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Introduction

In this paper we are concerned with nonlinear operators of monotone type
from a reflexive Banach space X into the dual space X*. Such operators have
been considered to make a general treatment of boundary value problems for
nonlinear elliptic partial differential equations and initial-boundary value problems
for nonlinear parabolic partial differential equations. Studies of nonlinear opera-
tors of monotone type have been made by many authors (e.g., [1]-[3], [5]-[7],
[91-[12], [151-[18], [20], [22], [25D).

In [2] Brezis introduced two classes of nonlinear singlevalued operators,
called of type M and pseudo-monotone respectively, from X into X* and then
established existence theorems for nonlinear functional equations of the forms

(@) Ax=f for given f € X'*
and
(b) Ax+Tx=f  for given f € X*,

where A is an operator of type M or a pseudo-monotone operator from X into
X* and Tis a nonlinear monotone operator from X into X*. Recently, the con-
cept of pseudo-monotone operators was generalized by Browder and Hess [10]
to the multivalued case. Many results in [2] on the solvability of (a) and (b) were
extended to the multivalued case where the equations have the forms:

(@) Ax>f for given f € X*
and
() Ax+Tx>f  for given f € X*.

In this paper we shall first give a natural generalization of the notion of opera-
tors of type M to the multivalued case, and investigate basic properties of such
operators. Next, we shall solve nonlinear equations of types (a) and (b)" for
multivalued operators of type M and multivalued pseudo-monotone operators
under somewhat different assumptions from those in [2], [10], [11] and [22].
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In the final section, as an application we shall show the existence of a solution
of a variational inequality

{ (x, x*)€ G(4) with xe C;
<x*—f, x—y> <¢d(y)—d(x) for all yeC,

where A4 is a multivalued pseudo-monotone operator from X into X*, feX*
and ¢ is lower semicontinuous on a closed convex subset C of X. Furthermore,
we shall study dependence of the solutions on 4, C, ¢ and f by making use of
results in Mosco [21].

§0. Preliminaries

Let V and W be two topological vector spaces. For a multivalued operator
A from Vinto W (i.e., to each x V a subset Ax of W is assigned), we define

D(A)={xeV; Ax+8},

R(A)= U Ax
xeD(A4)

and
G(A)={(x, x*)eVx W; x& D(A), x*< Ax}.

In what follows an operator means a multivalued operator unless otherwise
stated.

For an operator 4 from Vinto W and a real number A, 14 is an operator
from Vinto W defined by

G(AA) ={(x, Ax*)E Vx W; (x, x*) € G(A)}.

Let A; and A, be two operators from V into W. Then the sum A+ A4, is an
operator given by

G(A;+A4;)={(x, xt+x3) €V W; x€D(4,) N D(4,), Xt E A,x, x5 € A,x}.

For an operator A from Vinto W, we denote by A~! the inverse of A4, i.e., A~!
is an operator from W into V given by

G(A~ ) ={(x*, x) e Wx V; (x, x*) = G(4)}.

Let A be an operator with D(A) =V into W such that Axis a closed subset of
W for each x&V. Then it is called upper semicontinuous (resp. sequentially
upper semicontinuous), if for any x V and any neighborhood U* of Ax (resp.
any sequence {x,}CV converging to x&V and any neighborhood U* of Ax),
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there is a neighborhood U of x (resp. an integer ng) such that U* > Ay for all
yeU (resp. U*DAx, for all n>n,). In particular, if A is single-valued (i.e.,
Ax consists of a single element of W for each x € V'), then the upper semicontinuity
(resp. sequential upper semicontinuity) of 4 coincides with the continuity (resp.
sequential continuity).

Let V and W be two real Banach spaces, and let 4 be an operator from V
into W such that Ax is non-empty and weakly closed in W for each xe V. Then
A is called weakly upper semicontinuous (resp. sequentially weakly upper
semicontinuous) if it is upper semicontinuous (resp. sequentially upper semicon-
tinuous) with respect to the weak topologies of V and W. For a single-valued
operator 4, we say that it is demicontinuous, if it maps any strongly convergent
sequence in V to a weakly convergent sequence in W.

Next, let V and W be real reflexive Banach spaces and let A be an operator
from V into W with D(A)=V such that Ax is weakly compact for each xe V.
We note that if A4 is sequentially weakly upper semicontinuous, then 4 is bounded
(i.e., it maps bounded sets in ¥ to bounded sets in W) and G(A) is sequentially
weakly closed in V'x W. In particular, if Vis finite dimensional, then A4 is weakly
upper semicontinuous if and only if it is bounded and G(A) is sequentially weakly
closed in Vx W.

We use symbols “—=,"" and ‘-~ to denote convergence in the strong
and weak topology of a Banach space, respectively.

Throughout this paper, let X be a real reflexive Banach space, X* be the dual
space of X and <x*, x> denotes the duality pairing between x*€ X* and x€ X
and ||x|| (resp. ||x*||) the norm of x& X (resp. x*= X*). We denote by J the
duality mapping of X into X*, i.e., it is defined by

Jx={x*e X*; <x* x> =|x||>=||x*||?} for each xeX.

We know that D(J)=X and R(J)=X*, and that if X* is strictly convex,
then J is single-valued and demicontinuous. The inverse J~! is, as easily seen
from the definition of J, the duality mapping of X* into X (=X**). We remark
that if X and X* are strictly convex, then J is demicontinuous, one to one and
onto.

Let A be an operator from X into X*. If for any (x;, x¥)=G(4), i=1, 2,

<x¥—x%, x,—x,> >0,

then A is called monotone. A monotone operator A from X into X* is called
maximal monotone, if there is no monotone operator A such that G(4) is a proper
subset of G(A). It is well known that the duality mapping J is maximal mono-
tone.
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§1. Operators of monotone type

1.1. Definitions

We first of all recall the original definitions of operators of type M and
pseudo-monotone operators as given by Brezis [2].
Let A be a single-valued operator from X into X*. Then A is called of type
M, if D(A)=X and it has the following two properties:
(M,) If{x,} is a bounded net in X, and if x,—%->x in X, Ax,—¥>x* in X*
and

limsup < Ax,, x,> < <x*, x>,
a

then Ax=x*.
(M,) The restriction of A to any finite dimensional subspace of X is con-
tinuous with respect to the weak topology of X*.
A single-valued operator A from X into X* is called pseudo-monotone, if
D(A)=X and two conditions below are satisfied :
(PM,) If {x,} is a bounded net in X such that x,—*>x in X and

limsup < 4x,, x,— x> <0,
[

then for all ye X

liminf<Ax,, x,—y> > <Ax, x—y>.

a

(PM,) For any fixed yeX, the function x—<Ax, x—y> is bounded
below on each bounded subset of X.

Recently, the above notions were extended to the multivalued case (see
Browder-Hess [10] and the author [12]). In the definition of multivalued pseudo-
monotone operators by Browder and Hess, only sequences are considered instead
of nets. In this direction, we give a generalization of the notion of single-valued
operators of type M as follows:

DeriNiTION 1.1, (cf. [12]) Let A be an operator from X into X*. Then
A is called of type M, if it satisfies the following conditions:
(m,) For each x€X, Ax is a non-empty, bounded, convex and closed
subset of X*.
(my) If {(xy, x¥)} ©G(A) is a sequence, and if x,—*>x in X, x§—x* in
X* and

limsup <x¥, x,> < <x*, x>,
p n n

n—o0
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then (x, x*) e G(A).
(ms3) The restriction of A to any finite dimensional subspace F of X is
weakly upper semicontinuous as an operator from F into X*.

The following definition of multivalued pseudo-monotone operators is due to
Browder and Hess.

DEFINITION 1.2. - (Browder-Hess [10]) Let A be an operator from X into
X*. Then A is called pseudo-monotone, if it has the following properties:
(pm;) For each x X, Ax is non-empty, convex and closed in X*.
(pmy) If {(xn x¥)} ©G(A) is a sequence such that x,—*-x in X and
limsup<x¥, x,—x> <0,

n—o0
then to each yeX there exists x*(y)e Ax with the property that

liminf <x*, x,—y> > <x*(y), x—y>.
(pm3) The restriction of A to any finite dimensional subspace F of X
is weakly upper semicontinuous as an operator from F into X*.
Note that (m,) or (pm,) implies that D(4)=X.

1.2. Basic properties

We begin with the following:

ProrosiTION 1.1. (Browder-Hess [10; Proposition 7]) Let A be an
operator from X into X* with D(A)=X satisfying condition (pm,). If {(x,,
x¥)} c G(A) is a sequence such that x,—>x in X and

limsup<x¥, x,—x> <0,
then {x¥} is bounded in X*. If, in addition, A satisfies condition (pm,), then
every sequential weak cluster point of {x*} is contained in Ax.

The class of operators of type M includes not only sequentially weakly upper

semicontinuous operators with property (m,), but also pseudo-monotone opera-
tors; in fact, we have

ProrosiTION 1.2. Let A be an operator from X into X*. If A is pseudo-
monotone, then it is of type M.

Proor. It suffices to show (m,) and (m,). Let x be any point in X and
{x*} be any sequence in Ax. Then, since <x}¥, x—x> =0for all n, Proposition
1.1 implies that {x*} is bounded, and so Ax is bounded in X. Thus (m,)is verified.
Next, let {(y,, y¥)} cG(4) be any sequence such that y,—%,y, y*—», y* and
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(1.1) limsup<y¥, y,> < <y* y>.

Then, since (1.1) implies that

hg}»s;;lp<yﬁ’ Yn—YV> SO,

it follows directly from Proposition 1.1 that y*€ Ay. Thus we have (m,).
q.e.d.

RemARK 1.1. Ininfinite dimensional Banach spaces, the converse of Proposi-
tion 1.2 is false. For example, the operator —I in the space /2 is of type M
because of the weak continuity, but not pseudo-monotone, where I is the identity
mapping in [2.

Let A be the family of all finite dimensional subspaces of X. For each Fe A,
we denote by jr the natural injection from F into X and j} the adjoint of jg.
We know that each j} is linear, weakly continuous and surjective as an operator
from X* into F*, and hence it is open.

The following lemma will be helpful in the later discussion.

LeEmMMA 1.1. Let A be an operator from X into X* satisfying condition
(m,). Then, setting Ap=j¥Ajr for FE A, we have
(1) Agx is a non-empty, bounded, convex and closed subset of F* for each
Fe A and each xEF.
Furthermore, condition (m3) (=(pm,)) is satisfied if and only if the following
condition holds;
(2) foreach FE A, Ag is an upper semicontinuous operator from F into F*.

Proor. The property (1) is easily derived from (m,). Since, under (m,),
condition (m3) clearly implies (2), we show only the ¢“if” part of the second asser-
tion of the lemma. Thus, assume (2). Let F, be any element of A, x, be any
point in F, and U§ be any weak neighborhood of Ax, in X*. By (m,), Ax, is
weakly compact in X*. Therefore, there are finite sets E* ={y%, y%,..., y}¥} C Ax,
and {e, &,,..., &y} of positive numbers such that

N

(1.2) Uso U UFDAx,,
k=1

where

U ={x*eX*; |<yr—x* y>|<g for all yeE,}

with a finite subset E, of X, k=1, 2,..., N. Denote by F the finite dimensional
N

subspace of X spanned by Fy and \U E,. Then, we observe
k=1
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N
U JHUD D Apxo
and
(1.3) JEIGEUR)=UE, k=1,2,...N.

N
Since \U j¥(U¥) is a neighborhood of Apx, in F*, (2) for this subspace F im-
k=1
plies that there is a neighborhood U of x, in F such that

C=

N THUR) 2 4p(U) = jE(AU)).

1

Hence
N
JE N THUD) 2 (4p(U) 2 AU).

These relations together with (1.3) imply that

C=

Ufo A(U).
k

1

Therefore, setting Uy =UN F,, we see from (1.2) that for this neighborhood U,
of x, in F, the relation

UE2A4(Uy)
holds. Thus A satisfies condition (mj). q.e.d.
Next, we give results on the sum of two operators of monotone type.

ProposiTION 1.3. If A is an operator of type M from X into X* and T
is a sequentially weakly upper semicontinuous monotone operator from X into
X* such that Tx is non-empty, bounded, convex and closed in X* for each xe X.
Then T+ A is of type M.

Proor. Since the verification of (m,) and (m;) for T+ A is easy, we verify
only condition (m,). Let {(x,, z¥)}cG(A+T) be a sequence with z*=x*+ y¥*,
x*e Ax, and y¥ e Tx, such that x,—*»x, in X, zF—, z§ in X* as n— oo and

limsup<z¥, x,> < <z§, xo>.

n—o0

Then

(1.4) limsup<x¥, x,> =limsup<z¥—y¥, x,>

n—o n—aoo

< <z§, xo> —liminf< y¥, x,>.

n—o
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We can choose a subsequence {y¥ } of {y*} weakly convergent to some y%e X*
such that liminf<y¥, x,> =lim<y},, x, >. Since y§=Tx, by the sequential
n-o k—o0

weak upper semicontinuity of 7, we have by the monotonicity of T
<V Xme—X0> 2 <YE, Xy —Xo>,
and hence
liﬁi£f<y,“:k, Xp> = <PE, xo>.
From (1.4) and the above inequality it follows that
liﬁ)sgp<x;',‘k, Xp > < <z§—y8, xo>.

Therefore, by condition (m,) for A we have z§ — y§ = Ax,. Thus z§ < Ax+ Txo.
q.e.d.

PropoSITION 1.4. (Browder-Hess [10; Proposition 9])

Let A, and A, be two pseudo-monotone operators from X into X*. Then
A;+ A, is also pseudo-monotone.

The following Proposition 1.5 gives a characterization of operators of type
M and pseudo-monotone operators in finite dimensional Banach spaces.

ProrosITION 1.5. Suppose that X is finite dimensional. Let A be an opera-
tor from X into X*. Then the following three statements are equivalent to
each other:

(a) Aisof type M.

(b) A is pseudo-monotone.

(¢) Ax is non-empty, bounded, convex and closed in X* for each x€ X,

and A is upper semicontinuous.

PrOOF. Since assertions “(b)—(a)” and ““(a)—(c)” are easily seen from
Proposition 1.2 and the definition of operators of type M, we have only to show
“(c)—(b)’. Therefore, assume (c). Let x,—x in X and x} € Ax, for all n. By
the boundedness of 4 and the closedness of G(4), there is a subsequence {(x,,,
x* )} c G(A) for each y= X such that

liminf<x¥, x,—y > =lim<x}, x, —y>
n—o k—
and for some x*(y)€ Ax
x¥ —x*(y) in X* ask— o,
For this {(x,,, x¥)}, we have

<x*(y), x—y>=liminf<x}, x,—y>.
n—o
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Thus (pm,) is verified and A4 is pseudo-monotone.

1.3. A generalization of Brezis’ condition (PM,)

We now give a natural generalization of condition (PM,) to the multivalued
case.
Let A be an operator with D(4)=X into X*. We consider the following
condition:
(pm,) For each xo€X and each bounded subset B of X, there exists a
constant N(B, x,) such that

<x* x—x9>>N(B, x) for all (x, x*)= G(A) with xB.

Condition (pm,) is fulfilled by monotone operators A with D(4)=X as well
as by bounded operators.

LemMA 1.2. Let A be an operator from X into X* satisfying (pm,), (pm,)
and (pmy). Then A satisfies also (pm3).

Proor. Let F be any element of A and Ap=j¥A4jr. Then we see from
Proposition 1.1 that Ax is non-empty bounded, convex and closed in X* for each
xeX. Hence, in view of Lemma 1.1, it is enough to show that A is upper
semicontinuous. If Ap is not so, then there are x,F, a neighborhood U%
of Apxo, sequences {x,}CF and {X*=jix*} with x*¥< Ax, such that x,—x,
in F as n—oo and X} & U¥ for all n. First we show that {X*} is bounded in F*.
In fact, if otherwise, then there is a subsequence {X} } of {X¥} such that ||X} |- oo
and yj¥=Xx¥ [l|X¥ ||>y§ as k—> o for some y§eF* with ||y¥||=1. Here, using
condition (pm,), we find a constant N(x) for each x& F such that

= N(x
<Pk Xpe— x> 2“2—(=.=l)|‘
nk

for all k.
Letting k— oo, we have
<jy¥ xo—x>=>0 for every xeF.

This implies that y§=0. This is a contradiction. Thus {X*} is bounded, and
hence
limsup <x¥, x,—xo> =lim<Xx¥, x,—x,> =0.
n—ow n—oo

From Proposition 1.1 we infer that {x¥} is bounded in X* and sequential weak

cluster points of {x}} belong to Ax,. Therefore, cluster points of {xX*} in F*

also belong to Apx,. This contradicts the hypothesis that x#*¢ U% for all n.
q.e.d.

This lemma implies that an operator A satisfying conditions (pm,), (pm,)
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and (pm,) is pseudo-monotone.

As a consequence of the above lemma and a result on local boundedness
of monotone operators (see Browder [5; Lemma 1] and Rockafellar [24; Theorem
1]), we have

ProrosITION 1.6. (Browder-Hess [10; Proposition 8]). A maximal mono-
tone operator A from X into X* with D(A)=X is pseudo-monotone.

§2. Nonlinear functional equations for operators of monotone type

2.1. Functional equations for operators of type M

We now give a result on the solvability of the equation Ax = f for an operator
of type M.

THEOREM 2.1. Let A be an operator of type M from X into X*, and let
C be a bounded convex closed subset of X with the origin in its interior C.
Suppose that one of the following two conditions is satisfied:
(@) If {(x,, x¥)} © G(A) is a sequence such that x,—*-x in X and
limsup < x¥, x,—x> <0,
n—oo
then {x*} is bounded in X*.

(¢') A is a quasi-bounded, i.e., for each M >0 there is a constant K(M)>0
such that if ||x||<M, <x* x><M|x| and (x,x*)eG(A), then
llx*|| < K(M).

Suppose furthermore, given f € X*,
(B) for any x0C and any x*< Ax,

<x*—f, x>>0.
Then S;={xeC; f € Ax} is non-empty and weakly compact.

REMARK 2.1. In the case of single-valued operators, the above theorem was
shown by Petryshyn and Fitzpatrick [22; Proposition 1.2] under (¢'). In the
multivalued case, we know [12; Theorem 1] that if A is of type M in the sense
of [12], that is, it satisfies conditions (m,), (m3;) and (m,) given by replacing
sequences by nets in (m,), then Theorem 2.1 is valid without the assumption
(o) or ().

The proof of Theorem 2.1 is based on the following lemma due to Browder
[8; Theorem 11].

LEMMA 2.1. Suppose that X is finite dimensional. Let A be an operator
from X into X* such that
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(1) Ax is a non-empty, bounded, convex and closed subset of X* for each
xeX,
(2) A is upper semicontinuous,
and let T be a monotone operator from X into X*. Then for any given bounded
convex closed subset C (#@) of D(T) and f € X*, there exist xo€ C and x§ Ax,
such that

<x¥—f+x* xo—x><0  for all (x, x*)e G(T) with xeC.

Before proving Theorem 2.1, we recall the following remarkable result by
Browder and Hess [10; Proposition 11] that allows us to dispense with nets
and to consider only sequences in our arguments.

PrOPOSITION A. Let X be a linear subspace of X, and let A, be the family
of all finite dimensional subspaces of X, and B the closed ball of radius R about
the origin in X. Suppose that we are given a mapping y: Ay—28, with Y(F)
a non-empty subset of FN B for each FEA,. For F, in A, set

and let

where Vi is the weak closure of Vi. Then for each F' € A,, there exists an
increasing sequence {F,}%., C A, with F'C F,, and exists for each k an element
x, €Y(F,) such that x, converges weakly to x, as k—oo.

ProoF of THEOREM 2.1. Let A, jp, j¥ and Ap be as in paragraph 1.2. For
each Fe A, we set

Sp={xeCnF; there is x*< Ax such that <x*—f, y> =0 for all ye F}.
We first show
2.1) Sp+6¢ for every Fe A.

In fact, as we have seen in Lemma 1.1, Azx is non-empty, convex and closed in
F* for each xe F and Ay is upper semicontinuous. Therefore, applying Lemma
2.1 for Ay and T given by G(T)={(x, 0)€ F x F*; x&F}, we obtain x,eCNF
and x¥ € Axy such that

2.2) <x}—f, xp—x><0 forallxeCnF.

R ,
In the case where xp & C, since x is in the interior of CN F in F, we have
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2.3) <xF—f, x>=0 for all xe F.

In the case where x; € 0C, noting that <x¥—f, x;> >0by () and <x}—f, xz>
<0 by taking x =0 in (2.2), we see that

<x¥—f, xp>=0.

Thus, also in this case, (2.3) holds. Hence we have (2.1).
Now, we set for each Fe A

VF= U SFl.
F'SF
F’edA

Then, clearly, Vyc C for every FE A and the family {V;; F& A} has the finite
intersection property. Since C is weakly compact, it follows that

N Ve+g,
FeA

where ¥ is the weak closure of V; in X. We take an x, in the intersection of
all 7 and fix it.

Next, let z be any point in X and take Foe A with z, x,e F,. Applying the
above proposition, we find an increasing sequence {F,}; with FoCF; and a
sequence {(x;, x}¥)}c G(4) with xS, and x} € Ax, such that x,—*»x, in X
as k— oo and

2.4) <x¥—f,x>=0 for all xe F,, k=1, 2,....
This implies that
2.5) <xF—f, xg—x0> =0, <x¥, x> <Z||f I lIxxl for all k.

Hence, by hypothesis («) or (&), {x§¥} is bounded in X*. Choose a subsequence
{x%} of {x¥} weakly convergent to some x§< X*. Then, by (2.5),

limsup <x¥, X3 > = <x§, X¢>.
k’ =00

Therefore, by condition (m,), x€ Ax,. Moreover, it follows from (2.4) that

0= lim <x} —f, z>=<x}{—f, z>.

k’— o0
We have seen that for each z€ X there is x*(z) € Ax, such that
<x*(z)—f, z> =0.

Since Ax, is convex and closed by (m,;), Hahn-Banach theorem implies that
feAx,. Thus S;+g. Finally, the weak compactness of S, immediately follows
from condition (m,). q.e.d.
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COROLLARY 1. Let A be an operator of type M from X into X*. Suppose
that A satisfies condition (&) or (¢') in Theorem 2.1 and that A is coercive, i.e.,

inf <x* x>

— 00 as ||x||—oo.
redx ”x” “ “

Then R(A)=X*.
COROLLARY 2. Let A be a pseudo-monotone operator from X into X*.
If it is coercive, then R(A)=X*.

CoROLLARY 3. Let A be an operator from X into X* such that Ax is non-
empty, bounded, convex and closed in X* for each x€X. If A is sequentially
weakly upper semicontinuous and is coercive, then R(4A)=X*.

ProrosITION 2.1. Let A be an operator of type M from X into X*, and
let C be a bounded and weakly closed subset of X. Then the image A(C) is
closed in X*.

Proor. Let {x*} be a sequence in A(C) converging strongly to some x% € X*.
For each n, there is x, = C such that x} = Ax,. Since C is weakly compact by the
reflexivity of X, there is a weakly convergent subsequence {x,,} of {x,} and the
weak limit x, is contained in C. Besides, as easily seen,

1 * —_ %
lim<x¥, x, >=<x§, xo>.
k— o0

Hence, by condition (m,), x§€ Ax,. Thus x§< A(C). q.e.d.

An analogous result for pseudo-monotone operators was proved by Browder
and Hess [10; Lemma 1].

PROPOSITION 2.2. Suppose that there is a coercive monotone and sequen-
tially weakly upper semicontinuous operator T from X into X* with D(T)=X
such that (0,0)e G(T), Tx is bounded, convex and closed in X* for each x&€ X
and there is 6>0 with

(2.6) <x*, x> >6|x||-||x*|| for all (x, x*)e G(T).

Let A be an operator of type M from X into X* satisfying condition (o) or (o)
in Theorem 2.1 and assume that there is N>0 such that

2.7 <x*,x>>—N|x||-N  for all (x, x*)= G(A).
Suppose further that A~ is bounded. Then R(A)=X*.

ProoF. We first observe from Proposition 1.3, assumptions on T and (2.7)
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that for each A>0, the operator AT + 4 is of type M and coercive. Furthermore
AT + A satisfies condition («) or («') according as A. Therefore, by Corollary
1 to Theorem 2.1 we have R(AT + A)=X* for A>0. Let f be any element of X*.
Then we find (x;, x¥)= G(A4) and (x;, y¥)= G(T) for each >0 such that

@38) Aytext=f.
By considering < f, x;> and using (2.6) and (2.7) we obtain
OAYEIFllxall = N1zl = N < [Lf[I- [Ixall.

This implies that {x,},., is bounded in X. For, if otherwise, there would exist
a sequence {4,} such that ||x, || 1 oo, and hence {4,]|y% ||} is bounded, so that
{lIx* ||} is bounded by (2.8). This contradicts the boundedness of 4=!. Thus
for a suitable M >0 we have

lx,l|<M for every 1>0.

Since Tis bounded, { y%} is also bounded in X*. Denote by B,, the closed ball

of radius M about the originin X. Then from Proposition 2.1 and (2.8), it follows

that f € A(B,,), because ||x¥— f]|=A|| y%||>0as 1} 0. q.e.d.
This proposition is an analogue of Theorem 2 in [10].

2.2. Functional equations for pseudo-monotone operators

In this paragraph, we discuss the solvability of the equations
2.9) feAx, xeC

for a closed convex subset C of X and an f & X* under a boundary condition.
In case A is a pseudo-monotone operator from X into X*, C=B,={x€X;||x||<
r} with r>0 and f=0, the solvability of (2.9) was discussed by Browder and Hess
[10; Theorem 11] and DeFigueiredo [11; Theorem 1] under the following
boundary condition:

(2.10) Ax+AJx»0  for all 2>0 and all x with ||x||=r.

We shall establish an existence theorem for (2.9) under a more general boundary
condition (2.13) below.

Let ¢ be a function on X, i.e., a mapping of X into [ — oo, oo]. If for a sub-
set S of X, ¢(x)e(— o0, o] forevery xS and ¢ # o on S, then ¢ is called proper
on S.

We now consider subdifferentials of proper convex functions. Let ¢ be a
proper lower semicontinuous convex function on X. Then the subdifferential
0¢ is an operator from X into X* given by
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0p(x)={x*eX*; <x* y—x><P(y)—¢(x) for all ye X}

for xe X with ¢(x)<co and by d¢(x)=g for x€ X with ¢(x)=0c0. Itis well-
known that d¢ is maximal monotone (see Rockafellar [23], [26]).

Let C be a non-empty closed convex subset of X and let us consider a func-
tion ¢ on X defined by

0 ifxeC,
.11 $c(x) ={

o0 otherwise.

¢¢ is a proper lower semicontinuous convex function on X. Then, as easily
seen, x* € 0¢(x) for x& C if and only if

<x* y—x><0 for all yeC.
From this we see that
D(0¢c)=C, 0= 0¢(x) for all xe C and
@12 { dpc(x)={0}  forall xC.

THEOREM 2.2. Let A be a pseudo-monotone operator from X into X*
and let C be a non-empty bounded, convex and closed subset of X. Given
feX*, assume that

(2.13) Ax+@pcNON)B D for all xedC,

where ¢ is the function given by (2.11). Then S;={xeC; f € Ax} is non-
empty and weakly compact.
This theorem will follow from the following proposition.

ProrosiTION 2.3. Let A be a pseudo-monotone operator from X into X*
and let T be a monotone operator from X into X* with bounded closed convex
domain D(T). Then for any given f € X*, there is xo& D(T) with the following
property: for each x&D(T) there is x¥(x)E Ax, such that

<x§(x)— f+x* xo—x><0  for all x* Tx.

ProoF. In view of Lemma 1.2, we apply Lemma 2.1 for Ap=j¥A4jr and
Tr=j% Tjr, FEA, and see that the set S of all x,&D(T)N F such that there
is x¥ € Axp with the property that

2.14) <xf—f+x* xp—x><0 for all (x, x*)e G(T) with xeF,

is non-empty. Here, set

1) For subsets S; and S, §;\S;={x; xES,, *&S;}.
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VF= v} SF"
F'oF
F'eAd

Then, just as in the proof of Theorem 2.1, we observe that

g+ N VecD(T),
FeA

where V7 is the weak closure of Vin X. Let x, be a point of the intersection.
Let x be an arbitrary point in D(T) and, by using Proposition 4, choose an

increasing sequence {F,}®., in 4 with xo, x€ F; and {x,} with x,eS;,_ weakly

convergent to x,. Then, by (2.14), for each n there is x¥ e Ax, such that

.15 <x¥—f+y* x,—y><0 for all (y, y*)eG(T) with yeF,.
Substituting some (x,, X§) = G(T) for (y, y*) in (2.15), we have

0>limsup<x}—f+X§, x,—xo>

n—>o

=limsup<x¥, x,—x¢>.

n—>wo

Therefore from condition (pm,) it follows that for some x¥(x)e Ax,

<x¥(x), xo—x> <liminf<x¥, x,—x>.

n—oo

This inequality and (2.15) imply that for all x*< Tx

0>liminf<x¥— f +x*, x,— x>

n—oo
> <xFxX)— f+x*, xog—x>.
q.e.d.

We now state another lemma due to Browder [8; Lemma 1] which is needed
in our proof of Theorem 2.2.

LEMMA 2.2. Let C, be a convex subset of X and Cy be a bounded, convex
and closed subset of X*. Suppose that for each x& Cgthere is x*(x) Cy such
that <x*(x), x> <0. Then there is x§C), such that <x§, x> <0 for all
xe C,.

ProoF of THEOREM 2.2: Applying Proposition 2.3 for 4 and T =0¢,,
we obtain a point x,€ D(0¢c)=C with the property that for each xeC there
is x§(x) e Ax, such that

<x§(x)— f+x*, xo—x><0 for all x* < 0¢(x).

Taking x* =0 (cf. (2.12)),
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<x¥(x)—f, xo—x> <0.
We infer from Lemma 2.2 that for some x§< A4x,

(2.16) <x§—f, xo—x><0 for all xe C.

If xo= Co', then (2.16) implies that x§=f. If x,=0C, then, since f—x§e
O0pc(xo) by (2.16), our boundary condition (2.13) implies that x}=f. Thus
xo€S;. That S, is weakly compact is easily seen from the pseudo-monotonicity
of A. q.e.d.

ReMARK 2.1. We remark that the boundary condition (2.10) is a special
case of (2.13) with f=0 and C=B,. In fact,

{0) if fxll<r,
0¢p, =N (x)= I{lx*; A>0, x*eJx} if ||x||=r,
¢ if ||x||>r.
| To prove this, first, let x, € 0B, and x§ €0¢p,(xo). Then by the definition of d¢p,
<x¥§, xo—x>=>0 for all xeB,.
Putting p = <x¥, x,>, we have

p=sup <x§, x> =r|xg].
xeB,

If p=0, then x¥=0=N,(x,). In case p>0, we see that

r? K| — o
*’p—“on =r=||xoll
and
<—r;—x3, Xxo>=r2=||x,]2.
Therefore, by the definition of the duality mapping J,

r2
—p—x’},‘EJxo.

Hence x§e N(x,), i.e., d¢p (xo)CN,(x,). Thus we have proved
N, (x)D0¢p,(x) for all x éB,.

In view of (2.12), this inclusion holds for all x& X. Since N, is monotone and
0¢p, is maximal monotone, the above relation implies that N,=0¢p .
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ReEMARK 2.2. If C is a bounded, convex and closed subset of X with the
origin in its interior, then (2.13) is more general than a boundary condition of the
following type (cf. (B) in Theorem 2.1):

2.17) <x*— f, x> >0 for all (x, x*)& G(4) with x& dC.

Indeed, assume (2.17) and let x,€0C, x§€ Ax, and f—x§€0pc(x,). Then,
since

<f-x¥ x—xo><0 for all xeC,
we have by (2.17)

<x§—f, x>=>0 for all xeC.

Hence x§ = f, because 0= E‘ Thus (2.13) holds.

§3. Perturbation of maximal monotone operators

3.1. Perturbation of linear maximal monotone operators

In this papagraph, we treat the range of operators of the form L+ A with
L linear maximal monotone and A4 of type M.

THEOREM 3.1. Suppose that X is separable. Let A be an operator of type
M from X into X* and L be a maximal monotone operator from X into X*
with linear graph G(L) in X x X*. Suppose further that A is coercive, i.e.,

inf <x*, x>

— 00 as ||x|| > oo
x*eAx x|

and that A is quasi-bounded, i.e., for each N>0 there is K(N)>O0 such that if
(x, x¥)eG(A), ||x||<N and <x*, x> <N|x||, then ||x*||<K(N). Then R(L+
A)=X*.

This theorem is a consequence of the following proposition.

ProrosiTiON 3.1. Let X, A and L be as in the above theorem, and let
C be a bounded, convex and closed subset of X with the origin in its interior.
Suppose that A is quasi-bounded and that

3.1 <x* x>>0  for any (x, x*)= G(A) with xedC.
Then the set S={xe C; 0€ Lx+ Ax} is non-empty and weakly compact.

REMARK 3.1. In case A is bounded and of type M in the sense of [12],
the above proposition was shown in [12; Theorem 2] without the separability
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of X, so that, under the separability of X, the present result is a slight generaliza-
tion of that in [12].
We prepare lammas to prove Proposition 3.1. The first is as follows:

LeEMMA 3.1. (Browder [7; Theorem 1]) Let T, be a maximal monotone
operator from X into X* with the origin in D(T,) and T, be a single-valued,
bounded, coercive, demicontinuous and monotone operator from X into X*.
Then T,+ T, is maximal monotone and R(T;+ T,)=X*.

LeEMMA 3.2. Suppose that X and X* are strictly convex, and let T be a
maximal monotone operator from X into X*. Then
(i) The graph G(T) is sequentially closed in the strong-weak topology
of X xX*.
(i) For each ¢>0, the operator T,=(T'+¢eJ 1)"1: X>X* is a single-
valued, bounded, demicontinuous and maximal monotone operator
with D(T,)=X. Moreover, if (0,0)=G(T), then (0, 0)e G(T,).

Proor. Let {(x,, x})}G(T) be a sequence such that x,—»>x in X and
x*_w,x* in X*. Then, from the monotonicity of T it follows that

<x¥—y* x,—y>=>0 for any (y, y*)e G(T).
Letting n— oo, we have
' <x*—y* x—y>>0  for any (y, y*)€ G(T).

The maximal monotonicity of T implies that (x, x*)e G(T), and thus (i) is proved.

Since X and X* are strictly convex, we note that J-1: X*— X is one to one,
demicontinuous, bounded, coercive and monotone. Now, we show (ii). Let
a*e Ta. Itis easy to see that x*— T~ !(x*+a*)is a maximal monotone operator
with the origin in its domain and x*—e&J~!(x*+a*) is single-valued, bounded,
coercive, demicontinuous and monotone. Therefore, by Lemma 3.1, R(T~1+
eJ 1)=X,i.e., D(T,) =X, and simultaneously we see that T, is maximal monotone
and bounded (the boundedness of T, follows from the coerciveness of the operator
x*—(T~1 4+ eJ~1)(x*+a*)).

Let x* and y* be contained in T,x. Then T 1x*+eJ lx*>x and T 1y*
+eJ-1y*>x. Therefore, for some suitable x'e T~ 1x* and y' € T~ 1y*, we have
x=x"+eJ 1x*=y +eJ 1y*. Moreover, we observe

O=<x*—y* x +eJ Ix*—y —eJ ly*>
=<x*—y* X' —y' > Ffe<x*—y*, JTlx*k—J1pk>
Ze{[lx*|2 — <x*, J7ly*> — <y*, J7Ix*> 4 | y¥|2}
Ze([lx*]|= [l y*ID?.
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Hence |[|x*||=|ly*|| and <y*, J-1x*> =| y*||2. This implies that x*=y*.
Thus T, is single-valued.

Let x} =T,x, and x,—>x. By the boundedness of T,, {x¥} is bounded in
X*.  Now, let x* be any weak cluster point of {x}} and {x,, } be a subsequence
of {x,} such that x¥ —*.x* Since T, is also maximal monotone, from (i) we
infer that x*=T,x. Hence x}—*»T,x. Thus T, is demicontinuous.

Finally, if (0, 0) € G(T), then we have

0T 10=T"10+eJ10=(T"1+eJ71)0
and hence, 0=T,0. qg.ed.

LeMMmA 3.3. Let A, Land C be as in Proposition 3.1; (3.1) is assumed as
well. For each ¢>0 and FE A, we set

As,F =]§(L5+A)JF

where L,=(L"'4+¢eJ~1)"! and A, jp and j§ are as in paragraph 1.2. Then
each A, has the following properties:

(1) A,pX is bounded, convex and closed in F* for every x&F.

(2) A,r is an upper semicontinuous operator from F into F¥*.

(3) For any boundary point x of CNF in F and any x*€ A, pXx,

<x* x>>0.

Proor. By Lemma 1.1, for each Fe A, Ar=j}Ajp is an upper semicon-
tinuous operator from F into F* such that Apx is bounded, convex and closed
for every xe F. Since L,, £¢>0, is demicontinuous from X into X*, L, p =j§L,jr
is a continuous operator from F into F*. Hence A,p=L,p+Ar has the
properties (1) and (2). Condition (3) is easily obtained from (3.1), the monoto-
‘nicity of L, and the fact that (0, 0) G(L,) (cf. Lemma 3.2).

Proor of ProposiTION 3.1: Since X is reflexive, there exists a norm on X
equivalent to the initial norm with respect to which X and X* are strictly convex
(see [4]). Thus, we may assume from the beginning that X and X* are strictly
convex.

First step. For each ¢, 1>¢>0, and each finite dimensional subspace F of
X, we denote by S, r the set of all ye CN F such that there is y*& Ay with the
property that

32 <L,y+y* x>=0 for all xF.

Just as in the proof of Theorem 2.1, we see that each S, ;#¢. We now show
that there is a constant M >0 independent of ¢ and F such that for any (y, y*)
€G(A) with yeS, ; satisfying (3.2),
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(3.3 Iy*[[ <M.

In fact we have by the definition of L,

(3.4 LyeL(y—eJ Y(L,y))

and hence, using (3.2) and the monotonicity of L,

3.5) ¢|L,yl|>=<L,y, eJ Y(L,y)><<L,y, y>=—< y* y>.

Thus < y*, y> <0. This and the quasi-boundedness of 4 imply that (3.3) holds
for some M >0 independent of ¢ and F.

Second step. Fix & with 1>&>0. By the separability of X there is an
increasing sequence {F,} of finite dimensional subspaces of X such that C_jl F,
is dense in X. For simplicity we write S, , for S, r,. We take sequences {x,,}

with x,,€S,, for all n and {x},} with x} e Ax,, satisfying

(3.6) <Lx,,+x¥,, x>=0 for all xeF,.

Set K =sup||x|l. Then, since |x,,/|<K and |x},[|[<M by (3.3), we derive
xeC
from (3.5) that

3.7 e THLeX ) 1P =6l LoX,ull? < — <X¥ 45 X 0> <MK.

Therefore, there is a subsequence {n,} such that as k— o,

Xeme—2o>X,  in X,
XX —oxk in X*,
Lexc,,,k—“UX,’,k in X*,

JeJ (Lx,)—¥>p, inX

for some x,€ X, x¥*e X*, X¥eX* and p,€X. For these limit points we see
that x,C by the weak compactness of C, that

(3.3) lpll<VMK,  |x¥[|<M
by (3.7), and that by (3.6)
<X¥+xk, x>=0 for all xe @F,,k,
k=1
so that

X*+x*=0  in X*,
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because U F,, is dense in X. Moreover, since G(L) is sequentially strong-weak-

closed ((1) of Lemma 3.2) and linear in X xX*, it is sequentially weak-weak-
closed. Hence, by (3.4),

(39) —X:‘=X:‘EL(XS—\/EPE).

Next, we show x¥e Ax,. In fact, given 6>0, we take x;& v F,, so that
k=1
llxs—x,]|<d. Using the monotonicity of L, and noting that <L.x,,, +x¥,,,
—x,> =0 for large k by (3.6), we have

Xeme

limsup<x¥,., X, p. — %>

k—o0

= liﬂ?p <Lx,+XE 0 Xop,—X.>
<limsup<L,X,,. +X¥,., X, 0 —X.>
k=
Sh?}’?p{ <L£xe,m¢ +x:‘,nk9 xe,nk _xd > +6“Lax£,m‘ +x::‘:nk ”}
=6 limsup||Lx, u, + X7 », [
k=
Since {L,x,,, +x¥,.} is bounded in X* for fixed ¢, and § is arbitrary, the above

inequalities imply that

limsup<xk,. ., X, > < <x¥, x,>.

k=00

Thus x*e Ax, by condition (m,).
Third step. Since {x,; 0<e<1}cC and {x*; 0<g<1} are bounded as we
have seen in the Second step, there is a sequence {¢,} tending to 0 such that as

k— oo,
Xo, 25 Xo in X,
xF 2 xh in X*

for some x,€C and x§ X*. Write simply x, and x§ for x, and x¥, res-
pectively. Then /g,p,—0in X by (3.8), and hence x,—/gp—*— X, in X as
k— oo, where p,=p, . Furthermore, (3.9) and the weak-weak closedness of G(L)
imply —x¥eLx,. Finally, we prove that x}¥< Ax,. From the monotonicity
of L it follows that

<= XE+ X8, Xe— /&b — Xo> 20,

ie.,
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<xE, X > < <XE, Xo> 4+ <XE, Xp—Xo> +1/6 < —xE+XE, p>
and hence

limsup < x}¥, x,> < <x§, xo>.
k—o0

Condition (m,) implies that x{€ Ax,. Thus 0= —x¥+ x%¥< Lx,+ Ax,, that
is, S#@.

Finally we show the weak compactness of S. Let {x,} be any sequence in S
weakly convergent to x< C and {x*} be a sequence in X* such that x* € Ax, and
—x¥e Lx, for all n. Then, <x}¥, x,> =— < —x}¥, x,> <0 by the monotonicity
of L and (iii) of Lemma 3.2. From this and the quasi-boundedness of A4 it follows
that {x*} is bounded in X*. Now, let {x¥* } be a subsequence of {x*} weakly
convergent to some x*& X*. We have —x* & Lx because of the sequential weak-
weak closedness of G(L). Hence, by the monotonicity of L again, we obtain

li,r(n SUp<Xxp ., X, > < <x*, x>,

so that x*Ax by condition (m,). Thus xe&S. q.e.d.

Proor of THEOREM 3.1: For any feX*, we consider an operator A,
given by A;x=Ax—f. By the coerciveness of A4, there is r>0 such that

<x*, x>=0 for all (x, x*) & G(A,) with ||x| =r.
Therefore, applying Proposition 3.1, we obtain x with ||x||<r such that f e Ax

+Lx. Thus R(A+L)=X*. qe.d.

3.2. Perturbation of nonlinear maximal monotone operators
The purpose of this paragraph is to prove
THEOREM 3.2. Let A be an operator from X into X* satisfying (pm,),

(pmy) and (pm,), and let T be a maximal monotone operator from X into X*.
Suppose that for some ac D(T)

C e el
(3.10) inf =X X—a> as ||x||—oo.
xredx [l ’

Then R(A+T)=X*.

Proor. Without loss of generality we may assume that X and X* are strict-
Iy convex.
Now, define for each positive number ¢

T,=(T~!'+eJ-1) L,
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Then, by Lemma 3.2, D(T,)=X and T, is a single-valued maximal monotone
operator from X into X*. The operator T,+ A4 is pseudo-monotone by Proposi-
tions 1.4 and 1.6. The mapping x—T,(x+a)+ A(x+a) is coercive by (3.10).
Hence we have R(T,+ A)=X* by Corollary 2 to Theorem 2.1, that is, for each
feX* there are elements (x,, x})= G(A4) and (x,, y¥)= G(T,) such that x*+ y¥*
=f. Let (a, a*)eG(T). Since

y¥eT(x,—eJ~'y}),
we have by the monotonicity of T
<y x,—a>=<y¥ x,—eJ ly*¥—a> +¢|y*|?
> <a* x,—eJ ly*—a> +¢l| y¥|?

> <a*, x,>— <a*, a> +el yH|(ll y¥ll = lla*[)
> <a*, x,>—<a* a> ——Z—Ha*“2

and hence
<f,x,—a>=<x¥x,—a>+ < y¥; x,—a>
><x¥ x,—a>+ <a*, x,> — <a*,a> —;—Ha*llz.
From (3.10) we see that {x,; ¢,>&>0} is bounded in X and so {<x¥, x,—a>;
go>¢>0} is bounded above for some ¢,>0. Moreover, by condition (pm,),
<yEx>=<f,x>—<x¥ x>
=<f,x>+<x¥, x,—x—a>—<x¥ x,—a>

is bounded below for each x X. By considering —x instead of x, we see that
< y¥, x> is also bounded above. Thus we have seen

sup |<y¥, x>|<o for all xe X.

0<e<egg

It follows from the uniform boundedness theorem that { y¥; ¢, >¢>0} is bounded
in X*, so that {x¥; ¢,>¢>0} is bounded in X*. Therefore we can choose a
sequence {¢} tending to 0 such that for some x,€ X, x§= X* and y§e X*

X —2 X in X,
X¥ -2 x§ in X*,

y:;”—w—’yz mn X*a
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as k— oo, and

—11 *
11 —11‘1_’m<xak, Xo—Xo>
[ o]

exists. For simplicity, write x,, x¥ and y§ for x,, x¥ and y¥, respectively.
Clearly x¥(+y§=f. Let x2=£im<yf, X,—Xo>. Noting that
-0
<x¥, Xg—gJ T yE—x0> + <Yk, xe—&J T yE—Xo>
= <fs xk_ak‘]_lyt—x0>—)0 (k_)oo)a
1 =lim<x¥, x,—xo> =lim<x¥, x;,—gJ 1yF—x0>
k- o0 k- o0
and
12 =lim<y¥, x,— x> =lim <y}, x,—&J 1 yf—x0>,
k—o0 k— o0

we have either y, <0 or y,<0. We first consider the case where y, <0. In this
case, we see that

(3.11) lim<y¥, x,> < <p§, xo>.

k— o0
By the monotonicity of T, we have
(3.12) <y*—y¥ y—(,—&J 1yH)>>0 for all (y, y*)e G(T).
By letting k— oo in this inequality and using (3.11), we obtain
< y¥—yb y—xo> =0 for all (y, y*)e G(T).

This implies that (x,, y§)€ G(T), since T is maximal monotone. Then taking
y=x, and y*=y¥ in (3.12), we have

<YE=V8 Xx—&J 1 yE—xo> 20.

It follows that lim< y¥, x,—xo> >0, and hence the equality holds in (3.11).

Therefore }(2=l(‘)?00 Consequently, y; =0 because x;+yx,=0. Hence from Pro-
position 1.1 we infer that x§ € Ax,. Thus f=x§+y§< Axy+ Tx,. In case x, <0,
we first use Proposition 1.1 and obtain x§& Ax,. Then, by the pseudo-mono-
tonicity of 4, we see that y, =0, so that y,=0. As above we see that y§ e Tx,.

§4. Variational inequalities

4.1. Existence theorem for variational inequalities

As an application of our preceding results, we give an existence theorem for
a variational inequality.
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Let A be an operator from X into X*, C be a convex closed subset of X and
¢ be a proper lower semicontinuous convex function on C. Then for given
feX* we consider the variational problem V[A, C, ¢, f]: find xo=C such
that there is an x§ Ax, satisfying

4.1) <x§—f, Xo—x> <Pp(x)—p(xy)  forall xeC.
&
THEOREM 4.1. Let A be an operator from X into X* satisfying (pm,),

(pm,) and (pm,), C be a convex closed subset of X and ¢ be a proper lower
semicontinuous convex function on X. Suppose that for some acC with

d(a)<oo

* g
inf <*%Hx—a> +d>(x)_)oo

as ||x||>o, xeC.
xvedx llx]]

(4.2)

Then for any given f < X*, there is (xq, x¥) € G(A) with xo, C satisfying (4.1),
that is, V[A, C, ¢, f] has a solution.

ReMARK 4.1. If the assumption (4.2) is replaced by the following condition:

there is an as D(0¢) such that

4.3)
inf <x* x—a>

—> oG as || x||—>oo
nf = x| =0,

then Theorem 4.1 is a direct consequence of Theorem 3.2. Obviously (4.3) im-
plies (4.2). But, in general, (4.2) does not imply (4.3).

RemARrk 4.2. For proper convex functions, lower semicontinuity in the
strong topology is the same as sequential lower serhicontinuity in the weak topo-

logy.
To obtain Theorem 4.1 we apply the following proposition.

ProrosITION 4.1. Let A, C and ¢ be as in Theorem 4.1. Suppose, in
addition, that C is bounded. Then for any given f € X*, the problem V[A, C,

&, f1 has a solution.
The main tool for the proof of this proposition is the following:

LEMMA 4.1. Let C and ¢ be as in Proposition 4.1 and A be a positive num-
ber. Define

b =inf(Llx=yl+40))  forxeX.

Then ¢, is finite in X and
@) in£¢(y)s¢l(x) for xeX and ¢,(x)<¢(x) for xeC,
ye
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(ii) for each x€ X there is a point ¥ C such that
$a(6) = llx= %[+ $(%),

(iii) ¢, is convex and continuous in X,
(iv) D(0¢,)=X, where 0¢, is the subdifferential of ¢,.

Proor. Since C is bounded closed and ¢(a)< oo, we see that ¢, is finite
in X. From the definition of ¢; we immediately obtain (i). For each xeX
there is a sequence {x,} in C such that

—i_”x_x”” +9(x,) | $:(x) as n— oo,

Since C is weakly compact, we may assume that x,-¥-»% as n—oo for some
XxeC. Now, since

¢ (%) <liminf ¢(x,)

and

llx = %]l <liminf [|x —x,|,
we have
Slhx= %+ () < ().
This implies that
§:(x)=llx— %[ +9(%).
Thus (ii) is proved. Next, let x,, x,€X and 0<t<1. Then, by (ii) we have
¢A(xi)=—/11—||x,-—fi[|+¢(£,-) for some X;€C,i=1, 2.

Hence

19(x1) +(L=10)y(x;)
= el = R4+ (1= D)lx2 = %) +19(%1) + (1= D (%2)
ey + (1= 0x = 1%, = (1= D%, ]|+ $(1%, + (1= 1)%,)

>¢;(tx, +(1—1)x,).
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Thus ¢, is convex. Moreover, we see easily that ¢, is locally bounded at every
point in X. Therefore ¢, is continuous in X. This implies the subdifferentia-
bility of ¢, at every point in X, that is, D(0¢,;)=X (see Moreau [20]).

q.e.d.

Proor of ProposiTION 4.1: Let 1>0. Since d¢, is maximal monotone and
D(0¢,;)=X by (iv) of the above lemma, the operator A+ ¢, is pseudo-monotone
by Propositions 1.4 and 1.6. First, apply Proposition 2.3 for A+d¢, and T
given by G(T)={(x, 0); xC} to obtain a point x, C with the following pro-
perty: for each xeC there is z¥(x)e Ax,;+d¢,(x;) such that

<z¥(x)—f, x;—x> <0,

Furthermore, apply Lemma 2.2 for Co=x;—C and CpH=Ax,+0¢,(x;)— f.
Then we find x¥<= Ax, and y¥edp,(x;) such that

<x¥+y¥—f x,—x><0 for all xeC.
Therefore we have by the definition of d¢, and (i) of Lemma 4.1
“4.4) <x¥—f,x;,—x><<y¥, x—x;>
< Pa(x)— Palx,)
<P(x)—(x,) for all xeC.

By condition (pm,), the left side of (4.4) is bounded below for fixed xe C, and
hence {¢,(x,); A>0} is bounded above. Therefore, by this and (i) of Lemma
4.1, we see that {¢,(x;); A>0} is bounded. Next, let X, be a point in C given
by (ii) of Lemma 4.1 for x, and take a sequence {/,} tending to O such that

X;,—%5 X in X for some x,C,
X3, 2%, in X for some %, C.

Write x, and X, for x, and X, , respectively, for simplicity. Since, as is proved
above, {¢, (x,)} is bounded,

”xn - Eu H ='1n{¢).,.(xn) - ¢(£n)} _)Oa

and hence x,=X, and

(4.5) liminf ¢, (x,)

~timinf {1, ~ %,]| + 6 (£} = $(x0).
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Taking x=x, in (4.4) with A=1, and letting n— oo, we obtain by (4.5) and (i)
of Lemma 4.1

limsup <x¥, x,—x,>
n—o0

=limsup<x¥—f, x,—x¢>

n—o0

<limsup{¢;,(xo)— $u(xs)}
< ¢(x0)—liminf ¢, (x,) <O0.

Hence, by Proposition 1.1, {x}} is bounded in X* and, if {x}} is a subsequence
of {x}*} weakly convergent to some x§ € X*, then x§ € Ax, and by (pm,) we have

(4.6) lim <x¥, x, > =<x¥, xo>.

Letting n"— oo in the inequality
<xF—f, Xy —=x><¢,;,.(X)—;,.(xy) for all xeC,
we have by using (4.5) and (4.6)

<x¥—f, xo—x> < P(x)— P(x0) for all xeC.

ProoF of THEOREM 4.1: For r>0, we set C,=Cn{x; ||x||[<r}. Apply
Proposition 4.1 with C, in place of C. Then there are x,=C, and x*e Ax,
for each r>0 such that

4.7 <x¥—f, x,—x><p(x)—¢p(x,) forall xeC,.

Since {x,; r>ry} is bounded in X for some r, because of (4.2), we can choose
a sequence {r,} tending to co such that

X, —sx,C as n— oo,
Now, taking x=xq in (4.7) with r=r, and letting n— oo in the inequality
<x5, = f, X, — Xo> S(x0) — P(x,,),
we obtain by the lower semicontinuity of ¢

limsup <x}, x,, —x¢> <0.
n—>o
Hence, just as in the proof of Proposition 4.1, we see that {x} } is bounded in
X*, a weak cluster point x§ of {x} } belongs to Ax, and (x,, x¥) satisfies (4.1).
q.e.d.
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REMARK 4.3. Theorem 4.1 is an extension of Theorem 24 in [2] to the multi-
valued case.
4.2. Convergence of sets and of functions

Let {C,} be a sequence of subsets of X. Then we define

s-Liminf C,={x € X; there is a sequence {x,} with x,&C,

for all n such that x,—-»x in X}
and

w-Limsup C, ={x€ X ; there is {x,} with x,&C,, for a subsequence

n—o0

{C,.} of {C,} such that x,—*>x in X}.

DEFINITION 4.1. (Mosco [21]) A sequence {C,} of subsets of X converges
to a subset C of X in X, if

C=s-Liminf C,=w-Limsup C,.

n—+o0 n—o
We then write

C=LimC, inX.

n—+oo

Let ¢ be a function on X, that is, it is a mapping of X into [— oo, co]. Then
the set

{(x, DEX xR; p(x)<r}
is called the epigraph of ¢ and denoted by epi (¢).

DErFINITION 4.2. (Mosco [21]) A sequence {¢,} of functions on X con-
verges to a function ¢ on X, if

epi (¢)=Lim epi (¢,) in X xR

in the sense of Definition 4.1. We then write

¢=Lim ¢, in X.

The following lemma is also due to Mosco [21; Lemma 1.10].

LeEMMA 4.2. Let {¢,} be a sequence of functions on X. Then ¢=Lim
n—oco
¢, in X if and only if (1) and (2) below hold:
(1) For each x€ X, there is a sequence {x,} in X such that x,—>x in X
and
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limsup ¢,(x,) < $(x).

) If {¢,,} is a subsequence of {¢,} and {x,} is a sequence in X weakly

convergent to x, then

liminf ¢, (x¢) 2 $(x).

Here, limsup, liminf and lim are taken in the wide sense, that is, those may
take the values oo or — . Moreover, we note that if ¢ =Lim ¢, in X, then (1)
n—w

and (2) of Lemma 4.2 imply that for each x< X there is a sequence {x,} strongly
convergent to x such that

4.3.

lim ¢,(x,) = (x).

Convergence of solutions of variational inequalities

Let A be an operator from X into X* with D(4)=X, C be a closed convex
subset of X, ¢ be a proper lower semicontinuous convex function on X and f
.be an element of X*. We suppose that

®

(ii)

(iii)

@iv)

{A,} is a sequence of bounded pseudo-monotone operators from X
into X* with the following properties:
(ay) {A4,} is uniformly bounded, i.e., for each bounded subset B of

X, the union \/ 4,(B) is bounded in X*.
n=1
(a,) Given a subsequence {4,,} of {4,}, let {(x;, x¥)} be any sequence
such that (x;, x§) € G(4,,), x;—-»x in X, x§f *-x* and

limsup < x¥, x,> < <x*, x>.

k-
Then (x, x*)= G(A) and

lim<x}, x> =<x* x>.
k- o0

{C,} is a sequence of closed convex subsets of X such that

C=Lim C,.

n—o

{¢,} is a sequence of functions on X such that each ¢, is proper lower
semicontinuous and convex on X, {xeX; ¢,(x)<oo}cC, and

¢=Lim ¢, in X.
n—oo

{f.} is a sequence in X* such that f,—= fin X* as n—oo.

Now, we consider the variational inequalities V[4, C, ¢, f] and V[A4,,
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C,, ¢ fn], n=1,2,.... We denote by S the set of all solutions of V[A4, C, ¢,
f] and by S, the set of all solutions of V[A4,, C,, ¢,, f.]-

THeEOREM 4.2. In addition to the above hypotheses, assume that there
is a bounded sequence {a,} with a, C, and ¢,(a,)<oo for all n such that

4.8 limsup ¢,(a,) <o,

(4.9) for any sequence {(x,, x}¥)} with (x,, x¥)e G(4,), ||x,||—>co implies that

<X:, Xp—Qy> +¢n(xn)_,°°
[l

(4.10) for each n,

inf <x*,x—a,—a,>+¢,(x)_,

as ||x||= o, xeC,.
x*€Anx ”x”

Then we have:

w-Limsup S, # ¢ and w-Limsup S, S.
q—'oo n—oo
Proor.. First, applying Theorem 4.1 for each n, we have S,+#g. Let
{x,} be any sequence with x,<S, for all n. Then for each n there is x} € 4,x,
such that

(4.11) <X¥—for Xp— x> < Pu(x)— Du(x,) for all xeC,.
In particular, taking a, for x in (4.11), we obtain
4.12) <xXF¥—fu Xy—a,> + P, (x,) < b,(a,) for every n.

Hence our assumptions (4.8) and (4.9) imply that {x,} has a bounded subsequence,
so that {x,} has a sequential weak cluster point. This proves w-Limsup S, #¢.

n—>o0

Next, in order to show w-Limsup S,C.S, we must prove that every sequential

weak cluster point x, of {x,,}"bgiongs to S. By assumption (a,) on the uniform
boundedness of {4,}, we can choose a subsequence {x,, } of {x,} weakly conver-
gent to x, such that the corresponding subsequence {x} } of {x}} converges
weakly to some x§ X*. We see that x,=C, since C=Lim C, in X. For sim-

plicity we write x,, x¥, fi, a; and ¢, for x,., x¥ , f... a,,k" a:d ¢,,, respectively.
Then we observe from (2) of Lemma 4.2, (4.12) and (4.8) that
(4.13) O(x0) <liminf ¢,(x;)

k-

<limsup {@(a) — <xF—fi, Xx—a;>}
k=00

< oo,
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By Lemma 4.2 (see the remark after it), there is a sequence {y,} such that
Yi—>Xo in X and '

(4.14) Lim (1) = $(xo)-

Here, note that y, e C,, for all k, which follows from the assumption (iii), so that
<xF—fio Xie— V> < (Vi) — Pul(x1) for all k.

Hence, letting k— oo in this inequality, we have by using (4.13) and (4.14)

limsup < x¥, x,— x>
k-0

=limsup <x} —fi, X— V>
k-0

<limsup ¢,(y,) — liminf ¢,(x,)
k—o0 k—o0
<0.
Therefore we infer from the assumption (a,) that (x4, x¥) € G(A4) and

4.15) lim<x§¥, x,>=<x§, xo>.

k=
We shall show that
(4.16) <x§—f, xo—x> < P(x)— P(x) for all xe C.

Let x be any point in C. If ¢(x)=o0, then (4.16) is trivial. Thus, assume
¢(x)<oco. Then, by Lemma 4.2 and (iii) again, there is a sequence {z,} with
z,€C,, for all k strongly convergent to x such that

’}Lfg di(z1) = p(x).
Since f,— fin X* as k—co and
<xX§ = fio Xk — 21> < Pi(21) — Pulx) for all k,

we obtain (4.16) by letting k— o and using (4.13) and (4.15). Thus x,€S.
q.e.d.

ReMARK 4.4. The following can be proved as above: Let (x, x¥)e X x X*
and {(x,, x¥)} be a sequence in X x X* such that (x;, x})= G(4,,) and x, €S,
for some subsequence {n,}, x,—*>x in X and x} —-x* in X* as k—o (hence
xeS by the above theorem) and

<X —fuo X= V> < (M= b (x0)  forall yeC,,.
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Then we have

lim<x¥, x> =<x*, x>

k—o0

and
Lime, () = $(x).

REMARK 4.5. In case 4 and 4,, n=1, 2,..., are bounded hemicontinuous
monotone operators, a sharper result than our theorem was proved by Mosco
[21]. Some interesting applications of Theorem 4.2 to boundary value problems
are given in [13] and [14].
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