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Introduction.

In the present paper we aim to discuss a method of finite-differences from
the point of view of applications to the function theory. Since we speak of har-
monic and analytic differentials and functions on a Riemann surface, we need to
construct a theory of finite-differences on a Polyhedron.

Let u be a function defined at the points of the complex plane whose coordi-
nates are integers. As a definition of a discrete harmonic function u on a plane,
the so-called five-point formula

uz+ D) +u(z+i)+u(z—1)+u(z—i)—4u(z) =0

is generally used. How we define the conjugate discrete harmonic function and
a discrete analytic function so that their definition match with the above definition
of a discrete harmonic function, is an important problem. It is desirable, based
on the definitions, to construct a theory of rich contents of discrete harmonic and
analytic functions. As the works with this intention, we can mention Blanc [3],
Lelong-Ferrand [10], [11], Isaacs [7], [8], Duffin [5], Hundhausen [6], etc.
Blanc [3] introduced the concepts of a réseau Riemannien and a réseau conjugué
on a plane, and introduced very general definitions of a discrete harmonic function
and its conjugate function. He developed an interesting analogy with the type
problem of a Riemann surface, and also he [2] developed an analogy with Nevan-
linna’s first and second fundamental theorems. However, it seems that he did
not intend to make an effective use of a conjugate harmonic function on a réseau
conjugue. Our definitions of a harmonic function and its conjugate function
are similar to Blanc’s.
Let f be a complex-valued function defined at the points of the complex plane
whose coordinates are integers. Then Lelong-Ferrand [10], [11] introduced
the following definition of a discrete analytic function f:

(1) S+ 1+i)—f(z) _fz+i)—f(z+1)
1+i i—1 ’

If we set f=u+ iu* where u and u* are real, then it is seen that the discrete analyti-
city of f implies that u and u* are discrete harmonic and satisfy a pair of difference
equations which are analogous to the Cauchy-Riemann equations. She developed
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several interesting analogies with ordinary analytic functions. With the last
definition of analyticity, Duffin [5] brought new developments which included
the Cauchy integral formula, Liouville’s theorem, Harnack’s inequality, poly-
nomial expansions and Hilbert transforms.

Isaacs [7], [8] developed a theory of discrete analytic functions based on
the following definitions of analyticity:

=Szt —f(2)
fz+1) f(z)'—'—l—“~

or

=S+ D—f(z—0)
fE+D)=fz-D= ; .

Hundhausen [6] introduced a more general criterion of discrete analyticity
based on a discrete formulation of Morera’s theorem and showed a new approach.

In Chapter I of the present paper, we aim to construct a theory of discrete
harmonic and analytic differences on a polyhedron, where our definition of a
polyhedron differs from the ordinary one based on a triangulation and admits
also a polygon and a lune as 2-simplices (cf. §1. 1). A function (a zero order
difference), a first order difference and a second order difference on a polyhedron
are defined as functions which take a complex value at each oriented 0-simplex,
1-simplex and 2-simplex respectively (cf. §2. 1). In order to set the definitions of
a conjugate harmonic difference (function) and an analytic difference (function)
which answer our purpose, we introduce concepts of a conjugate polyhedron and
a complex polyhedron (cf. §1. 3). The method of differentials on a Riemann
surface (cf. Chapter V of Ahlfors & Sario [1]) has been very valuable in the pro-
cess of construction of the present theory. Many methods and results analogous
to the theory of harmonic and analytic differentials (functions) of the continuous
case are developed, and a model of the function theory is constructed on a complex
polyhedron.

In Chapter II, we shall concern ourselves with the problem of approximating
harmonic and analytic differentials on a Riemann surface by harmonic and analytic
differences respectively. We define a Riemann surface based on a normal quad-
rangulation (cf. § 1. 8). More generally, we define a normal quadrangulation of
a subregion of a generic Riemann surface W by trajectories and orthogonal trajec-
tories of a quadratic differential ¥, and further we define an exhaustion of W by
a sequence of normal subdivisions by ¥ (cf. §1.9~§ 1. 11). Then we shall discuss
the norm convergence of smooth extensions of harmonic and analytic differences
on the sequence of normal subdivisions to harmonic and analytic differentials
on W respectively (cf. Theorems 7. 1, 7. 2, 7. 3, 8. 1 and Corollary 8. 1, and cf.
§ 7. 1 for the definition of smooth extension).

Courant-Friedrichs-Lewy [4] showed that a solution of the Dirichlet problem
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on a plane region can be uniformly approximated by a corresponding solution
of the discrete case. Their method is essentially to show the equi-continuity of
a sequence of discrete harmonic functions. Lelong-Ferrand [11] discussed the
problem of approximating uniformly an analytic function on a plane by discrete
analytic functions in the sense of the definition (1). For this problem she made
use of the Cauchy integral theorem for a discrete analytic function. In our present
method, the harmonicity of the limit differentials of smooth extensions of discrete
harmonic differences and its conjugate differences is simultaneously shown and
thus the analyticity of the limit differentials of smooth extensions of discrete
analytic differences is also shown. Our method is based on the facts that the
smooth extensions of a discrete harmonic difference and its conjugate difference
are closed differentials in the sense of Ahlfors & Sario (cf. Chapter V of [1]),
their limit differentials in the sense of the Dirichlet norm are a pair of closed and
conjugate closed ones, and thus a pair of harmonic and conjugate harmonic ones.
The method of orthogonal projection of differences and differentials is also effec-
tively used (cf. Theorem 7. 3 and Corollary 8. 1).

Finally, as an application of our results to numerical calculation, we shall
discuss in §9 the problem of determining Riemann’s period matrix of a closed
Riemann surface. With respect to the problems of this type, Opfer [14], [15]
dealt with the problem of determining the modulus of a doubly connected domain
by means of finite-difference method, and Mizumoto [12], [13] dealt with the
corresponding problem for a general multiply connected domain.

Chapter I Theory of differences on a polyhedron.

§ 1. Foundation of topology.

1. Polyangulation. Let E2? be the euclidean plane. By a euclidean 0-sim-
plex we mean a point on E2. By a euclidean 1-simplex we mean a closed line
segment or a closed circular arc. By a euclidean 2-simplex we mean a closed
polygon surrounded by a finite number (=2) of segments and circular arcs.
A lune (biangle) and a triangle are also admitted as a euclidean 2-simplex.

Let F be a 2-dimensional orientable manifold. By O-simplex ¢, 1-simplex
a and 2-simplex M on F we mean a pair of euclidean O-simplex g¢, 1-simplex a®
and 2-simplex M¢ respectively, and one-to-one bicontinuous mappings ¢ of g¢,
a® and Mc¢ respectively into F. We shall write g =[q¢, ¢], a=[a®, ¢] and M =
[Me, ¢]. The images of g€, a® and M¢ under ¢ are called the carriers of q, a
and M respectively, and are denoted by |q|, |a| and | M| respectively; that is, ¢(q¢) =
lq], ¢(a®)=]a| and p(M*e)=|M|. M is called a polygon on F, and the images of
the edges and vertices of M¢ are called edges and vertices of M. Each edge of
M is a 1-simplex and each vertex of M is a O-simplex, We say that a point p
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belongs to q, a and M when pe|q|, p<|a| and p=|M)| respectively.

Let us suppose that a collection K of polygons (2-simplices) is defined on F
such that each point p on F belongs to at least one polygon in K and such that
the following conditions (i), (ii), (iii) are satisfied:

(i) if p belongs to a polygon M of K but is not on an edge of M, then M is
the only polygon containing p and |M| is a neighborhood of p;

(i) if p belongs to an edge a of a polygon M, in K but is not a vertex of
M, then there is exactly one other polygon M, in K such that [a|C|M,|N|M,],
M, and M, are the only polygons containing p, and |M,| U |M,] is a neighborhood
of p;

(iii) if p is a vertex of M, there is a finite number of polygons M,..., M, (x
=2), each having p as a vertex, such that each successive pair of polygons M,
M;., (j=1,..,k; M., =M,) have at least one edge in common, M,,..., M,
are the only polygons containing p, and |M,|U... U|M,| forms a neighborhood
of p, where it is permitted that some pair of polygons have two or more edges in
common. Then, K is called a polyangulation of F ora polyhedron,") and F on
which a polyangulation is defined, is called a polyangulated manifold. 1If each
polygon M of a polyhedron K is a quadrangle, then K is called a quadrangulation
of F or quadratic polyhedron, and F is called a quadrangulated manifold.

Let 2 be a compact bordered subregion of F whose boundary consists of
edges of K. Then the collection of polygons of K having their carriers in € is
called a compact bordered polyhedron. 1If F is closed (open resp.), then K is
said to be closed (open resp.).

Let K and L be two polyhedra. If every polygon of Lis a polygon of K,
then L is called a subpolyhedron of K, K is said to contain L, and it is denoted
by Lc K. Furthermore, if |L| is a regular (canonical resp.) subregion of K|
(see p. 26, p. 61 and p. 80 of [1] for the definition), then L is said to be regular
(canonical resp.).

Let a sequence of polyhedra {K,}2, be an exhaustion of an open polyhedron
K. If each K, is regular (canonical resp.), then {K,}2, is said to be regular
(canonical resp.).

2. Homology. On a polyhedron we can define a homology in the same
manner as the case of a triangulated polyhedron. An ordered n-simplex (n=0,
1, 2) is defined in the similar way. An ordered n-simplex (n=0, 1, 2) is denoted
by the same notations g, a, M, etc. as an n-simplex. The orientation of simplices
induces an orientation of the manifold F.

For a fixed dimension n (n=0, 1, 2) a free Abelian group C,(K) is defined by
the following conditions (i), (ii):

1) Throughout the present paper, the terminology “polyhedron” will be taken for this sense,
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(i) all ordered n-simplices are generators of C,(K);
(i) each element of C,(K) can be represented by the form of finite sum

;}xiq,-, ; xja;  2x;M;
J

for n=0, 1, 2 respectively, where x; are integers. Each element of C,(K) is called
an n-dimensional chain or an n-chain.

The boundary 0 of an n-simplex for n=0, 1 is also similarly defined. For
n =2, the boundary of a 2-simplex M is defined by

OM=a,+...+a, (k=2),

where a,,..., a, are edges of M with the orientation induced by the orientation
of M. The boundary of a chain is defined by

a(;quj)=§xjaqj’ 6(;xjaj)=lz_:xj6aj,
6(;ijj)=§:xjan

for n=0, 1, 2, respectively. A 1-chain whose boundary is zero, is called a cycle.

Provided any confusion does not occur, for the present case of polyhedron
we shall use the same usual terminologies of homology (see Ch. I, §4 of Ahlfors
& Sario [1] for the definition of terminologies).

3. Complex polyhedron. If two open or closed polyangulations K and
K* of a common manifold F satisfy the following conditions (i), (ii), then K* (K
resp.) is called the conjugate polyhedron of K (K* resp.):

(i) To each O-simplex g (¢* resp.) of K (K* resp.), there is exactly one 2-
simplex M* (M resp.) of K* (K resp.) such that |q||M*| (|g*||M| resp.).
M*, M, q* and q are said to be conjugate to q, q*, M and M* respectively.

(ii) To each 1-simplex a (a* resp.) of K (K* resp.), there is exactly one 1-
simplex a* (a resp.) of K* (K resp.) such that |a| intersects |a*| at only one
point. If the oriented 1-simplex a* runs through the oriented 1-simplex a from
the right to the left, then a* (—a resp.) is said to be conjugate to a (a* resp.).
Throughout the present paper, the notation a* will always express the conjugate
of a 1-simplex a. Thus a**=(a*)*=—a.

The pair of K and K* is called a complex polyangulation of F or complex
polyhedron, and is denoted by K=<K, K*>. A manifold F on which a com-
plex polyangulation is defined, is called a complex polyangulated manifold.
If F is open or closed, then K= <K, K*> is said to be open or closed respectively.
Let L be a compact bordered subpolyhedron of K and L* be the sum of polygons
of K* having their carriers in |L|. Let us suppose that L* is connected. Then
L* is the maximal compact bordered subpolyhedron of K* under the condition
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|L*|c|L|. The pair L=<L, L*> is called a compact bordered complex
polyhedron.

If each polygon of a complex polyhedron K is a 4n-angle (n: a positive in-
teger), then K is said to be latticed.

Let K=<K, K*> and L=<L, L*> be two complex polyhedra. If L
and L* are subpolyhedra of K and K* respectively, then L is called a complex
subpolyhedron of K. Furthermore, if L is regular (canonical resp.), then L is
said to be regular (canonical resp.).

If {K,=<K,, K}>}x, is a sequence of complex subpolyhedra of an open
complex polyhedron K= <K, K*> such that {K,}%.; defines an exhaustion of
K, then {K,}%, is called an exhaustion of K. An exhaustion {K,}®. such that
each K, is regular (canonical resp.), is said to be regular (canonical resp.).

An n-simplex or an n-chain (n=0, 1, 2) is said to be in the interior of K=
<K, K*>, if its carrier is in the interior of |K]|.

4. Homology on a complex polyhedron. By an n-chain X (n=0, 1, 2)
of K, we mean a formal sum X =X, + X, of an n-chain X, of K and an n-chain
X, of K*. Here we agree that if K is compact bordered then the conjugate 1-
simplex a* of each a=dK and its boundary da* are admitted as a generator of
C,(K*) and that of C,(K*) respectively, and thus X, is precisely an n-chain of
K*+{a*lac0K}. The boundary 0X is defined by dX =0X,+0X,. X is said
to be homologous to zero, denoted by X ~0, if and only if X, ~0 and X,~0.

Let y,, y, be 1-chains of a complex polyhedron K=<K, K*>. We shall
definie the intersection number y, x y, of y, and 7y, as follows:

(i) if y, and y, are both in K or both in K*, then y; xy,=0;

(i) if y, is contained in K (K* resp.), and if y, is contained in K* (K resp.),
then y, Xy, is defined by the ordinary method;

(iii) for generic y; and y,, yy Xy =y{ Xy¥ +y{Xy; (}1=v1+¥1, V2=V +
Y35 71 V3 C K, ¥, v CK¥).

A system of cycles {A4,, B,, A¥, B¥}:_;(u=< o) on K satisfying the following
conditions (i), (ii) is called a canonical homology basis of K if K is closed and
a canonical homology basis of K modulo the border 0K =<0dK, 0K*> or
the ideal boundary if K is compact bordered or open respectively:

(i) {A4,, B,} and {A4*, B¥} are bases of cycles on K and K* respectively if
K is closed, and bases of cycles on K and K* respectively modulo the border
or the ideal boundary if K is compact bordered or open respectively;

(i) A,xA¥=B, xB}f=0, A, x B¥=A4%xB,=/,,, where J,, is Kronecker’s
symbol.

Let us suppose that K is compact bordered or open. Let y be a finite or
infinite 1-chain on K (cf. p. 72 of [1]). If dy=0, or dy is at most a collection
of O-simplices of 0K and O-simplices whose carriers are outside of |K]|, then y is
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called a relative cycle.
We can find a basis of dividing cycles {c,, ¢}}:-,(v=< o) on K with a system
of relative cycles {d,, d}},-, as follows (cf. pp. 65-75 of Ahlfors & Sario [1]):
(i) {c,} and {c*} are bases of dividing cycles on K and K* respectively;
(i) cpxd¥=ckxd,=0,,
The basis {c,, c¥}i_, is called a canonical homology basis of dividing cycles of K,
and d¥ (d, resp.) is called a conjugate relative cycle of c, (c¥ resp.).

5. Complex cycles. Let a be an oriented 1-simplex of a complex polyhedron
K=<K, K*>. |a*| is divided into two portions by the point p=|a|N|a*|.
We divide a* into two 1-simplicies b and b’ whose carriers are the portions of
|a*| lying on the right side and the left side of a respectively. b (b’ resp.)is called
the conjugate right (left resp.) half 1-simplex of a.

Let g be a 0-simplex of K, and let a’ and a’’ be two successive 1-simplices
such that ¢ is the terminal and initial vertex of a’ and a’’ respectively. Let M,...,
M, (k=1) be the collection of 2-simplices of K having g as their common vertex
and lying on the left side of the chain a’+a’’ such that a’ and a’’ are the edges
of M, and M, respectively, and such that each successive pair M;, M;,, of
2-simplices has a common edge a; with the terminal vertex g, where if k=1 then
a’ and a’’ are the edges of the common 2-simplex M, =M,, and {a;}5-1=0.

Let b’ and b"" be the conjugate left half 1-simplices of a’ and a’’ respectively,
and let g’ and q’’ be the initial vertices of b’ and b’’ lying on a’ and a’’ respectively.
We define a new 1-simplex b with 0b=q’’ —q’ whose carrier is the union of the
portion of |a’| between |q’| and |q|, and the portion of |a’’| between |q| and |q’’|.
The 1-simplex b and the O-simplex g are said to be dual each other with respect
to the 1-chain a’+a’’, and also the O-simplex g’ and the 1-simplex a’ are said to
be dual each other. Furthermore we define a new 2-simplex M’'* such that

x—1
OM™*=b+b"—'5 a*—b.
Jj=1

The 2-simplex M'* is called the conjugate left half 2-simplex of q with respect
to the 1-chain a’ +a''.

Let y=}]%_,a; be a cycle on K such that a; and a;,, have a common vertex
q; as their terminal and initial vertices respectively where a,,;=a;. A generic
cycle can be expressed as a sum of such cycles y. Let b; be the dual 1-simplex
of g; w.r.t. a;+a;.,. Then the cycle

»=3b

J
is called the dual cycle of y. A pair of y and y* is called a complex cycle over y
and is denoted by y =<y, y*>.
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Now we restrict K=<K, K*> to be compact bordered. The (simple)
boundary 0K = <0K, 0K*> of K is defined by the sum of the 1-chains K and
0K*. Next, by K** we denote the sum of all 2-simplices of K* and the conjugate
left half 2-simplices of all g=dK with respect to dK. Then |K**|=|K].

By the dual cycle of the boundary 6K we define the boundary 0K** of K**.
The sum of 0K and dK** is called the complex boundary of K and denoted by
0K =<0K, 0K**>. Throughout the present paper we shall preserve these
notations.

6. Subdivision of a polyhedron. Let M be an arbitrary 2-simplex of a
polyhedron K and let a,,..., a, be the edges of M denoted cyclically such that
0a;=q;+1—4q;(qc+1=41). Then the sequence a,,..., a, is called a cyclic sequence
of edges of M. Let p and p; (j=1,..., k) be fixed interior points of |[M| and
la;| respectively. We define subdivision of M and new simplices as follows.
First, we define new O-simplices ¢ and q9 (j=1,..., ¥) whose carriers are p and
p; (j=1,., k). Each a;(j=1,..., ) is subdivided into two I-simplices a;,, a;,
so that daj; =q%—q;, 0a;;=q;.,—q9. New Il-simplices a;; (j=1, .., k) are
defined as those with da;; =q—q? whose carriers are arcs between p; and p, and
disjoint to each other except for the common point p respectively. And new
2-simplices M; (j=1,..., k) are defined as ones satisfying OM;=a;,+a;;q,;+
ajy13—a3 (acs1=ay). We carry out this procedure for all 2-simplices M € K
so that if a 1-simplex a is a common edge of two 2-simplices M,, M,, then by
subdivision of M, and M, a common subdivision of a is induced. Then we obtain
a new polyhedron K; which is called the subdivision of K. A subdivision K,
of an arbitrary polyhedron K is always quadratic, but the conjugate polyhedron
K* of K, is not quadratic provided either K or K* is not so.

Let K= <K, K*¥> be a complex polyhedron, K, be a subdivision of K and
K* be the conjugate polyhedron of K;. Then the complex polyhedron K;=
<K, K¥> is called the subdivision of K, where we should note that K¥ is not
a subdivision of K*.

7. Normal coordinates. Let K be a quadratic polyhedron and M=
[Me, ¢] be an arbitrary 2-simplex of K. We can choose the mapping ¢ so that
Me is a square. Let P, P,, P;, P, be the vertices of M¢ successively denoted
anti-clockwise and let (x;, y;) (j=1,..., 4) be the cartesian coordinates of P;.

Let P=(x, y) be a point of Me. The point P=(x, y) is said to have the
normal coordinates (1y, Uy, 3, ug) if u; 20(j=1,...,4), uy +p, =1, p3+p,=1and

X =y P3X g+ HaaXy + UolaXs + Uy faXy,

Y=UpU3Yy+ UalhaYa+ Uafla Y3+ U1laY s
Obviously, the points P,, P,, P;, P, have the normal coordinates (1, 0, 1, 0),
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0,1,1,0), (0,1,0, 1), (1,0, 0, 1) respectively. And a point P on the edges
P,P,, P,P;, P;P,, P,P; has the normal coordinates (1, pt;, 1, 0), (0, 1, us, ps),
('uls Ha, O’ 1)’ (ls 0: K3, lu4) respectively. Then the pairs (/"19 /12)9 (.‘13’ ﬂ4)9 (/'ll, .Uz),
(13, pg) respectively are called normal coordinates of the point P on the edges
P,P,, P,P;, P,P,, P,P, respectively (induced by the normal coordinates of M¢).
The normal coordinates of a point of M are invariant by an affine transformation.

Let M=[M¢, ¢] be a 2-simplex of K with normal coordinates assigned on
Me. Then we can assign the normal coordinates to each point p of M by giving
the normal coordinates of ¢~1(p)eMe¢ to the point p.

A point of M having the normal coordinates (1/2, 1/2, 1/2, 1/2) is called a
middle point of M. The set of points having normal coordinates (1/2, 1/2, us,
14) and the set of points having normal coordinates (u,, u,, 1/2, 1/2) respectively
are called median lines of M. A point of an edge a of M having the normal
coordinates (1/2, 1/2) is called a middle point of a.

By the method analogous to the case of normal coordinates of triangulation,
we can prove that for the collection {M =[M¢, ¢]} of 2-simplices of a quadran-
gulation K, a set of mappings ¢ can be so chosen that for each 1-simplex a which
is a common edge of two 2-simplices M ;, M ,, the normal coordinates of each point
on a induced by M, and M, respectively are the same (for the case of triangulation,
e.g. cf. Theorem 5-7 of Springer [16]). A set of normal coordinates chosen
in this way is called normal coordinates of K. A quadratic polyhedron K to
which such normal coordinates are assigned, is said to be normal.

Let K= <K, K*> be a complex polyhedron such that K is a normal quad-
ratic polyhedron. If for the conjugate g* of each 2-simplex M K, |g*| is the
middle point of M, and if for each 1-simplex a € K which is a common edge of
two 2-simplices M, M,, |a*| lies on the median lines of M, and M,, then K*
and K are called a normal conjugate polyhedron of K and a normal complex
polyhedron respectively.

Let K be a normal quadratic polyhedron. If a subdivision K, of K satisfies
the following conditions (i), (ii), then K, is called a normal subdivision of K:

(i) for each O-simplex g K|, g is a 0-simplex of K, or |g| is a middle point
of a 2-simplex M€K or a 1-simplex aeK;

(ii)) for each 1-simplex ac K, a is a subdivision of a 1-simplex of K, or
|a| lies on a median line of a 2-simplex M K.

8. A Riemann surface based on a normal quadrangulation. Let F be
a quadrangulated manifold on which a normal quadrangulation K is defined.
Then we can define an analytic structure of F and make F into a Riemann surface
by the following procedure (i), (ii), (iii) (in the case of triangulation, cf. pp. 113-114
of Springer [16]).

(i) We fix a square M° on E2 and map each 2-simplex M €K onto the



286 Hisao MizumoTto

square Me¢ preserving the normal coordinates of M. By these mappings, a local
uniformizing parameter in a neighborhood of each point in the interior of each
2-simplex of K is defined.

(i) If a point p lies on an edge of a 2-simplex M, K and p is not any
vertex of M, then there exists another 2-simplex M, e K which also has p on
its edge. Then we map |M, U|M,| onto a union of two adjacent squares M,

¢ preserving the normal coordinates of M, and M,. The point p is mapped
into a point PeM¢NM4. By this mapping, a local uniformizing parameter
in a neighborhood of p is defined. This local uniformizing parameter is an
analytic function of the local uniformizing parameter of M, or M, defined in (i).

(iii) Let a point p be a vertex at which v 2-simplices M, .., M, of K meet.
For each j (j=1,..., v), we map M, preserving the normal coordinates of M,
onto a square M¢ in E2(z-plane) whose vertex corresponding to p is at the origin
and whose edge corresponding to |[M;_ | N|M;| is in common with M¢_,, where
for j=1 the latter condition for the edge is omitted. Then the image of the chain
of Mg, .., M¢ by the mapping { =z*/* forms a neighborhood of the origin in the
{-plane. A local uniformizing parameter about p is defined by the coordinates
of corresponding points in the {-plane. This local uniformizing parameter is
an analytic function of the local uniformizing parameter defined in (i) or (ii).

The Riemann surface W constructed by the above procedure (i), (ii), (iii) is
called a Riemann surface based on a normal quadrangulation K.

9. Normal quadrangulation by a quadratic differential. Let W be an open
or closed Riemann surface. By a quadratic differential on W we mean a dif-
ferential ¥ satisfying the following conditions (i), (ii):

(i) To each local uniformizing parameter z of W, a meromorphic function
Q(z) is assigned;

(ii) By a transformation {={(z) of local uniformizing parameters, the
meromorphic function Q(z) assigned to z is transformed to a meromorphic func-
tion Q,({) assigned to { under the condition:

02) =0, (45)

Then the quadratic differential is expressed by the symbol ¥ =Q(z)dz2.

If for a local uniformizing parameter z about a point p Q(z) has a zero or
a pole of order k at the point corresponding to p, then the point p is called a zero
or a pole of order k of the quadratic differential ¥ =Q(z)dz? respectively. Zeros
and poles of ¥ are called the critical points of ¥, zeros and simple poles of ¥
are called finite critical points, and poles of order at least two are called infinite
critical points. For the properties of quadratic differentials and especially of
their critical points, we can refer to the chapter three of Jenkins [9].
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Let ¥ =0Q(z)dz? be a quadratic differential on a Riemann surface W and
Po be a fixed point of W being a regular or finite critical point of ¥. We suppose
that there exist a subregion Q of Wand a quadrangulation K of Q satisfying the
following conditions (i)~ (v):

(i) the point p, is the carrier of some O-simplex go=K;

(i) the carrier |g| of each O-simplex g K is a regular or finite critical
point of ¥;

(iii) the carrier |a| of each 1-simplex a= K lies on a trajectory or an ortho-
gonal trajectory of ¥, no interior point of |a| is a critical point of ¥, and on taking
a as an oriented curve

[ woz| =[] 0@r2az| =13
a a

(iv) no interior point of the carrier |M| of each 2-simplex M € K is a critical
point of ¥,

(v) each component of the relative boundary 0Q of Q is either a carrier
of a finite or infinite 1-chain of K if it is a continuum, or an infinite critical point
of ¥ if it is a point. As the mapping function ¢! of each 2-simplex M =[Me,
¢l K, we can adopt the function

¢-*(p<z))=§j 0(2)12dz,

where z is a local uniformizing parameter of pe |M| and z, is a fixed point of the
local uniformizing parameter. Then, by the conditions (iii) and (iv), M€ is a unit
square, and thus by the set of the functions ¢ we can introduce normal coordinates
to K. The normal quadrangulation K of the subregion Q is called a normal
quadrangulation (with the original vertex p,) of a subregion Q by a quadratic
differential ¥, and denoted by K=K(Q, ¥, po)=K(Q, ¥). The subregion Q
is said to be normally quadrangulable by ¥ for the original vertex p,. The
normal quadrangulation K(Q, ¥, p,) is uniquely determined by @, ¥ and p,
provided it exists.

Let W be the Riemann surface based on a normal quadrangulation K such
that each polygon of its conjugate polyhedron K* is 2n-angle (n: a positive
integer). Then we can easily find a quadratic differential ¥ on W such that K
is the normal quadrangulation of Wby ¥, i.e. K=K(W, V).

10. Exhaustion of a Riemann surface by a sequence of normal subdivisions.
Let W be an open or closed Riemann surface. We fix an original vertex p, in
the following. If there exists the maximal normal quadrangulation K(Q,, ¥)
among all normal quadrangulations by a quadratic differential ¥ which contain
a fixed K(Q, V), then K(Q,, V) is said to be relatively maximal (with respect
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to K(Q, ¥?)).

If {Q,}%, is an increasing sequence of subregions of W, and each Q, (n=
0, 1,...) is normally quadrangulable by the quadratic differential 4% respectively,
then the sequence of normal quadrangulations {K,=K(Q,, 4"¥)}=, is called
an increasing sequence of normal subdivisions by ¥. Here we should note
that K(Q,_;, 4"¥) is a normal subdivision of K(Q,_,, 4"~ 1¥). If each K, is
relatively maximal, then {K,}%, is said to be relatively maximal. Now let
us suppose that Wis open. If the sequence {Q,}%., is an exhaustion of W, then
the sequence of normal subdivisions {K,}%, is said to define an exhaustion
of W. Furthermore if each K, is regular (canonical resp.), then the exhaustion
{K,}®-, is said to be regular (canonical resp.). If {K,}®., defines an exhaustion
of W, then we can always find a regular or canonical exhaustion {K;}%, of
W such that K/ c K, for every n.

11. Normal quadrangulation by the differential of a meromorphic function

Let f be a meromorphic function on an open or closed Riemann surface W. As
a quadratic differential ¥ in 9 and 10, we can adopt the quadratic differential

of f
df? E<gf~:)2dz2

and the logarithmic quadratic differential of f
2= ( NV )L(ﬂLﬂ *dz2
dLf _<2nd1gf =(p ) az,

where z is a local uniformizing parameter and N is a positive integer.

Let K=K(, df?, p,) and K’ =K(Q', dLf?, p,) be the normal quadrangula-
tions by the quadratic differential of f and the logarithmic quadratic differential
of f respectively. Then the image of each 0-simplex g K by f is a lattice point
of the type w=wgy+m+in (m, n: integers; wo=f(p,)) and the image of each
1-simplex a K by f lies on a straight line Rew=Rewy,+m or Imw=Im wy+n.
The image of each 0-simplex g = K’ by f is a lattice point of the type

2nm 27n

|lw|= |wo|exp<—N—>, argw=argw, +T

(m, n: integers; wo=5(po))

and the image of each 1-simplex a< K’ by f lies on a circle |w| =|wy|exp (2nm/N)
or a ray arg w=argwy+2nn/N.

Let K* and K’* be the conjugate polyhedra of the K and the K’ respectively.
Then we know that the complex polyhedra K=<K, K*> and K’'=<K', K'*>
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are latticed.

We can easily see that there always exists the relatively maximal with respect
to each normal quadrangulation by the differential df? or the logarithmic dif-
ferential dLf2.

LemmA 1.1 Let {K,}%, be a relatively maximal sequence of normal
subdivisions by the quadratic differential df? or the logarithmic quadratic
differential dLf? of a meromorphic function f, let e be the set of critical points
of df? or dLf? respectively outside |K,| for all n, and let W =W—e. Then
there exists a canonical exhaustion {K,}2 o of W' such that K,,c K, for every n.

ProoFr. We shall prove the lemma in the case of the differential df2. The
proof in the case of dLf? is quite similar.

We can put K,=K(Q,, 4*df?) (n=0, 1,...). Let p’ be an arbitrary regular
point of df? in W' and let p; be a fixed regular point of df? in Q,. We can
connect p’ to p; by a smooth curve y in W’ so that each point of y is a regular
point of df2. Then there exists a positive number »>0 such that for the r-
neighborhood G, of y measured by f (i.e. G, is the connected component contain-
ing y of {p| | f(p)—f(p")|<r, pEW, p” €v}), each point of G, is a regular point
of df2. Then for all sufficiently large n, there exists a 2-chain X, of the normal
quadrangulation by 4*df 2 such that yc|X,|cG,, thus X,c K, and thus p'€Q,=
|K,|, for each K, is relatively maximal. Hence we see that |K,_,|c|K,| for every
nand U®o|K, =W’ Then we can easily find a canonical exhaustion {K}}%.,
of W’ such that K;,c K, for every n.

§2. Differences on a polyhedron.

1. Difference calculus. Let K=<K, K*> be an arbitrary complex poly-
hedron.

By a function on K we mean the complex valued function f on the set of
oriented O-simplices of K such that f has a value f(q)=f, for each oriented 0-
simplex g and f(—¢)=—f(q).

By a first order difference or 1-difference w on K we mean the complex
valued function w on the set of oriented 1-simplices of K such that w has a value
w(a)=w, for each oriented 1-simplex a and w(—a)=—w(a).

By a second order difference or 2-difference Q on K we mean the complex
valued function Q on the set of oriented 2-simplices of K such that 2 has a value
QM) =Q,, for each oriented 2-simplex M and Q(—M)=—Q(M).

For the conformity, a function on K is called a zero order difference or
0-difference.

We assume that differences of arbitrary order satisfy the linearity condition,
e.g. for two first order differences w,, w,



290 Hisao Mi1zumoro

(101 +c,m,)(a) =c; w(a) +c'wy(a)
(¢4, ¢,: complex constants).

A multiplication of a 1-difference w with a function f'is defined as a 1-difference
satisfying the condition

fw(a)=wf(a)=L2(f1 +f3)o, for each 1-simplex a K,

where f;=f(q;) (j=1, 2) and da*=g,—q,. A multiplication of a 2-difference Q
with a function fis defined as a 2-difference satisfying the condition

QM) =f Q) for each 2-simplex M e K,

where q is the conjugate of M.
The complex conjugate @ of a 1-difference w is defined by @(a)=w(a).
The difference of a function f is defined as a 1-difference w =4 f satisfying

the condition
Af(a)=f,—f1 for each 1-simplex a€ K,

where fi=f(a;) (j=1,2) and da=q,—q,. If for a 1-difference w there exists
a function f such that w=4f, then w is said to be exact. The difference of
a 1-difference w is defined as a 2-difference Q =A4w satisfying the condition

Ado(M) = f}w i for each 2-simplex M €K,
j=1

where w;=w(a;) (j=1,...,k) and OM =3%_,a;. If Aw=0, then w is said to be
closed. Obviously, if w is exact, then w is closed.

The exterior product of two 1-differences w,, w, is defined as a 2-difference
Q=w,w, satisfying the condition

. 0,0,(M)= ——é—jglwl(a}‘)wz(aj) for each 2-simplex M e K,

where OM =3} %_,a;. We can easily verify that the partial difference formula
2.1 A(fw)=A4f)o+fAw
holds.

2. Summation of differences. We can define the sum of an n-difference
(n=0, 1, 2) over an n-chain. Let A=2)x;q;, y=2.x;a; and X=3x;M; bea
0-chain, a 1-chain and a 2-chain respectively of a complex polyhedron K. The
sum of O-difference f, 1-difference w and 2-difference Q over A, y and X res-
pectively are defined by
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S f=Zxf@)
§ o=Xx0(a)

and

gxs2= Tx,2M,)

respectively. The basic duality between a chain and a difference

(2.2) nga)= gaxw

is obvious, where X is a 2-chain and w is a 1-difference. The formula for partial
summation

(2.3) gx(Af)w=§axfw——gfow

follows from (2.1) and (2.2).
The following two criteria are also obvious:

A 1-difference w is exact if and only if g =0 for every cycle y;
v

A 1-difference w is closed if and only if g =0 for every cycle y that is
homologous to 0. !
If w is closed, then the period of w along a cycleyis defined by g w, which
Y

depends only on the homology class of y.

Now we shall define the sum of 2-difference over a complex polyhedron
K=<K, K*>. If K is compact bordered or closed, then the sum of a 2-differ-
ence Q over K

S e
K

is defined as the sum of Q over the 2-chain K because K is itself a 2-chain. If
K is open, then we can set

(2.4) §K9=1im Q

X-K“YX

provided that the limit exists, where X is a 2-chain of K such that Xc K. Let
us define |Q| by |Q|(M)=|Q(M)| for each M K. Then (2.4) exists if and only
if the limit

(2.5) S, /ei=lm§ |o|

is finite.
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3. Conjugate differences. Let w be a 1-difference on a complex polyhedron
K. Then the conjugate difference w* of w is defined as a 1-difference satisfying
the condition

w*(a*)=w(a) for each 1-simplex a K.
Then we can easily see that
(2.6) o**=—w,
2.7 ¥t =—w,w;,.

A 1-difference w is said to be harmonic if w and w* are both closed. By
(2.6) and the definition, w and w* are simultaneously harmonic. Let u be a
function on K. wu is called a harmonic function on K if the difference du is
harmonic. u is harmonic on K if and only if

K
iuj—Kig=0
=1

for each O-simplex g, in the interior of K, where u;=u(q;) (j=0,..., k), da;=
q4;—4qo (j=1,...,x) and a; (j=1,..., ) are all 1-simplices having g, as a vertex.

A 1-difference ¢ is said to be pure if ¢*=—i¢. Thus a difference ¢ is pure
if and only if ¢,»=i¢, for every ac K. A difference ¢ is said to be analytic
if it is closed and pure. A function f on K is said to be analytic if the difference
Af is analytic. If a difference w is harmonic, then w+iw* is analytic. The
complex conjugate ¢ of an analytic difference ¢ is said to be antianalytic.
Every harmonic difference can be uniquely written as the sum of an analytic
difference and an antianalytic difference.

§3. The Hilbert space of differences.

1. The inner product. Let w,, w, be two 1-differences on a complex
polyhedron K=<K, K*>. We shall define the inner product (w,, w,)=
(w4, wy)g of w; and w,. If K is closed, then it is defined by

@G0 (@1, 05)x =a§w1(a)52—(_a)-

If K is compact bordered, then it is defined by

(G2 (04 0)x= T (0102 +05kd2)+-1 3 (0102 +0kdls),
acK=0K 2 49k

where w}!=w,(a), etc. If K is open, then it is defined by the limit process

(3.3) (04, wy)g=lim(w;, w,)g,
LK
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provided that the limit exists, where L= <L, L*> is a compact bordered complex
polyhedron such that LCc K. In the definition of inner product (w,, w,) we agree
that for the sense-reversed — K of K

(01, @3)-x=—(01, ®,)x.

If K is closed or open, then we can see that
(34) (05, 0)x=§ 0,3
K
If K is compact bordered, then we can similarly see that

—_ M 1 152 1 1. 52
(3-5) (wla wz)x = §xwlwg + 7a§Km awa+ —z—ae;K'm a"w a**

By the definitions (3.1), (3.2) and (3.3), for every case of K we have that
(3.6) (03, @) =(D;, @),
3.7 (01, 03) =(,, ®,).

Let o be a 1-difference on a complex polyhedron K. Then the norm |jw||=
|lw]lx of w is defined by

(3-8) lloollx =(e0, w)i2.

Let us denote the Hilbert space of all 1-differences w on K with |w]|<o by
I'=I'(K). Furthermore, we define the closed subspaces of I' as follows:

I'.={w| o is closed, 0T},
I'.={w| o is exact, oI},
I',={w| o is harmonic, we I},
I',={¢| ¢ is analytic, ¢TI},
I*={o* werly},

ri={o* wer,),

I't={w* werl,}.

Then it is obvious that I'f=I',, I'.cI',, I'y= ,NT* and I',cT,.
Because of Schwarz’s inequality

(@4, @2)| = [0y I lleoz

the inner product (w,, w,) for any pair w,, w, I’ always exists.
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2. Green’s formula. Let 7 =<7, y*> be a complex cycle on a complex
polyhedron K=<K, K*>. Let f and w be a function and a 1-difference on
K respectively. We shall define f and w on y*.

Let g be an arbitrary O-simplex of y*, let a be the dual 1-simplex of q and
let 0a*=q,—q,. Then we define the value of f at q=y* by

(3.9) F@=5(£@)+f(@2)).

Let b be an arbitrary 1-simplex of y*, let g be the dual 0-simplex of b, let M'*
be the conjugate left half 2-simplex of ¢ w.r.t. y and let

OM*=b+b" =5 aX—b'
Jj=1
with the notations defined in § 1. 5. Then we define the value of w along b < y* by
(3.10) 0b) =1 0@+ %, 0@}~ 1 o@),
j=1

with the notations a’, a’’ defined in §1. 5.

The multiplication of @ with f on 7 is defined by
3.11) fo(a)=f,0, for each 1-simplex acy,
where q is the dual O-simplex of a.

LemMMA 3.1. (Green’s formula.) If K is compact bordered or closed,
then we have

(3.12) (4f, o)x=§ f0*=§ f4b*,

where dK is the complex boundary of K, and if K is closed then the first term
of the right side vanishes.

Proor. By (3.5), (2.3) we have

A, 0)x=(S, S0+ 5 DM Dut 5 5 Moder)-§ [ 40*

(S, 0"+ % T (fi+ Lo+ L 5 Arax
oK 2 aéok* 2 aé3k

1

2 o&k

4f.0%)-§ faor

(8. S0 B O F My %)= § faon

edK
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where f;=f(q;) (j=1, 2) and da*=q,—q,. By the definitions (3.10), (3.11) and
simple calculation we find that

S . fo*=3% [i0%+ 5 Af. ok
aK*+ aédkK* aedK 2

Hence we obtain the present lemma.

By (3.12) the equation
(3.13) S (f45*—GAr*)=§ (FA(45*)—GA(Ar*))
oK K

holds for a pair of functions f, g on K.

In Courant-Friedrichs-Lewy [4], Blanc [3] and Mizumoto [12], we can
find some different types of Green’s formulas for discrete functions. In the
present paper we shall find that the present Green formula constructed on a
complex polyhedron is very convenient.

3. Orthogonal projection on a compact polyhedron. In 3~7, we shall
briefly state the method of orthogonal projection of the Hilbert space of differences
which is analogous to the case of differentials (cf. Ch. V of Ahlfors & Sario [1]).

Let K be a closed complex polyhedron. By (3.6), (3.7), (3.12), we have

(@, 4f)==§ Jdo

for a function f and a 1-difference w on K. Hence 4w =0 implies (w, 4f*)=0.
Conversely, if

gx]Aw=O

holds for all functions f on K, then we have 4w=0 on K. Hence on a closed
complex polyhedron K, I', (and I'*) is the orthogonal complement of I'* (and
I, resp.). Then by the general theory, we have the orthogonal decompositions

(3.149) r=r,4r*=r*4ir,,
and hence we have immediately the orthogonal decomposition
r=r,+r.+rt.

A 1-difference w on a complex polyhedron K is said to vanish along a 1-
chain y if w(a)=0 for every 1-simplex aEy.

Let K be a compact bordered complex polyhedron. A closed 1-difference
o on K is said to belong to the subspace I'.o(K) if @ =0 along the complex bound-
ary dK. Similarly w=Af is said to belong to the subspace I',o(K) if f=0 on
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the complex boundary K. By making use of (3.12) and the similar argument
to the case of (3.14), on a compact bordered complex polyhedron K we have the
orthogonal decompositions

(3.15) r=r+4r*=rug+r,,

(3.16) r=r,4r.§=r*4r.,

and hence we have immediately the orthogonal decomposition
I=T,4+T,+T%.

A 1-difference @ on a compact bordered complex polyhedron K is said to
be semiexact if w is closed and its period along each contour of K and K* vanishes.
The subspaces I';, and I'¥, of I' are defined by I',,={w| w is semiexact, oI}
and I'*, ={w*| weTl,}. Then we have the orthogonal decompositions

(3'17) F'_'Fconre'i'rte:(rconre)*+rse'

4. Orthogonal projection on a generic polyhedron. Let us suppose that
K is an open or closed complex polyhedron. A 1-difference w (a function f resp.)
on K is said to have compact support if w(a)=0 for all 1-simplices a€ K (f(q)=0
for all O0-simplices g € K resp.) except for a finite number of 1-simplices (0-simplices
resp.) of K.

Let I',, be the subclass of I', consisting of the 1-differences w such that w =
Af for a function f with compact support. We define the subspace I',o of I' as
the closure in I" of I'’,,. The subspace I',, is defined as the orthogonal comple-
ment of I'*¥. From the definitions it follows that I',o=I", and I' ., =T, for a closed
complex polyhedron K.

On an arbitrary complex polyhedron K we have the following orthogonal
decompositions:

(3.18) I=rI +TI%=I%+T,
(3.19) =4 I*=r*4r,,
(3.20) =T+ T+ T,
(3.21) F.=I,+T,,

(3.22) To=Ty4T o,

(3.23) Foo=Tyo+T o,

(3.29) =T 4 T}y=Tyo+%,

where I'y,=I' NI, and Iyy=I,NT,.
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If w, and w, are two 1-differences such that w; —w, T, then w, is said to
have the same boundary behavior and the same periodicity as w,. The decom-
positions (3.21), (3.22) and (3.23) assure that for any difference t of I',, I', or I',,
there exists the difference o of I'y, I',, or I'y, respectively with the same boundary
behavior and the same periodicity as .

5. The double of a polyhedron. Let K= <K, K*> be a compact bordered
complex polyhedron. Let F be the double of the manifold F=|K]| and let j be
the involutory mapping of F onto itself (cf. pp. 26-27 & p. 290 of Ahlfors &
Sario [1] for the definition). We can always define a polyangulation K of F and
its conjugate polyhedron K* satisfying the following conditions (i), (ii), (iii):

(i) Each n-simplex (=0, 1, 2) of K (K* resp.) and its image by the
mapping j are n-simplices of K (K* resp.);

(i) For each O-simplex g and each 1-simplex a of 0K, there exist a 2-simplex
M* and a 1-simplex a* of K* which are the conjugates of g and a respectively and
which are mapped onto themselves but sense-reversed by the involutory mapping
Js

(iii) The collection of n-simplices of K defined in (i) (R* defined in (i), (ii)
resp.) forms the whole class of n-simplices of K (K* resp.).

R and R* are called the doubles of K and K* respectively, and K=<R,

R*> is called the double of K= <K, K*>. R, R* and K are closed.

6. Schottky differences. With each 1-difference w on a double K we can
associate a new difference ™~ by

w~(j(a)) =w(a) for each 1-simplex a ek.
We can easily verify the invariance of exterior product:

0705(—j(M))=w,w0,(M) for each 2-simplex M eIA(,
and

~

¥ =—w~*,

We shall say that w is even if o~ =w, and odd if »~=—w. If w is even, then
w* is odd. If w is closed and odd then w vanishes along the complex boundary
0K = < 0K, 0K** >, for it follows immediately for K and from the definition
(3.10) for OK*+.

Any 1-difference w on K can be uniquely decomposed into  =w, + w% where
o, and w, areeven. Ifwe Fh(ﬁ), then we can immediately see that in the decom-
position w=w,+w%, o3l (K) and w,sTl¥,(K). Furthermore we can
immediately see that the whole class of differences on K which have a harmonic

extension to K is given by the direct sum I',o(K)4I'},(K). Such differences
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will be called Schottky differences.
Let K be an open complex polyhedron. The following lemma is proved by
the orthogonal projection method.

LeMMA 3.2. wel(K) if and only if for every ¢>0 and every finite 2-
chain X CcK there exist a regular complex subpolyhedron K, of K and wy€
I'yo(K) such that X c K, and ||o—w||g, <.

A 1-difference @ on an open complex polyhedron K is called a Schottky
difference on K if for every ¢>0 and every finite 2-chain X c K there exist a
regular complex subpolyhedron K, of K and w,&TI',o(Ky)+I'¥o(K,) such that
XcK,and ||j@o—wy|lg, <& The class of all Schottky differences on K is denot-
ed by I's=TI'gy(K). The following representation is obtained:

(3.25) I's=CI(I'yo+T%),

where by Cl we denote the closure.

7. Harmonic measures. Let K be a compact bordered complex polyhed-
ron. Then the space of harmonic measures I, is defined by I'y,=IoN ..
By (3.17), I',=TI,. + T}, wWhere I',,=I, N T,

Next, let K be an open complex polyhedron. A 1-difference weI'(K) is
said to be semiexact if w is closed and g o =0 for every dividing cycle y on K.

The space of all semiexact harmonic differences on K is denoted by e =T (K).
The space of harmonic measures I'y,,=I,(K) is defined as follows: werl,, if
and only if for every ¢>0 and every finite 2-chain X c K there exist a canonical
complex subpolyhedron K, of K and harmonic measure w,< I, (K;) such that
XcK,and ||w—w,|lg, <& By the orthogonal projection method, the following
orthogonal decomposition is proved:

(326) Fh=rhse'i'rtm=rifse+rhm'

§ 4. Singularities and periods.

1. Singularities. Let K=<K, K*¥*> be a complex polyhedron. Let
{gu}i=1 (v< o) be an arbitrary collection of 0-simplices in the interior of K and
M%* (n=1,..., v) be the conjugate 2-simplex of g, respectively. Let @ be a 1-
difference on K. If O is closed on K— Y ¥_ M¥, then @ is called the closed
difference with the closed singularities q, (n=1,..., v) and

PO, g)=§ .0 (n=1,..3)

is called the singular part of the closed difference @ at g, respectively. Two
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closed differences @, and @, with singularities at a 0-simplex g are said to define
the same singularity at q if P(@,, q)=P(0O,, q).

If both differences @ and ©* are closed on K— >}, M*, then O is called the
harmonic difference with the harmonic singularities q, (n=1,..., v), and

PO, q,,)_gm:@ and P(O ,q,,)_gmﬁ@ (n=1,...,v)

are called the singular and the conjugate singular parts of the harmonic differ-
ence O at g, respectively. Two harmonic differences @, and @, with singularities
at a 0-simplex q are said to define the same singularity at q if P(©,, q)=P(O,,
q) and P(@%, q)=P(O%, q). We agree that a harmonic difference @, and a
closed difference @, with a singularity at g are said to define the same singularity
at q if P(@,, q)=P(O,, q) and P(6%, q)=0.

If @ is closed on K— )., M} and pure on K, then @ is called the analytic
difference with the analytic singularities q, (n=1,..., v) and

1
Res(@,q,.)smgm*@ (n=1,..., v)

is called the residue of ® at q, respectively. Two analytic differences @, and
@, with singularities at a 0-simplex g are said to define the same singularity at q
if Res(@,, g)=Res(@,, g). A harmonic difference ® with a harmonic singu-
larity q is said to be with an analytic singularity q if

and in this case the residue Res(@, g) can be also defined.

2. The existence of singular differences.

THEOREM 4.1. Let O be a closed difference of I'(K) with a finite number
of singularities {q,}}=1 (v<o0). Then there exists a unique harmonic difference
T with the same singularities as © at q, (n=1,...,v), with the same boundary
behavior and the same periodicity as O.

Proor. The uniqueness is clear by (3.21).
By the orthogonal decomposition (3.20) we have the expression

O =w,+ w0+ 0%,
or
“.1) O —w,o=w,+w¥,,

where w, €I, w0 E T and w3, T3, and w?, need not be the conjugate of
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.. The left-hand side of (4.1) is a closed difference with the same singularities
as O at every g, (n=1,..., v) and the conjugate of the right-hand side is closed
everywhere on K. Hence 1=0 —w,, is the desired difference.

CoRrROLLARY 4.1. (Cf. Blanc [2], [3].) Under the same assumption as
Theorem 4.1 there exists a unique harmonic difference ¢ with the harmonic
singularities q, (n=1,..., v) with the conjugate singular parts

P(c*, 4,)=P(O, q,) (n=1,...,v)
such that oI ,o(K).

ProoF. The uniqueness is clear.
For the difference 7 of Theorem 4.1 we note that 1, =—t*<T', and

P(z1, 4.)=P(, 4,)=P(0, q,)  (n=1,..., V).
By the orthogonal decomposition (3.21), we have
Ty =W+ D0 (wh €Ty, 00 ET ).
o=wm,, satisfies the condition of the corollary.

COROLLARY 4.2. Under the same assumption as Theorem 4.1 there exists
a unique harmonic difference x with the analytic singularities q, (n=1,..., )
with the residues

Res (1, 4) =5s P(0,4,)  (n=1,...,%)

such that x— 0TI ,|(K).

PROOF. y= —io+1isthe desired one, where 1, o are the differences of Theo-
rem 4.1 and Corollary 4.1 respectively.

Let a be an oriented 1-simplex of K, and g, and g, be the O-simplices with
da=q,—q,. We define the singular difference ©° associated to 1-simplex a
by the condition

O%a*)=—-1,
©%a’)=0  for every 1-simplex a’ = +a*.

@4 is a closed difference of I'(K) with the singularities g, and g, with the singular
parts P(©°, q,)=—1 and P(©°, q,)=1 provided g, and q, are in the interior of K.

Let y be an arbitrary 1-chain in the interior of K. We can write as y=2%_,
x;a; (a;: a l-simplex, x;: an integer) and then define the singular difference
©Y associated to y by



A Finite-Difference Method on a Riemann Surface 301

07=>3x,0%.
=1

Let g, and g, be an arbitrary pair of O-simplices in the interior of K (and K*).
Then there exists a 1-chain y such that dy=q,—gq, and the singular difference
O associated to y gives the closed difference of I'(K) with the singularities q,
and g, with P(©7, g,)=—1 and P(@7, q,)=1.

The following lemma is easily verified.

Lemma 4.1, Let {q,}4=; and {q,}}=,+1 be arbitrary finite collections of 0-
simplices of K and K* respectively being in the interior of K, and o, (n=1,...,v)
be real or complex numbers. A necessary and sufficient condition in order
that there exists a closed difference © of I'(K) with singularities q, (n=1,...,v)
with P(0©, q,)=0a, which vanishes along dK if K is compact bordered and
which is identically zero outside of a finite chain if K is open or closed, is

o, =0 and >, a,=0.
1 n=p+1

M=

4.2)

The difference ® of Lemma 4.1 is said to have a vanishing singular part
sum if it satisfies (4.2).

COROLLARY 4.3. Let O be the difference with a vanishing singular part
sum which exists by Lemma 4.1. Then, we obtain the following (i), (ii), (iii):

(i) there exists a unique harmonic difference o with the singularities
q, (n=1,...,v) with the conjugate singular parts

P(c*, q,)=0, (n=1,...,v)

such that T o(K);

(ii) there exists a unique harmonic difference t with the same singulari-
ties at q, (n=1,...,v) as O such that t—O€<T,,;

(iii) there exists a unique harmonic difference y with the analytic singu-
larities at q, (n=1,..., v) with the residues Res(y, q,) =a,/(2ni) such that y—©®
erl .

3. Chains and differences. Let g,, g, be two O-simplices of K (and K*)
in the interior of K, y be a 1-chain like 0y =q,—q, and @ be the singular differ-
ence associated to y. By (iii) of Corollary 4.3, there exists a unique harmonic differ-
ence x? with the analytic singularities at q,, g, with Res(x?, g,)=P(O7, q,)/(2=i)
(n=1, 2)such that y»—O®?&r,,. Noting the definition in § 1. 4, we can immedi-
ately verify that the period of @ (or x”) along any cycle y’ on K—{q,, q,} is
equal to yxvy’;

(4.3) 3,0"=8 X=rxv"
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The periods of x? depend only on the homology class of y (for fixed q,, q,) and
if "~y then y*" =y.

Let y be an arbitrary finite chain in the interior of K and ©? be the singular
difference associated to y. Let x? be the unique harmonic difference, constructed
in Corollary 4.2, for the present ©?. We shall use the unique representation

=¢"+¥,

where ¢ and y” are analytic except at most the singularities of x?. We find
that ¢” has the same analytic singularities as x? while Y is everywhere analytic
on K. The singularities of x? and ¢? depend only on the boundary dy. x* and
¢? have analytic singularities with the residues equal to the coefficients, divided
by 2ni, in dy. yx? and ¢? are harmonic and analytic respectively on K if and only
if y is a cycle. The mappings y—x?, y—¢@? and y—y? are linear.

4. Reproducing property. Let ©%, x°, ¢° and y° be the differences de-
fined in 2 and 3 for a 1-simplex y=a in the interior of K. Then for an arbitrary
difference ¢ of I' (K) we have

(6, ¥ =(¢, x°— ) =(9, 1)

for ¢ is analytic on K and ¢° is antianalytic on K—gq,—g, where da=g,—q;,.
Further, by the orthogonal decomposition (3.21) and the definition of ®¢ we have

(9, x*)=(¢, O%)=—P(a*) = —i¢(a),
since pI', and y*—0O°TI,,. Hence we have

(¢, ¥*)=—id(a).

Let x?, ¢? and ? be the differences defined in 3 for a 1-chain 7y in the interior
of K. Then, because of the linearity of yy* with respect to y we have

(4.4) @, ¥=—i§ ¢
By a similar method we have
4.5) @, 0==i§ ¢.

Let o be an arbitrary difference of I',. By making use of the unique represen-
tation w =@+ where ¢ and \ are analytic, we have

(@, (") =+, @)*+W)*) =i, $")—i(}, ¥?).
Hence by (4.4), (4.5) we find
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4.6) @ =8 o

Now we suppose that y is a cycle in the interior of K. For this case, x? is
harmonic, and ¢? and ? are analytic on K. For this case, we can omit the
assumption that 7y is in the interior of K, for x?, ¢?, ¥* depend only on the homo-
logy class of y. We find that y*eTI',, and ¢?, Yyl ,s=I,N s and under these
conditions, x¥, ¢?, Y7 are the unique reproducing differences satisfying (4.6),
(4.5), (4.4) respectively. Since y? is real and ¢?—? is analytic, we have Y7 =
¢? and y?=2Re ¢?=2Re .

By (4.3), (4.6) we find that

4.7) s =g 17 =rx7

for cycles y, y'.

5. The classical theorems. Let K be a closed complex polyhedron. An
analytic difference ¢ with analytic singularities is said to be of rational type if
every residue of ¢ is an integer and every period of ¢ is an integral multiple of
2ni. We denote the singularities of the difference ¢ of rational type by g¢,,...,
q, and the residue of ¢ at g, (n=1,..., v) by m, respectively. Then the 0-chain
r_ym,q, is called the divisor of ¢.

Abel’s theorem. A necessary and sufficient condition in order that a given
O-chain A is the divisor of a difference ¢ of rational type, is that there exists a
1-chain y such that dy=A and

3,¥=0
Y

for all analytic differences Y on K.

The proof is analogous to the continuous case when we make use the con-
sequence in4. We can construct various types of the extensions of Abel’s theorem
to an open complex polyhedron. It seems that the present theorem has a sense
when we consider it as an approximation of Abel’s theorem of the continuous case.

Now we shall mention a type of the bilinear relation.

The bilinear relation. Let K be an open complex polyhedron. Let we
I'.oand osT'y,. We suppose that o has only a finite number of nonzero periods
with respect to a given canonical homology basis A,, B,, A*, B* of K modulo
the ideal boundary. Then we have that

(@, %)= ZJ(gAanB:E-f- SA':.w'ga,.&— Sanwg,{,‘.&_ galwg,«"&)-

This is easily proved by making use of the reproducing differences y4», xZ»,
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x4%, xB% defined in 4.

§5. The theory of harmonic functions and analytic functions.

1. Harmonic functions. In the present section, as an application of the
method of orthogonal projection of §3 and Green’s formula (3.12), several ana-
logies with the classical theory of harmonic and analytic functions are developed
(cf. Courant-Friedrichs-Lewy [4], Blanc [2], [3], Lelong-Ferrand [10], [11],
Isaacs [8], Duffin [5], Hundhausen [6], etc.).

Let K= <K, K*> be a complex polyhedron. We can state the maximum
and minimum principle of a harmonic function on K as follows: The restriction
to K (K* resp.) of a real harmonic function u on K does not take the maximum
or minimum value in the interior of K (K* resp.) provided the restriction is non-
constant in the interior, and if K is compact bordered then the maximum and
minimum values are taken on 0K (0K* resp.). This follows immediately from
the definition of a harmonic function.

The following statement is also obvious: if a sequence {u,}*., of harmonic
functions on K pointwise converges, then the limit function u is harmonic.

Let us suppose that K is compact bordered. Given a function f on the
complex boundary @K, the problem to find the unique harmonic function
which takes the boundary value f on @K, is called the Dirichlet problem. Con-
cerning the Neumann problem we interpret it as the problem to find the harmonic
function u uniquely determined except for an additive constant satisfying du* =
O along dK for an arbitrarily given 1-difference ® under the condition

(5.1) ©=0 and § o=0
0K dK*+

The existence of the solution of the Dirichlet problem is assured by the
orthogonal decomposition (3.22), and further by (3.22) we know that the so-called
Dirichlet principle holds.

Now we shall verify the existence of the solution of the Neumann problem.
If, for a 1-difference © given under (5.1), we can construct a closed difference o
with the same boundary behavior as @: ¢ =0 along dK, then by the orthogonal
decompositions (3.21), (3.24) we have the representation

—o* =whe+w;':0 +wth

where w,.€l,,, ofoel}, and w¥*,I'%,, and then the component w,, gives
the solution Au.

We shall construct the closed difference 6. Let {c;, ¢¥}}-, (v< o) be a cano-
nical homology basis of dividing cycles of K, and d* and d; (j=1,..., v) be conju-
gate relative cycles of c; and c¥ respectively. We set
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5.2 O =a and O =u* j=1,..., v).
(52) 3. 0= 3,0= U )
If all «; and a¥ vanish, then o is easily constructed. Otherwise,
T =.Zvi(aj@"7 +a*@4)
=

is a closed difference with the periods —a; and —a¥ along c¢; and c¥ respectively
where ©95 and @% are the singular differences associated to d¥ and d; respectivey
thus @+t has the vanishing period along every c; and c¥, and thus the problem
is reduced to the former case.

2. Green function. The Green difference Ag=4g,, of a compact bordered
or open complex polyhedron K with a singularity g, is defined as a 1-difference
on K satisfying the following conditions (i), (ii):

(i) Ag is a harmonic difference with an only singularity g, with the conju-
gate singular part P(4g*, q,)=—2=;

(i) dger,,.

The Green function g=g,,=9(q, q,) with the singularity g, is the function
whose difference is the Green difference with the singularity g, which has the
vanishing boundary value if K is compact bordered and which is the pointwise
limit of functions f, with compact support such that ||[4g — 4f,||=0 (n— ) if K
is open.

Obviously, if for a given K there exists the Green function g on K, then it
is unique. Further we find that if g, K (g, K* resp.) then the support of g
is K (K* resp.).

If K is compact bordered, then the Green function of K always exists and
can be constructed as follows. Let y be a 1-chain on K such that dy=q,—q,
where g, is a 0-simplex of 0K or a O-simplex whose carrier is outside of |K]|.
Then the singular difference @7 associated to y is a closed difference with the
only closed singularity g, with the singular part P(©?, q,)=1. The difference
o which is constructed in Corollary 4.1 for @ = —2n07, gives 4g. We can also
verify the existence of the Green function by making use of (i) of Corollary 4.3
for the double K of K. The Green function g is positive in the interior of K
by the maximum principle.

Let K be open, {K,}2, be a regular exhaustion of K and gg, =
gk, (2> 90) (n=0, 1,...; o€ K,) be the Green function of K,. Then gg, is mono-
tone increasing with n. Hence there exists the pointwise limit lim,_,,, gg, Which
is everywhere finite or identically infinite. There exists the Green function g
of K with the singularity g, and g=lim,. gx, if and only if lim,_, gx, < co.
By (i) of Corollary 4.3, the existence of the Green function does not depend on a
particular choice of the singularity g, in K (or K*).
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3. Neumann function. The Neumann difference An=A4n,, of a compact
bordered complex polyhedron K with a singularity g, is defined as a 1-difference
satisfying the following conditions (i), (ii):

(i) 4n is an exact harmonic difference with the only singularity g, with
the conjugate singular part P(4dn*, q,)= —2rx;

(ii) 4dn*=c, along 0K and 4n*=c, along dK**, where if go= K then ¢, =
0 and ¢, =—2x)v, if go= K* then ¢; =—2n/v and ¢, =0, and v is the number of
1-simplices of dK. The Neumann function n=n,,=n(q, q,) is the function
determined except for an additive constant whose difference is 4n. We shall
normalize the Neumann function by the condition

(5.3) gln“:O and gpnqo=0,

where A and A* denote the 0-chains being the sum of all O-simplices of 0K and
0K**, respectively. The uniqueness of the Neumann difference follows from
An—An' €y, N Ty, for another one An’.  If g€ K (q, € K* resp.) then the sup-
port of n is K (K* resp.).

The existence of the Neumann difference is verified as follows. Let 4Ag be
the Green difference with the singularity g,. We construct the solution u of the
Neumann problem satisfying the boundary condition: Au*=c,—A4g* along
0K and Au* =c,— Ag* along 0K**. Thenn=g+u gives the Neumann function.

4. The properties of Green function. Let K be a compact bordered com-
plex polyhedron and Ag, be the Green difference of K with the singularity q.
Then the solution u of the Dirichlet problem of 1 is given by

(5.4) u@)=—»-§ fag}

for each O-simplex q in the interior of K.

Let M* be the conjugate 2-simplex of q. By Green’s formula (3.13) we have
(5.5) gu(udg;‘ — g 4u*)= Sx(uA(Agj)—qu(Au*)).
The left-hand side of (5.5) is equal to

gaqugz’

since g,=0 on dK. The right-hand side of (5.5) is equal to

ud(4g7)(M*) =u(q)P(493, q) = —2mu(q),

since 4g} and Au* are closed on K—M* and K respectively.
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The symmetric property of the Green function:
(5.6) 9(g, r)=4(r, q)

holds.
If K is compact bordered, then (5.6) follows from Green’s formula

S, (949F-9.499)=§ (9,449~ g,4(4g%)).
oK K

If K is open, then (5.6) is obtained by a limit process of the compact bordered
case.

5. Harnack’s inequality. Let u be a non-negative harmonic function on
a compact bordered complex polyhedron K. Let g, and g be a fixed and a
generic 0-simplices respectively in the interior of the common K or K*. We set

M=M(q, q,, K max 4g%(a)
(9, 90, K)= X g% @)

=u(q, g9, K)=min 24—+
u=pu(q, g0, K) nin s @y

where y={a| a€dK, Ag}¥ (a)=0}. Here M and u are positive numbers
depending on only K, g, and q. If we note that Ag} and 4g} simultaneously
vanish on K, then by (5.4) we have

M
u(g) = _ES udgr < o gaKuAg;“o=Mu(qo).
With an analogous inequality we obtain Harnack’s inequality (cf. Duffin [5])
5.7 pu(go)=u(q)=Mu(q,).

6. The properties of Neumann function. Let K be a compact bordered
complex polyhedron and n, be the Neumann function of K with a singularity q.
Then the solution u of the Neumann problem of 1 is given by

(5.8) u@) =5 §, MO+,
where
J%g (@€ K),
1—}3 (g€ K™),
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A and A* are the O-chains being the sum of all 0-simplices of 0K and 0K** respec-
tively, and v is the number of g€ A.

By Green’s formula (3.13) we have
(5.9) gax(uAn:—nun*)= gx(uA(Anz)—nqA(Au*)).
Here

udn*=c g u+c S u
gax 471 29,"”

and the right-hand side of (5.9) is equal to —2nu(q).
The symmetric property of the Neumann function:

(5.10) n(g, r)=n(r, q)

holds.
It follows from Green’s formula

S ant—nan$)=§ (n,A(dn}¥)—nddn¥).
oK K

7. Cauchy’s summation theorem. Let K be a complex polyhedron, 7y
be a complex cycle on K such that y ~0, f be an analytic function on K and
¢ be an analytic difference on K. Then we have

(5.11) Squs:o.

We may suppose that 7 is the complex boundary of a compact bordered
polyhedron K,: dK,=7, Then by Green’s formula (3.12) we have

gyqu =—(4f, )k, =0,
since 4 f is analytic and ¢* is antianalytic.

Remark. We can also verify (5.11) by an immediate calculation of

Swﬁb

for a 2-simplex M, where dM means the complex cycle being the sum of 0M and
its dual cycle.

Now let us suppose that K is latticed. Let a be a fixed 1-simplex of K.
Then we can uniquely define the 1-difference ¢ on K by the following conditions

(1), (iD):
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(i) ea@)=1;

(ii) For any 2-simplex MK, let a,, .., a,, be a cyclic sequence of edges
of M. 1If ¢(a,)=1, then

&(ag;-3)=1, &as;-,)=0, 8(“4,‘— D=-1, &(a,;) =0,
S(aﬁj—3)=0, £(‘Jﬁj—z) =-—1, E(ij—l) =0, ﬁ(afj) =1
(j=1,..., n).

The difference ¢ is harmonic and thus 6 =¢+ie* is an analytic difference. The
differences ¢ and ¢ are called the uniformizing harmonic and analytic differences
of K respectively.

Cauchy’s summation theorem (cf. Lelong-Ferrand [11], Duffin [5], Hund-
hausen [6]): Let K be a latticed complex polyhedron, ¥y be a complex cycle
on K such that y ~0 and f be an analytic function on K. Then we have

(5.12) §7f5=0.

8. Cauchy’s summation formula, Residue theorem. Cauchy’s summation
formula (cf. Duffin [5]): Let K be a compact bordered complex polyhedron,
f be an analytic function on K and ¢ be an analytic difference with the singu-
larity q of the residue 1. Then we have

1
(5.13) f(q)=m§axf¢-
By Green’s formula (3.12) we have
S, So=—4 M+ § _fA¢
=fA¢p(M*)=f(q) P(¢, q) =2rnif(q),

where M* is the conjugate 2-simplex of g.

In (5.13), we can choose the analytic Green difference y,=4g,+i(dg,)*
as —¢. Then we have

(5.14) F@==528  fbe

Residue theorem: Let K be a compact bordered complex polyhedron and
¢ be an analytic difference on K with the singularities q, (n=1,..., v) with
the residues b,. Then we have

(5.15) gox¢=2ni g}lb,,.
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The proof is similar to that of (5.13).

Chapter II A finite-difference method on a Riemann surface.

§6. The convergence of differences with respect to subdivisions.

1. Natural extension of a difference. Let K= <K, K¥> be a complex
polyhedron such that K is quadratic and K, = <K, K> be a subdivision of K.
Let o be a difference of I' (K) with support K. We shall define the natural
extension o' of o to the subdivision K, as follows: with the notations in §1.6,
for the subdivision of each M € K we set

() h=cl=o, G=1,mrs 4);

() oh=g@pi=0) (=1, 4 (mod4)),

where 0;=0(a;), 0%, =0"(a;), and we set =0 on K%¥. Then we see that ¢'c
I'(K,) (cf. LEMMA 6.1).

Let {K,=<K,, K¥>}%, be a sequence of complex polyhedra such that
K, is quadratic and K, is a subdivision of K, _, respectively. Let o be a differ-
ence of I' (K,) with support K,. Let ¢'™ (n=1, 2,...) be the natural extension
of ¢'»=1) to K, where ¢*(®)=¢g. Then we shall define the natural extension
o' of o to {K,}®., as an operator which maps ¢ to the 1-difference o' on K,
for each n, that is, as an operator such that ' =¢'" on K, for each n. We shall
use the common notation o' for the both definitions of the natural extension.

LEMMA 6.1.
”6”1{0 "a ”Kn__—3<1———n> Z lal+a3l ’
4 MeKo

where ;=0(a;) and a,, a,, a3, a, is a cyclic sequence of edges of M.

ProOF. When we note that —o*a(M)=(1/2)3]4-,]0,|*, we have

§ (—a*a)=— 3 o™ai(M))
M1 j=1

| —
uM&-

33 (I} 12 +10%a1? +2]a}s )

J

S]]

1/1 &, ,.1¢8 )
(Z Zlol +g Blom=—omil)

where M' =314 M; and M,,..., M, are the 2-simplices defined in §1. 6. Be-
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cause of o, +0,+0;3+0,=0, we have

—o* (M)~ §  (~a"*a)

1 & ¢ _ _
’1_6'<2j§1|0j|2+j§ (0j-10 41 +0'j—10j+1)>

1 4
——6§I -1+ 02 ——|01+°'31 =0.

Hence

lolliz,—lla"l&, = gk (—0%G)— SK (—a'*a")

= 2, lo,+03]220.

MeKo

By a further elementary calculation we have

lo*|&,—llo*l&,..= 4,.+1 2 |<f1+tf3|2

2. Norm convergence with respect to subdivision. With the notation in 1,
let o* (n=0, 1, . ) be a difference of I' (K,) with support K,. By o™ we denote
the natural extension of ¢" to {K,,}%-,.

LEMMA 6.2. If the orthogonality
6.1) (o"—0™, 6"k, =0

holds for every m, n (n>m), then the following hold,
(i) |llo*|lk, is monotone decreasing with n;
(i) lim[lo"|x,=lim _[lo™x,;
(iii) lim |jo"—0o™|x,=0;

m, n— a0

(iv) lim ) |o%+0%|?=0 (o7=0"(a;)).

n—-+ooMeKn

Proor. By Lemma 6.1 we have
(6.2) lom||%,.— lle™ &, = (l 4,,_,,,> Z |a"'+a |2 (n>m).

(6.1) and (6.2) imply that

o"—o™ |k, = o™ %, — 0"k, = llo"(&,— lo"l%,
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Hence we have (i), (ii) and (iii). (ii) and (6.2) imply (iv).

COROLLARY 6.1. If

(i) o"erI'(K,) and c"—c°" €I o(K,) (n=0, 1,...),

(i) orert, (K, and o"—o°' el (K,) (n=0,1,...),
or

(iii) o"eTlf,(K,) NI(K,) and e"—o® el (K,) (n=0, 1,...),
then (1), (ii), (iii) and (iv) of Lemma 6.2 hold.

§7. The approximation of a differential on the Riemann surface
based on a normal quadrangulation.

1. Smooth extension of a difference. Let K=<K, K*> be a normal
complex polyhedron and W be the Riemann surface based on the normal quad-
rangulation K. Let o be a difference of I'(K). For each quadrangular 2-
simplex M =[Me¢, ¢] of K we can choose the mapping ¢ so that the normal
coordinates of M are preserved and Me is the square on the z-plane with q§ =0,
q5=1,95=1+1i,q5=i, whereOM =31 a;,0a;=q;,,—q;,95=¢"'(q) (j=1, ..,
4; gs=q,). Then we define the smooth extension o* of o to |M| by the differen-
tial o* on |M| satisfying

(7.1) o*=((1-y)o,—yo3)dx+(xo, —(1=x)o)dy  (z=x+iy)
for the local uniformizing parameter z=¢~!(p) of M where o;=0(a;). Then

we see that S o6*=0; (j=1,..., 4) on taking a; as an oriented curve.
aj

Let o be a difference of I' (K) with support K. Then we can define the
smooth extension o* of ¢ to the Riemann surface W by the differential on W
which is the smooth extension ¢* of ¢ on each MeK. Here the coefficients
o, B of 6* =adx+ Pdy are generally discontinuous at each point of the carrier
la] of a 1-simplex ac K. Then we define the coefficients « and f on |a| by

a(po) =5 ( lim  a(p)+  lim “(p)),

P—Po,PE|My|° p—po,pelM2|°

pro=3( lim  B(p+ lim  B(p))

p—po,pe|My]° p=po,pe|M2]°

for a fixed local uniformizing parameter about p,<|a|, where M, and M, are

the 2-simplices with the common edge a and the interior of |[M|| is denoted by

[M;|°. Clearly the smooth extension o* defines a closed differential on W.»
Let K§ be the 2-chain defined as the sum of quadrangular 2-simplices of

1) Cf. Ch. V of Ahlfors & Sario [1] for the theory of differentials on a Riemann surface,
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K* and W, be the subset of W which is the carrier of K§. Let o be a difference
of I' (K) with support K*. Then we can define the smooth extension a* of o to
the subset W, by the differential on W, which is the smooth extension ¢* of o
on each M € K§.

Let o be a generic difference of I'(K). Let ox and ok« be the restrictions
of g to K and K* respectively, and let 6§ and o} be the smooth extensions of
ox and og to W and W, respectively. By the differential o*=0f+ 0k on
Wy, we define the smooth extension of o to the subset W,. o* defines a closed
differential on Wj,.

2. The relation between o and o*.

LEmMA 7.1. Let o, 6! and o? be differences of T (K) with support K.
Then the relations

(7.2) lolk=llo*lf =5 T lo1+0s/220,
L

6 Mek
(7.4) |04, 02)x= (a0 | (o 1=l ¥R (o2 [F— 102 13)) /2

hold, where by (, )y and || ||w we denote the inner product and the norm res-
pectively in the Hilbert space of differentials on W,") and o;=0(a;) for a cyclic
sequence a,, a,, a,, a, of edges of M.

(7.3) lo*lly =5 lollE = % (61— 0412+ o2~ 04]2) 20,

Proor. For each MK, since ¢!¥ is harmonic on |M]|, there exists a har-
monic function u! on |M| such that du! =¢!*. Hence

(7.5) S a-lz;zTa::g ulgZ#

IM]| M|
where 0|M| means the boundary of the region |M| and the conjugate differential
of ¢2% is denoted by o2**. By making use of (7.5) and ¢,+0,+03+0,=0 we

can carry out the calculation

S oligl®x
IM]|

1 —_ J— 1 — —_—
= - { otx(— (1 =0)aDdx + (o1 +03p)((1 - 15T - yoDdy

1) We shall use the common notations ( , ) and | | for both inner products and both norms
of differences and differentials. If any confusion may occur, then we shall add the suf-
fices K and W etc, like (, )x, (5 )ws | |z | lw.
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1 1 - N
+{ ot =p)at-yoDay-{ @i+ oin o3 - (1 -x)Tdx

1 s = — o
=—6~<J.§10}0?+(al a}) (e} —03)+ (o} —ai)( %—aﬁ)),

where o¢%=0%(a;). Hence, when we note that —o'*s2(M)=(1/2)1 % 0}l02,
we have
_Jl*F(M)__S ol¥g2¥*
IM|

_1

((e1+03)(03+03)+(6i+0l) (a3 +03)

o

(6} +0})(c2+03).

w]-

Therefore,

(o1, 62)g—(c'¥%, a”)W:S (_01*‘&7)_& glig2ex
K w
=1 % (o} +03)(@F+0)).
3 MeK

Hence we obtain (7.2) and further by Schwarz’s inequality (7.4). Similarly,
(7.3) is obtained.

CorROLLARY 7.1. A closed difference ¢ on K with support K belongs to
I' (K) if and only if the smooth extension o* of ¢ is a differential of the space
L' (W) of closed differentials on W with finite norm.!)

For the differences of I' (K) with support K* we can also obtain the same
results as (7.2), (7.3), (7.4) replacing K, W, |lo|lz and (c!, 0?)g by K§, Wy,

g . (—0*5) and 5 . (—01¥g2) respectively.
Ko Ko

3. Courant-Friedrichs-Lewy’s Lemma. Let K=<K, K*> be a complex
polyhedron. A 2-chain Qc K is called a quadrate of K if there exists a one-to-
one bicontinuous mapping ¢ of a square Q¢ on the z-plane (z=x+iy) onto Q
such that each M Q is the image of a square M€ by ¢, i.e. M =[M¢, ¢]. Here
we may assume that each side of the square Q¢ is parallel to either x-axis or y-
axis. Let {Q;}'t§ (v=1) be an increasing sequence of concentric quadrates of
K such that Q; (1—1,..., v+1) is the minimum quadrate under |Q;_,|C[Q;|°.

1) We shall use the common notation I" with some suffix for both spaces of differences and
differentials with finite norm. If any confusion may occur, then we shall indicate the
polyhedron K and the Riemann surface W like I” (K) and I' (W) respectively.
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Then, {Q;=<Q;, Q%F>}%} forms a sequence of compact bordered complex
polyhedrons, where Q% is the conjugate polyhedron of Q; for each j. By a,
(a, resp.) we denote an oriented 1-simplex of Q,.; such that a=¢"(a,) (a5=
¢~ 1(a,) resp.) is a 1-simplex whose direction is the positive x-axis (y-axis resp.).

Let o be a harmonic difference on Q,,; with support Q,,,. We can define
a function (0-difference) u, (u, resp.) with support Q, by setting

ulq)=o(a,)  (u(q)=o(a,) resp.)

for each a, (a, resp.) of Q,,,, where da,=q'—q (da,=q'—q resp.). Further
we define 1-differences o, and o, with support Q, by 6, =4u, and o,=4u,. Itis
easy to verify that o, and o, are harmonic.

LEmMMA 7.2. (Cf. pp. 49-51 of [4].)
vi(lloLllg, +llo,lg,) = lloll3,, .-

Proor. By the formula (2.3) of partial summation we have

lodgs § oxt=§, wts5(§, = i)

(j=1,..., ),
where A; (j=0,..., v) is the sum of all O-simplices on dQ;. Similarly,

2 l< 2 _ 2 j —
loygo=5 (S, Wl =8, wl?) (=l

Adding the last inequalities for j, we have
1
n(llol3+lio,130) S 5(S | (ual?+1u=§  ual+1u,/)

g_;—SAn(qu|2+|uy|2) (n=1,..., v).

Furthermore, adding the last inequalities for n, we have
v+ D(lloald, + 0,30 = 2§ (ud? +lu, ) < 0]}, -

4. The estimation of ||c**—o**||. Let K=<K, K*> be a normal com-
plex polyhedron and W be the Riemann surface based on the normal quadrangula-
tion K. Let o be a difference of I',(K) with support K.

We shall preserve the notations in 2. Let M and N be a pair of 2-simplices
such that MeK, NeK} and [M|n|N|#@. Let a; and b; (j=1,..., 4) be the
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cyclic sequences of edges of M and N respectively. We assume that b, =a% and
by=—a%. Further we set as=>b% and a, =b%.

We fix the local uniformizing parameter z=x+iy on M defined in the first
paragraph of 1. Then by (7.1), on |M|

0¥ = —(x0,—(1=x)0,)dx+((1-y)o, — yo3)dy,

and further, on D=|M|N|N|

ot =(=( =)t (g Joean (x5 )or+ (5 —x)os )i,
where 0;=0(a;) (j=1,..., 6). Weset t=0*"—g**. Then

(7.6) ||r]|D=g T—‘C_*=S ut*,
D oD

where u is a harmonic function on D like du=t. Noting that ¢,+0,+0;+
0,=0and 6, —0,—05—0=0, we can carry out a calculation similar to Lemma
7.1 for the right side of (7.6). Then we have

(1.7 Sabu?;=§-.l—2z(2|0'1+0'3|2+2l0'1—65|2+3|0'2-—662

+3lo3+0s|?).
Here we note that when we set 6% =a*(b)) (j=1,..., 4),
loy—0s|? =0t +0%2,
lo;—06|?, |03 +05|?
<l|oy+03)2+|0%+0%|2+2|0, +05]|6%+ 0%
hold. Hence we have

1
3-24

(7.8)  li= (2loy+0;3]2+2[ot+ 032 +3]0,+ 03] [0+ 0%)).

Adding (7.8) for all pairs M, N with |M| N |[N| %@ and by making use of Schwarz’s
inequality, we obtain

(19 llo*—0*f S ¢ X o +osl g T lot+ot)?
MeK NeK®

1 1/2
+5(Z Joi+as2 T lot+o32) "
MeK NEK:)

Now we prepare a useful lemma, Let Ky =<K, K§> be a normal complex
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polyhedron and W be the Riemann surface based on the normal quadrangula-
tion K,. Let {K,=<K,, K¥>}®, be the sequence of normal complex
polyhedra such that K, is the normal subdivision of K,_, for each n. Let
K}, (n=0, 1, ..) be the 2-chain of K} defined as the sum of whole quadrangular
2-simplices of K}, and let W, (n=0, 1,...) be the subset of W which is the carrier
of K¥,. Further, let K,,, and K3, (n>m) be the 2-chains of K, and K7 res-
pectively defined as the sums of 2-simplices of K, and K¥ respectively having their
carriers on W,,. There exists a number n, such that W, is a subregion of W for
every n=n,, and {W,}®_, is an increasing sequence exhausting W’, where W' =
W—|Ag| and Ay is the sum of O-simplices of K, whose conjugate 2-simplices are
not quadrangles.

LeEmMMmA 7.3. Let o" (n=0, 1,...) be a difference of I'(K,) with support
K, such that ||o"||x, is bounded with respect to n. Then, for every number m,
the limit relations
lim ) |o6%+0%]2=0 and lim J; |o%*+03*2=0,
n—2ooMeKnm n—>o MeK}hn,
hold, where 0" =0"(a;), 0" =0"*(a;) and a,,..., a, is a cyclic sequence of edges
of M.

Proor. Without loss of generality we may assume that the number m =0.
Now we fix an arbitrary 2-simplex M, of K,,. We can always find an increasing
sequence Q3,..., 03 of concentric quadrates of K5 in the meaning defined in 3
such that |Q3|=|M,|.

Let Q7 (j=0,..., 4; n=4, 5,...) be the normal subdivision of Q%! for each n
which is a subpolyhedron of K,, and let Q%= <Q", O"*> for each n. Then, by
Lemma 7.2, we have

(32 = D233+ lo3ldp S lonld; (=3, 4.0,

where o2, o7 are the differences defined in 3 for the present o” for each n. On
the other hand, we can easily verify that

n n 1 n
L lot+asl?+ 2 ot +o%* 2 =5 (lozllg; + lo3l1 )
MeQp MeQ}

Hence we have

n n n 1 n
2 "lal +0o32+ X n*|01*+dg*]2§m llo ”é:

MeQo MeQ,

Adding the last inequalities for all simplices M of K,, we have
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9
o +o%|2 oM Lgn¥2< 7 |lgn||2
g |01+ sl +M§K:o| "+ 032 S 5o pyz l9lIk,

(n=3,4,...).
By (7.9) and Lemma 7.3, we obtain the following corollary.

COROLLARY 7.2. Under the same assumption as Lemma 7.3, for every
number m the following limit relation holds

lim [|o™*# — g"#*||3, =0,
n—oo

5. Fundamental theorem.

THeorem 7.1. Let {K,=<K,, K¥>}%, be a sequence of normal
complex polyhedra such that K, is the normal subdivision of K,_,. Let W
be the Riemann surface based on the normal quadrangulation K,. Let o"
(n=0, 1,...) be a difference of I',(K,) with support K,. We suppose that
{o"}=., forms a Cauchy sequence, i.e.

(7.10) lim |[e™—o"||g, =0 (n=m).

m, n—o0

Then the sequence {c"*}%, strongly converges to a harmonic differential
wel (W), i.e.

(7.11) lim [lo"* — ||y =0,

and the limit relations

(7.12) lim o], = Lim o[l = |l

hold. Furthermore, the limit relation

(7.13) lim [|o™¢ — ¥, =0

holds, where W, is W minus carriers of 2-simplices of K¥ which are not quad-
rangles for each n.

Proor. We note that ¢™* —g"* is the smooth extension of o™ —o" to W.
Then, (7.2) and (7.10) imply

lim ||6™* —o"*||y=0.
m,n—*o0

The last relation secures that there exists a differential w e I' (W) satisfying (7.11)
and the second equality of (7.12) holds.
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We note that (7.10) implies the boundedness of |lo”|x, with respect to n.
We use the notations defined in 4, and further we define the notations K,,=
<K,., K*,> and L,,=K,—K,,. More precisely, K,, and L,, are the
complex polyhedra defined as the sums of 2-simplices of K, having their carriers
on W, and W—W,, respectively. By Lemmas 7.1 and 7.3, we see that

lim|lo"|k,,, =lim|e"*||y for every m.
n—oo n—o0

If the limit relation
(7.14) lim |lo",,=0
m, n-»c0

is shown, then by Lemma 7.1 the limit relation

lim 6" y_y, =0  (n>m)

m, n— o

holds and hence we obtain the first equality of (7.12).
Noting the definition of the natural extension and by making use of Lemma
6.1, we can easily verify that

(7.15) 16" L SN Ly S M s W S ™ F 0¥
(n>m>k)
for every k, where 0<u<6/16. Further,
(7.16) o™z, — 16" g, | < 10" = 0¥,
sllo"—o"|g,—»0  (k, n—>)

holds. (7.15) and (7.16) imply (7.14).
By Corollary 7.2 and (7.11) we have that

(7.17) lim ||o™** — w*||y, =0 for every m.
Clearly,
(7.18) lim ||o*|ly,-w, =0 (n>m).

» 100

By (7.2) and (7.14) we see that
(7.19) le™**lw,-wn=ll6"*L,,.=llo"lL,,—~0  (m, n>o0).

(7.17), (7.18) and (7.19) imply (7.13). Since o"**<TI(W,) for every n, (7.13)
implies that w*eI'(W’) where W’'=U%,W, Hence ol (W)NT*(W’')=
I'y(W"). Further, since ||w|y <o and Ag=W—W’ is a set of isolated points
of W, each point of Ay is a removable harmonic singularity of w and hence w e
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r,w).

CoROLLARY 7.3. Under the same assumption as Theorem 7.1, the coef-
ficients of o"* and o™** uniformly converge to the coefficients of w and w*
respectively as n—co in each relatively compact subregion Q of W', where
W' =gz oW,.

Proor. It is sufficient to prove the corollary in an arbitrarily fixed parameter
disk D in W’ with alocal uniformizing parameter z=x+iy. Let ¢"*=a,(z)dx+
B.(2)dy and o™** =u(z)dx + p,(z)dy. By Courant-Friedrichs-Lewy’s method (cf.
pp. 48-52 of [4]), it is shown that the sequences of coefficients {a,}®.,, etc. are
uniformly bounded on D, and further are equicontinuous on D in the following
sense: for any positive number ¢>0, there exist an integer n, and a positive
number 6 >0 such that |a,(z,)—0a,(z,)| <¢, etc. provided |z, —z,| < and n=n,.
By these consequences, the present corollary is immediately verified.

The following theorem stated in the analytic case immediately follows from
Theorem 7.1.

THEOREM 7.2. Let Y" (n=0, 1,...) be a difference of I' (K,). We suppose
that {Y% }2o forms a Cauchy sequence, i.e.

(7.20) Lim YR~ Yk, =0 (n2zm),

where Y} is the restriction of Y™ to K, for each n. Then the sequence {y"*}%_,
strongly converges to an analytic differential ¢ €I (W), i.e.

(7.21) Lim [~ ¢, =0,

where W, is W minus carriers of 2-simplices of K} which are not quadrangles
for each n, and the limit relations

(7.22) tim [, =Lm [y, = 16 1

hold.

6. The method of orthogonal projection.

THeEOREM 7.3. Let {K,=<K,, K¥>}®_, be a sequence of normal complex
polyhedra such that K, is the normal subdivision of K,_, for each n. Let
W be the Riemann surface based on the normal quadrangulation K,. Let
O be an arbitrary difference of I' (K,) with support K,, and let us suppose that
o" (n=0, 1,...) be the projection of @' on I'(K,), I't.(K,) or I'kK(K, N
I, (K,). Then, we obtain the same conclusion as Theorem 7.1. Furthermore,
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the inequalities

(7.23) lo"lk, 2 llo"|lwzlwllw  forevery n
and the monotone convergence of norms

(7.24) lo™le, \lollw  (n—>o0)

hold. And the limit differential w is the projection of ©@* on I' (W), 'k, (W)
and T¥o(W)N Iy o(W) respectively, and hence O*—weTl o(W), O —wel (W)
and Of, —we Tl (W) respectively, where O,, is the projection of @ on I',(K,).

Proor. The assumption of the theorem implies that

(7.25) O'=g"+o0%,, ool (K,) ((n=0,1,..),
(7.26) O'=g"+o",, o'l (K, (n=0, 1,...)
and

(7.27) O!,=c"+o?, orcl(K,) (n=0, 1,...)

respectively. Hence we can easily see that

(7.28) "= =g% _gr el o(K,) (n=0, 1,...),
(7.29) o"—c%"=¢% -0l (K, (n=0,1,..)
and

(7.30) o"—c%=0"—grcT'(K,) (n=0,1,...)

respectively. Therefore, by Corollary 6.1, the assumption (7.10) of Theorem
7.1 is satisfied, and thus the same conclusion as Theorem 7.1 holds.

The left inequality of (7.23) follows from (7.2). If it has been shown that
the limit differential w is the projection of ¢"* on I' (W), '}t (W) and I'¥,(W)N
I,..(W) respectively for every n, then the right inequality is clear and (7.24) follows
from Corollary 6.1 and (7.12).

The case where o" is the projection of ©' on I',(K,): (7.28) implies that
o"*—g%* I (W) and thus by (7.11), w—o"*TI,o(W) for every n. Because
of weTI' (W), w is the projection of ¢"* on I'(W) for every n, and thus by (7.25),
w is the projection of @* on I'y(W).

The case where ¢ is the projection of @ on I'},(K,): By (7.29) and (7.11),
we find that w —o"* € I', (W) for every n. Let {K,;}%, be a canonical exhaus-
tion of K, for each n such that K,; (n=0, 1,...) have a common carrier Q; for
each j and such that 0Q;c W’ for every j where W’ =\U%2W,. Leto"i(j=0, 1,...)
be the projection of ¢”, restricted to K,;, on I'f,(K,;) for each n. Then ¢"—
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o"erl,(K,;). By the method of orthogonal projection, we can easily verify that

lim{jo"—o"/||g,, =0 for each n.
Jj—oo

We note that the smooth extension g"/*# of ¢"/* can be not defined only for
each 2-simplex of K}; but also for the conjugate left half 2-simplex of each 0-
simplex of 0K,; w.r.t. K,; by a method similar to (7.1) such that the differential
o"i*¥ is zero along 0Q; because of 6"/ *&I',,(K,;). Then, by the method similar
to Lemma 7.1 we can verify that

(7.31)  lim|lgm*# —gni*¥||, o <lim|c"™* —g"/*| g, =0 for each n.
J—o Find
We shall omit the detailed argument. (7.13) and (7.31) imply that there exists
an increasing sequence of numbers j=j(n) (n=0, 1,...) such that
(7.32) ]j.m”o'"j(")*#"(D*“W"ng‘,(n)=O.

Let w/™ be the differential of I',(2;,) with the same boundary behavior as
o"i(m*¥ on 0Q;,, for each n. Because of w*e I, (W), (7.32) implies that

(7.33) lim||/™ — w*|g, ., =0.
n—>o0

We note that ¢"/(W*&T,,(K,;,) implies that w/™eT},(2;,). Then (7.33)
implies that w*el},,(W). w—-o*el (W) and weTl}, (W) imply that o is
the projection of ¢"* on I'}, (W) for every n, and thus by (7.26), w is the projection
of ®F on I'¥.(W).

The case where ¢" is the projection of ®* on I'}y(K,) N I',..(K,), is analogous
to the last case.

COROLLARY 7.4. Under the same assumption as Theorem 7.3, let y be
a cycle on K§, let y** and @™ be the harmonic and the analytic reproducing
differences respectively of y on K, defined in §4, and let y* and ¢* be the har-
monic and the analytic reproducing differentials respectively of y on W such that

(@, X")*)w =S o  for every wel'(W),
1

(¢, ¢y =— iSyd) for every ¢ (W).

Then, the sequences {y"**}<2, and {¢"*}2, strongly converge to the dif-
ferentials x? and @ respectively, i.e.

Lim ||x"7* —7|| =0,
n—o
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lim||gp"7* — $7|| =0,
the inequalities
lx e, zllx"*lwzllx"llw  for every n,
6" llx, 2 l¢""*llwzll4?llw  forevery n

hold, and the monotone convergence of norms

e, \lx?llw (n>o0),
lo™ g, \l@lw  (n—>o0)
holds.

Proor. Choose the singular difference @ on K, associated to y defined
in § 4 as the difference @ of Theorem 7.3. Then the projection of @ on I'(K,)
gives the reproducing differential y"7.

7. Difference approximation of a differential. Let K=<K, K*> bea
normal complex polyhedron, and W be the Riemann surface based on the normal
quadrangulation K. Let @ be a closed differential on W, of class C°. By a
difference approximation © of ® on the normal polyhedron K, we mean the
closed difference with support K defined by

t(a)=g e for each aeK,

where the integration path a means the oriented arc with the carrier |a| and with
the same orientation as a.

TueoreM 7.4. Let {K,=<K,, K¥*>}%, be a sequence of normal
complex polyhedra such that K, is the normal subdivision of K,_, for each n,
and let W be the Riemann surface based on the normal quadrangulation K.
Let © be a closed differential on W, of class C°, and let t* (n=0, 1,...) be the
difference approximation of © on the normal polyhedron K,. We suppose that

(7.34) lim||z*||g,-x,, =0 uniformly with respect to n,
J—oo

where {K,;}%, is an exhaustion of K, for each n such that K,; (n=0, 1,...)
have a common carrier Q; for each j. Then, we obtain that "I (K,) (n=
0,1,...) and ©T' (W), and for the sequence {0"}%, of the projections of t"
on I'(K,) for each n, we obtain the same conclusion as Theorem 7.1. And the
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limit differential w of the sequence {c"*}®_ is the projection of © on I'(W).

Proor. Because the coefficients of t"* uniformly converge to the coefficients
of @ as n—oo on each Q;,

(7.35) lim||t"* —@|g,=0 for each j.
By (7.3),

1
(7.36) 5 Ie"l&,, = lz"*lI3, = =" - 613, + O3,

From (7.35), (7.36) and (7.34), it follows that ||t"||g, is bounded with respect
to n and hence "' (K,).
By (7.35), lim,, 4.ql/t™* —1"*||5,=0 and hence, by (7.3),

(7.37) lim [[t™ —1"||g,, =0  for eachj (n=m).

(7.37) and (7.34) imply that

(7.38) lim ||t —1"||g, =0 (nzm).

m, n—o

Hence, by (7.2),
(7.39) lim ||t™*—1"#||=0.
From (7.39) and (7.35), it follows that

(7.40) lim|jz"* — @1l =0

and hence ® €T (W).

Let w" (n=0, 1,...) be the projection of t"* on I'y(W), and let 6™ (m =0,
1,...; n=m, m+1,...) be the projection of 6™ on I'(K,). By (7.38) and (7.40),
we have that

(7.41) lim |[o™"* —o"*||, =0 (nzm),
(7.42) lim ||o™ - w||w =0,

respectively. By Theorem 7.3,

(7.43) lim|jg™** — ™|y =0 for each m.

By (7.41), (7.42) and (7.43), we obtain that

(7.44) Lim|g"* — ]}y =0.
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(7.44) implies the assumption (7.10) of Theorem 7.1, and hence we obtain the pre-
sent theorem.

§8. The approximation of a differential on a generic Riemann surface.

1. Convergence theorem.

THEOREM 8.1. Let W be an arbitrary open Riemann surface, let us suppose
that {K,=K(Q,, 4"¥)}*., is an increasing sequence of normal subdivisions
by a quadratic differential ¥ which defines a regular exhaustion of W (cf. Lemma
1.1), and let K,=<K,, K¥> (n=0, 1,...). Let K,, be the subpolyhedron of
K, such that |K,,|=|K,| and let K,,=<K,,,, K},> (m=0,..., n; n=0, 1,...).
Let 6" (n=0, 1,...) be a difference of I' (K,) with support K,. We suppose that
{o"}2 forms a Cauchy sequence, i.e.

(8.1 lim |lo™ -0k, =0  (nzm),

m,n—o
where we assume that the natural extension ¢™ is defined on each K, (n=m,
m+1,..) by setting o™=0 on K,—K,, Then the sequence {a"*}%,
strongly converges to a harmonic differential oI (W), i.e.

(8.2) lim|lo"* — w||, =0,

and the limit relations

(8.3) Lim|| ") x, = Lim(|o"*] 5, = o]l

hold. Furthermore, the limit relation

(3.4) lim|[g™** — w*|lgy =0

holds, where Q¥ is the carrier of K¥ and Q}' is Q¥ minus carriers of 2-simplices
of K¥ which are not quadrangles for each n.

Proor. We assume that the smooth extension ¢"* (n=0, 1,...) is defined
on W by setting 6"* =0 on W—Q,. By (7.2) and (8.1) we have that

lim ||o™*—o"*|y < lim 6™ —0"| ,=0.
m, n—>o0 m, n—o
The last relation secures that there exists a differential w e I' (W) satisfying (8.2)

and the second equality of (8.3) holds. Furthermore, by making use of Theorem
7.1 for a fixed 2,V we know that weTI',(R,) for each n and thus weI'y(W).

1) TItis verified that Theorem 7. 1 holds also for the compact bordered case.
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We note that (8.1) implies the boundedness of ||o"||x, with respect to n.
Then, by Theorem 7.1 we see that

(8.5) lim lim ||o"||g,,,, =lim lim||o"¥||, <lim ||o"¥||,,.
m-—00 n— m—o n—+© n—o0
The assumption (8.1) implies

(8.6) lim ||o"|g,-x,.,=0  (n=m).

m,n

Hence there exists the finite limit

(8.7) lim||o"|| g, =lim lim ||o"||x,,,..
On the other hand, by Lemma 7.1

(8.8) llo"llk, = llo™¥|a, for every n.

(8.5), (8.7) and (8.8) imply the first equality of (8.3).
By Theorem 7.1 we see that

(8.9) lim||o™** — w*|| gs ngs, =0 for every m.
n—o0

Further

lim lim||o™* — *[| gy -z,

m-=o0 n—w

<lim lim||o"*¥|| gy _qy + Lim [|@*[|lgy-gs,.
m, n— o

m—ao -
Here we I',(W) implies that

lim [lw*||gy-gz=0,
m,n—o

and by Lemma 7.1 and (8.6)

Lim Lim||6™**|| gy g5, S lim Lim [l "*||x.,x,,, =O.
m— o0 n—o0

m—e n—*o0
Hence

(8.10) lim Lim [| 6™ — * || ga_as. =0.

m—o0 n—a

(8.9) and (8.10) imply (8.4).

CorOLLARY 8.1. Let W be an arbitrary open Riemann surface, let us
suppose that {K,=K(Q,, 4"¥)}%, is an increasing sequence of normal sub-
divisions by a quadratic differential ¥ which defines a regular exhaustion of W,
and let K,=<K,, K¥> (n=0, 1,...). Let © be an arbitrary differential of
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I .o(W) with compact support contained in Q,, and let ¢ (n=0, 1,...) be the
difference of I'yo(K,) with support K, such that ©@ —e"*<T,(Q,). Then, we
obtain the same conclusion as Theorem 8.1. Furthermore, the inequalities

(8.11) llo"lg, 2 lloe"llg, 2 llwllw  forevery n
hold and the monotone convergence of norms
(8.12) llo™lx, \llellw (n—o0)

holds. And the limit differential w is the projection of © on I',o(W).

Proor. With the notation in Theorem 8.1, we assume that the natural
extension ¢™ is defined on each K, (n=m, m+1,...) by setting 6™ =0 on K,—

K,, Then o™ el ((K,). Since 6"—o™ el ,\(K,) and o"Tl,,(K,), we have
that

(e"—a™, ")k, =0 (n=zm).
Hence

lo"—o™ |k, =lle™&,— llo"I&, < lle™l&,,— llo"l..

Therefore ||6"| g, is monotone decreasing, and the assumption (8.1) of Theorem
8.1 is satisfied. Hence we obtain the same conclusion as Theorem 8.1. The
proof of the remaining parts is easy.

CoRrROLLARY 8.2. Under the same assumption as Corollary 8.1, let y be
a cycle on K§, let y** and ¢" be the harmonic and the analytic reproducing
differences respectively of y on K, defined in § 4, and let y? and ¢” be the harmonic
and the analytic reproducing differentials respectively of y on W. Then, the
sequences {x""*}2_, and {¢p""*}2_ strongly converge to the differentials x?
and ¢ respectively, i.e.

lim|ly"7# — y?[|=0,
lim||¢"7* — 7| =0,
the inequalities

X"l zlx"*lw=lx"lw  forevery n,

l¢" k.2 llo"*llwzl¢?llw  forevery n

hold, and the monotone convergence of norms

I e, Nl llw - (r00),
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o™, M@ lw (> o00)
holds.

Proor. We may assume that the smooth extension x°?* is defined on W
by setting x°?*=0 on W—Q,. Then x°**&I.,(W). We can choose the dif-
ferential x°?* as the differential ® of Corollary 8.1, and we note that y*? (n=0,
1,...) is the difference of I',o(K,) with support K, such that x°"*—y""*eT,«(2,)
for each n.

§ 9. An application to numerical calculation.

1. Riemann’s period matrix of a closed Riemann surface. Let W be a
closed Riemann surface of genus g. Let {4;, B;};-; ., be a canonical homol-
ogy basis of W such that

A;x 4,=0, B;xB,=0, A;xB,=6,  (j, k=1,..., g),

where by J;, we denote Kronecker’s symbol. Then there exists a system of
analytic differentials y; on W (j=1,..., g) such that

[ w=bu  Gk=t...9.
A4y
Then the matrix (t;,) determined by
=l W Gk=l.9)
Bj

is called Riemann’s period matrix, which is an important conformal invariant
determining the conformal structure of W. The matrix (7;;) is symmetric and
the matrix (Im ) is negative definite.

For simplicity we set C,;_;=4;, C,;=B; (j=1,...,g). It is well known
that there exists a unique system of harmonic differentials w; (j=1,..., 2g) on W
such that

S w2j_l=—'g w21=1 (j=1,...,g),
C2j C2j-1

SC ;=0 for all other pairs j, k.
We set

o=, 0y ={ ot (. k=1,...2).
J

Then the matrix (x i) is symmetric and positive definite, We can easily see that
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Riemann’s period matrix (t;) can be calculated from (aj). Furthermore, to
obtain (a;,) is equivalent to obtain the system of quantities

B = llo;+ wp|I* =0+ 20t + oty 3, k=1,..., 29).

2. Determination of Riemann’s period matrix. We shall continue from 1.
Let f be a meromorphic function of finite valence on W. Let ¥ be the quadratic
differential ¥ =df? or the logarithmic quadratic differential ¥ =dLf? of the
meromorphic function f. Let {K,=K(Q,, 4"¥)}%, be a sequence of normal
subdivisions by the quadratic differential ¥ which defines a regular exhaustion
of W', where W’'=W—e and e is the set of critical points of ¥ outside |K,| for all
n.

We shall calculate approximately the quantities B (j, k=1,...,2g). Let
©; (j=1, ..., 2g) be a differential of I' o(W’) satisfying the following conditions:

(i) the support of O; is contained in Q,;

(i) ©; has the same period as w; respectively along each cycle;

(iii) an integral F; of @; on Q,— C; is constant on 0€,.
Since W' € 04, O being the class of open Riemann surfaces not admitting a Green
function, we find that w; (j=1, .., 2g) is the projection of @; on I'o(W’')=
r(w). We set ©=0;+0, and apply Corollary 8.1 to the present ®. Then
we have that

o™k, = llo"* |3, = [lo; + ollf =B
llom| &, \Jlw; + o llf =B (n— o),

where " (n=0, 1,... ) is the difference of I'(K,) with support K, such that @ —
o"* &l ,,(2,). Hence we obtain a sequence of upper bounds of f; which
converges monotonously to Bj.

3. Numerical calculations. The following calculation method of the period
matrix is applicable to an arbitrary closed Riemann surface. Here, in order to
compare our computation results with the true values, we shall choose a Riemann
surface W whose period matrix can be calculated by the complete elliptic integral.
Let W be the two-sheeted covering surface with four branch points —1/k, —1,
1, 1/k (0<k<1) over the whole z-plane. Then Wis a closed Riemann surface of
genus 1. We can choose a canonical homology basis 4,, B; on W so that their
projections onto the z-plane are simple closed curves around —1 and 1, and 1
and 1/k respectively. In this case, we find that

oy, =(wy, wz)‘—'SA w%=0,
1
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By _ _ 4
a4 =leall® =150 =5,
and
. i
tn={ vi=-if ot=—ilo,2= - P
By B

We shall exhibit some results of numerical calculations of the quantity iz,
for the following cases (i), (ii) and (iii).

(i) 1/k=2.

Let f be the projection map of W onto the z-plane, let ¥ be the quadratic
differential defined by ¥ =(8df)? and let Q be the subregion of Wlyingon {—8<
x<8, —8<y<8}. Then we can construct the normal quadrangulation K,=
K(Q, ¥) of Q by ¥. Let K, and K, be the normal subdivision of K, and K,
respectively. Let 6" (n=0, 1, 2) be the unique difference of I',o(K,) with support
K, such that ®, —¢"* T ,i(Q,). Then we obtained the numerical result in Table
I. We can compare this with the value it,; =||w,||> =0.6396 calculated by the

Table I

lo™l%. llo™*l3.,
n=0 0.6805 0.6719
n=1 0.6673 0.6630
n=2 0.6595 0.6578

complete elliptic integral.

(i) 1/k=em4,

Let f be the projection map of W onto the z-plane, let ¥ be the quadratic
differential defined by ¥ =((128/2n)d 1gf)? and let Q2 be the subregion of W lying on
{e=5"/8 <|z|<e7™/8}. Then we can construct the normal quadrangulation K, =
K(Q, ¥) of 2 by ¥. Let K, and K, be the normal subdivision of K, and K,
respectively. Let ¢” (n=0, 1, 2) be the unique difference of I',o(K,) with support
K, such that @,—¢"*<TI,4(R,) for each n. Then we obtained the numerical
result in Table II. We can compare this with the value it,; =|w,||? =0.6731
calculated by the complete elliptic integral.

(i) 1/k=4/2.

Let f be the projection map of W onto the z-plane, let ¥ be the quadratic dif-
ferential defined by ¥ =(8df)? and let Q be the subregion of W lying on {—8<x
<8, —8<y<8}. Then we can construct a sequence of normal subdivisions
K,=K(&,, 4"¥) (n=0, 1,...) which is maximal under the condition 2,cQ
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Table II

llo"ll%. lle*113.,
n=0 0.6974 0.6931
n=1 0.6909 0.6887
n=2 0.6876 0.6866

respectively. Then lim,.,Q,=Q—{/2, —/2}. Let g, (n=0,1,2) be the
unique difference of I',o(K,) with support K, such that ©,—c¢"*<I,o(R,). Then
we obtained the numerical result in table III.

In the present case, we know that

Table III
llo"l . o113,
n=0 0.6175 0.6070
n=1 0.5562 0.5508
n=2 0.5344 0.5319
the true value of it , =||w,|I? is 0.5.

Next, let ¥ be the quadratic differential defined by ¥ =((128/2rn)d1g (27 1/4f))?

and Q be the subregion of W lying on {2!/4e"/2 <|z|<2!/4e™2}. Then we can
construct a sequence of normal subdivisions K,=K(Q,, 4"¥) (n=0, 1,...) which
is maximal under the condition ©,c®Q. Then lim,.,Q,=Q—{/2, —/2}.
Let o, (n=0, 1, 2) be a difference of I',o(K,) with support K, such that @, —g"*&
I,o(2,). Then we obtained the numerical result in Table IV.

Table IV

llo"| %. lla*11.,
n=0 0.6260 0.6213
n=1 0.5882 0.5858
n=2 0.5579 0.5567

The present computations were carried out on the IBM 360/75 of the Univ-
ersity of Illinois and the FACOM 230/60 of the computer center of Kyoto Univ-
ersity.
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