each 0-simplex q (q* resp.) of K (K* resp.), there is exactly one 2-

simplex M* (M resp.) of K* (K resp.) such that | g | e | M * | ( | g * | e | M | resp.).

M*, M, q* and q are said to be conjugate to q, q*, M and M* respectively.

(ii) To each 1-simplex a (a* resp.) of K (K* resp.), there is exactly one 1-

simplex α* (a resp.) of K* (K resp.) such that \a\ intersects \a*\ at only one

point. If the oriented 1-simplex α* runs through the oriented 1-simplex a from

the right to the left, then a* ( — a resp.) is said to be conjugate to a (a* resp.).

Throughout the present paper, the notation α* will always express the conjugate

of a 1-simplex a. Thus a** =(α*)* = — a.

The pair of K and K* is called a complex polyangulatίon of F or complex

polyhedron, and is denoted by K= <K, K*>. A manifold F on which a com-

plex polyangulation is defined, is called a complex polyangulated manifold.

If F is open or closed, then K = <K, K*> is said to be open or closed respectively.

Let L be a compact bordered subpolyhedron of K and L* be the sum of polygons

of K* having their carriers in \L\. Let us suppose that L* is connected. Then

L* is the maximal compact bordered subpolyhedron of K* under the condition
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| L * | c | L | . The pair L=<L,L*> is called a compact bordered complex

polyhedron.

If each polygon of a complex polyhedron K is a 4n-angle (n: a positive in-

teger), then K is said to be latticed.

Let K=<K, K*> and L=<L,L*> be two complex polyhedra. If L

and L* are subpolyhedra of K and K* respectively, then L is called a complex

sub polyhedron of ϋC. Furthermore, if L is regular (canonical resp.), then L is

said to be regular (canonical resp.).

If {Kn= <Km K*>}™=1 is a sequence of complex subpolyhedra of an open

complex polyhedron K=<K, K*> such that {Kn}%=i defines an exhaustion of

K, then {Kn}™=1 is called an exhaustion of K. An exhaustion {Kn}™=ί such that

each Kn is regular (canonical resp.), is said to be regular (canonical resp.).

An n-simplex or an n-chain (n=0, 1, 2) is said to be in the interior of K =

<K, K * > , if its carrier is in the interior of \K\.

4. Homology on a complex polyhedron. By an n-chain X (n=0, 1, 2)

of K, we mean a formal sum X=Xt + X2 of an n-chain Xt of K and an n-chain

X2 of K*. Here we agree that if K is compact bordered then the conjugate 1-

simplex a* of each a^dK and its boundary da* are admitted as a generator of

C^K*) and that of C0(K*) respectively, and thus X2 is precisely an n-chain of

K* + {a*\a<=dK}. The boundary dX is defined by dX = d'XΛ+dX2. X is said

to be homologous to zero, denoted by X~0, if and only if X t ~ 0 and X2~0.

L e t Ίu Ίi be 1-chains of a complex polyhedron K = < K, K*>. We shall

define the intersection number γί xy2 of yί and γ2 as follows:

(i) if yx and y2

 a r e both in X or both in K*, then ^ x γ2 = 0 ;

(ii) if y ί is contained in X (X* resp.), and if y2 is contained in K* (K resp.),

then 7i-xy2 *s defined by the ordinary method;

(iii) for generic γt and γ2, yίxγ2=*γ'ίxy2' + y'ίxy2 (yt =yί + y'ύ Ίi

A system of cycles {An, Bn, A%, B*}^=ί(μ^ oo) on K satisfying the following

conditions (i), (ii) is called a canonical homology basis of K if K is closed and

a canonical homology basis of K modulo the border dK= <dK, ΘK*> or

the ideal boundary if K is compact bordered or open respectively:

(i) {An9 Bn} and {̂ 4*, 5*} are bases of cycles on K and K* respectively if

K is closed, and bases of cycles on K and K* respectively modulo the border

or the ideal boundary if K is compact bordered or open respectively;

(ii) AmxΆ* =Bm x 5 * =0, Am xB$ =A* x Bn=δmn where δmn is Kronecker's

symbol.

Let us suppose that K is compact bordered or open. Let γ be a finite or

infinite 1-chain on K (cf. p. 72 of [1]). If 3y=0, or dy is at most a collection

of 0-simplices of dK and 0-simplices whose carriers are outside of \K\, then γ is



A Finite-Difference Method on a Riemann Surface 283

called a relative cycle.

We can find a basis of dividing cycles {cn, c*};j=1(v?g oo) on K with a system

of relative cycles {dn, d*}v

n=ί as follows (cf. pp. 65-75 of Ahlfors & Sario [1]):

(i) {cn} and {c*} are bases of dividing cycles on K and K* respectively;

(ii) cmxd*=cZxdn = δmn.

The basis {cn, c* }*=1 is called a canonical homology basis of dividing cycles ofK,

and d* (dn resp.) is called a conjugate relative cycle of cw (cj resp.).

5. Complex cycles. Let a be an oriented 1-simplex of a complex polyhedron

K=<K, K*>. \a*\ is divided into two portions by the point p = | α | Π | α * | .

We divide α* into two 1-simplicies b and b' whose carriers are the portions of

a*\ lying on the right side and the left side of a respectively, b {bf resp.) is called

the conjugate right (left resp.) half 1-simplex of a.

Let q be a 0-simplex of K, and let a' and a" be two successive 1-simplices

such that q is the terminal and initial vertex of a' and a" respectively. Let M 1 ? . . . ,

Mκ (κ^£ 1) be the collection of 2-simplices of K having q as their common vertex

and lying on the left side of the chain a' + a" such that a' and a" are the edges

of Mx and Mκ respectively, and such that each successive pair Mj9 Mj+ί of

2-simplices has a common edge aj with the terminal vertex q, where if K = 1 then

a' and a" are the edges of the common 2-simplex Mί—Mκ, and {fl/}*=i=0.

Let b' and b" be the conjugate left half 1-simplices of a' and a" respectively,

and let q' and q" be the initial vertices of b' and 6" lying on a' and α" respectively.

We define a new 1-simplex b with db=q" — q' whose carrier is the union of the

portion of \a'\ between \q'\ and \q\, and the portion of \a"\ between \q\ and \q"\.

The 1-simplex b and the 0-simplex q are said to be dual each other with respect

to the 1-chain a' + a", and also the 0-simplex q' and the 1-simplex a' are said to

be dual each other. Furthermore we define a new 2-simplex M'* such that

Σ
7=1

The 2-simplex M'* is called the conjugate left half 2-simplex of q with respect

to the 1-chain a' Λ a".

Let y = Σιvj=iaj t>e a cycle on K such that α^ andα J + 1 have a common vertex

#7 as their terminal and initial vertices respectively where α v + 1 = α 1 . A generic

cycle can be expressed as a sum of such cycles γ. Let bj be the dual 1-simplex

of qj w. r. t. aj + aj+ί. Then the cycle

is called the dual cycle of y. A pair of 7 and 7* is called a complex cycle over 7

and is denoted by γ = < 7, 7* >.
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Now we restrict K=<K, K*> to be compact bordered. The (simple)

boundary dK=<dK, dK*> of K is defined by the sum of the 1-chains dK and

dK*. Next, by K*+ we denote the sum of all 2-simplices of K* and the conjugate

left half 2-simplices of all q<=dK with respect to dK. Then | K * + | = | X | .

By the dual cycle of the boundary dK we define the boundary dK*+ of K*+.

The sum of dK and dK*+ is called the complex boundary of K and denoted by

dK—<dK, dK*+>. Throughout the present paper we shall preserve these

notations.

6. Subdivision of a polyhedron. Let M be an arbitrary 2-simplex of a

polyhedron K and let aί9..., aκ be the edges of M denoted cyclically such that

daj = qj+1 — qj (qκ + ι = #i) . Then the sequence aί9...9 aκ is called a cyclic sequence

of edges of M. Let p and pj (j = l,..., K) be fixed interior points of \M\ and

\aj\ respectively. We define subdivision of M and new simplices as follows.

First, we define new O-simplices q and q? ( j = l,..., K) whose carriers are p and

Pj(j = l9 .., K). Each 0,(7 = 1,..., K) is subdivided into two 1 -simplicesaJί9 aj2

so that dajl=qθj — qj, daj2=qj+1 — q0j. New 1-simplices aj3 (7 = 1, . , K) are

defined as those with <9αj3 =q — q] whose carriers are arcs between pj and p, and

disjoint to each other except for the common point p respectively. And new

2-simplices Mj(j = l9...9 K) are defined as ones satisfying dMj = aj2 + αJ + 1 > 1 +
aj+i,3~aj3 (aκ + i,k = aik) We carry out this procedure for all 2-simplices M^K

so that if a 1-simplex a is a common edge of two 2-simplices Mί9 M 2 , then by

subdivision of M x and M2 a common subdivision of a is induced. Then we obtain

a new polyhedron K1 which is called the subdivision of iC. A subdivision Kx

of an arbitrary polyhedron K is always quadratic, but the conjugate polyhedron

K% of K1 is not quadratic provided either K or iC* is not so.

Let K=<K, K*> be a complex polyhedron, K^ be a subdivision of K and

K\ be the conjugate polyhedron of Kx. Then the complex polyhedron Kx =

< X 1 ? X * > is called the subdivision of K, where we should note that K* is not

a subdivision of K*.

7. Normal coordinates. Let K be a quadratic polyhedron and M =

[M e, φ~\ be an arbitrary 2-simplex of K. We can choose the mapping φ so that

Me is a square. Let Pί9 P 2 , P 3 , P 4 be the vertices of Me successively denoted

anti-clockwise and let (xj9 jy) 0 = 1,..., 4) be the cartesian coordinates of P}.

Let P = ( x , y) be a point of M e . The point P = ( x , y) is said to have the

normal coordinates (μu μ2, μ3, μ4) if μ^0(^ = 1,...,4),μi+μ2 = I,μ 3 + μ4 = 1 and

Obviously, the points P 1 ? P 2 , P 3 , P 4 have the normal coordinates (1, 0, 1, 0),
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(0, 1, 1, 0), (0, 1, 0, 1), (1, 0, 0, 1) respectively. And a point P on the edges

PίP2, P2P3, P3P4, P4Pι has the normal coordinates (μl9 μ2, 1, 0), (0, 1, μ3, μ4),

(μί9 μ2, 0, 1), (1, 0, μ3, μ4) respectively. Then the pairs (μί9 μ2), (μ3, μ4), (μ l 5 μ2\

(μ3, μ4) respectively are called normal coordinates of the point P on the edges

PtP2, P2P3, P3P4, P4.P1 respectively (induced by the normal coordinates of Me).

The normal coordinates of a point of Me are invariant by an affine transformation.

Let M = [M e , φ~] be a 2-simplex of K with normal coordinates assigned on

Me. Then we can assign the normal coordinates to each point p of M by giving

the normal coordinates of φ~1(p)^Me to the point p.

A point of M having the normal coordinates (1/2, 1/2, 1/2, 1/2) is called a

middle point of M. The set of points having normal coordinates (1/2, 1/2, μ3,

μ4) and the set of points having normal coordinates (μl9 μl9 1/2, 1/2) respectively

are called median lines of M. A point of an edge a of M having the normal

coordinates (1/2, 1/2) is called a middle point of a.

By the method analogous to the case of normal coordinates of triangulation,

we can prove that for the collection {M = [Me, φ~\) of 2-simplices of a quadran-

gulation K, a set of mappings φ can be so chosen that for each 1-simplex a which

is a common edge of two 2-simplices Mί9 M 2 , the normal coordinates of each point

on a induced by M1 and M2 respectively are the same (for the case of triangulation,

e.g. cf. Theorem 5-7 of Springer [16]). A set of normal coordinates chosen

in this way is called normal coordinates of K. A quadratic polyhedron K to

which such normal coordinates are assigned, is said to be normal.

Let K=<K, K*> be a complex polyhedron such that K is a normal quad-

ratic polyhedron. If for the conjugate q* of each 2-simplex M^K, \q*\ is the

middle point of M, and if for each 1-simplex a^K which is a common edge of

two 2-simplices Ml9 M2, \a*\ lies on the median lines of M1 and M 2 , then K*

and K are called a normal conjugate polyhedron of K and a normal complex

polyhedron respectively.

Let K be a normal quadratic polyhedron. If a subdivision Ki of K satisfies

the following conditions (i), (ii), then K1 is called a normal subdivision of K:

(i) for each 0-simplex q^Ku q is a 0-simplex of K, or \q\ is a middle point

of a 2-simplex M G K or a 1-simplex a<EK;

(ii) for each 1-simplex a^Ku a is a subdivision of a 1-simplex of K, or

|α| lies on a median line of a 2-simplex

8. A Riemann surface based on a normal quadrangulation. Let F be

a quadrangulated manifold on which a normal quadrangulation X is defined.

Then we can define an analytic structure of F and make F into a Riemann surface

by the following procedure (i), (ii), (iii) (in the case of triangulation, cf. pp. 113-114

of Springer [16]).

(i) We fix a square Me on E2 and map each 2-simρlex M e X onto the



286 Hisao MIZUMOTO

square Me preserving the normal coordinates of M. By these mappings, a local

uniformizing parameter in a neighborhood of each point in the interior of each

2-simplex of K is defined.

(ii) If a point p lies on an edge of a 2-simplex MίG:K and p is not any

vertex of Mί9 then there exists another 2-simplex M 2 e X which also has p on

its edge. Then we map \M1 U \M2\ onto a union of two adjacent squares M\,

Mf preserving the normal coordinates of Mί and M 2 . The point p is mapped

into a point P^M\f\ Mf. By this mapping, a local uniformizing parameter

in a neighborhood of ]? is defined. This local uniformizing parameter is an

analytic function of the local uniformizing parameter of Mί or M2 defined in (i).

(iii) Let a point p be a vertex at which v 2-simplices Mu .., Mv of K meet.

For each j ( j = l,..., v), we map M7 , preserving the normal coordinates of Mj9

onto a square Mj in £2(z-plane) whose vertex corresponding to p is at the origin

and whose edge corresponding to IM^ . J Π \Mj\ is in common with M}_ 1 ? where

for 7 = 1 the latter condition for the edge is omitted. Then the image of the chain

of M\, .., M% by the mapping ζ = z 4 / v forms a neighborhood of the origin in the

ί-plane. A local uniformizing parameter about p is defined by the coordinates

of corresponding points in the £-plane. This local uniformizing parameter is

an analytic function of the local uniformizing parameter defined in (i) or (ii).

The Riemann surface W constructed by the above procedure (i), (ii), (iii) is

called a Riemann surface based on a normal quadrangulation K.

9. Normal quadrangulation by a quadratic differential. Let W be an open

or closed Riemann surface. By a quadratic differential on W we mean a dif-

ferential Ψ satisfying the following conditions (i), (ii):

(i) To each local uniformizing parameter z of W9 a meromorphic function

Q(z) is assigned

(ii) By a transformation ζ = ζ(z) of local uniformizing parameters, the

meromorphic function Q(z) assigned to z is transformed to a meromorphic func-

tion Qι(ζ) assigned to ζ under the condition:

Then the quadratic differential is expressed by the symbol Ψ = Q(z)dz2.

If for a local uniformizing parameter z about a point p Q(z) has a zero or

a pole of order k at the point corresponding to p, then the point p is called a zero

or a pole of order k of the quadratic differential Ψ = Q(z)dz2 respectively. Zeros

and poles of Ψ are called the critical points of Ψ, zeros and simple poles of Ψ

are called finite critical points, and poles of order at least two are called infinite

critical points. For the properties of quadratic differentials and especially of

their critical points, we can refer to the chapter three of Jenkins [9].
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Let Ψ = Q(z)dz2 be a quadratic differential on a Riemann surface W and

p0 be a fixed point of W being a regular or finite critical point of Ψ. We suppose

that there exist a subregion Ω of W and a quadrangulation K of Ω satisfying the

following conditions ( i) ~ (v):

(i) the point p0 is the carrier of some 0-simplex qo^K;

(ii) the carrier \q\ of each 0-simplex q^K is a regular or finite critical

point of Ψ;

(iii) the carrier \a\ of each 1-simplex a^K lies on a trajectory or an ortho-

gonal trajectory of Ψ, no interior point of |α| is a critical point of Ψ9 and on taking

a as an oriented curve

It = 1;

(iv) no interior point of the carrier \M\ of each 2-simplex M e K is a critical

point of Ψ;

(v) each component of the relative boundary dΩ of Ω is either a carrier

of a finite or infinite 1-chain of K if it is a continuum, or an infinite critical point

of Ψ if it is a point. As the mapping function φ'1 of each 2-simplex M = [Mβ,

C, we can adopt the function

zo

where z is a local uniformizing parameter of /?G \M\ and z 0 is a fixed point of the

local uniformizing parameter. Then, by the conditions (iii) and (iv), Me is a unit

square, and thus by the set of the functions φ we can introduce normal coordinates

to K. The normal quadrangulation K of the subregion Ω is called a normal

quadrangulation (with the original vertex p0) of a subregion Ω by a quadratic

differential Ψ, and denoted by K=K(Ω, Ψ, po) = K(Ω, Ψ). The subregion Ω

is said to be normally quadrangulable by Ψ for the original vertex p0. The

normal quadrangulation K(Ω, Ψ, p0) is uniquely determined by Ω, Ψ and p0

provided it exists.

Let W be the Riemann surface based on a normal quadrangulation K such

that each polygon of its conjugate polyhedron K* is 2n-angle (n: a positive

integer). Then we can easily find a quadratic differential Ψ on W such that K

is the normal quadrangulation of Why Ψ, i.e. K=K(W, Ψ).

10. Exhaustion of a Riemann surface by a sequence of normal subdivisions.

Let W be an open or closed Riemann surface. We fix an original vertex p0 in

the following. If there exists the maximal normal quadrangulation K(Ω0, Ψ)

among all normal quadrangulations by a quadratic differential Ψ which contain

a fixed K(Ω, Ψ), then K(Ωθ9 Ψ) is said to be relatively maximal (with respect
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to K(Q, Ψ)).

If {Ωn}™=0 is an increasing sequence of subregions of W, and each Ωn (n =

0, 1,...) is normally quadrangulable by the quadratic differential 4nΨ respectively,

then the sequence of normal quadrangulations {Kn=K(Ωn9 4nΨ)}™=0 is called

an increasing sequence of normal subdivisions by Ψ. Here we should note

that X(βB_i, 4nΨ) is a normal subdivision of K(Ωn_l9 4n~ιΨ). If each Kn is

relatively maximal, then {Kn}%=0 is said to be relatively maximal. Now let

us suppose that W is open. If the sequence {Ωn}™=0 is an exhaustion of W, then

the sequence of normal subdivisions {Xn}jL0 is said to define an exhaustion

of W. Furthermore if each Kn is regular (canonical resp.), then the exhaustion

{Kn}™=0 is said to be regular (canonical resp.). If {Kn}%=0 defines an exhaustion

of W9 then we can always find a regular or canonical exhaustion {K'n}™=0 of

Wsuch that K'ncKn for every n.

11. Normal quadrangulation by the differential of a meromorphic function

Let / be a meromorphic function on an open or closed Riemann surface W. As

a quadratic differential Ψ in 9 and 10, we can adopt the quadratic differential

off

and the logarithmic quadratic differential of f

where z is a local uniformizing parameter and N is a positive integer.

Let K=K(Ω9 df2

9 p0) and K'=K(Ω'9 dLf2

9 p0) be the normal quadrangula-

tions by the quadratic differential of / and the logarithmic quadratic differential

of/respectively. Then the image of each 0-simplex q^K by / i s a lattice point

of the type w = wo + m + in (m, n: integers; wo=/(/?o)) and the image of each

1-simplex a^K by/lies on a straight line Rew = Rewo + m or I m w = I m w o + n.

The image of each 0-simplex q e K' by / is a lattice point of the type

, 1τιn

(m, n: integers w0 =f(p0))

and the image of each 1-simρlex a&K' by/lies on a circle \w\ =|wo|exp(2πm/iV)

or a ray arg w=argw o + 2πn/J/V.

Let K* and K'* be the conjugate polyhedra of the K and the Kr respectively.

Then we know that the complex polyhedra K= <K9 K*> and K' = <K'9 K'*>
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are latticed.

We can easily see that there always exists the relatively maximal with respect

to each normal quadrangulation by the differential df2 or the logarithmic dif-

ferential άLf2.

LEMMA 1.1 Let {Kn}™=0 be a relatively maximal sequence of normal

subdivisions by the quadratic differential df2 or the logarithmic quadratic

differential dLf2 of a meromorphic function f let e be the set of critical points

of df2 or dLf2 respectively outside \Kn\ for all n, and let W' — W—e. Then

there exists a canonical exhaustion {K'n}™=0 of W such that K'n<zKn for every n.

PROOF. We shall prove the lemma in the case of the differential df2. The

proof in the case of dLf2 is quite similar.

We can put Kn=K(Ωn, 4ndf2) (n=0, 1,...). Let p' be an arbitrary regular

point of df2 in W and let p t b e a fixed regular point of df2 in Ωo. We can

connect p' to pγ by a smooth curve y in W so that each point of y is a regular

point of df2. Then there exists a positive number r > 0 such that for the r-

neighborhood Gr of γ measured by / (i.e. Gr is the connected component contain-

ing γ of {p\ \f(p)—f(p")\<r> P^W, Pf/ ^y})> each point of Gr is a regular point

of df2. Then for all sufficiently large n, there exists a 2-chain Xn of the normal

quadrangulation by 4ndf2 such that y c \Xn\ c Gr, thus Xnc Kn and thus p'^Ωn =

\Kn\9 for each Kn is relatively maximal. Hence we see that | i£π_i| c \Kn\ for every

n and UJLol^J = W'. Then we can easily find a canonical exhaustion {Kβ™=0

of W such that K'n<zKn for every n.

§ 2. Differences on a polyhedron.

1. Difference calculus. Let K=<K, K*> be an arbitrary complex poly-

hedron.

By a function on K we mean the complex valued function / on the set of

oriented O-simplices of K such that / has a value f(q) =fq for each oriented 0-

simplex q and f(-q) = -f(q).

By a first order difference or 1-difference ω on K we mean the complex

valued function ω on the set of oriented 1-simplices of K such that ω has a value

ω(a) — ωa for each oriented 1-simplex a and ω( — a)=—ω(a).

By a second order difference or 2-difference Ω on K we mean the complex

valued function Ώ on the set of oriented 2-simplices of K such that Ω has a value

Ω(M) = ΩM for each oriented 2-simρlex M and Ω(-M) = -Ω(M).

For the conformity, a function on K is called a zero order difference or

0-difference.

We assume that differences of arbitrary order satisfy the linearity condition,

e.g. for two first order differences ωί9 ω2
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(cίωι + c2ω2)(a) = c1 -ω^ά) + c2-ω2(a)

(cl9 c2: complex constants).

A multiplication of a 1-difference ω with a function/is defined as a 1-difference

satisfying the condition

fω(a) = ωf(a) = — (fί +f2)ωa for each 1-simplex a eK,

where fj=f(qj) 0 = 1, 2) and da*=q2 — qί. A multiplication of a 2-difference Ω

with a function/is defined as a 2-difference satisfying the condition

fΩ(M) =fqΩM for each 2-simplex M ε K ,

where g is the conjugate of M.

The complex conjugate ώ of a 1-difference ω is defined by α>(α)=ω(α).

The difference of a function f is defined as a 1-difference ω=Af satisfying

the condition

Af(a)=f2—fi for each 1-simplex a

where fj=f(qj) (7 = 1, 2) and da=q2 — qί. If for a 1-difference ω there exists

a function / such that ω=Af, then ω is said to be exact. The difference of

a 1-difference ω is defined as a 2-difference Ω—Aω satisfying the condition

K

Aω(M) = 2 ω7 for each 2-simplex M e ΛL,

where ω7 =ω(α 7 ) ( j = l,..., TC) and δM = 2 j = i β j If ^ ω = 0 , then ω is said to be

closed. Obviously, if ω is exact, then ω is closed.

The exterior product of two 1-differences ωί9 ω2 is defined as a 2-difference

Ω=ω1ω2 satisfying the condition

1 κ

ωίω2(M)= —~^r Σ ωι(a*)ωi(aj) f°r e a c n 2-simplex MeϋC,

where dM = Σ"j=1aj. We can easily verify that the partial difference formula

(2.1) A(fω)=(Af)ω+fAω

holds.

2. Summation of differences. We can define the sum of an n-difference

(n=0, 1,2) over an n-chain. Let A = Σ*/<?/> 7 = Σ χ Λ a n d X = ̂ 1xjMj be a

0-chain, a 1-chain and a 2-chain respectively of a complex polyhedron K. The

sum of ^-difference /, ^difference ω and 2-difference Ω over λ9 y and X res-

pectively are defined by
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and

respectively. The basic duality between a chain and a difference

(2.2) § Aω=§ ω
ux & dx

is obvious, where X is a 2-chain and ω is a 1-difference. The formula for partial

summation

(2.3) %{Λf)ω=% fω-% fήω

follows from (2.1) and (2.2).

The following two criteria are also obvious :

A 1-difference ω is exact if and only if \ ω = 0 for every cycle γ;
u y

A 1-difference ω is closed if and only if 5 ω = 0 for every cycle γ that is
y

homologous to 0.

If ω is closed, then the period of ω along a cycle γ is defined by S ω, which
v

depends only on the homology class of γ.

Now we shall define the sum of 2-difference over a complex polyhedron

ϋΓ= < K , K* >. If ϋC is compact bordered or closed, then the sum of a 2-differ-

ence Ω over K

is defined as the sum of Ω over the 2-chain K because K is itself a 2-chain. If

K is open, then we can set

(2.4) Λ β = l i m § Ω

provided that the limit exists, where X is a 2-chain of K such that XczK. Let

us define \Ω\ by \Ω\(M) = \Ω(M)\ for each M ε t Then (2.4) exists if and only

if the limit

(2.5)

is finite.
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3. Conjugate differences. Let ω be a 1-difference on a complex polyhedron

K. Then the conjugate difference ω* of ω is defined as a 1-difference satisfying

the condition

ω*(a*)=ω(a) for each 1-simplex α e K .

Then we can easily see that

(2.6) ω** = - ω ,

(2.7) ω?ωf = — ω2coί.

A 1-difference ω is said to be harmonic if ω and ω* are both closed. By

(2.6) and the definition, ω and ω* are simultaneously harmonic. Let u be a

function on K. u is called a harmonic function on K if the difference ΛM is

harmonic, u is harmonic on K if and only if

for each 0-simplex q0 in the interior of K, where Uj=u{qj) ( ;=0, . . . , /c), dα, =

qj — qo C/ = l>•••> Ό and α^ (j = l,..., K) are all 1-simplices having g 0 as a vertex.

A 1-difference φ is said to be pure if φ* = — ϊφ. Thus a difference φ is pure

if and only if Φa* = iφa f ° r every α e t A difference φ is said to be analytic

if it is closed and pure. A function/on K is said to be analytic if the difference

Δf is analytic. If a difference ω is harmonic, then ω + ΐω* is analytic. The

complex conjugate φ of an analytic difference φ is said to be antianalytic.

Every harmonic difference can be uniquely written as the sum of an analytic

difference and an antianalytic difference.

§ 3. The Hubert space of differences.

1. The inner product. Let ωu ω2 be two 1-differences on a complex

polyhedron K=<K, K*>. We shall define the inner product (ωu ω 2) =

(ωί9 co2)κ of coί and ω2. If K is closed, then it is defined by

(3.1) (ωί9 2 ) κ Σ
aeK

If K is compact bordered, then it is defined by

(3.2) (ωlf ω2)κ= Σ ( X i ^ ) Σ (

aeK-dK £ aedK

where ω^ω^a), etc. If K is open, then it is defined by the limit process

(3.3) (ωl9 ω 2) J ί : = l im(ω 1 , ω2)L,
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provided that the limit exists, where L = <L, L* > is a compact bordered complex
polyhedron such that l e t In the definition of inner product (ωί9 ω2) we agree
that for the sense-reversed — K of K

(ωu ω2)-κ = -(ωί9 ω2)κ.

If K is closed or open, then we can see that

(3.4) ( ω l f

If IJL is compact bordered, then we can similarly see that

(3.5) (ωlf ω2)*=§ ω^J + I Σ ^ Σ/

By the definitions (3.1), (3.2) and (3.3), for every case of K we have that

(3.6) (ω2, ωx)=(ωu ω2),

(3.7) (ω?,ω5)=(α>1,ω2).

Let ω be a 1-difference on a complex polyhedron K. Then the norm \\ω\\ =
| |ω| | f of ω is defined by

(3.8) IM|*=(ω,ω)i/2.

Let us denote the Hubert space of all 1-differences ω on K with ||ω||<oo by
Γ=Γ(K). Furthermore, we define the closed subspaces of Γ as follows:

Γc = {ω| ω is closed, ω e Γ } ,

Λr^^l ω is exact, ω ε Γ } ,

ΓΛ = {ω| ω is harmonic,

Γaτ=ί{Φ\ Φ i s analytic,

ΓΛ*={ω*|

Then it is obvious that Γ%=Γh, Γ β cΓ c , ΓΛ=JΠcnΓ* and Γa<zΓh.
Because of Schwarz's inequality

the inner product (ωί9 ω2) for any pair ωl9 ω 2 e Γ always exists.
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2. Green's formula. Let γ=<y, y*> be a complex cycle on a complex

polyhedron K=<K9 K*>. Let / and ω be a function and a 1-diίference on

K respectively. We shall define/and ω on γ*.

Let q be an arbitrary 0-simplex of γ*9 let a be the dual 1-simplex of q and

let da*=q1 — qx. Then we define the value of f at q^y* by

(3.9) f(q) =

Let b be an arbitrary 1-simplex of y*, let q be the dual 0-simplex of b, let M'*

be the conjugate left half 2-simplex of q w. r. t. y and let

Σ

with the notations defined in § 1. 5. Then we define the value of ω along b e y * by

(3.10) { 1 |{ Σ 5
λ j=ι

with the notations a', a" defined in § 1. 5.

The multiplication of ω with / on γ is defined by

(3.11) fω(a) =/βωα for each 1-simplex α

where q is the dual 0-simplex of a.

LEMMA 3.1. (Green's formula.) // K is compact bordered or closed,

then we have

(3.12) (4Λ ω ) *

where dK is the complex boundary of K, and if K is closed then the first term

of the right side vanishes.

PROOF. By (3.5), (2.3) we have
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where fj=f{qJ) (y = l, 2) and da*=q2-qι. By the definitions (3.10),(3.11) and
simple calculation we find that

t f Σ J ι a Σ
fiK*+ aedK* aedK

Hence we obtain the present lemma.

By (3.12) the equation

(3.13)

holds for a pair of functions /, g on K.
In Courant-Friedrichs-Lewy [4], Blanc [3] and Mizumoto [12], we can

find some different types of Green's formulas for discrete functions. In the
present paper we shall find that the present Green formula constructed on a
complex polyhedron is very convenient.

3. Orthogonal projection on a compact polyhedron. In 3 — 7, we shall

briefly state the method of orthogonal projection of the Hubert space of differences
which is analogous to the case of differentials (cf. Ch. V of Ahlfors & Sario [1]).

Let K be a closed complex polyhedron. By (3.6), (3.7), (3.12), we have

for a function / and a 1-difference ω on K. Hence Aω=0 implies (ω, 4/*)=0.
Conversely, if

holds for all functions / on K, then we have Aω=0 on K. Hence on a closed
complex polyhedron K, Γc (and Γ*) is the orthogonal complement of Γ* (and
Γe resp.). Then by the general theory, we have the orthogonal decompositions

(3.14) Γ=

and hence we have immediately the orthogonal decomposition

A 1-difference ω on a complex polyhedron K is said to vanish along a 1-
chain γ if ω(a)=0 for every 1-simplex αεy.

Let K be a compact bordered complex polyhedron. A closed 1-difference
ω on K is said to belong to the subspace Γc0(K) if ω =0 along the complex bound-
ary dK. Similarly ω=^/ i s said to belong to the subspace Γe0(K) if / = 0 on
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the complex boundary dK. By making use of (3.12) and the similar argument

to the case of (3.14), on a compact bordered complex polyhedron K we have the

orthogonal decompositions

(3.15) Γ=

(3.16) Γ=

and hence we have immediately the orthogonal decomposition

Γ=Γh+Γe0

A 1-difference ω on a compact bordered complex polyhedron K is said to

be semiexact if ω is closed and its period along each contour of K and X* vanishes.

The subspaces Γse and Γ*e of Γ are defined by Γse = {ω\ ω is semiexact, ω E ί }

and Γ*e = {ω*\ ω&Γse}. Then we have the orthogonal decompositions

(3.17) r=rc0 n re+r*e=(rc0 n reγ+r5β.

4. Orthogonal projection on a generic polyhedron. Let us suppose that

K is an open or closed complex polyhedron. A 1-difference ω (a function /resp.)

on K is said to have compact support if ω(α)=0 for all 1-simplices α £ K ( / ( ^ ) = 0

for all O-simplices q e K resp.) except for a finite number of 1-simplices (O-simplices

resp.) of K.

Let Γ'eQ be the subclass of Γe consisting of the 1-differences ω such thatω =

Δf for a function / with compact support. We define the subspace Γe0 of Γ as

the closure in Γ of Γ'e0. The subspace Γc0 is defined as the orthogonal comple-

ment of Γ*. From the definitions it follows that Γe0 =Γe and Γc0 =ΓC for a closed

complex polyhedron K.

On an arbitrary complex polyhedron K we have the following orthogonal

decompositions:

(3.18) Γ=Γe+Γ*0=Γ*+Γc0,

(3.19) Γ=ΓM+Γ*=Γ*O+ΓC,

(3.20) r=Γh

(3.21) Γ c = Γ Λ + r e 0 ,

(3.22) Γe=Γhe+Γe0,

(3.23) Γ c o =

(3.24) / ^

where Γhf=ΓhnΓ, and Γ A 0 = Γ » n Γ f 0 .
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If ωt and ω2 are two 1-differences such that ω1 — α ) 2 G ί e 0 , then ωt is said to

have the same boundary behavior and the same periodicity as ω2. The decom-

positions (3.21), (3.22) and (3.23) assure that for any difference τ of Γc9 Γe or Γ c 0

there exists the difference ω of ΓΛ, Γhe or Γh0 respectively with the same boundary

behavior and the same periodicity as τ.

5. The double of a polyhedron. Let K = <K, K* > be a compact bordered

complex polyhedron. Let P be the double of the manifold F = \K\ and let j be

the involutory mapping of P onto itself (cf. pp. 26-27 & p. 290 of Ahlfors &

Sario [1] for the definition). We can always define a polyangulation £ of P and

its conjugate polyhedron j£* satisfying the following conditions (i), (ii), (iii):

(i) Each ^-simplex (« = 0, 1, 2) of K (K* resp.) and its image by the

mapping j are n-simplices of fc ( £ * resp.);

(ii) For each 0-simρlex q and each 1-simplex a of dK9 there exist a 2-simplex

M* and a 1-simplex α* of £ * which are the conjugates of q and a respectively and

which are mapped onto themselves but sense-reversed by the involutory mapping

jl

(iii) The collection of n-simplices of £ defined in (i) ( £ * defined in(i), (ii)

resp.) forms the whole class of n-simplices of j£ ( £ * resp.).

£ and R* are called the doubles of K and K* respectively, and K=<&,

&* > is called the double of K = <K, K* >. £ , &* and K are closed.

.A.

6. Schottky differences. With each 1-difference ω on a double K we can

associate a new difference ω~ by

ω~0'(α))=ω(α) for each 1-simplex

We can easily verify the in variance of exterior product:
ys.

ωΓω2(-~J(M))=ω 1ω 2(M) for each 2-simρlex M e K ,

and

ω*~ = — ω~*.

We shall say that ω is et en if G>~ =ω, and odd if ω~ = — ω. If ω is even, then

ω* is odd. If ω is closed and odd then ω vanishes along the complex boundary

dK=<dK, dK*+>, for it follows immediately for dK and from the definition

(3.10) for dK*+.
A.

Any 1-difference ω o n K c a n be uniquely decomposed into ω =ωί + ω% where

ωx and ω2 are even. If ω e Γh(K)9 then we can immediately see that in the decom-

position ω = ω 1 + ω5, ω f e Γ Λ 0 ( K ) and ωί^Γ%0(K). Furthermore we can

immediately see that the whole class of differences on K which have a harmonic

extension to K is given by the direct sum ΓΛ 0(K) + ΓJ 0 (K). Such differences
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will be called Schottky differences.

Let K be an open complex polyhedron. The following lemma is proved by

the orthogonal projection method.

LEMMA 3.2. ω^Γh0(K) if and only if for every ε > 0 and every finite 2-

chain XaK there exist a regular complex sub polyhedron Ko of K and ω o e

Γh0(K) such that XaK0 and \\ω — ωo\\Ko<ε.

A 1-difference ω on an open complex polyhedron K is called a Schottky

difference on K if for every s > 0 and every finite 2-chain X<zK there exist a

regular complex subpolyhedron Ko of K and ω o eΓ Λ O (K o )4-/"l o (K o ) such that

XcKQ and ||α> — co0\\Ko<ε. The class of all Schottky differences on K is denot-

ed by ΓS=ΓS(K). The following representation is obtained:

(3.25) Γs=C\(Γho + Γ*hOl

where by Cl we denote the closure.

7. Harmonic measures. Let K be a compact bordered complex polyhed-

ron. Then the space of harmonic measures Γhm is defined by Γhm=Γh0Γ\Γhe.

By (3.17), Γh=Γhse + Γΐm, where Γhse=ΓhnΓse.

Next, let K be an open complex polyhedron. A 1-difference ω&Γ(K) is

said to be semiexact if ω is closed and X ω = 0 for every dividing cycle γ on K.
y

The space of all semiexact harmonic differences on K is denoted by Γhse=Γhse(K).

The space of harmonic measures Γhm=Γhm(K) is defined as follows: ω e Γ Λ m if

and only if for every ε > 0 and every finite 2-chain XcK there exist a canonical

complex subpolyhedron Ko of K and harmonic measure ω 0 e Γhm(K0) such that

XaK0 and ||ω — ω o | | j ε- o<ε. By the orthogonal projection method, the following

orthogonal decomposition is proved:

(3.26) Γh =Γ
hse

§ 4. Singularities and periods.

1. Singularities. Let K=<K, K*> be a complex polyhedron. Let

{qn}
v

n=ί (v<; oo) be an arbitrary collection of O-simplices in the interior of K and

M* (n = l,..., v) be the conjugate 2-simplex of qn respectively. Let Θ be a 1-

difference on K. If Θ is closed on K— Σϋ=iMJ, then <9 is called the closed

difference with the closed singularities qn (n = l,..., v) and

is called the singular part of the closed difference Θ at qn respectively. Two
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closed differences Θt and Θ2 with singularities at a 0-simplex q are said to define

the same singularity at q if P(Θ1, q)=P(Θ2, q).

If both differences Θ and (9* are closed on K— ΣJUiAf*, then (9 is called the

harmonic difference with the harmonic singularities qn(n=A,...,v)9 and

and P(Θ*,qn)=% jθ ( n = l , . . . , v )
^ dMndM

are called the singular and the conjugate singular parts of the harmonic differ-

ence Θ at qn respectively. Two harmonic differences Θ1 and Θ2 with singularities

at a 0-simplex q are said to define the same singularity at q if P(Θί9 q)=P(Θ2,

q) and P(Θ%, q)=P(Θ2

<

f q). We agree that a harmonic difference Θt and a

closed difference <92 with a singularity at g are said to define the same singularity

at q if P(ΘU q)=P(θ2, q) and P(<9f, g)=0.

If Θ is closed on K— Σl=ΐM* and pure on K, then 6) is called the analytic

difference with the analytic singularities qn (n = l, . . . ,v) and

is called the residue of Θ at qn respectively. Two analytic differences Θx and

Θ2 with singularities at a 0-simplex q are said to define the same singularity at q

if Res(Θl9 q) = Res(Θ2, q). A harmonic difference Θ with a harmonic singu-

larity q is said to be with an analytic singularity q if

and in this case the residue Res(<9, q) can be also defined.

2. The existence of singular differences.

THEOREM 4.1. Let Θ be a closed difference of Γ(K) with a finite number

of singularities {qn}
v

n=i (v< oo). Then there exists a unique harmonic difference

τ with the same singularities as Θ at qn (n = l,..., v), with the same boundary

behavior and the same periodicity as Θ.

PROOF. The uniqueness is clear by (3.21).

By the orthogonal decomposition (3.20) we have the expression

or

(4.1) Θ-ωe0=ωh + ω*09

where ωh&Γh, ωe0^Γe0 and ω * o e Γ * o , and ω* 0 need not be the conjugate of
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ωe0. The left-hand side of (4.1) is a closed difference with the same singularities

as Θ at every qn (w = l,..., v) and the conjugate of the right-hand side is closed

everywhere on K. Hence τ = Θ-ωe0 is the desired difference.

COROLLARY 4.1. (Cf. Blanc [2], [3].) Under the same assumption as

Theorem 4.1 there exists a unique harmonic difference σ with the harmonic

singularities qn (n = l,..., v) with the conjugate singular parts

P{σ*,qn)=P(Θ,qn) (n = l,...,v)

such that σ £ ί e 0 ( K ) .

PROOF. The uniqueness is clear.

For the difference τ of Theorem 4.1 we note that τt = — τ * ε ί c and

P(τ*l9qn)=P(τ9qn)=P(Θ,qn) (n = l,..., v).

By the orthogonal decomposition (3.21), we have

τί=ωh + ωe0 (ωheΓh, ωe0e= Γe0).

σ=ωe0 satisfies the condition of the corollary.

COROLLARY 4.2. Under the same assumption as Theorem 4.1 there exists

a unique harmonic difference χ with the analytic singularities qn (n = l,...,v)

with the residues

Res(χ, ί w ) = - L p ( e , qm) (#i=l, . . . , v)

such that χ-Θ^Γe0(K).

PROOF, χ = — iσ + τ is the desired one, where τ, σ are the differences of Theo-

rem 4.1 and Corollary 4.1 respectively.

Let a be an oriented 1-simplex of K, and qt and q2 be the 0-simplices with

da=q2 — qι- We define the singular difference Θa associated to 1-simplex a

by the condition

Θa(a') = 0 for every 1-simplex a' ±? ± a*.

Θa is a closed difference of Γ(K) with the singularities qγ and q2 with the singular

parts P(Θa, qt) = — 1 and P(Θa, q2) = 1 provided qx and q2 are in the interior of K.

Let γ be an arbitrary 1-chain in the interior of K. We can write as γ = Σ ί = i

Xjdj (aji a 1-simρlex, Xji an integer) and then define the singular difference

Θγ associated to γ by
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Let qx and q2 be an arbitrary pair of 0-simplices in the interior of K (and K*).

Then there exists a 1-chain γ such that dy=q2 — q1 and the singular difference

Θy associated to γ gives the closed difference of Γ(K) with the singularities qγ

and q2 with P(<9y, ^ ^ = - 1 and P(Θy, q2) = l.

The following lemma is easily verified.

LEMMA 4.1. Let {<?„}£= i and {<Zπ}n=μ+i be arbitrary finite collections of 0-

simplices of K and K* respectively being in the interior ofK, and απ (n = l,..., v)

be real or complex numbers. A necessary and sufficient condition in order

that there exists a closed difference Θ of Γ(K) with singularities qn (n = l,..., v)

with P(Θ, qn)=an which vanishes along dK if K is compact bordered and

which is identically zero outside of a finite chain if K is open or closed, is

(4.2) Σ X = 0 and £ α*=0.
π = l n=μ+ί

The difference Θ of Lemma 4.1 is said to have a vanishing singular part

sum if it satisfies (4.2).

COROLLARY 4.3. Let Θ be the difference with a vanishing singular part

sum which exists by Lemma 4.1. Then, we obtain the following (i), (ii), (iii):

(i) there exists a unique harmonic difference σ with the singularities

qn (n = l,...,v) with the conjugate singular parts

such that σeΓe0(K);

(ii) there exists a unique harmonic difference τ with the same singulari-

ties at qn(n = l,..., v) as Θ such thatτ-Θ^Γe0;

(iii) there exists a unique harmonic difference χ with the analytic singu-

larities at qn (n = l,..., v) with the residues Res(χ, qn)=ocj(2πi) such that χ—Θ

3. Chains and differences. Let ql9 q2 be two 0-simplices of K (and X*)

in the interior of K, γ be a 1-chain like dy=q2 — q1 and Θy be the singular differ-

ence associated to γ. By (iii) of Corollary 4.3, there exists a unique harmonic differ-

ence χy with the analytic singularities at qu q2 with Res(χy, qn)=P(Θy, qn)/(2πi)

(n = 1, 2) such that χy — Θy& Γe0. Noting the definition in § 1. 4, we can immedi-

ately verify that the period of Θy (or χy) along any cycle y' on K—{qu q2} is

equal to yxy';

(4.3)
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The periods of χy depend only on the homology class of y (for fixed qί9 q2) and

if γ' ~γ then χy' =χy.

Let γ be an arbitrary finite chain in the interior of K and Θy be the singular

difference associated to γ. Let χγ be the unique harmonic difference, constructed

in Corollary 4.2, for the present Θy. We shall use the unique representation

χy=φv+ψ9

where φy and ψy are analytic except at most the singularities of χy. We find

that φy has the same analytic singularities as χy while φy is everywhere analytic

on K. The singularities of χy and φy depend only on the boundary dγ. χy and

φy have analytic singularities with the residues equal to the coefficients, divided

by 2πi, in dγ. χy and φy are harmonic and analytic respectively on K if and only

if γ is a cycle. The mappings γ-+χy, γ^φy and y-+\j/y are linear.

4. Reproducing property. Let <9α, χa, φa and φa be the differences de-

fined in 2 and 3 for a 1-simplex γ = a in the interior of K. Then for an arbitrary

difference φ of Γa(K) we have

for φ is analytic on K and φa is antianalytic on K—qί — q2 where da=q1 — qι.

Further, by the orthogonal decomposition (3.21) and the definition of Θa we have

(Ψ, ? ) =(Ψ, β 5) = -<Ka*) = - iφ(a\

since φ^Γa and χa — Θa^Γe0. Hence we have

(φ,ψ°)=-ίφ(a).

Let χy, φy and ι/̂ y be the differences defined in 3 for a 1-chain γ in the interior

of K. Then, because of the linearity of φy with respect to γ we have

(4.4) (φ,ψy)=-i§ φ.
y

By a similar method we have

(4.5) (Φ,Φ*)=

Let ω be an arbitrary difference of Γh. By making use of the unique represen-

tation ω=φ + ψ where φ and ι/f are analytic, we have

Hence by (4.4), (4.5) we find
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(4.6) (ω,(χ') ) = § ω.

Now we suppose that y is a cycle in the interior of K. For this case, χy is

harmonic, and φy and φy are analytic on K. For this case, we can omit the

assumption that y is in the interior of K9 for χy, φy, φy depend only on the homo-

logy class of y. We find that χy e Γh0 and φy, ψy e ΓaS=Γa n Γ s and under these

conditions, χy, φ y , φy are the unique reproducing differences satisfying (4.6),

(4.5), (4.4) respectively. Since χy is real and φy — φy is analytic, we have φy =

φy and χy=2Reφy=2Reφy.

By (4.3), (4.6) we find that

(4.7) (χy,(χy')*)

for cycles y9 y'.

5. The classical theorems. Let K be a closed complex polyhedron. An

analytic difference φ with analytic singularities is said to be of rational type if

every residue of φ is an integer and every period of φ is an integral multiple of

2πί. We denote the singularities of the difference φ of rational type by qί9...9

qv and the residue of φ at qn (n = l,..., v) by mn respectively. Then the 0-chain

2jM=i m A is called the divisor of φ.

AbeVs theorem. A necessary and sufficient condition in order that a given

0-chain A is the divisor of a difference φ of rational type, is that there exists a

1-chain y such that dγ=Λ and

§.*=<

for all analytic differences φ on K.

The proof is analogous to the continuous case when we make use the con-

sequence in 4. We can construct various types of the extensions of Abel's theorem

to an open complex polyhedron. It seems that the present theorem has a sense

when we consider it as an approximation of Abel's theorem of the continuous case.

Now we shall mention a type of the bilinear relation.

The bilinear relation. Let K be an open complex polyhedron. Let ωG

Γc0 and σ £ ί 5 e . We suppose that σ has only a finite number of nonzero periods

with respect to a given canonical homology basis An9 Bn, A*9 B* of K modulo

the ideal boundary. Then we have that

This is easily proved by making use of the reproducing differences χΛn, χBn,
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XA*n

9 χB*n def ined in 4.

§ 5. The theory of harmonic functions and analytic functions.

1. Harmonic functions. In the present section, as an application of the
method of orthogonal projection of §3 and Green's formula (3.12), several ana-
logies with the classical theory of harmonic and analytic functions are developed
(cf. Courant-Friedrichs-Lewy [4], Blanc [2], [3], Lelong-Ferrand [10], [11],
Isaacs [8], Duffin [5], Hundhausen [6], etc.).

Let K= <K, K*> be a complex polyhedron. We can state the maximum
and minimum principle of a harmonic function on K as follows: The restriction
to K (K* resp.) of a real harmonic function u o n K does not take the maximum
or minimum value in the interior of K (K* resp.) provided the restriction is non-
constant in the interior, and if K is compact bordered then the maximum and
minimum values are taken on dK (dK* resp.). This follows immediately from
the definition of a harmonic function.

The following statement is also obvious: if a sequence {un}%=1 of harmonic
functions on K pointwise converges, then the limit function u is harmonic.

Let us suppose that K is compact bordered. Given a function / on the
complex boundary dK, the problem to find the unique harmonic function
which takes the boundary value/on dK, is called the Dirichlet problem. Con-
cerning the Neumann problem we interpret it as the problem to find the harmonic
function u uniquely determined except for an additive constant satisfying Au* =
Θ along dK for an arbitrarily given 1-difference Θ under the condition

(5.1) §dΘ=0 and
d

The existence of the solution of the Dirichlet problem is assured by the
orthogonal decomposition (3.22), and further by (3.22) we know that the so-called
Dirichlet principle holds.

Now we shall verify the existence of the solution of the Neumann problem.
If, for a 1-difference Θ given under (5.1), we can construct a closed difference σ
with the same boundary behavior as Θ: σ = Θ along dK, then by the orthogonal
decompositions (3.21), (3.24) we have the representation

-σ*=ωhe+ωto + ω*o,

where ωheeΓhe, ω*0&Γ*0 and α>*oeΓ*o, and then the component ωhe gives
the solution Au.

We shall construct the closed difference σ. Let {cj9 <?*}}= i (v < oo) be a cano-
nical homology basis of dividing cycles of K, and d* and ds (j = l,..., v) be conju-
gate relative cycles of Cj and cj respectively. We set
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(5.2) § Θ=«j and § Θ=z*} ( j = l,...,v).

If all (Xj and αj vanish, then σ is easily constructed. Otherwise,

is a closed difference with the periods — α,- and — α* along c, and cj respectively

where Θd*J and ΘdJ are the singular differences associated to dj and dj respectivey

thus Θ + τ has the vanishing period along every cs and cj, and thus the problem

is reduced to the former case.

2. Green function. The Green difference Δg =Δgqo of a compact bordered

or open complex polyhedron K with a singularity q0 is defined as a 1-difference

on K satisfying the following conditions ( i ) , (ii):

(i) Δg is a harmonic difference with an only singularity q0 with the conju-

gate singular part P(Δg*9 qo) = -2π;

(ii) Δg^Γe0.
The Green function g=gqo=g(q, q0) with the singularity q0 is the function

whose difference is the Green difference with the singularity q0 which has the

vanishing boundary value if K is compact bordered and which is the pointwise

limit of functions fn with compact support such that \\Ag — AfH\\~+0 (n->oo) if K

is open.

Obviously, if for a given K there exists the Green function g on K9 then it

is unique. Further we find that if q0 e K (q0 e K* resp.) then the support of g

is K (K* resp.).

If K is compact bordered, then the Green function of K always exists and

can be constructed as follows. Let γ be a 1-chain on K such that dγ = qo — qί

where qt is a 0-simplex of dK or a 0-simplex whose carrier is outside of |X|.

Then the singular difference Θy associated to γ is a closed difference with the

only closed singularity q0 with the singular part P(Θy, qo) = ί. The difference

σ which is constructed in Corollary 4.1 for Θ = —2πΘγ, gives Δg. We can also

verify the existence of the Green function by making use of (i) of Corollary 4.3

for the double K of K. The Green function g is positive in the interior of K

by the maximum principle.

Let K be open, {Kn}^=0 be a regular exhaustion of K and gKn =

gKn(q9 q0) (n =0, 1,... q0 e HL0) be the Green function of Kn. Then gKn is mono-

tone increasing with n. Hence there exists the pointwise limit lim,,-^ gKn which

is everywhere finite or identically infinite. There exists the Green function g

of K with the singularity q0 and g = \imn^o0gKn if and only if l im n _ 0 0 ^ j K : n <oo.

By (i) of Corollary 4.3, the existence of the Green function does not depend on a

particular choice of the singularity q0 in K (or
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3. Neumann function. The Neumann difference An=Anqo of a compact

bordered complex polyhedron K with a singularity q0 is defined as a 1-difference

satisfying the following conditions (i), (ii):

(i) An is an exact harmonic difference with the only singularity q0 with

the conjugate singular part P(An*, qo) = —2π;

(ii) An* = c1 along dK and /Jn* = c 2 along dK*+, where if qo^K then cx —

0 and c2 = —2π/v, if qo^K* then cί = —2π/v and c 2 = 0 , and v is the number of

1-simplices of dK. The Neumann function n = nqo=n(q9 q0) is the function

determined except for an additive constant whose difference is An. We shall

normalize the Neumann function by the condition

(5-3) S>=°

where λ and λ* denote the 0-chains being the sum of all 0-simplices of dK and

dK*+, respectively. The uniqueness of the Neumann difference follows from

An - An' e ΓheΠΓ*0 for another one An'. If qo^K (qo<=K* resp.) then the sup-

port of n is K (K* resp.).

The existence of the Neumann difference is verified as follows. Let Ag be

the Green difference with the singularity q0. We construct the solution u of the

Neumann problem satisfying the boundary condition: Au*=cί— Ag* along

dK and Au*=c2 — Ag* along dK*+. Ύhenn=g + u gives the Neumann function.

4. The properties of Green function. Let K be a compact bordered com-

plex polyhedron and Agq be the Green difference of K with the singularity q.

Then the solution u of the Dirichlet problem of\ is given by

(5.4)

for each 0-simplex q in the interior of K.

Let M* be the conjugate 2-simplex of q. By Green's formula (3.13) we have

(5.5)

The left-hand side of (5.5) is equal to

since gq=0 on dK. The right-hand side of (5.5) is equal to

uA(Ag*XM*)=u(q)P(Ag*q9 q) = -2πu(q)9

since Ag* and Au* are closed on K—M* and K respectively.
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The symmetric property of the Green function:

(5.6) g(q,r)=g(r,q)

holds.

If K is compact bordered, then (5.6) follows from Green's formula

If K is open, then (5.6) is obtained by a limit process of the compact bordered

case.

5. Harnack's inequality. Let u be a non-negative harmonic function on

a compact bordered complex polyhedron K. Let q0 and q be a fixed and a

generic 0-simplices respectively in the interior of the common K or K*. We set

μ=μ(q, qθ9 K) = mm *«)\,

where y = {a\ a&dK, Ag*o(a)±?0}. Here M and μ are positive numbers

depending on only K, q0 and q. If we note that Ag%oa.nd Ag\ simultaneously

vanish on dK, then by (5.4) we have

With an analogous inequality we obtain Hαrnαck's inequality (cf. Duίfin [5])

(5.7)

6. The properties of Neumann function. Let K be a compact bordered

complex polyhedron and nq be the Neumann function of K with a singularity q.

Then the solution u of the Neumann problem ofl is given by

(5.8) u(q)=

where

-f § «



308 Hisao MIZUMOTO

λ and λ* are the 0-chains being the sum of all 0-simplices ofdK and dK*+ respec-

tively, and v is the number of

By Green's formula (3.13) we have

(5.9) Λ (uAn* — nqAu*)= \ (uA(An*) — nqA(Au*)).
dK K

Here

and the right-hand side of (5.9) is equal to —2πu(q).

The symmetric property of the Neumann function:

(5.10) n(q,r) = n(r, q)

holds.

It follows from Green's formula

7. Cauchy's summation theorem. Let K be a complex polyhedron, γ

be a complex cycle on K such that γ~O,f be an analytic function on K and

φ be an analytic difference on K. Then we have

(5.11)

We may suppose that γ is the complex boundary of a compact bordered

polyhedron KQ: dK0 = γ, Then by Green's formula (3.12) we have

φ = -(Af9φ*)Ko=0,

since Afis analytic and φ* is antianalytic.

Remark. We can also verify (5.11) by an immediate calculation of

for a 2-simplex M, where dM means the complex cycle being the sum of dM and

its dual cycle.

Now let us suppose that K is latticed. Let a be a fixed 1-simρlex of K.

Then we can uniquely define the 1-difference ε on K by the following conditions

(i). (ϋ):
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(i) ε(α) = l ;

(ii) For any 2-simplex M e K , let aί9 .., α 4 π be a cyclic sequence of edges

of M. If ε(a1) = ί, then

ε(α 4,_ 3) = l, ε(a4j_2)=0, ε(a4j_1) = -l, ε(a4J)=0,

O' = l,..., n).

The difference ε is harmonic and thus (5=ε + ιε* is an analytic difference. The

differences ε and δ are called the uniformizing harmonic and analytic differences

of K respectively.

Cauchy's summation theorem (cf. Lelong-Ferrand [11], Duffin [5], Hund-

hausen [6]): Let K be a latticed complex polyhedron, γ be a complex cycle

on K such that γ~0 and f be an analytic function on K. Then we have

(5.12) S /<5=0.
y

8. Cauchy's summation formula, Residue theorem. Cauchy's summation

formula (cf. Duffin [5]): Let K be a compact bordered complex polyhedron,

f be an analytic function on K and φ be an analytic difference with the singu-

larity q of the residue 1. Then we have

(5.13)

By Green's formula (3.12) we have

=fAφ(M*)=f(qyP(φ9 q)=2πίf(q),

where M* is the conjugate 2-simplex of q.

In (5.13), we can choose the analytic Green difference ψq=Agq + i(Agq)*

as — φ. Then we have

(5.14)

Residue theorem: Let K be a compact bordered complex polyhedron and

φ be an analytic difference on K with the singularities qn (n = l,..., v) with

the residues bn. Then we have

(5.15) %J=2πi±bn.
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The proof is similar to that of (5.13).

Chapter II A finite-difference method on a Riemann surface.

§ 6. The convergence of differences with respect to subdivisions.

1. Natural extension of a difference. Let K=<K, K*> be a complex

polyhedron such that K is quadratic and K1 = <Kl9 K^> be a subdivision of K.

Let σ be a difference of ΓC(K) with support K. We shall define the natural

extension σ" of σ to the subdivision Kt as follows: with the notations in §1.6,

for the subdivision of each M e K w e set

( i ) < τ l 1 = σ * 2 = ^ - σ i O = l , . . . ,4) ;

(ii) σi 3 = i ( ( τ J + 1 - σ 7 . _ 1 ) O'=l , . . . , 4 (mod4)),

where σ</ = σ(α</ ), σ)k=σ*(ajk), a n d we set σ l | =0 on K\. Then we see that σ*e

Γ c(Ki) (cf. LEMMA 6.1).

Let {Kn = <Kn9 XJ>}£L 0 be a sequence of complex polyhedra such that

Ko is quadratic and Kn is a subdivision of Kn_ί respectively. Let σ be a differ-

ence of ΓC(KO) with support Ko. Let σ"(w) (n = l, 2,...) be the natural extension

of σ^11*1) to Kn where <τ*<°> = σ. Then we shall define the natural extension

σ" of σ to {Kn}™=0 as an operator which maps σ to the 1-difference σ^n) on Kn

for each n, that is, as an operator such that σ" = σ " ( π ) on Kn for each n. We shall

use the common notation σ" for the both definitions of the natural extension.

LEMMA 6.1.

where σj=σ{aj) and α,, a2, a^, a^ is a cyclic sequence of edges of M.

PROOF. When we note that -σ*ff(M)=(l/2)Σ;=i|σ,|2, we have

where M 1 = Σ y = i ^ a n c ^ ^i> > ̂ 4 a r ^ the 2-simplices defined in §1. 6. Be-
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Σ
j=ί

Σ (σj-rf
j l

Hence

Ko

By a further elementary calculation we have

II B 11 2 II b 11 2 *• ^ ~ *

n+1 4«+ MeK()

2. Norm convergence with respect to subdivision. With the notation in 1,

let σn (n=0, 1, . ) be a difference of Γc(Kn) with support Kn. By σ"" we denote

the natural extension of σn to {Km}%=n.

LEMMA 6.2. // ffte orthogonality

(6.1) (σ«-σ ,̂ σ^^O

holds for every m, n (n>m), then the following hold;

( i ) llσ"llis:M *5 monotone decreasing with n\

(ii) li τmH\

(iii) lim |
m, π->oo

(iv) lim

PROOF. By Lemma 6.1 we have

(6.2) ||<τ"||im-||σ"'|li, =

(6.1) and (6.2) imply that

Mε
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Hence we have (i), (ii) and (iii). (ii) and (6.2) imply (iv).

COROLLARY 6.1. / /

(i) σ»(ΞΓh(Kn) and σ» - σ° > GΞ Γβ 0(Kπ) (n=0, 1,...),

(ii) σ"GΓtm(KH) and σn-σ°^Γse(Kn) (n=0, 1,...),

or

(iii) σ^ΓUKn)nΓhse(Kn) and σ»-σ°>CΞΓe(Kn) (n=0, 1,...),

then (i), (ii), (iii) and (iv) of Lemma 6.2 hold.

§ 7. The approximation of a differential on the Riemann surface

based on a normal quadrangulation.

1. Smooth extension of a difference. Let K=<K9 K*> be a normal

complex polyhedron and W be the Riemann surface based on the normal quad-

rangulation K. Let σ be a difference of ΓC(K). For each quadrangular 2-

simplex M = [M e , φ~] of K we can choose the mapping φ so that the normal

coordinates of M are preserved and Me is the square on the z-plane with q\ =0,

j p j j p j

4; ^5=^1). Then we define the smooth extension σ* o/σ to |M| by the differen-

tial σ* on |M| satisfying

(7.1) <x* =((1 - Oσi -yσ3)dx + (xσ2 - ( 1 -x)σ 4 )d^ (z = x + iy)

for the local uniformizing parameter z=φ~1(p) of M where σj = σ{aJ). Then

we see that \ σ# = σ7 (7 = 1,..., 4) on taking α, as an oriented curve.
Jaj

Let σ be a difference of ΓC(K) with support K\ Then we can define the

smooth extension σ% of σ to the Riemann surface W by the differential on W

which is the smooth extension σ* of σ on each M^K. Here the coefficients

α, β of σ*=adx + βdy are generally discontinuous at each point of the carrier

\a\ of a 1-simρlex a^K. Then we define the coefficients α and β on \a\ by

lim β(p))

for a fixed local uniformizing parameter about p o e | α | , where M x and M 2 are

the 2-simplices with the common edge a and the interior of \MS\ is denoted by

\Mj\°. Clearly the smooth extension σ% defines a closed differential on W.ί)

Let Kg be the 2-chain defined as the sum of quadrangular 2-simplices of

1) Cf. Ch. V of Ahlfors & Sario [1] for the theory of differentials on a Riemann surface,
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K* and WQ be the subset of W which is the carrier of K%. Let σ be a difference

of ΓC(E^) with support K*. Then we can define the smooth extension σ* of σ to

the subset WQ by the differential on WQ which is the smooth extension σ* of σ

on each M&K%.

Let σ be a generic difference of ΓC(K). Let σ x and σκ* be the restrictions

of σ to K and X* respectively, and let σ% and σ|* be the smooth extensions of

σκ and σκ* to W and WQ respectively. By the differential σ*=σ% + σ%* on

WQ, we define the smooth extension of σ to the subset WQ. σ* defines a closed

differential on WQ.

2. The relation between σ and σ*.

LEMMA 7.1. Let σ, σι and σ2 be differences of ΓC(K) with support K.

Then the relations

(7.2) lkllέ-||σ*||̂  i

(7.3) \\σ*U-\\\σ\\ϊ = {

(7.4) Kσ .σ^-ίσ '.σ^Vl

j ; ( , ) w and \\ \\w we denote the inner product and the norm res-

pectively in the Hilbert space of differentials on W^ and σJ = σ(αi ) for a cyclic

sequence aί9 a2, a3, a4 of edges of M.

PROOF. For each M^K, since σ1* is harmonic on |M|, there exists a har-

monic function w1 on \M\ such that duι =σ1$. Hence

(7.5) ( σ i # σ 2 * * = f u
J\M\ Jd\M\

where d\M\ means the boundary of the region \M\ and the conjugate differential

of σ2* is denoted by σ2 S*. By making use of (7.5) and σ1 + σ2 + σ3 + σ 4 = 0 we

can carry out the calculation

)\M\

1) We shall use the common notations ( , ) and || || for both inner products and both norms

of differences and differentials. If any confusion may occur, then we shall add the suf-

fices K and Wetc, like ( , ) , , ( , ) * , ! I*, | \\w.
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where σ)^σ\aj). Hence, when we note that — σ 1*σ 2(M) =(1/2)2

we have

-σι*σ2< Γ ( M ) ~ 5 ι

Therefore,

4 Σ ( } ! K ϊ

Hence we obtain (7.2) and further by Schwarz's inequality (7.4). Similarly,

(7.3) is obtained.

COROLLARY 7.1. A closed difference σ on K with support K belongs to

ΓC(K) if and only if the smooth extension σ* of σ is a differential of the space

ΓC(W) of closed differentials on W with finite norm.ί)

For the differences of ΓC(K) with support K* we can also obtain the same

results as (7.2), (7.3), (7.4) replacing K, W9 | |σ||£ and (σ1, σ2)κ by K£, Wφ

§ ( — σ*σ) and \ *( — σ x *σ 2 ) respectively.

3. Courant-Friedrichs-Lewy's Lemma. Let K=<K, K*> be a complex

polyhedron. A 2-chain QczK is called a quadrate of iC if there exists a one-to-

one bicontinuous mapping φ of a square Qe on the z-plane ( z = x + ij/) onto Q

such that each M e g is the image of a square Me by </>, i.e. M = [M e , φ]. Here

we may assume that each side of the square Qe is parallel to either x-axis or y-

axis. Let {Qj})ih ( v = l ) ^ e a n increasing sequence of concentric quadrates of

K such that Qj (7 = 1,..., v+1) is the minimum quadrate under |Q^ _x |cz |Q^ |°.

1) We shall use the common notation Γ with some suffix for both spaces of differences and
differentials with finite norm. If any confusion may occur, then we shall indicate the
polyhedron K and the Riemann surface W like Γ(JFQ and Γ'{W) respectively.
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Then, {Qj = <Qj9 £ J > } j ί £ forms a sequence of compact bordered complex

polyhedrons, where QJ is the conjugate polyhedron of Qj for each j . By ax

(ay resp.) we denote an oriented 1-simρlex of Qv+1 such that ax = φ~1(ax) (a* =

φ~ί(ay) resp.) is a 1-simplex whose direction is the positive x-axis (j-axis resp.).

Let σ be a harmonic difference on Qv+1 with support β v + 1 . We can define

a function (O-difference) ux (uy resp.) with support Qv by setting

ux(<l)=Φx) (uy(q) = σ(ay) resp.)

for each ax (ay resp.) of Qv+1, where dax = q' — q (βay — q' — q resp.). Further

we define 1-differences σx and σy with support Qv by σ x = J w x and σy = J w r It is

easy to verify that σx and σy are harmonic.

LEMMA 7.2. (Cf. pp. 49-51 of [4].)

PROOF. By the formula (2.3) of partial summation we have

σ=i, , v),

where Λj ( j=0, . . . , v) is the sum of all O-simplices on δQj. Similarly,

Adding the last inequalities for j , we have

Furthermore, adding the last inequalities for n, we have

4. The estimation of | |σ**-σ**| | . Let K=<K, K*> be a normal com-

plex polyhedron and W be the Riemann surface based on the normal quadrangula-

tion K. Let σ be a difference of Γh(K) with support X.

We shall preserve the notations in 2. Let M and AT be a pair of 2-simplices

such that M e K , N(ΞK% and |M| Π | N | ^ 0 . Let aj and fey (; = 1,..., 4) be the
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cyclic sequences of edges of M and N respectively. We assume that b2=ά% and

b3 = — a%. Further we set a5=b% and α 6 =bf .

We fix the local uniformizing parameter z—xΛ-iy on M defined in the first

paragraph of 1. Then by (7.1), on \M\

- y)σί - yσ3)dy,

and further, on D = \M\f] \N\

where σj=σ(a]) (j = l,..., 6). We set τ=σ**-σ»*. Then

(7.6) ||τ||B=(
J

' = \ wτ*,
δD

where u is a harmonic function on D like du=τ. Noting that σ1 + σ2 + σ3 +

σ 4 = 0 and σx— σ4 — σ5 — σ 6 = 0 , we can carry out a calculation similar to Lemma

7.1 for the right side of (7.6). Then we have

(7.7)
JdD

Here we note that when we set σj =σ*(bj) (j = 1,..., 4),

hold. Hence we have

(7.8) | |τ| |^^4-

Adding (7.8) for all pairs M, N with \M\ Π |N| * F 0 and by making use of Schwarz's

inequality, we obtain

(7.9) | | < 7 * * - σ * * | | ^

+ x ( Σ ki + ̂ 3l
2 Σ k ί + ̂ 512) .

Now we prepare a useful lemma, Let Ko = <K0, K%> be a normal complex
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polyhedron and W be the Riemann surface based on the normal quadrangula-

tion Ko. Let {Kn = <Kn, K*>}^=0 be the sequence of normal complex

polyhedra such that Kn is the normal subdivision of Kn_ί for each n. Let

K*Q (ft =0, 1, ..) be the 2-chain of K* defined as the sum of whole quadrangular

2-simplices of X*, and let Wn (π=0, 1,...) be the subset of W which is the carrier

of K*Q. Further, let Knm and K*m (n>m) be the 2-chains of Kn and X* res-

pectively defined as the sums of 2-simplices of Kn and JC* respectively having their

carriers on Wm. There exists a number n0 such that Wn is a subregion of W for

every n ^ n 0 , and {WM}£L0 is an increasing sequence exhausting W, where W =

W— \ΛB\ and ΛB is the sum of 0-simplices of Ko whose conjugate 2-simplices are

not quadrangles.

LEMMA 7.3. Let σn (n=0, 1,...) be a difference of Γh(Kn) with support

Kn such that \\σn\\κn is bounded with respect to n. Then, for every number m,

the limit relations

lim Σ \σn

1+σn

3\
2=0 and lim Σ Iσf + σ ξ ψ =0,

n-+aoMeKnm n-*oo MeKnm

hold, where σnj=σn(aj), σ1j*=σn*(aj) and au..., a4 is a cyclic sequence of edges

ofM.

PROOF. Without loss of generality we may assume that the number m = 0 .

Now we fix an arbitrary 2-simplex Mt of Kl0. We can always find an increasing

sequence βo> > Ql °f concentric quadrates of K3 in the meaning defined in 3

such that \Ql\=\Mx .

Let Qnj (7=0,..., 4; n = 4 , 5,...) be the normal subdivision of Qy1 for each n

which is a subpolyhedron of Kn, and let Qnj= <Q", Qn*> for each n. Then, by

Lemma 7.2, we have

(3 2--3-l)2(||σ»||έj+||σ-||a;)^||σ-||§; (n = 3,4,...),

where σ", σj are the differences defined in 3 for the present σn for each n. On

the other hand, we can easily verify that

Σ k ! + σ3l2+ Σ kl* + σ3 | 2 ^
MeQo

Hence we have

Σ kϊ+σ3|>+ Σ Jσr + σ f l ^ Λ 2 lk
MeQo MeQn

t

 Z ^ Z ~ L)

Adding the last inequalities for all simplices Mt of Ki0, we have
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Σ kΊ + *3l2 + Σ \σ\* + σγ\2^ _ 3 _ 1 ) 2 Iki lέ

By (7.9) and Lemma 7.3, we obtain the following corollary.

COROLLARY 7.2. Under the same assumption as Lemma 7.3, for every

number m the following limit relation holds

l im| |σM**-σM < f*| |^m = 0.

5. Fundamental theorem.

THEOREM 7.1. Let {Kn = <Kn, K*>}^==0 be a sequence of normal

complex polyhedra such that Kn is the normal subdivision of Kn^ί. Let W

be the Riemann surface based on the normal quadrangulation Ko. Let σn

(« = 0, 1, ...) be a difference of Γh(Kn) with support Kn. We suppose that

{<TW}JLO forms a Cauchy sequence, i.e.

(7.10) lim \\σm*-σn\\Kn=0 (n^m).
m, f

Then the sequence {σ"*}2L0 strongly converges to a harmonic differential

ωeΓh(W), i.e.

(7.11) lim | |σ»*-ω||^=0,
n-*oo

and the limit relations

(7.12) lim| |σ | |K n=lim| |σ' *|L = | |ω| | f Γ
n-*co n~*ao

hold. Furthermore, the limit relation

(7.13) l im| |σ«**-ω*| |^ = 0
n-»oo

holds, where Wn is W minus carriers of 2-simplices of K* which are not quad-

rangles for each n.

PROOF. We note that σm* — σn* is the smooth extension of σm" — σn to W.

Then, (7.2) and (7.10) imply

lim || <τm*-σ r t* | | ^ = 0.
m, n-»oo

The last relation secures that there exists a differential CO<ΞΓC(W) satisfying (7.11)

and the second equality of (7.12) holds.
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We note that (7.10) implies the boundedness of ||σw||JS-n with respect to n.

We use the notations defined in 4, and further we define the notations Knm =

<Knm9 K*m> and Lnm = Kn-Knm. More precisely, Knm and Lnm are the

complex polyhedra defined as the sums of 2-simplices of Kn having their carriers

on Wm and W—Wm, respectively. By Lemmas 7.1 and 7.3, we see that

lim| |σ' I | | j r n m = lim||σ"*||T Γ m for every m.
ιi-+oo n-+oo

If the limit relation

(7.14) lim ||σ"||L M m = 0
mtn-*co

is shown, then by Lemma 7.1 the limit relation

lim \\σn*\\w-Wm = 0 (n>m)
m,n-*oo

holds and hence we obtain the first equality of (7.12).

Noting the definition of the natural extension and by making use of Lemma

6.1, we can easily verify that

(7.15) I I * * Ί I L ™ £ I I ' * Ί I £ M ^ ^

(n>m>k)

for every fc, where 0<μ5^6/16. Further,

(7.16) \\\σ»\\Lnm-\\σ"\\Lnm\ £\\σ*-σ"\\Lnm

£\\°u-<r"\\κn-+0 (£,«^oo)

holds. (7.15) and (7.16) imply (7.14).

By Corollary 7.2 and (7.11) we have that

(7.17) lim \\σn**-ω*\\Wm = 0 for every m.
n-+ao

Clearly,

(7.18) lim \\ω*\\Wn-Wm = 0
m, Π-*ΌO

By (7.2) and (7.14) we see that

(7.19) \\σn^Wn-Wm^\\σn*\\Lnrn==\\σ"\\Lnm^0 (m, *->«>).

(7.17), (7.18) and (7.19) imply (7.13). Since σn**<=Γc(Wn) for every n, (7.13)

implies that ω*^Γc(Wf) where W =\J%s0WH. Hence ω^Γc(Wf)Π Γ*C{W') =

Γh{W). Further, since | |ω | | Ϊ F <oo and ΛB = W-W is a set of isolated points

of W, each point of ΛB is a removable harmonic singularity of ω and hence



320 Hisao MIZUMOTO

Γh(W).

COROLLARY 7.3. Under the same assumption as Theorem 7.1, the coef-

ficients of σn* and σw*# uniformly converge to the coefficients of ω and ω*

respectively as n-^oo in each relatively compact subregion Ω of W, where

W'=KJΐ=0Wn.

PROOF. It is sufficient to prove the corollary in an arbitrarily fixed parameter

disk D in W with a local uniformizing parameter z=x + iy. Let σw*=απ(z)dx +

βn(z)dy and σπ*# =oc'n(z)dx + β'n(z)dy. By Courant-Friedrichs-Lewy's method (cf.

pp. 48-52 of [4]), it is shown that the sequences of coefficients {απ}jL0, etc. are

uniformly bounded on D, and further are equicontinuous on D in the following

sense: for any positive number ε>0, there exist an integer n0 and a positive

number δ>0 such that \(xn(zί) — an(z2)\<ε, etc. provided \zί — z2\<δ and n^n0.

By these consequences, the present corollary is immediately verified.

The following theorem stated in the analytic case immediately follows from

Theorem 7.1.

THEOREM 7.2. Let φn O = 0 , 1,...) be a difference of Γa(Kn). We suppose

that {^JL}?=O forms a Cauchy sequence, i.e.

(7.20) lim mi-t*Kn\\KH = 0 (n^m),
m,n-+ao

where φ\n is the restriction ofφn to Kn for each n. Then the sequence {φn*}%=o

strongly converges to an analytic differential φ^Γa(W), i.e.

(7.21) lim \\ψn*-φ\\Wn = O,
n-*oo

where Wn is W minus carriers of 2-simplices of K* which are not quadrangles

for each n, and the limit relations

(7.22) Urn \\r\\κn=ίim \\ψ'*\\Wn =
τi-*oo n->ao

hold.

6. The method of orthogonal projection.

THEOREM 7.3. Let {Kn= <Kn, K*>}™=0 be a sequence of normal complex

polyhedra such that Kn is the normal subdivision of Kn-ί for each n. Let

W be the Riemann surface based on the normal quadrangulation Ko. Let

Θ be an arbitrary difference of ΓC(KO) with support Ko, and let us suppose that

σ» (n=0, 1,...) be the projection of Θ* on Γk(KJ, r%m(Kn) or Γ ? 0 ( K π ) n

Γhse(Kn). Then, we obtain the same conclusion as Theorem 7.1. Furthermore,
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the inequalities

(7.23) | k " | | * n ^ \\°n*\\w^ \\ω\\w for every n

and the monotone convergence of norms

(7.24) lk"||

hold. And the limit differential ω is the projection of Θ* on Γh(W), Γ%m(W)

and Γ$0(W)nΓhse(W) respectively, and hence Θ*-ω<ΞΓe0(W), <9*-ω<ΞΓse(W0

and Θ*e — ω^Γe(W) respectively, where Θse is the projection of Θ on Γse(K0).

PROOF. The assumption of the theorem implies that

(7.25) Θ* = σn + σ%, σ»e0^Γe0(Kn) (n=0, 1,...),

(7.26) β ' = σ » + σ»β, σn

se^Γse(Kn) (n=0, 1,...)

and

(7.27) Θle=σ» + σ»e, σn

e^Γe(Kn) (n=0, 1,...)

respectively. Hence we can easily see that

(7.28) σn-σ^ = σ%-σ-e0^Γe0(Kn) (n=0, 1,...),

(7.29) σ»-σ<»=σ°>-σ»seς=Γse(Kn) (n=0, 1,...)

and

(7.30) σ»-σ°*=σJ>-σ»eΓe(KJI) (n=0, 1,...)

respectively. Therefore, by Corollary 6.1, the assumption (7.10) of Theorem

7.1 is satisfied, and thus the same conclusion as Theorem 7.1 holds.

The left inequality of (7.23) follows from (7.2). If it has been shown that

the limit differential ω is the projection of σπ# on Γh(W\ Γtm(W) and Γfo(W)Π

Γhse(W) respectively for every n, then the right inequality is clear and (7.24) follows

from Corollary 6.1 and (7.12).

The case where σn is the projection of <9* on Γh(Kn): (7.28) implies that

σ^-σo^reO(W) and thus by (7.11), ω-σn*eΓe0(W) for every n. Because

of ω^Γh(W), ω is the projection of σn* on Γh(W) for every n, and thus by (7.25),

ω is the projection of Θ$ on Γh(W).

The case where σn is the projection of <9* on Γ%m(Kn): By (7.29) and (7.11),

we find that ω — σn*^Γse(W) for every n. Let {Knj}f=0 be a canonical exhaus-

tion of Kn for each n such that Knj (n—0, 1,...) have a common carrier Ωj for

each j and such that dΩjCzW for every; where W =\J%=0Wn. LetσnJ(j=0, 1,...)

be the projection of σn, restricted to Knj, on Γ%m(Knj) for each n. Then σn —



322 Hisao MIZUMOTO

σnJ e Γhse(Knj). By the method of orthogonal projection, we can easily verify that

lim\\σn — σnj\\κ==0 for each n.
J-00

We note that the smooth extension σnj** of σnj* can be not defined only for

each 2-simplex of K*j but also for the conjugate left half 2-simplex of each 0-

simplex of dKnj w. r. t. dKnj by a method similar to (7.1) such that the differential

σnj*# j s z e r o a i o n g SΩj because of σnj*^Γhm(Knj). Then, by the method similar

to Lemma 7.1 we can verify that

(7.31) limllσ -σ ̂  ll^no^Umllσ^-σ^ II^^O for each n.
j-+oo j-*co

We shall omit the detailed argument. (7.13) and (7.31) imply that there exists

an increasing sequence of numbers j =j(n) (n=0, 1,...) such that

(7.32) lim\\σn^**-ω*\\WnnΩjin =0.
w->oo

Let ωHn) be the differential of Γhe(Ωj(n)) with the same boundary behavior as

σ»y(«)*# on dΩm for each n. Because of ω*<=Γhe(W)9 (7.32) implies that

(7.33) Um||ω'<">-ω | | o = 0 .
π-^oo

We note that σnJ^*<EΞΓhm(Knj(n)) implies that ω ^ ^ G Γ J Ω i ( f l ) ) . Then (7.33)

implies that C O * G Γ J ^ ) . ω-σn*(=Γse(W) and ω^Γ^JW) imply that ω is

the projection of σn* on Γ%m(W) for every n, and thus by (7.26), ω is the projection

of Θ* on ΓUW).

The case where σn is the projection of Θ* on ΓJO(KΠ) Π Γhse(Kn)9 is analogous

to the last case.

COROLLARY 7.4. Under the same assumption as Theorem 7.3, let y be

a cycle on K*, let χny and φnγ be the harmonic and the analytic reproducing

differences respectively of γ on Kn defined in §4, and let χy and φy be the har-

monic and the analytic reproducing differentials respectively ofγ on Wsuch that

(ω, Ort*V = ( ω for every ω e Γh(W\

(φ, φ y ) w = - i [ φ for every φ eΓ a (W).
Jγ

Then, the sequences {χny#}?=0 and {0wy*}?=o strongly converge to the dif-

ferentials χy and φy respectively, i.e.

lim\\χny*-χy\\=0,
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the inequalities

\\xny\\κnt\\xHy9\\w^\\xy\\w for every «,

\\Φny\\κn^\\Φny9\\w^\\Φy\\w for every n

hold, and the monotone convergence of norms

\\Xny\\κn\\\Xy\\w (*-«>),

ll*-yll^\ll^7llιr (»-+*>)

holds.

PROOF. Choose the singular difference Θy on Ko associated to y defined

in §4 as the difference Θ of Theorem 7.3. Then the projection of <9y* on Γh(Kn)

gives the reproducing differential χnγ.

7. Difference approximation of a differential. Let K=<K, K*> be a

normal complex polyhedron, and W be the Riemann surface based on the normal

quadrangulation K. Let Θ be a closed differential on W, of class C°. By a

difference approximation τ of Θ on the normal polyhedron K, we mean the

closed difference with support K defined by

τ(α) = \ Θ for each

where the integration path a means the oriented arc with the carrier \a\ and with

the same orientation as a.

THEOREM 7.4. Let {Kn=<Kn, K*>}%*0 be a sequence of normal

complex polyhedra such that Kn is the normal subdivision of Kn^ί for each n,

and let W be the Riemann surface based on the normal quadrangulation Ko.

Let Θ be a closed differential on W, of class C°, and let τn (n=0, 1,...) be the

difference approximation of Θ on the normal polyhedron Kn. We suppose that

(7.34) lim||τn | | j r n_Λ.M = 0 uniformly with respect to n,
j->CO

where {KΠd, }jP=o ϊ 5 a n exhaustion of Kn for each n such that Knj ( n = 0 , 1,...)
have a common carrier Ωj for each j . Then, we obtain that τn&Γc(Kn) (n =
0, 1,...) and ΘGΓC(W), and for the sequence {σn}™=0 of the projections of τn

on Γh(Kn) for each n, we obtain the same conclusion as Theorem 7.1. And the
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limit differential ω of the sequence {σn*}™=0 is the projection of Θ on Γh(W).

PROOF. Because the coefficients of τw* uniformly converge to the coefficients
of Θ as n->oo on each Ωj9

(7.35) l im| |τ"*-θ | | o . = 0 for each j .
n-*oo J

By (7.3),

(7.36) •y" l | τ " l l i -^ l | τ " f | l ^- | | τ " '"" θ | l ^

From (7.35), (7.36) and (7.34), it follows that | |τ" | |* n is bounded with respect
to n and hence τ"6ί c (K n ).

By (7.35), U m ^ J l τ - - τ - L ^ O and hence, by (7.3),

(7.37) lim | | τ m l l -τ ϊ l | | * =0 for each; (n^m).
m,n-*ao

(7.37) and (7.34) imply that

(7.38) lim | | τ m l l -τ" | | Λ f l = 0 (n^m).
m,n-*ao

Hence, by (7.2),

(7.39) lim | |τm»-τ" t f | |H,=0.
m, n-*co

From (7.39) and (7.35), it follows that

(7.40) Um||τ * - β 11^=0
w-*oo

and hence Θt=Γc(W).
Let ωn (n=0, 1,...) be the projection of τπ* on Γh(W), and let σmn (ra=0,

1,...; n = m, m + 1,...) be the projection of σml« on Γh(Kn). By (7.38) and (7.40),
we have that

(7.41) lim \\σmn*-σn*\\w = 0 (n^m),
m, n-+oo

(7.42) lim | |ω w -ω | | ^=0,
m-*ao

respectively. By Theorem 7.3,

(7.43) lim||σm ι l < ί-ωm | | Ϊ F=0 for each m.
n-+oo

By (7.41), (7.42) and (7.43), we obtain that

(7.44) lim| |σ"*-ω| |^=0.
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(7.44) implies the assumption (7.10) of Theorem 7.1, and hence we obtain the pre-

sent theorem.

§ 8. The approximation of a differential on a generic Riemann surface.

1. Convergence theorem.

THEOREM 8.1. Let Wbe an arbitrary open Riemann surface, let us suppose

that {Kn=K(Ωn, ^nΨ)}^=o is an increasing sequence of normal subdivisions

by a quadratic differential Ψ which defines a regular exhaustion ofW (cf. Lemma

1.1), and let Kn=<Kn, K*> (n=0, 1,...). Let Kmn be the subpolyhedron of

Kn such that \Kmn\=\Km\ and let Kmn=<Kmn, K%n> (m=0,.. ., n; n = 0 , 1,...).

Let σn (tt=0, 1,...) be a difference of Γh(Kn) with support Kn. We suppose that

{σ"}ΐ=o forms a Cauchy sequence, i.e.

(8.1) lim \\σm*-σH\\Kn=0
m, n

where we assume that the natural extension σmS is defined on each Kn (n—m,

m-fl,. ) by setting σm*=0 on Kn-Kmn. Then the sequence {σ"*};Lo

strongly converges to a harmonic differential ω^Γh(W), i.e.

(8.2) l i m | | σ M # - ω | | β n = 0 ,
n-*oo

and the limit relations

(8.3) l im| | σ « | | K n = lim||σ»*|| f in = | | ω | | ^
n-*ao rt-»oo

hold. Furthermore, the limit relation

(8.4) l im| |σ Λ **-ω*H Ω ; i '=0
n-*oo

holds, where Ω* is the carrier of K* and Ω*f is Ω* minus carriers of 2-simplίces

of K* which are not quadrangles for each n.

PROOF. We assume that the smooth extension σπ# (n=0, 1,...) is defined

on Why setting σ w *=0 on W-Ωn. By (7.2) and (8.1) we have that

lim llσ- - σ ' H,^ lim \\σ»«-σn\\Kn=0.
n>o mn+aom,n->ao

The last relation secures that there exists a differential ω^Γc(W) satisfying (8.2)

and the second equality of (8.3) holds. Furthermore, by making use of Theorem

7.1 for a fixed Ωn^ we know that ωeΓΛ(Ω r t) for each n and thus ω^Γh(W).

1) It is verified that Theorem 7. 1 holds also for the compact bordered case.
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We note that (8.1) implies the boundedness of ||σπ | |Js :n with respect to n.

Then, by Theorem 7.1 we see that

(8.5) lim lim \\σn\\Kmn=lim l im| |σ"*| |β m :£lim | |σw*| |β r ι.
m-*oo n-*ao m-nx> n-+ao π->oo

The assumption (8.1) implies

(8.6) lim \\σ»\\Kn_Kmn=0 (n^m).
mtn-+ao

Hence there exists the finite limit

(8.7) l i m | | σ " ! ! * ^ l i m lim | |σ" | | , m n .
n-κχ> m-*ao n-+ao

On the other hand, by Lemma 7.1

(8.8) \\σn\\Knt\\σn9\\ΩM for every«.

(8.5), (8.7) and (8.8) imply the first equality of (8.3).

By Theorem 7.1 we see that

(8.9) l im| |σ π **-ω* | | Ω * 'n β , = 0 for every m.

Further

HereωeΓ Λ ( t tO

and by Lemma

Hence

(8.10)

(8.9) and (8.10)

^ l i m lim||crn |

implies that

lim ||<
m, π-*oo

7.1 and (8.6)

lim lim||<7π**||Ω»'_Ω*
m->ao n-+ao

lim lim||σw

m-*oo n-+ao

imply (8.4).

| β '-o l + lim ||ω*\\Ω -Ω.m.
m, n-*co

to ll«-«.-o.

τn~*oo n~*oo

•*-ω*lloϊ'-£«.=0.

COROLLARY 8.1. Let W be an arbitrary open Riemann surface, let us

suppose that {Kn~K(Ωn, 4nΨ)}™=0 is an increasing sequence of normal sub-

divisions by a quadratic differential Ψ which defines a regular exhaustion of W,

and let Kn=<Kn, K*> (n=0, 1,...). Let Θ be an arbitrary differential of
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Γc0(W) with compact support contained in Ωo, and let σn (n=0, 1,...) be the

difference of Γh0(Kn) with support Kn such that 0 - < j n l G Γ e O ( β π ) . Then, we

obtain the same conclusion as Theorem 8.1. Furthermore, the inequalities

(8.Π) lk"lk.£lk" fllOl.£||ω|l!r for every «

hold and the monotone convergence of norms

(8.12) \\σn\\Kn\\\ω\\w (Λ->OO)

holds. And the limit differential ω is the projection of Θ on Γh0(W).

PROOF. With the notation in Theorem 8.1, we assume that the natural

extension σm" is defined on each Kn (n=m, ra + 1,...) by setting σ m "=0 on Kn —

Kmn. Then σm^Γc0(Kn). Since σn - σ»* <EΞ Γe0(Kn) and σn^Γh0{Kn\ we have

that

(σn-σm\ σn)Kn = 0 ( n ^ m).

Hence

Therefore ||σ#l||JK-ri is monotone decreasing, and the assumption (8.1) of Theorem

8.1 is satisfied. Hence we obtain the same conclusion as Theorem 8.1. The

proof of the remaining parts is easy.

COROLLARY 8.2. Under the same assumption as Corollary 8.1, let y be

a cycle on K%, let χnγ and φny be the harmonic and the analytic reproducing

differences respectively ofγ on Kn defined in § 4, and let χγ and φγ be the harmonic

and the analytic reproducing differentials respectively of y on W. Then, the

sequences {χny*}™=o and {Φny*}n>=o strongly converge to the differentials χγ

and φy respectively, i.e.

lim\\χ»y*-χy\\=0,
n-+oo

lim\\φny*-φ?\\=0,
n-*oo

the inequalities

Wx"y\\κnZ\\xuy'\\wZ\\xr\\π for every«,

\\Φny\\κn^\\Φny*\\w^\\Φy\\w for every n

hold, and the monotone convergence of norms
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WΦny\\κn\\\Φγ\\w (Λ->oo)

holds.

PROOF. We may assume that the smooth extension χOγ* is defined on W

by setting χ°y*=O on W-Ωo. Then χ°y*&Γc0(W). We can choose the dif-

ferential χOy* as the differential Θ of Corollary 8.1, and we note that χny (n=0,

1,...) is the difference of Γh0(Kn) with support Kn such that χOy*-χny*&ΓeO(ΩH)

for each n.

§ 9. An application to numerical calculation.

1. Riemann's period matrix of a closed Riemann surface. Let W be a

closed R i e m a n n surface of g e n u s g. Le t {A,., Bj}j=ίfg be a c a n o n i c a l h o m o l -

ogy basis o f flPsuch t h a t

AjxAk=0, BjXBk=0, AjXBk = δjk (j, fc = l,..., #),

where by <5Jfc we denote Kronecker's symbol. Then there exists a system of

analytic differentials ψj on W(j = l,...9g) such that

\ \l/.=δik (/, fe = l,..., ύf).
J Aj

Then the matrix (τ^) determined by

Jk
 JBJ

 k

is called Riemann's period matrix, which is an important conformal invariant

determining the conformal structure of W. The matrix (τjk) is symmetric and

the matrix (Im τjk) is negative definite.

For simplicity we set C2j-1=AJ, C2j=Bj (/ = 1,..., g). It is well known

that there exists a unique system of harmonic differentials Oj (7 = 1,..., 2g) on W

such that

2 j ί \ ω2j = l 0 = 1,..., g\
JC2j JC2J-1

\ Wj = 0 for all other pairs j , k.
JCk

We set

<*jk=(<*>j> u>k)w = \ ω f ( 7 , k = l,...92g).
JCj

Then the matrix (ocjk) is symmetric and positive definite, We can easily see that
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Riemann's period matrix (τjk) can be calculated from (αyΛ). Furthermore, to

obtain (ocjk) is equivalent to obtain the system of quantities

βjk = \\ωj + ωk\\2=otjj + 2ajk + akk (j, fc = l,..., 2g).

2. Determination of Riemann's period matrix. We shall continue from 1.

Let / be a meromorphic function of finite valence on W. Let Ψ be the quadratic

differential Ψ = df2 or the logarithmic quadratic differential Ψ=dLf2 of the

meromorphic function /. Let {Kn=K(Ωn9 4nΨ)}^L0 be a sequence of normal

subdivisions by the quadratic differential Ψ which defines a regular exhaustion

of W, where W = W—e and e is the set of critical points of Ψ outside \Kn\ for all

n.

We shall calculate approximately the quantities βjk (j, k = l,...,2g). Let

Θj 0 = 1, ..., 2g) be a differential of Γc0(W) satisfying the following conditions:

(i) the support of Θj is contained in Ωo

(ii) Θj has the same period as coj respectively along each cycle;

(iii) an integral Fj of Θj on Ωo — Cj is constant on dΩ0.

Since W e OG, OG being the class of open Riemann surfaces not admitting a Green

function, we find that Wj O' = l, .. ,2g) is the projection of Θj on Γh0(W') =

Γh(W). We set Θ=Θj + Θk and apply Corollary 8.1 to the present Θ. Then

we have that

where σn (n=0, 1, .. ) is the difference of Γh(Kn) with support Kn such that Θ —

σn*^Γe0(Ωn). Hence we obtain a sequence of upper bounds of βjk which

converges monotonously to βjk.

3. Numerical calculations. The following calculation method of the period

matrix is applicable to an arbitrary closed Riemann surface. Here, in order to

compare our computation results with the true values, we shall choose a Riemann

surface W whose period matrix can be calculated by the complete elliptic integral.

Let Wbe the two-sheeted covering surface with four branch points —1/k, — 1 ,

1, 1/fe (0</c< 1) over the whole z-plane. Then Wis a closed Riemann surface of

genus 1. We can choose a canonical homology basis Au Bx on PPso that their

projections onto the z-plane are simple closed curves around — 1 and 1, and 1

and 1/fc respectively. In this case, we find that

JA
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and

Ti i = , = -/( ωf=-/||ω2||2 = - ^

We shall exhibit some results of numerical calculations of the quantity iτίl

for the following cases (i), (ii) and (iii).
(i) l/fc=2.
Let / be the projection map of W onto the z-plane, let Ψ be the quadratic

differential denned by Ψ=($df)2 and let Ω be the subregion of TFlying on {-8<
x<8, —8<y<8}. Then we can construct the normal quadrangulation Ko =
K(Ω9 Ψ) of Ω by Ψ. Let Kx and K2 be the normal subdivision of Ko and Kt

respectively. Let σn (n=0, 1, 2) be the unique difference of Γh0(Kn) with support
Kn such that Θ2 — σπ*eΓe0(ΩM). Then we obtained the numerical result in Table
I. We can compare this with the value iτlί = | |ω 2 | | 2 =0.6396 calculated by the

Table I

w=0

n = \

n=2

lkiii
n

0.6805

0.6673

0.6595

lk"
f
ll&.

0.6719

0.6630

0.6578

complete elliptic integral.
(ii) l/k = eπί*.

Let / be the projection map of W onto the z-plane, let Ψ be the quadratic
differential defined by Ψ =((128/2π)d lg/)2 and let Ω be the subregion of W lying on
j e-5π/8< | z |<£7π/8j Then we can construct the normal quadrangulation Ko =
K(Ω, Ψ) of Ω by Ψ. Let Kλ and K2 be the normal subdivision of Ko and Kx

respectively. Let σn (n =0, 1, 2) be the unique difference of Γh0(Kn) with support
Kn such that 6) 2 -σ π f εΓ e 0 (Ω n ) for each n. Then we obtained the numerical
result in Table II. We can compare this with the value iτίl = | |ω 2 | | 2 =0.6731
calculated by the complete elliptic integral.

(iii) i/fe=VΣ
Let/be the projection map of Pronto the z-plane, let Ψ be the quadratic dif-

ferential defined by Ψ=($df)2 and let Ω be the subregion of FT lying on { —8<x
<8, — 8<j<8} . Then we can construct a sequence of normal subdivisions
Kn=K(Ωη, 4nΨ) (n=0, 1?...) which is maximal under the condition ΩncQ
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Table II

n = 0

n = l

n=2

0.6974

0.6909

0.6876

\WH*\\L
0.6931

0.6887

0.6866

respectively. Then limH Ωn = Ω- 9 -^2}. Let σn (n=0, 1,2) be the

unique difference of Γh0(Kn) with support Kn such that Θ2 — σ"* GΓe 0(Ωπ). Then

we obtained the numerical result in table III. In the present case, we know that

Table III

π = 0

n = \

n=2

\Wn\\L

0.6175

0.5562

0.5344

' llσ- Hi,

0.6070

0.5508

0.5319

the true value of ϊ'τ11 = | |ω 2 | ! 2 is 0.5.

Next, let Ψ be the quadratic differential defined by ίF=((128/2π)ίίlg(2-1/4/))2

and Ω be the subregion of f lying on {21^e~π^2<\z\<21^eπ/2}. Then we can

construct a sequence of normal subdivisions Kn=K(Ωn, 4nΨ) (n=0,1,. . .) which

is maximal under the condition ΩnaΩ. Then limM_ 0 0Ω / ι=Ω-{ λ/2, -yj2}.

Let σn (n =0, 1, 2) be a difference of Γh0(Kn) with support Kn such that Θ2 — σn* e

Γe0(Ωn). Then we obtained the numerical result in Table IV.

Table IV

n = 0

n = l

n = 2

0.6260

0.5882

0.5579

lk"Ίlέ.

0.6213

0.5858

0.5567

The present computations were carried out on the IBM 360/75 of the Univ-

ersity of Illinois and the FACOM 230/60 of the computer center of Kyoto Univ-

ersity.
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