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1. Introduction

Let G be a semisimple Lie group and L2(G) denote the space of square-integra-
ble functions on G with respect to the Haar measure. The Fourier transform
IF can be regarded as an isometry of L2(G) onto the Hubert space L2(G) which
is defined by irreducible unitary representations of G.

In his paper [6(m)], Harish-Chandra introduces the Schwartz space #(G)
consisting of functions on G. It is analogous to the Schwartz space S?(Rn)
of rapidly decreasing functions on a eulidean space Rn and is contained densely
in L2(G). It is of much interest to ask about the image of ^(G) in L2(G) un4er
J*\ This is a Paley-Wiener type question for < (̂G). There are some results for
this problem. It is solved by J.G. Arthur[l] in the real rank one case. More-
over, the problems for the Schwartz space on Riemannian globally symmetric
spaces and for a certain subspace are studied by Eguchi-Okamoto[4] and Harish-
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Chandra [6(h, i)] respectively.
The purpose of this paper is to give a characterization of the Fourier image

of the Schwartz space for non-compact real semisimple Lie groups G with only
one conjugacy class of Cartan subgroups and without any complex structure
(we shall discuss, in another paper, the case that G has a complex structure).
Now we assume that G has the above mentioned properties. Then it is known
that only one continuous series connects with the Plancherel formula. We can
obtain the Plancherel measure in a concrete form via the method of integration
by parts from the character formulae of the irreducible unitary representations of
the principal series. As an immediate consequence of the main theorem we obtain
the theory of Fourier analysis for tempered distributions on G.

The most difficult part of this theorem is to prove the surjectivity and the
continuity of the inverse Fourier transform. We shall prove this by means of
induction with respect to the real rank of G. For this, we have to study in detail
the Eisenstein integrals, in particular, not only their constant terms but the asym-
ptotic behaviour at infinity along the walls of Weyl chambers, and we use some
of Harish-Chandra's estimates for differential equations with respect to the center
of the universal enveloping algebra of the Lie algebra of G. Arthur's methods
in [1] are very effective in our discussions.

The paper is arranged as follows. We fix an Iwasawa decomposition cj = ϊ +
a + n of the Lie algebra of G and a nonzero element H in α. In Section 2 we
prove that the derived algebra rf̂  of the centralizer mx of H in g has only one
conjugacy class of Cartan subalgebras. In Section 3, we prove the character
formula for the representations πσtλ of the principal series, and in Section 4
we obtain the Plancherel measure in explicit form, which is a polynomial, and
prove the Plancherel formula. We state the main theorem in Section 5 and prove
the injectivity of the Fourier transform tF for ^(G) in Section 7. We state
Theorem 8.1 in Section 8, which is a sufficient condition for the map ίF to be
surjective, and in Sections 10-13 we describe Harish-Chandra's work in the form
suitable for our purpose and show that his estimates are uniform in a sense. In
Section 14, making use of his estimates, we obtain the functions Θj on the analytic

subgroup MΊ of G corresponding to ml9 and we prove that we can apply the induc-
tion hypothesis to Dθj9 where D is the ratio of the Plancherel measure correspond-
ing to G to that corresponding to M\. In Section 17, we define the Fourier
transform of tempered distributions on G and characterize their images by this map.

It seems that, when we consider the analogue of Theorem 5.1 for arbitrary
semisimple Lie group G, the part corresponding to continous series in the proof
of the surjectivity of the Fourier transform map can be proved by induction on
the real rank of G, similarly to our proof.

The author is pleased to express his gratitude to Professor K. Okamoto and
Dr. M. Wakimoto for many stimulating conversations.
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2. Notation and preliminaries

We shall use the standard notation R and C for the field of real numbers

and the field of complex numbers respectively. We shall use i as well as *J—ί

to denote a square root of — 1 . If S is a set, T a subset of S and / a function

on S, the restriction o f / t o Tis denoted by / \T. If 5 is a finite set [S] denotes

the number of elements in S. If S is a topological space cl(T) denotes the closure

of Tin S. Composition of functions and operators will often be denoted by °.

If M is a manifold (satisfying the second countability axiom), the space of

infinitely differentiable functions on M and the set of those of compact support

are denoted by C^iM) and Cf(M) respectively.

If V is a vector space over # , Vc denotes the complexification V®RC of V.

Fcan be seen as a differentiable manifold in the usual manner. Let D(V) denote

the algebra of differential operators on V of constant coefficients. Following

Schwartz [13] we denote the space of rapidly decreasing functions on V with

usual topology by Sf(V). If/<=C°°(F) and D<=D(V) the value of Df at a point

v will usually be denoted by/(v;D) but sometimes by Dv(/(v)).

Lie groups will be denoted by Latin capital letters and their Lie algebras by

corresponding lower case Germann letters. If G is a Lie group and g its Lie

algebra the adjoint representation of G is denoted by Ad and the adjoint repre-

sentation of g by ad.

Let g be a reductive Lie algebra and ί) a Cartan subalgebra of g. Let α

be a linear function on the comlex vector space ί)c and gα denote the linear sub-

space of gc given by

gα = { I ε g c : [#, X]=a(H)X for all H(ΞΪ)C}.

The linear function α is called a root of the pair (gc, ί)c) if gα^{0}. In this case

gα is called a root subspace.

Let L be a connected reductive Lie group over R with Lie algebra ί,

be the inclusion and Lc be a complex analytic group with Lie algebra K Lc

is called a complexification of L if j extends to a homomorphism of L into Lc.

Reductive Lie algebra I can be written as I = I X + c, where \x is a semisimple

ideal of I and c is the center of I. Let Lί9 C(Lc

ί9 Cc) be the analytic subgroups

of L(LC) corresponding to I 1 ? c(\\, tc) respectively. Lc is said to be quasisim-

ply connected (q.s.c.) if L\ Π CC = {1}, where 1 is the unit element of L c, and if

L\ is simply connected. L is called q.s.c. if it has a q. s. c. complexification.

Fix a complexification j : L-±LC and a Cartan subalgebra I) of I. Let A

and Ac be the Cartan subgroups of L and Lc associated with ί) and ί)c, that is,

the centralizers of ί) and ί)c in L and Lc respectively. Clearly j(A)czAc. It is
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known that Ac is connected ([6(k), Corollary to Lemma 27]). If λ is a linear

function on ϊ)c, there exists at most one complex analytic homomorphism

such that for every i/el) c

We also write ζλ for the homomorphism

ξχ°J:A->C

ξλ can be seen to be independent of the complexification Ac used, provided that

ξλ is defined on that complexification.

Cleary ξa exists for any root α of (Ic, I)c). If P ή is the set of positive roots

of (Ic, ί)c) relative to some ordering, let

e r ί )

It is easy to see that the question of the existence of ξρ is independent of the order-

ing of the roots (Ic, ί)c) and of the choice of Cartan subalgebra I). If ξρ exists

Lc is said to be acceptable. L is said to be acceptable if it has an acceptable

complexification.

If Lc is q.s.c, it is known that it is acceptable ([6(k), Lemma 29]). If Lί Π C

is finite, it is clear that L has a finite, and hence acceptable cover.

Suppose L is a compact, connected acceptable Lie group with Lie algebra

I. Let ί), Pj,, A and p be defined as above. For each α define an element Ha

in ί)c by

B(Ha, H) =α(Jf) for all HE ί)c,

where B denotes the Killing form of lc restricted to ί)c. Put

Then w is in 5, the symmetric algebra on t)c, and can be regarded as a polynomial

function on ί)c. Let 77 be the lattice of linear functions

λ: J^Tt)^R

for which ξλ exists. Let 77' ={λ£ΞΠ: m(λ)*0}. If Wί is the Weyl group of

(I c, ί)c), Wί acts on V " 7 ^ - τ h e n Wί acts on 77 as follows

(sμ)(H) =μ(s-ίH), /

For s 6 PFj, put ε(s)=(— l) w ( s ) , where n(s) is the number of positive roots that are
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mapped by s into negative roots. For a regular element h^A, put

If σ is an irreducible unitary representation of L on a Hubert space Vσ and
ZeL, let trσ(ί) denote the trace of σ{ϊ) and let dimσ denote the dimension of Vσ.

LEMMA 2.1. There is a map μ->σ(μ)from W onto the set of unitary equiva-
lence classes of irreducible representations of L. σ(μί) = σ(μ2) if and only if
μί=sμ2for some s£ίf (. Furthermore, ifh is a regular element of A,

(Σ

seWί

Also there exists a constant cL, independent of μ, such that

dimσ(β)=cL\w(μ)\.

Finally, if μe/7' and B(μ, oc)>Ofor each αGP|, then μ — p is the highest weight
of the representation of the Lie algebra lc corresponding to σ(μ).

For a proof see [1, Lemma 1].
If σ is an irreducible unitary representation of L and σ = σ(μ) for a linear func-

tion μe/7' then μ is said to be associated with σ.
Let G be a connected semisimple Lie group and g its Lie algebra. Let

g = f + p be a fixed Cartan decomposition with Cartan involution θ. Let ap be
a fixed maximal abelian subspace of p and α be a fixed maximal abelian subalgebra
of g, which is a 0-stable Cartan subalgebra, that is, θa = a. We put αf = αίlί.
Let K be the analytic subgroup of G corresponding to ϊ. We assume that G
has finite center. This implies that K is compact. If ί) is a Cartan subalgebra
of g, we denote the set of non-zero roots of (gc, ψ) by J(ί)), sometimes, we write
simply A instead of Λ(α).

Let m and M be the centralizers of ap in ! and K respectively, and let M'
be the normalizer of ap in K. Then αf is a Cartan subalgebra of reductive Lie
algebra m. We write the finite factor group M'/M as W, which is called the
little Weyl group of g with respect to ap.

Fix compatible orders on the real dual spaces of ap and ap+^J— lat = aR.
Let P and P+ be the set of positive roots of (gc, αc) relative to this order and the
set of roots α e P which do not vanish on ap respectively. We also denote the
complement of P+ in P by PM. For every non-zero root oc^A, Ha^aR is defined
by

B(H, Ha) = α(H) for every H e α,

where B denotes the Killing form of gc. For simplicity, a root α e A is often iden-
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tified with Ha. Since αt is a Cartan subalgebra of m we wan icgαiu rM a* me

set of positive roots of (mc, αf). We put

a^={H^ap: α(/7)>0 for every oc<=P+},

which is called the positive Weyl chamber of ap. For each root αezl the linear

function aθ is defined by

ocθ(H)=a(ΘH)9 H<=a.

A root α is said to be real (imaginary) if α(H) is real (pure imaginary) for

every HGO; if α is neither real nor imaginary, then α is said to be complex.

Two Cartan subalgebras t) l 5 ί)2 of g (two Cartan subgroups Au A2 of G)

are said to be conjugate under the adjoint group Int(g) (the group of inner auto-

morphisms of G) if there exists ψ e Int (g) (an inner automorphism ψ of G) such

that ^A(ί)i) = ί)2 (Ψ(A1)=A2). It is known that the number N(Q) of the conjugacy

classes of Cartan sublgebras of g is finite ([14, Corollary to Theorem 5]). iV(g)

is clearly equal to the number N(G) of the conjugacy classes of Cartan subgroups

of G.

For every Cartan sublgebra ϊ) of g the following two subalgebras

ί)j = {H^ί): all eigenvalues of adH are pure imaginary},

})R — {H^ί): all eigenvalues of άdH are real}

are called the toroidal part and the vector part of ί) respectively.

A 0-stable Cartan subalgebra ί) of g is said to be standard with respect to

the triple (ϊ, p, α) (simply, standard) if

α f c ί ) f = ί ) n ϊ and f)Πp = [) ) 3co t ).

It is known that there exists a finite number of Cartan subalgebras which are

standard and that any Cartan sublgabre ϊ) of g is conjugate under the adjoint

group Int(g) to one of them ([14, Theorem 2]).

Let ω: X->tr(ad(X))2 ( l E g c ) denote the Casimir polymonial of gc. For

any Cartan subalgebra ^ of g set I_(I)) = sup(dim(ί)_)), where ί)_ runs over all

subspaces of ί) on which ω is negative definite; put I_ =sup^ί_(f)) (ί) running

through the Cartan subalgebras of g). A Cartan subalgebra ί) of g is said to be

fundamental if ϊ_ =I_(ί)). Then the rank of! is equal to I_ and, t) is fundamental

if and only if the pair (gc, t)c) admits no real roots.

The following lemma permits us to make use of induction to prove the main

theorem (see Section 16).

LEMMA 2.2. Let H be a non-zero element in c/(αj), m1 the centralίzer of

H in Q and m 1 = [m 1 , m^]. // the number of conjugacy classes of Cartan
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subalgebras o/g is one, then the number of conjugacy classes of Car tan subal-
gebras o/mΊ is also one.

PROOF. We have clearly,

() ^ Σ « + Σ (gα + g- α )+ Σ (gα + <r
aeP' cuePM ueP'nP+

and

m 1 =m c

1 ng,

where P' denotes the set of αGP such that oc(Ho)=0. Put

mn = mίf]l and

Since aθ(Ho)=(x(ΘHo) = —oί(Ho) the first term in the formula (2.1) is 0-stable.
As is easily seen, if α G ? + then - α f l G P + and if β e P M then βθ =β. So the last
two terms in (2.1) are both 0-stable. Thus mγ is 0-stable. The sum m1 = m l f +
mίp is a Cartan decomposition of mt and θ\m1 is the corresponding Cartan
involution. In fact, if we put

and denote the conjugation of mf with respect to mί by η, then

ηυczυ, τn l f = m1 Π t>, m l t ) = m1 Π (̂ /— lυ) and

Since u is compact and υ is semisimple, υ is also compact (cf. [10, pg. 615]).
Hence m 1 = m l f + m 1 ) ) i s a Cartan decomposition.

Now put

b = (ΣC//α)ng.
αeP'

Then b is a Cartan subalgebra of frti and θb = b since Θ(HO)=HO. To prove
the lemma, it is sufficient to see that b has a maximal and minimal vector part.
By the previous remark, to prove that b has a minimal vector part we shall show
that b is a fundamental Cartan subalgebra. We put

b±={tf(Ξb: ΘH = ±H}.

Then, clearly, b = b+ + b_ is a direct sum, b + c α f and b _ c α r We denote the
center of mί by 3 l 5 the centralizer of mt in ap by I and put

Then I c 3 l 5 3 1 + cα f and 3 1_cαp. So 3χ-cl. Thereby 31_ = I. Let/d0 denote
the set of non-zero roots of (mf, bc). Then each α e Δ o can be regarded as a
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root of (gc, αc) and α | 3 1 + = 0 . Since N(g) = l by the assumption, (gc, αc) has

no real roots. Therefore (m^, bc) has no real roots. Hence b is fundamental

and has a minimal vector part.

The following lemma assures that b has a maximal vector part, and hence

it completes the proof. Q.E.D.

LEMMA 2.3. For a θ-stable Cartan subalgebra ί) of g, the following con-

ditions 1) and 2) are equivalent:

1) t) has a maximal vector part,

2) ΣP = {QCEΞΔQ)): g α c p c } is empty.

For a proof see [11, Lemma 4.3].

Now in the following, we put on G the following assumption:

that is, the number of conjugacy classes of Cartan subgroups of G is equal to one.

By going to a finite cover we can assume that G is q.s.c. and hence acceptable.

Thus, if j : g c g c and Gc is a simply connected analytic group with Lie algebra

gc then j extends to a homomorphism

j ' G >GC.

Since K is reductive, by going to a further finite cover of G, we may also assume

that K is acceptable.

If we understand the harmonic analysis of a finite cover G of G then we

understand the theory for G. We throw out those unitary representations of G

which are non-trivial on the kernel of the covering projection. Therefore, the

above two assumptions can be made with no loss of generality.

Now let A be the Cartan subgroup of G associated with Cartan subalgebra

α, that is, the centralizer of α in G. We put

Aj=ΛπK, Ap=Qxpap.

Then

A=Af'Ap.

We denote the inverse of the map exp: ap^Ap by log. Since α is fundamental

in our case, Aι is connected (cf. [16(a), Proposition 1.4.1.4 and its proof]). Let

m be the centralizer of ap in ! . M and M' are the centralizer and normalizer

of ap in K respectively.

Let M° be the connected component of M. Let WQ and Wm be the Weyl

groups of (g, α) and (m,at) respectively. Fix any m^M. Then at and
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Ad(m~1)αf are maximal abelian subalgebras of m. So, there exists an element

mo(ΞM0 such that Ad(mo)α f =Ad(m" 1 )α ( (cf. [7(a), Theorem 6.4, pg. 212]).

If we put γ = mm0 then

Ad(y)α f=o f .

On the other hand, Ad(y) fixes ap pointwise. Hence, Ad(y)|αf can be regarded

as an element of the subgroup which consists of those elements of WQ generated

by roots vanishing on ap, and as an element of Wm. This being so, there exists

an element m^^^M0 such that

Hence, Aά(γmi[1) fixes at pointwise. yί=ymj1 is obviously in the coset

mM° Π Λj. This implies that Aj has the same number of connected components

as M. Therefore M is also connected.

Let £M{$κ) be the set of unitary equivalence classes of irreducible representa-

tions of M(K resp.). For ( J G ^ M , we define the norm |σ| of σ by

\σ\2=B(μσ9μσ)9

where μσ is any real linear function on λ/ —lα f associated with σ. Since the Kil-

ling form B of gc can be regarded as a positive definite form on either λ / —lα f

or its real dual space and Wm acts on yj — 1 αf as a group of isometries under B,

\σ\ is well defined. Since K is acceptable by assumption, the representation in

Sκ can be indexed by certain real linear functions on λ/ —lα f as in Lemma 2.1.

and τ=τ(v) for some real linear function v on yj — lα f, then we write

τ| is also well defined.

Define p by p = -̂ r— Σ α on ap and p = 0 on α f.

Let I = d i m α r The Killing form induces euclidean measures on Ap, ap and

α j ; multiplying these by the factor ( 2 π ) " ( 1 / 2 ) / we obtain invariant measures da9

dH and dλ so that the following Fourier transform holds without any multiplicative

constant:

JA

f(a)[ 9 l e a * ,
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We put nc=Σ 9α, n = tt c ng and n = θn. Let N and N be the analytic sub-
αεP+ _

groups of G corresponding to n and n respectively. Let G=KΛpN be the
Iwasawa decomposition of G (cf. [7(a), pg. 373]). Each g e G can be uniquely
written as

# = κ(#) exp H(g)-n(g\ κ(g) e X, #(#) e σ p n(#) e AT.

We normalize the Haar measures dk, dm and du on the compact groups K9 M
and i47 respectively, so that the total measures are 1. The Haar measures of the
nilpotent groups N and N are normalized so that

Θ(dn)=dn, { έ
JΛT

The Haar measure c/# on G can be normalized so that

f(g)dg={

Now P=MApN is clearly a subgroup of G. If σ^SM acts on the finite
dimensional Hubert space Vσ and if λ e α j , then the map σΛ, from P into End(Fσ)
(the algebra of linear endomorphisms of Vσ) given by

is an irreducible unitary representation of P. Let πσ>λ be the unitary representa-
tion of G on the Hubert space Jfσtλ obtained by inducing σλ from P to G; here
Jtσtλ is the set of functions Φ from G into Vσ such that

' (i) Φ(xΓ 1 )=M)(ί) Φ(x),xe
(ii) Φ(k) is a Borel function on X,

(iii) f

and the inner product on #Fσλ is given by

(Φ, SO = \κ(Φ(k), Ψ(k))vdk, Φ,

where ( , )Vβ is the inner product in Vσ. If Φ ε ^ f f | λ , πσfλ(.v)Φ is given by

For any AeαJ and any Φ e / M we can define a function Φ from X to
Vσ by restricting Φ to K. This identifies «̂ f σ>λ with a Hubert space 3^a of square-
integrable functions from K into Fσ. ^ ^ is the Hubert space on which πσ acts.
The above equivalence between #?σ and #Fσtλ gives an intertwining operator bet-
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ween πσ and πσtλ\K, the restriction of πσ%λ to K.
Any element s in W(the little Weyl group) acts on ap by reflection and so on

its dual space αj. s also induces an automorphism of M, modulo the group of
inner automorphisms. Therefore s defines a bijection:

s: σ >sσ

of £M onto itself. If we let 5 act on P, we can transform the representation
σλ into the representation (sσ)(sλ). Now, if l ε α * and σe<fM, it is known that
πffιλ is equivalent to πsσtSλ. Furthermore, the representations {π<Tjλ}σe^M)λ6α*+,
where a*+ is the positive Weyl chamber in a*9 are all irreducible and inequivalent
([2, Theorem 7; 2]).

For each σ^EM and regular AGO* that is, tσ(A)^0 for tu = J]Ha, let
aeP +

Ns

σ(λ) be a fixed unitary intertwining operator between πσfλ and πsσtSλ. Then

3. The character of πσ>λ

In order to obtain the Plancherel measure and the Plancherel formula we
shall study the character of the unitary representation πσ>λ of G. To do this,
we use notations by Harish-Chandra.

Put

For g e C?(MAp)9 write

g
M /Aι

and ah is a regular element in A and dm* is the invariant measure on the
homogeneous space MjAj. Hereafter we denote the set of regular elements
in A by A'. It is known that there exists a constant cί>0 such that for
any 0 e C?

(3.1) [ g(mh)dmdh = c
JMxAp

(see [6(k), Lemma 41]).

F o r / e C ^ G ) , write

(3.2)
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where G* = G/̂ 4, ax*=xax~ί(a(=A, X G G ) and dx* denotes the invariant measure
on G*. Here we remark that εR in the definition of Ff in [6(k)] is 1 in our case
bacause α is fundamental. Since α is fundamental we can apply the Harish-
Chandra's limit formula to Ff. Namely, there is a positive constant c such
that for any f(=C?(G)

(3.3) c/(l)=(- WFfiUm),

where q=-\- [P+] and E7 = Π # α We write mm = HHa.
 L e t % b e t n e

normalizer of A in G. Then WA=AjA is a finite group (see [6(k), pg. 488]).

If y^Ά, SG JF^ and j;^4=5 then WA acts on >4 and hence on a by

y y , h€ΞA.

We put

where εo(s) = l or —1. It is clear that for any

(3.4) Ff(h*)=e0(s)Ff(h), h(ΞA>, s(=WA.

LEMMA 3.1. Let U be a compact real semίsimple Lie group with Lie

algebra u and 9 the complexification of u. Let ί)0 be a Cartan subalgebra

of u, ί) its complexification and let WQ}ί) denote the Weyl group of (g, ί)). //
s^ W%^ then there exists an element we U such that sH=Adu(H) (iίel)).

PROOF. Let A denote the set of non-zero roots of (g, ί)) and gα the root sub-
space of αe^d. Let 2s± αeg± α such that [£α, E_a] = — Ha and put Z=π(2(α,
α ))~ 1 / 2 (^α + ̂ -α)> where the number π is the ratio of the circumference of the
circle to the diameter. We put σ=exp ad(JΓ). Then σ is an automorphism of
g. We shall prove that ί) is invariant under σ and that, if we denote the dual of
σ which acts on the dual space I)* of ί) by σ*, then (σ*)"1 =d can be regarded
as the reflection sα associated with α. By induction on p, we can prove easily
that

(adX)2r+2'H =(-l)P+1n2P+2OL(H)(oi, α ) " 1 ^ , Hel).

Hence,

Σ * n t(aeUΓ)^+ 1g+Σ J,
p=o (2/7+1;! p=:o (2/7 + 2;!
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=H-a(H)(2(oc, α)

Therefore we obtain the above assertion.
Now let η be the conjugation of 9 with respect to u. Then f) is invariant

under η and there exists a vector Xa e gα such that for all α e A

(cf. [7(a), pg. 219, Lemma 3.1]). If we put

then they satisfy [Eα, £ _ J = - i / α and I = π(2(α,α))-1/2(£α + £_α)Gu. This
proves Lemma 3.1. Q.E.D.

By the above lemma it is clear that, for any s^Wm9 there exists an element
such that sH= Ad (m)H (ίfeαf). Since m fixes ap pointwise, we have

Hence, from the formulae (3.2) and (3.4) we obtain the following:
For any/eC?(G),

(3.5) Ff(ash) =εo(s)Ff(h), a^Al9 h^Ap, ah<=A', s(=Wm.

For f<=C?(G) define a function gf in Cf(MAp) by

[ f(kmhnk-ι)dkdn, m<EΞM,
NJK ¥

By Lemma 52 in [6(k)] we know, in our case, that there exists a positive constant
c2 scuh that

(3.6) f

The map Kxa^ xK-+G given by

(ku H, k2) >kί-expH k2

is a diffeomorphism onto G'. Furthermore, there exists a constant c>0 such
that for any f<=C?(G)
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where

ί f(x)dx=c[ { f(k1exρH'k2)\D(H)\dk1dk2dH9

JG JapJKxK

αeP+

Let π be an irreducible unitary representation of G on a Hubert space
. Let / e C?(G). Then it is known that the operator

JG

is of trace class and that the map

is a distribution on C*(G) (see [6(c), § 5]). This distribution is called the charac-
ter of π.

Let σG^ M , lGQ* ' and Θσλ be the character of the representation π σ Λ .

Put / = -^-(dimg —rankg) and choose μe77' such that σ = σ(μ) as in Lemma 2.1.

THEOREM 3.1. T/iere exists a constant co>0 such that for every f^C™(G),

PROOF. Let A be the operator on ^ σ λ defined by

We want to compute the trace of A. \xA is equal to tn4*, where A* is the adjoint
operator of A and the bar denotes complex conjugation. For Φ^jfσλ and

^dkdhdn.

In the last integral, substitute km for k and integrate with respect to M. Then
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(A*Φ)(k1) =

Now to deal with this expression further we consider the principal fiber

bundle

M >K >KjM.

The map m-+σ{m~x) defines a complex vector bundle Eσ over K/M with fiber

Vσ9 the space on which σ acts. Let F(kί9 k) be the operator-valued function

defined by

F(kl9 fc) =
JMxApxN

Now it is easy to see that M normalizes N and that for fixed m&M the measures

dn and dimnm'1) on N are equal. Then for mί9 fn^M

F{kxmu fcm)=(mτ1)F(/c1, fc)σ(m).

Therefore F(kl9 k) can be regarded as a section of Eσ\~x_\E*, where E* denotes

the adjoint bundle of Eσ and Eσ\x\E* denotes the exterior tensor product of

Eσ and E*, SL bundle with base space K/M x KjM and fiber Fσ(g)FJ.

In §2 we note that there exists a natural equivalence between 3^βik and

«#%. However, 3tfa is the space of square-integrable sections of Eσ with respect

to a X-invariant measure on K/M. Fίfc^ /c) can be regarded as the kernel of

the linear operator A* on this space. Then for any Φ on j>ίfσ

F(kί9 k)Φ(k)dk.
κ

To evaluate the trace of A* we need the following lemma.

LEMMA 3.2. Let X be a compact infinitely differentiable manifold of

dimension n. Let dx be a positive nowhere vanishing differentiable n-form

on X. If E-+X is a differentiable Hilbert bundle of fiber dimension s, let

L2(E) be the Hilbert space of square-integrable sections of E. If F(xl9 x) is

a continuous section of E\x\E*, F(xl9 x) defines a bounded linear operator F

on L2(E) in the obvious manner. Then ifF(xί9 z) is differentiable in both varia-

bles F is of trace class. Furthermore

For a proof see [1, Lemma 4] .

By the lemma,
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Therefore,

= \ gf(mh) -tτσ(m) ̂ -̂ dogΛ) ̂ mdh,

since

tr σ(m~*) =tr σ(m)* = tr σ(m).

Recall that

Then

[PM] = [P] — [p+']=t — 2q.

lί a^Aj then

Now for any
tr σ(mam~x) = tr σ(α),

Therefore, from (3.1) we see that

tr A=cλ F^(ah)A^(^

By Lemma 2.1, this equals

(Σ εo(s)ξsμ(a))dadh.
p seWm

By formula (3.5) this expression equals

(singn!Π»0*))(- mcilc2y[ Ff(ah)e-iλ^h\Σ εo(s)ξsμ(a))dadh.
JAXA ϊΓ

Now if s&Wm, substitute sa for a in the above expression. From (3.5)
we obtain the formula
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trA

This implies the theorem if we put co = (cJc2)[Wm']. Q.E.D.

4. The Plancherel measure and the Plancherel formula

By means of the character formula for π σ λ , we shall find the explicit Plancherel
measure.

For any real linear function μe/7' on Λ/ — lo f and any Aeα* we extend

them to real linear functions on -yj — ίaf + ap defining μ=0 on ap and A=0 on

^/- lα, . We write

w(μ: λ) = m(μ+iλ)9

which is clearly equal to

mm(μ)Π <μ + iλ,Ha>.
αeP+

Since the Cartan subalgebra α is fundamental in our case, all elements in P+

are positive complex roots. If we denote the conjugation of gc with respect to
g by η, then for each α e P + α^eP + , so the complex roots occur in pairs. We
have the formula

(4.1) <μ + iλ, Ha> <μ+iλ, HaV > =-(μ(Ha)
2+λ(Ha)

2).

Therefore,

sign{Π<μ+iλ, Jfe>}=(-1)*>
aeP+

where q = -7r-\_P.

It is clear that

(4.2)

and

(4.3)

J.

w(μ: λ)\m(μ:

w(μ:m(μ:-λ) = m(μ:λ).

Let σe*?M, μ&Π' and σ = σ(μ). In §2 we define sσe<fM (which we
write also as σs) for each s^W. Then we can choose μ se77' such that σs =

For a given μ, μs is not uniquely defined. However the expression
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signmm(μs)m(μs: λ)

is well defined for any ΛeαJ. Furthermore

(4.4) sign mm(μs)m(μs: λ)=sign m(μ)m(μ: λ).

Now let/eQ(G), then from the formula (3.3)

(3.30 /(l)=(l/c)(-l)^ / ( l ;m).

By the Fourier inversion formula ori the connected abelian group A1 x Ap,

/(l)=(l/cX-l)«Σ ( Γί Ff(ah;π)ξβ(a)e-w*k)dadh]dλ.
μeΠJa*pLjAIxAp J

Since imaginary roots are all compact in our case, by [6(k), Lemma 40] and

[6(g)9 Theorem 2] we obtain Ff^Cf(A). So we can apply the integration by

parts to the above and we see that

/(l)=(l/c) (-l)«+'Σ [ w(μ: λ)\\ Ff(ah)ξβ(a)e-W

where ί = [P]. By Theorem 3.1 this expression equals

: -λ)signπ«(μ)Θσ(μhλ(f)dλ.( / o ) ( ) Σ ( φ

μeΠJa*p

Now we define

β(μ: λ)=(ωlcoc)(-iym(μ; -A)si
where ω = [PF]. Then we see from (4.2) that β(μ: λ) is nonnegative. Also

from (4.3) we see that

(4.5) β(μ:-λ)=β(μ:X).

For s&W, it is clear that the expression β(μs: λ) is well defined. (4.4) implies

the formula

β(μs:λ)=β(μ:λ)=β(μs:sλ).

Since, for any yleαj5' and σe«fM, πsσtλ and πσtS-iλ are equivalent,

Therefore we obtain the formula

μeΠJap
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It is clear that

β(sμ:λ)=β(μ:λ), (seWJ.

Then if σe<fM, choose any μe77' such that σ=σ(μ). Define

Then β(σ: X) is well defined and β(σ: X) satisfies the formula

/(1) = Σ \ ,J{σ: λ)Θa<x{f)dλ.

If σe*fM and Aeα*', then it is clear that β(σ: λ)Φθ from the definition of

β(σ:λ). Furthermore, since β(σ:λ) is a polynomial in μ and λ, for every

) , there exist polynomials pu p2 such that for σe«fM,

Thus we obtain the following lemma.

LEMMA 4.1. β(σ:λ) is a non-negative function on £M x α* swc/i that for

anyf<=C?(G)

(4.6)

Moreover β(σ: λ) has the following properties.

(i) β(σ: λ) = )9(σ, - A) = j8(sσ, sλ) (S<ΞW).

(ii) For ei ̂ ry ίίED(o*), there exist polynomials pu p2 such that for

σ e ^ M , Aeα*

(4.7) \β(σ:λ;d)\<LPί(\σ\)p2(\λ\).

Now let 3^2{σ) be the space of Hilbert-Schmidt operators on 3tifσ with the

Hilbert-Schmidt norm || | |2.

Let L2(6) be the set of functions

which satisfy the following conditions:

(i) a(σ: λ)^Jίf2(σ)for each σe«fM and l e a * .

(ii) a(sσ: sA)=iVs

σ(A)a(σ: λ)Ns

σ(λ)-\ σ e ^ M , Aεα*' αncί seίf .

(iii) For any σe<sfM, α(σ: λ) is a Borel function of λ.
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(iv) ||β|P=ω-i Σ \ja(σ:λ)Mβ(σ:λ)dλ< + oo.

(In (ii) we can regard the operators Ns

σ(λ) as maps from Jf σ to Jίfsσ if we recall

the canonical isomorphisms jfσλ<r^jeσ, ^sσ^sλ^^sσ).

Since every Ns

σ(λ) is unitary, condition (ii) implies that

\\a(sσ:sλ)\\l = \\a(σ:λ)\\l

Hence

(4.8) l |α | | 2 =Σ \t.\\a(σ:λψ2β(σ:λ)dλ.

It is easy to see that L2(G) is a Hubert space. For f^C™(G), define

by

f(σ, λ) = \ f(x)πσtλ(x)dx, σe ^ M , λ e α*.

Then /(σ, 2) can be regarded as an operator on JίTσ. We call the map

the Fourier transform.

The Fourier transform f-+f(f^Cf(G)) clearly extends uniquely to a map

from L2(G) into L2(6). Now we shall prove the following Plancherel formula

by the same method as in [1].

THEOREM 4.1. (Plancherel formula). The Fourier transform

f >f, f^C?(G)

extends uniquely to an isometry from L?(G) onto L?(G).

PROOF. Fix / e Cf(G). Define

then clearly g^Cf(G) and #(1) = |I/Il2 If π is an irreducible unitary represen-

tation of G,

= ( f(y)f(^τy)dyπ(x)dx
JG*G

G*G
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where π(/)* is the adjoint of π(/). Therefore

trπ(0)=| |π(/)| | ! = | |/(π)| | i

Therefore, applying Lemma 4.1 to g(x) we see that

Thus, the map /->/ is an isometry.
We have to show that the map is surjective.
Let p be the representation of G x G on L2(ό) given by

(β(x, y)a)(σ, λ)=πσtλ(x)a(σ, AX^y" 1 )

for ( Γ G ^ M , AeαJ, and (x, j ;)eGxG. Then we can see that p is multiplicity
free, and hence the algebra R(β, β) of intertwining operators of /5 is commutative
(see the proof of Theorem 2 in [1]).

Let p be the two-sided regular representation of Gx G on L2(G). Then the
map

is an intertwining operator between p and p. Thus if Lis the closure of the set
{/: /εL 2 (G)}, and P is the orthogonal projection of L2(G) onto L, then P is con-
tained in R(β, β). But since R(β, β) is commutative, it is well known that P
is of the form PE, where £ is a Borel subset of S = tfM x αj + and

PE = {a&L2(G): a vanishes outside E).

In order to complete the proof of the surjectivity of the map /-•/, we prove that
the complement of E in S is a null set with respect the measure class C on S de-
fined by the discrete measure on £M and the Lebesgue measure on αj + .

Let us assume the contrary. Then there is a σ G ^ M and a subset Rt of
αj ; of positive Lebesque measure such that for a n y / G C * ( G ) ,

/O, λ) = 0 for almost all λ <Ξ R ±.

Choose a τ G ^ κ for which there is a non-zero intertwining operator T between
the restriction of τ to M and σ. Choose a unit vector ξ in the space on which
τ acts such that TξΦO. Define

Φ(/c) = Γ(τ(fc-i)ί),
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Then Φ e Jfσ. For any / e C?(G),

(/(σ, A)ΦX1) = ( J

Then

(/(σ, A)ΦX1)

-ί. s«λ+eKH)φ(k)dkdHdn.

Let/(n-1 Qxp(-H)-k-ί)= χ(k) 0L(H)'v(n), where χ(fc)=(τ(fc)ξ, 0 and v is any

function in Cf(N) such that \ v(n)dn = l, and α is some function in Q°(α£)

such that \ ^a(H)e(iλ+e)(H)dH is not equal to zero for any A belonging to a

subset #2 of ^ i °f positive measure. Clearly such an α exists.

For a fixed

(/(σ, λo)Φ)(i) =

This is a non-zero vector in the space on which σ acts. However, (/(σ, λ)Φ)(k)
is a continuous function of k, so (/(σ, A0)Φ)(/c) is nonzero on a subset of iC of
positive measure. Therefore /(σ, A0)Φ is a nonzero vector in Jί?σ. This means
that the operators /(σ, /L) do not vanish for any λe R2. We have a contradiction.
The proof of Theorem 4.1 is now complete. Q.E.D.

5. Statement of the main theorem

We shall define the Schwartz space for G according to [6(m)] and state the
main theorem.

For X6G, define

As usual we define a norm on g by

\X\2 = -B(X,ΘX),

where B is the Killing form on g and θ is the Cartan involution of g. Since
G=KΛpK there exists a unique function σ on G such that
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(i) σ(kίxk2) = σ(x)9 kuk2(=K and X E G ,

(ii) σ(exp#) = | # | , H ε α ,

It is clear that

Ξ(χ-i)=Ξ(x),
(5.1)

σ(x~ί) = σ(x) X G G .

It is known that there exist positive numbers c, d such that

(5.2) l^Ξ(a)e^{^a^c(l + σ(a))d

9

(see [6(h), Theorem 3 and Lemma 36]), and that

(5.3) σ(xy) ^ σ(x) + σ(y), x

(see [6(m), Lemma 10]), and also that there exists an r o > 0 such that

(5.4)

(see [6(m), Lemma 11]).

Let © be the universal enveloping algebra of gc. We can identify 93 with
the algebra of left invariant differential operators on G. Let ξ be the canoni-
cal anti-isomorphism of © with the algebra of right invariant differential operators
on G. lΐgl9 #2 G ® and/eC°°(G), then the actions of ξ(gi) and g2 on/commute.
We denote the resultant of this action at any x^G by f(gi'< x'9g2)'

Now for/eC°°(G) and gϊ9 g2^® and r&R we put

, 2 , r p |
xeG

Let

#(G) = {/eC°°(G): | | / | |^ l i # 2 f r < + oo, for any gu g2tΞ<B and reΛ}.

These semi-norms make #(G) into a Frechet space. The space ^(G) is called
the Schwartz space of G.

Clearly

and the inclusion is continuous, and it is known that Cfφ) is dense in
([6(m), Theorem 2]). Also from (5.4) we see that there is a continuous inclusion
of <€{β) into U(G\



156 Masaaki EGUCHI

We wish to define a subspace of L2(G) which will ultimately turn out to be

the image of ^(G) under the Fourier transform J5*: /->/. We shall need to fix an

appropriate basis for the Hubert space άfσλ. As we remarked earlier, there is

a canonical intertwining operator between the representations πσtλ\K and πσ of K.

Therefore we shall choose a fixed orthonormal basis for the Hubert space Jί?σ.

The multiplicity of τ in πσ$λ\K equals the multiplicity of τ in π σ . But nσ

is just the representation σ induced to K. Therefore by the Frobenius reciprocity

theorem for compact groups ([9(a), Theorem 8.2]), these multiplicities are just

equal to [τ :σ] , the multiplicity of σ in τ\M.

F i x τ e * f x a n d σ^SM acting on the Hubert spaces Vτ and Vσ of dimension

t and 5 respectively. Let R(τ, σ) be the set of intertwining operators from Vτ

to Vσ for τ\M and σ. The Hilbert-Schmidt norm makes R(τ, σ) into a Hubert

space of dimension [τ: σ].

Now suppose T^R(τ, σ). Since σ is irreducible, we can assume that there

are orthonormal bases {ξu ..., ξt} and {ηί9 ..., ηs} of Vτ and Vσ respectively so

that there is a constant c for which

Tξt = cηi9 l i

Suppose Thas been normalized such that c=(t/s)i/2. Then

Tξt=(
(5.5)

Fix an element ξ<=Vτ of norm 1. Write τ*(k) for τf / r 1 ) , /ceK. Define

Then it is not difficult to see that

ΦeHσ9 \\Φ\\ = 1.

Conversely, let Φ be any unit vector in 3tfσ so that Φ transforms under πσ

according to τ. Then there exist a unit vector ξ^Vτ and an intertwining operator

T^R(τ, σ) with HΓHKdimτ) 1/ 2 such that

Φ(/c) = Γ(τ*(/c)O, fceX.

For Φ defined as above and s e W, the little Weyl group, the vector Ns

σ(λ)Φ

is contained in j ^ s σ . Clearly Ns

σ(λ)Φ transforms under πsσ according to τ.

Then there exists a unique Ts<^R(τ, sσ) with HTJI^dimτ) 1 / 2 such that
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The map Γ-»T5 from R(τ9 σ) into R(τ, sσ) will be denoted by ns

σ(λ). So Ts =
ns

σ(λ)T. ns

σ(λ) is norm preserving and hence unitary.
Fix an orthonormal base {T l9 ..., Tr} of R(τ, σ) of elements of norm equal

to (dim T ) 1 ' 2 . For 1^/^r, l ^ ^ί, and ktΞK, define

(5.6) Φτ>(i-i)f+/Λ:)=T l(τ (fc)ίy).

Then {ΦτA: τ6<fκ, l ^ i ^ [ τ : σ] dimτ} is an orthonormal base for 3tfσ.
Let ^(G) denote the set of functions α(σ, λ) of <f M x αj into Jf 2 ( σ ) which

satisfy the following conditions (i), (ii) and (iii):
(i) For each σe<fM, α(σ, λ) is a matrix-valued C°° function on α*.

(ii) a(sσ, sλ)=N%(λ)a(σ, X)Nl(X)-1, σ e ^ . l e o f , seW.
(iii) For every quartet (pu p2, qu q2) of polynomials and each d^D(a^),

( 5 6 ) llαll(j»l,P2,41.β2,«l)

= sup \dλ(Φτuiι, a{σ, λ)ΦT 1 > l 2)|p1(|σ|)p2(|λ|) ί l(|τ1 |) ί 2(|τ2 |)< + 00.
λ, σ , T i , / l , T 2 » » 2

Then the above semi-norms define a topology on ^(6) so that ^(G) is a
Frechet space. ^(G) is contained densely in L2(G).

THEOREM 5.1. The Fourier transform fF\ f-±j is a topological isomor-
phism of V(G) onto

We shall spend the most of the rest of this paper to prove this theorem.

6. Eisenstein integrals

In this section we shall define τ-spherical functions and study the matrix
elements.

Let τ be a unitary double representation of the compact group K on a Hubert
space Vτ9 that is, Vτ is a left and right unitary K-module and the K-actions from
the left and right commute with each other. We denote both the left and right
^-actions of K by τ.

A function Φ from G to Vτ is said to be τ-spherical if

Φ(k1xk2)=τ(kί)Φ(x)τ(k2)9 kί9 k2^K9 X G G .

We write the norm of Φ{x) in Vτ as |Φ(x)|.
Let f(x) be a continuous complex valued function on G such that the left

and right translations off by elements in K span a finite dimensional space of func-
tions on G. Let φ be the function from G into L2(K x K) defined by
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φ(x)(kl9 k2)=f(kΊiχk2l xεG, kl9 k2<=K.

Define a double representation μ of K on L2(KxK) by

for u^L2(KxK), ku kl9 Jcu R2^K. Let Vμ=sp{φ(x)}9 the finite dimen-
xeG

sional subspace of L2(KxK) spanned by {φ(x): X G G } . Then it is clear that
/ e F μ and φ is a μ-spherical function, φ is called the μ-spherical function
associated with /.

Notice that if τ is an irreducible unitary double representation of K on the
finite dimensional Hubert space Vτ9 then τ can be regarded as an irreducible
representation τ^τ% of KxK on F^Kf . Here τ1 and τ2 are irreducible
representations of K on the spaces V1 and F2, and τf is the dual representation
of τ2 acting on Ff, the dual space of F2. We write τ as (τ1? τ2) and |τ| as IτJ +
|τ 2 | . Let <f̂  be the set of equivalence classes of irreducible unitary double
representations of K.

Suppose that f(x)=(Φ1, π(x)Φ2), where π is a unitary representation of G
on a Hubert space «^, and for each α = 1 or 2, ΦΛ is a unit vector in ̂ f that trans-
forms under π\K according to the irreducible unitary representation τα of K, acting
on the Hubert space VΛ. Let τ=(τί9 τ2)^#l act on the Hubert space Vτ =
V\®V*- We shall find a formula for the spherical function φ associated with/.

Let τα have dimension ta and let {ξaί, ..., ξata} be an orthonormal basis for
Fα, for α = l or 2. Let Fα' be the subspace of j f spanned by {π(/c)Φ: k&K}.
Choose an orthonormal basis {Φαl,..., Φata} of Fα' such that the correspondence

ξai<->Φ«i> i = l, 2, ..., ία,

gives an intertwining operator between τα and π\K acting on the space Fα'. De-
fine functions eai(i = l, 2, ..., ία, α = l, 2) on X as follows:

e2j(k2)=(π(k^)Φ2, Φ2j)=(π(k2)Φ2j9 Φ2)9

where the bar denotes the complex conjugate. Then

φ(x)(kl9 k2)=

This is equal to the expression
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Vμ is the subspace of L2(KxK) spanned by the functions eίi(kί)e2j(k2). Let

{ξ>ίu-Λ2t2} be the dual basis in V\ of {ξ2l9 ...,ξ2t2}. Then for l£i£tl9

1 <: j <: ί2, identify eu{k1)'e2j{k2) with (t1t2)~1/2ξli(g)ξ2

<j. This gives an intertwin-

ing operator between the double representations μ and τ. Therefore, we can

regard φ as a τ-spherical function from G to Vτ. We have the formula

(6.1) Φ(x)=(tit2r
1/2 Σξii®ξ*2j(Φu, Φ)Φ2j)9

Now suppose π = π ( Γ λ(σe<^M, AeαJ) and recall that R(τα, σ) is the space

of intertwining operators between τα and σ. Fix Tαei^(τα, σ) such that

| | T α | | 2 = d i m τ α = ία, α = l, 2.

Suppose that ξ1^Vl9 ξ2^ V2 are unit vectors. Let

Then clearly, Φx and Φ 2

 a r e u n ^ vectors in 3^σ. Define

Φai(k) = Tα(τ*(fc)ξαi), k E K , α = 1, 2, 1 <;i

Then {Φai} is an orthonormal basis of Kα\ Put

This is equal to the expression

(6.2) ( (TΊMCicίxfe)^], T2lτϊ(k)ξ2J)Vte<"-<KB<**»dx,
j K.

where ( , ) V a denotes the inner product on Vσ9 the space on which σ acts.

Combining the formulae (6.1) and (6.2) we obtain the following formula:

(6.3) ΦUχ)=(ht2r1/2Σξu®ξij\ (TiM(φk)){iJ, T2[τi(k)ξ2J ])v/
i j J K

Let L=Lτ be the following set of functions on M: {φ: M-+Vτ: \l/(m1mm2)

=τ(m 1)^(m)τ(m 2), m, ml9 m2eM}.

Then ΊJ is a Hubert space with inner product

(ΨI,Ψ2)M = [ (Φi(m),ψ2(m))dm = { (τ^m^O), τ^m)^2{ΐ))dm
J M J M

If ψ e L 1 , then ψζty&V^V^ and it can be regarded as an intertwining operator
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from V2 to Vγ for τ2\M and τx\M. Conversely, if S is such an intertwining
operator, then

φ(m)=τί(m)S = Sτ2(m)

is contained in Lτ.
If σe<fM, let Lτ

σ be the set of functions ψeL T such that t̂ (m) transforms
under left and right translates of M according to the representation σ of M.
Then there exists a finite number of representations {σί9 ..., σr} in gM such that

For any φ^Lτ let us extend the domain of φ to all of G by defining

ι̂ (/cαn)=τ1(fc)ιA(l), fceiC, a<=^,

Let us return to our function φ(x) above. Define

as the adjoint of Tt. Let

S = T\T2: V2 >VX.

Then S is an intertwining operator for τ2\M and τx\M, and can be regarded canoni-
cally as an element in FΊφKf, and moreover,

(i2T Σ

= ( ί i ί 2 Γ 1 / 2 Σ i n ® ξίj(T1ξli, T2ξ2j)Vt,

where subscripts Vl9 Vσ indecate in what space the inner product is taken. If
we define φ by

\j/{m) =τί(m)S = Sτ2(m),

then φ^Lτ

σ and

From (5.5), the last expression is equal to (dim σ)~x.
From (6.3) and (6.4) we obtain the formula

(6.5)
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For any ψ&U we write

(6.6) E(ψ:λ:x) =

E(ψ:λ:x) is called the Eisenstein integral of ψ and λ.

Suppose, conversely, that we were given ψ^Lτ

σ such that

Then we could choose T α e#(τ α , σ) with | |Tα | |2 =dimτα for α = l or 2 such that

Again we can define Φai by

Then Φai is a unit vector in j f σ . Working backwards we can obtain the formula

(6.7) E(ψ:λ:x)=(ht2γv2 Σ ξiι

Now, if ^(l) = T?r 2 as above, and λ e α * ' , then n;(Λ)TβeΛ(τα, sσ) and ||Tα | |2

= ίβ for α = l or 2, seJF. Define

(6.8) (Ms

σ(λ)ψ)(l) =(nKλ)Γ1)*(n (λ)Γ2).

Then Ms

σ(λ)φ can be regarded as a function in Ljσ. It has the same norm as

ψ. Therefore, Ms

σ(λ) is a unitary map of Lτ

σ onto Ljσ. We can then define a

unitary linear transformation Ms(λ) of Lτ by defining it to be Ms

σ(λ) on each of

the orthogonal subspaces Lτ

σ of Lτ.

^' we have the equation

Then from (6.7) we obtain the formula

(6.9) E(φ:λ:x)= E(Ms(λ)φ: sλ:x)9 S E W.

This is the functional equation for the Eisenstein integral with respect to the

little Weyl group W.

7. Proof of the injectivity of the map &

Let π be a unitary representation of G on a Hubert space &. If υ is a vector

in tf such that the map from G to άf given by

x >π(x)v, x e G .

is infinitely differentiable, v is called a differentiable vector. Let ̂ f °° be the set
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of differentiable vectors in «^. If t e^f00 and l e g , define

π(X)v=lim — (π(exp t X)v - v).

It can be checked that this gives a representation of the Lie algebra g on the
vector space ^°°. It extends to a representation, again denoted by π, of the
universal enveloping algebra 33 of gc.

Let 3 be the center of 33. If the restriction of π to 3 is o n e dimensional,
we obtain a homomorphism

In this case π is said to be quasi-simple, and χ is called the infinitesimal character
of π. It is known that any irreducible unitary representation of G is quasi-simple.

Let η be the conjugation of gc with respect to the real form g. We define
three involutions on gc by

X* = -ηX9

X=ηX,

If X, 7 e g c and CGC, it is easy to show that

= - ιx, YY, {cxy=cx+,

= -[X, 7]*, (cX)* =

All three involutions extend to involutions of 33.
If π is a unitary representation of G, then for

where π(g)* denotes the adjoint operator of π(g).

LEMMA 7.1. Suppose that π is quasi-simple. Assume Φx and Φ2 are
vectors in 3tif such that the vector spaces

sp{π(fc)Φα: k€ΞK}, α = l ,2 ,

are both finite dimensional. Then Φu Φ2ejf700. Furthermore if gl9

and

h(x)=(Φί,π(x)Φ2),
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then

K9ι\x\g2) = Wflf|)Φi, π{x)π(g2)Φ2).

For a proof see [1, Lemma 6].
Let Sfft, 2Xp, 9ίf and 21 be the universal enveloping algebras of mc, αj, αf

c

and αc respectively. Let 3M be the center of 9W. Then 9W9Ip is the universal
enveloping algebra of τnc + αj, and its center is 3M^P-

If Z G 3 , there exists a unique element JO^^SM^P
 s u c h

([6(e), Lemma 18]).
If Z 1 G 3 M ^ P 9 there exists a unique element y ' ^ z j e ί ί such that

Σ
αeP-

([6(e), Lemma 18]).
If ze3» there exists a unique element y'(z)e2I such that

Notice that if z is an element in 3>

The right hand sum is an element in 2 23Xα. Therefore
αeP

(7.1) yWo=y'.

Define automorphisms j5 and j5x of 3ί by

β(H)=H+p(H), H e as

Let

It is known that the maps

y: 3 — > « , yi: 3 M « , — ^ « ,

are algebraic isomorphisms onto the subalgabras consisting of the elements in
91 which are invariant under Wq and Wm respectively ([6(e), Lemma 19]). 91
can be regarded as the algebra of polynomial functions from the dual space αc*
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of αc, into C. If l 'Gα c* denote the evaluation of p^S(ac) at λ by <p, λ>.

Then for any λ in αc* define a homomorphism χλ: 3~~*£ by

χλ(z)=<γ(z),λ>, zeΞ3.

Any homomorphism from 3 into C is of this form and χλί=χλ2 if and only if

Λ,x =sλ2 for some SG FFg. χλ i& called the homomorphism corresponding to the

linear function λ. Similarly, we can define Xf: 3M^P -• C by

Define an automorphism β0 as follows:

jS0 takes 3M21,, onto itself. Put

7o=jβolo7ί).

By (7.1)

(7.2) y=yi yo.

We can now find the infinitesimal character of π σ λ . If σ ε ^ , let μ be a

real linear function on λ/ —lαf associated with σ. Regard μ as a linear function

on ^/— lctf + α,, by making it equal zero on α r By looking at a highest weight

vector for σ, we can easily check that for any ZX^3M

(7.3) Φi)=^1)

LEMMA 7.2. Fix σe«fM and AeαJ. Then for any

PROOF. It is known that the representation πσtλ is quasi-simple ([6(a),

pg. 243]). Therefore, there exists a complex linear function v on αc such that

Choose a T G ^ | such that Lτ

σΦθ. Fix φ in L£ such that

Then by (6.7) (using the notation in that formula) and Lemma 7.1, we obtain

the formula
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χx(z)E(φ:λ:x)

Σ

=E(φ:λ:x;z\

Put

and define

F(x:k)=F(xk)τ(k-1), xεG,

Then by (6.6),

E(φ:λ:x) = \ F(x: k)dk.
JK

Let z be an arbitrary element in 3 It can be regarded as a left and right invariant
differential operator, so

F(x;z:k)=F(xk;z)τ(k-ί).

Therefore

E(ψ:λ:x;z) = [ F(x;z:k)dk
JK

(7.4)

= ( F(xk; zjτik'^dk
JK

Clearly F(xn)=F(x) for any n^N, so if #e93n then

F(x;g)=0.

Therefore

E(ψ: λ: x; z) = \ F(xk; γo
JK

= \ F(xk;βoyo(z))τ(k-i)dk.
JK

Suppose that

(7.5)

Then
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Now

so for any

F(y, βo(h))=F(y)<βo(h), iλ-p>

=F(y)<h,iλ>.

On the other hand, if m e M,

F( ym) =

where φ(l) = T^T2 in the notation of Section 5. Therfore, if

F(y; zM)=

(7.7)

From (7.4), (7.5), (7.6) and (7.7) we see that

F(y; βoyo(z))

=F(y)<y(z),

So, from (7.4) we have

E(ψ: λ: x; z)=<γ(z), μ + iλ>E{\j/: λ: x),

It follows that

It is easy to show that v = —μ — iλ. This proves our Lemma 7.2. Q.E.D.

From the above proof we obtain the following corollary.

COROLLARY. Let τe«? | and σe*fM such that Lτ

σΦθ. Let ψeL* such
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that WΨWfii =(dimσ)" 1 . // l e a * , then for any z^3>

E(ψ: λ: x; z)= <y(z), μ+iλ>E(ψ: λ: x).

Let Xί9 ...,Xn be a basis for gc and gij = B(Xi9 Xj) (l^ί9j^ή). As is

well known the matrix (g^i^ij^n is non-singular. Let (gij) be the inverse

matrix of the matrix {gi}) and ωg = 2 g^'XiXj. It is known that ωg is inde-

pendent of the choice of basis for gc'and is contained in 3 ω

Q is called the

Casimίr element of 93. If v is any linear function on αc,

(7.8) χv(ωβ)=B(v,v)-B(p,p)

(see [1, (6.8)]).

Since

B(-μ-iλ, -μ-iλ)=B(μ, μ)-B(λ, λ),

from Lemma 7.2

(7.9) πσtλ(ωQ) = \σ\* -B(λ9 λ)-B(p, p).

In order to prove the injectivity of the Fourier transform J5", we use the

following

LEMMA 7.3. Leίsup0 denote the supremum over all (σ, λ), (τ l 5 i^), (τ2, 1*2)-

Then for non-negative integers m, ml9 m2 and differential operators ί/eD(α*),

the semi-norms

= sup oμ λ[(Φ τ i, f l, a(σ,

form a basis for the topology o

PROOF. By Leibnitz' rule and induction on the degree of d, we can see that

it is enough to prove the lemma for the semi-norms

(7.10) sup o |dA[(Φ τ i i l l f a(σ9

. ( 1 + | T l | 2 r i

Fix σ £ ^ M and T G ^ . There is a non-zero vector of the form Φτi in our

basis for jf σ if and only if the representation σ occurs in τ\M. Suppose that this

is the case. Then if τ acts on the finite dimensional vector space Vτ9 σ acts on

a subspace of Vτ. The Cartan subalgebras of m and ϊ are both αf, and we
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have already ordered its dual space. Let v and μ be the highest weights of the
representations τ and σ respectively. Then

\σ\2=B(μ + pM9 μ + pM)

where pM and pκ are the halves of the sum of positive roots of (mc, αf

c) and
(ϊc, α£) respectively.

Let ξ be a highest weight vector in Vτ for σ. Vτ is a direct sum of weight
spaces for τ! Examine the action of τ(αf) on ξ. Since αf is a Cartan subalgebra
of I, we can regard μ as a weight for τ. However

+B(pκ,

Since v is the highest weight for τ, we see by [8, Lemma 3, pg. 248] that

Therefore, we have

Hence, we can find a constant c>0, independent of τ and σ, such that

(7.11) | σ | ^ | τ | + c .

From this inequality we obtain the additional formula

(7.12) μ|2

Formulae (7.11) and (7.12) show that any semi-norm of the form (5.6) is domi-
nated by a semi-norm of the form (7.10). Since the semi-norms (5.6) form a basis
for the topology of ^(G), our Lemma 7.3 is proved. Q.E.D.

The Lie algebra f is reductive, so ϊ = ϊ 1 + f2, where ϊ1 is semisimple and
f 2 is abelian. Let ft be the universal enveloping algebra of ϊc, and let 3κ be
its center. αf is a Cartan subalgebra of !. For linear functions v on αf we can
define the homomorphisms

*?: 3κ—-C.

Since the Killing form of gc when restricted to f x is K-invariant, this Killing
form is a linear combination of the Killing forms of ϊ u on ϊl9 where ϊ u are
simple ideals of it. Then it is clear that we can choose an element
such that
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(7.13) xK<»t)=B(y9v)-B(pK9pκ)

for any linear function v on αf.

Notice that

(7.14)

LEMMA 7.4. The Fourier transform J5*: /->/ is a continuous map from

into

PROOF. Let || | | 0 be an arbitrary continuous semi-norm on ^(G). Since

dim σ, dim τ1 and dim τ 2 are bounded by polynomials in \σ\9 |τ ± | and | τ 2 | respect-

ively, we can use the previous lemma to choose integers m, mί9 m2 and a differ-

ential operator d^D(a$) such that for any α

Define elements gt and g2 in 5B by

By (7.13), fift=fiΊ a n c ^ 9i=9 Since ΦΓ I > 1 , and Φl2,f2 transform under πσ > Λ

according to τ t and τ 2 respectively, we have by (7.9) that

t 2 , ί 2 =(1

Therefore, for any /eQ?(G) we have from Lemma 7.1 that

H/Ho^supoίdimσ)1/2^)-1/2 dλ\ h{9ι; x; g2
JG

where

i = l, 2,

Now in order to see that by means of the G-invariance of dx we can transfer the

differentaition of h(x) to the differentiation of f(x) in the above inequality, we
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need a few lemmas.

LEMMA 7.5. ///e^(G), bu b2^%> and Ω is any compact set in G, then
the integral

[ \h(xy; bjfix; b2)\dx

converges uniformly with respect to y on Ω.

PROOF. We have

h(x)=(Φτitiί, πσtλ(x)Φτ2ti2).

By Lemma 7.1, for any t s S and X G G

h(x; b)=(Φτuiι, πσtλ(x)πσtλ(5)Φτ2ti2).

So, it follows that there exists a constant cί>0 such that

\h(xy; bJl^cλ
JK

On the other hand, it is known that we can choose a constant c2>0 such that

for J G Ω (see [6(h), the proof of Lemma 48]). Since / G ^ ( G ) , Lemma 7.5
follows. Q.E.D.

COROLLARY 1. Let / e ^ ( G ) , bί9 ft2

G® and Ω be any compact set in
GxG. Then the integral

\ \Kχy; ί>i)/(χz; b2)\dx
J G

converges uniformly with respect to (y, z) on Ω.

PROOF. Without loss of generality we may assume that Ω=ωιxω2 where
ωl9 ω2 are compact subsets of G. Let ω be the image of Ω in G under the mapp-
ing (y, z)->z~1y. Then ω is also compact. For any ε>0 we can, by the above
lemma, select a compact set V in G such that

for j/Gω; where CV denotes the complement of Fin G. Put U^Vω^1. Then
U is also compact and cUzacV for z e ω 2 . Hence if y^ωx and z e ω 2 , it is
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clear that

( \Kxy; bί)f(xz;b2)\dx = [ \h(xz-*y9 ^ / ( x ; 62)|dx<e

from the right-invarίance of the measure dx. This proves Corollary 1.
Q.E.D.

Let g-*g* denote the anti-automorphism of 93 over R defined by the involu-
tion X-+X* of QC.

COLOLLARY 2. For any g e 93, /

h(x;g)f(x)dx = [
G JG

PROOF. We put

F(y :z) = [ h(xy)fjx~z)dx9 y,
JG

Then the above Corollary implies that F is a C°°-function and

F(yi 9ί'Z;g2) = \ h(xy; g1)f(xz;g2)dx
JG

for b l 5 ί?2e® On the other hand

9i'Zl92)=F(z-iy;g1: l;g2)

by the right-in variance of dx. Hence if we put y = l and z=exptX ( l e g ,
t^R) and differentiate with respect to t at ί=0, we get

From this our Corollary 2 follows. Q.E.D.

By an argument similar to the above, we obtain the following

LEMMA 7.6. For any gl9 g2^^B,f^^(G)

\ h(gt x g2)f(x)dx = \ h(x)f(g%\x\ g%)dx.
JG JG

Now we return to the proof of Lemma 7.4. By Lemma 7.5 and (7.14),
we have the inequality

dχ\ h{x)f(gχ χ; g2)d>
JG
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Let τ be the double representation (τ l 9 τ2) of K. From (6.7) we obtain the
following estimation.

\E(φ: λ; d: x)\ =(ht2ri'2\Σ(ξu®ξίj)dλ(Φu, πσ,λ(x)Φ2j)

Σ\

Φlh πσ)λ(x)Φ2j)\9

So we can find a ψ^Lτ

σ, with | |^ | |^=(dimσ)" 1, so that the last expression in
the above inequality is bounded by

\f(gi x; g2)\\E(φ: λ; d: x)\dx.
G

Now if

So, by (6.6)

(άimσyi2\E(φ:λ;d:x)\

=(dimσ)1/2 | f ψ(x

where λd^S(a%) is the polynomial function corresponding to d. To complete
the proof of our lemma we need the following

LEMMA 7.6. For every p^S(a*) we can select a polynomial p such that
for any

where σ is the function defined in Section 5.

PROOF. Each X G G can be rwitten in the form

x=k'-exptH'k, k', feeX, exp/f ε c ί ( 4 ) , ί^O,

where J J denotes expαj(αj is the positive Weyl chamber of ap). Then we can
select a ί k GΛ such that

H(x)=H(cxptHk) = tkH', H'ec/(o+).
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Now [6(h), Lemma 35] and [6(h), Lemma 35, Corollary 2] establish precisely
that

Therefore we can select a polynomial p such that

Q.E.D.

Now let us return to the proof of Lemma 7.4. From Lemma 7.7 we can
select a polynomial q which satisfies

(dimσy'2\E(ιl/:λ;d:x)\

= q(σ(x))[ e
)κ

Therefore,

(7.15)

Clearly, there exist a positive integer n and cεf i (c^O) such that

By (5.3), the right hand side of (7.15) is bounded by

cN(ro)sup{5(x)-i-(l + Φ ) ) " +

We have dominated | | / | | 0 by a continuous seminorm on /. Since Cf(G) is
dense in ^(G), this is enough to prove Lemma 7.4. Q.E.D.

8. A sufficient condition for the map & to be surjective

In this Section we shall find the inversion formula and give a statement about
a sufficient condition for J5" to be a surjective map from ^(G) onto ^(6) .

Let a be an element in ^(L2(G)), the image of L2(G) by ^ . Then there
exists a unique function/e L2(G) such that/= α. /is the unique function in L2(G)
such that for every g e Cj?(G)
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where the latter inner product is that of L2(6). We shall write Σo to denote

the summation over all σ, {τu ί j and (τ2, f2). Then

(a, &)

Jlt§(σ,λ)Φtlttl)β(σ:λ)dλ

= 4 - Σ o ( .( (a(σ, λ)Φt2ιi2, Φτ i, ( l)(Φτ i., ι t τtσ,
w JapJG

Let us assume that the integrals in the last espression are absolutely convergent.

This is true for example if a e # ( ( J ) . Then we may take the integration of G

outside. Define a function a on G by

(8.1) ά(x)=-j-Σo\ Mσ> Vφr2,i2, Φτ.ύX^.ΰ, πσtλ(x)Φτ2ti2)β(σ: λ)dλ,

as is easily seen, which is equal to

(8.2) J - Σ ( ^{nσ%λ{x^)a{σ9 A)]/J(σ: λ)dλ.

Then we have the formula

\ f(x)j(x)dx = [ ά(x)W)dx, geC?(G).
JG JG

Since the function g is arbitrary we have

f(x)=ά(x) (a.e.).

We call the transform (8.2) the Fourier inverse transform.

To prove the surjectivity of the map & in Theorem 5.1, we have to show

that a is in #(G). Put

hτt.iuτ2.i2(
σ: λ)=(<*(<r> λ)φτ2,i2,

 Φτί,iι\

Φτuiuτ2ti2(
σ: λ : ^ ) = ( Φ τ 1 , i l ϊ ^σΛX)Φτ2ti2)'

Then, since the sum is absolutely convergent, for any gt and g2 in 93 we have

ωά(g1 χ;g2)

= Σθ\ Λi.Ί.t2.ii(σ: λ)Φτuiuτ2>ii(σ' λ' 9^*\ 9l)β^' λ)dλ
Jap

= Σ Σ \ Λuiuτ2ti2(σ: λ)φtίJuτ2ti2(σ: λ: gt-( x; g2)β(σ; λ)dλ.
τ,σ ii,i2Ja*p



The Fourier Transform of the Schwartz Space on a Semisimple Lie Group 175

On the other hand it is clear that

Oih)'1'2 I ( .hτuluX2ti%{σ: λ)φτuiuτ2ti2(σ: λ:gi',x; g2)β(σ: λ)dλ

* Jap

Mtlt2)'li2( Σ

2\l/2

•β(σ:λ)dλ J

So,

\a{gι\x;g2)\

Z(llω)Σ(tιt2V
12 Σ \[,htί.tι.τ2.l2(σ:λ)E(ψ:λ:g1;x;g2)β(σ:λ)dλ

t»σ ii, i2 I Jap

From the dimension formula (Lemma 2.1), tt and t2 are bounded by certain
polynomials of \TX\ and \τ2\ respectively, and (t1t2)

1/2 is also bounded by a poly-
nomial of 1̂ 1 and |τ 2 | . Moreover, since α e ? ( G ) , ^ti,ii,t2,i2e^(a*) ^ o r e a c n

Now it is easy to check that, to complete the proof of Theorem 5.1 it is enough
to prove the following

THEOREM 8.1. // σ e # M and ψ<=Lτ

σ with | |^ | |M = 1, let E(ψ:λ:x) be
the Eisenstein integral as in (6.6). Then for each gu # 2

G ® and s&R, there
exist a finite number of polynomials pl9 p2U ..., p2N, q and a finite number of
differential operators du ..., dN^D(a%) such that whenever Ii6y(α*)

supl ( Mλ)E(ψ: λ: gγ x; g2)β(σ:
xeG I Jap

^Pi(W\)q(\τ\)Σ supp2i(\λ\)\h(λ;
=1 λeoj

9. Basic estimates for derivatives

We mention here some estimates for derivatives of matrix elements by Arthur

[1]
Let η be the conjugation of QC with respect to the compact real form u =

ϊ+ ,J — lp. As usual, we obtain a Hermitian scalar product on gc by
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and a Hermitian inner product on ac by restriction. This permits us to define
an inner product on the dual space of αc. If A is a complex valued linear function
on αc, \λ\ denotes the norm of λ with respect to this inner product.

Suppose τ1 and τ2 are in &κ. Write τ as the double representation (τ l 5 τ2)
of K. Then

dim τ=dim τ^dim τ2.

LEMMA 9.1 ([1, Lemma 13]). Let π be an irreducible unitary representa-
tion of G on the Hubert space 3^, with infinitesimal character χλi for a linear
function λ on ac. Suppose gί9 # 2e93. Then there exist polynomials p and q,
independent of λ, such that the following (some what complicated) property
is satisfied:

Whenever Φx and Φ2 are unit vectors in 2? that transform under π\K ac-
cording to the representations τx and τ2 in &κ set f(x)=(Φι, π(x)Φ2). Then
there are two sets {Ψla: l^cc^tt}, {Ψ2β> l^β^t2} of orthogonal vectors in
Jf, and two sets {τlα: l ^ α ^ ί j , {τ2β, l^jS^ί 2} of representations in Sκ such
that

(i)

(ii) Ψla and Ψ2β transform under π\K according to the representations
τ l α and τ2β respectively,

(iii) (\τu\ + \τ2β\)£q(\τ\),

(iv) f1 + ί2^«(|τ|),

Σ Σ(
α = l β=l

(v) f(g1;χ ,g2)=Σ
l

For a proof see [1, Section 8].

If π = π σ λ for σe*ί M , choose a real linear function μ on y/— lα f associated
with σ. The infinitesimal character of πCtλ is χ-μ-iλ. η(μ) = —μ and η(iλ) = iλ.
Therefore

(9.1) I -μ- ίλ\2 = -B(μ + iλ,

10. Spherical functions

Suppose {φτ

v : V G £ , τ e T } i s a collection of infinitely differentiate τ-spherical
functions where τ indexes certain irreducible unitary double representations
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τ=(τ 1 ? τ2) of K on the finite dimensional Hubert spaces Vτ = Vtί®V*2 and v

indexes linear functions from αc to C. We have the homomorphism χv: 3 .-* C

defined in §7. |v| denotes the real number { — B(v, η(v))Y12. We assume that

φ\ satisfies the following conditions:

(i) zφτ

v = χv(z)φτ

v, z e 3

(ii) For any gί9 # 2

e ® there are polynomials p, q and a number r^O,

independent of v and τ, such that

(10.1) \φl(x)\<^p(\v\)q(\τ\)Ξ(x)(l+σ(x)y, x ε G ,

where the functions Ξ and σ are defined in §5.

Now, p can be regarded as a Hubert space with respect to the norm \X\ =

B(X, xyi2 ( l £ p ) . Consider the set S+ of all points H<=a+ with \H\ = 1 . Fix

H O G S + and let m1 be the centralizer of Ho in g and M1 be the analytic subgroup

of G corresponding to rrtj. Let I be the centralizer of mί in ap9 Σ the set of

all positive restricted roots of (g, ap) and Σ2 the subset of those α G l which do

not vanish identically on I. Put

«2=Σ9 ,
αel2

and

where mα is the number of multiplicity of α.

In [6(m), § 27-§ 30] Harish-Chandra defined for each φ\ a C00 function θ

which maps Mx into Vτ. θ is f-spherical, where f = τ | M 1 . We shall make two

assumptions on the collection of linear functions { V : V G £ } . It then turns out

that there exist polynomials p and q, an open neighborhood U of Ho in S+ and

positive numbers ε, r>0, independent of (v, τ), such that for each ί^O and .

(10.2) \etp2(H)φξ(exptH)-θτ

v(exptH)\<p(\v\)q(\τ\)e-εt(l

We shall review Harish-Chandra's work and prove the estimate (10.2) in § 10-

§13.

LFMMA 10.1. For any two elements g, g' e33, we can choose a finite number

of gi&SB (l^i^p) with the following property. If φ is a C°° τ-spherical

function, then

Σ \Φ(χ;-gj)\,
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\Φ(g;χ;gf)\^ Σ \<Kθj\χ)\,

(See [6(m), Lemma 17].)
Define the convolution f*g (f^Cc(G),g^C(G)), as usual, by

F o r / G C C ( G ) we denote the support of/by Supp/. Let 51 be the subalgebra of
33 generated by (1, ϊc). The following lemma is proved by Harish-Chandra [6(m),
Theorem 1].

LEMMA 10.2. Let V be a complex vector space of finite dimension and
f a C00 function from G to V such that the functions zf (z^3$t) span a finite
dimensional space. Fix a neighborhood U of 1 in G and let J be the space of
all αeC?(G) such that Supp a c t / and ot(kxk~1)=(x(x)(k<=K, X<ΞG). Then
there exists an element aG J such thatf*oι=f

LEMMA 10.3. For any gί9 ^ 2

G ® there exist polynomials p9 q and a
number r^O, independent of(y, τ), such that

(10.3) \φl(gt; x; ^2)|^ jp(|v|M|τ|)Ξ(x)(l + σ(x)y, X G G .

PROOF. TO prove this, by Lemma 10.1, it is sufficient to consider the case
0 i = l . By Lemma 10.2 we can find a function « G C * ( G ) such that

and

Then

\Φl(χ;g)\=\Φl*(g*)(χ)\ = I( ΦKyXy-'x;g)dy\.

Since there exist polynomials p, q and a number r' > 0 such that

\Φl(y)\ £pQvM\τ\)Ξ(yXl + σ(y)r,

the last expression is bounded by

x; g)\dy

P(\ v\)q(\τ\)^GΞ(xy- i)(l + σ(xy- ̂ ' \(g«)(y)\dy,
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where we use that g is left invariant. It is known that

(See [6(m), Lemma 10].)
So, we can select a number r>0 such that

(1 + σ(xy~i)y £(1 + σ(x))'(l + σ(y)y.

On the other hand there exists a number c' > 0 such that

Ξ(xy~x) ^ c'Ξ(x), y e Supp α.

(See [6(1), Lemma 32].) Therefore

\φl(x; g)\^c'p(\v\)q(\τ\)Ξ(x)(l + σ(x)y[ (1 + σ(y)y\a(y g)\dy.
JG

If we put

c(g)=A \l + σ(y)y\a(y;g)\dy,
JG

we have the inequality

\φl(x; g)\ ̂ c(g)p(\v\)q(\τ\)Ξ(x)(l+σ(x)y.

This proves our assertion. Q.E.D.

11. The functions Φ and Ψ.

Let SOΐi be the universal enveloping algebra of mf and 3i the center of <tΰlί.
a=at + ap is a Cartan subalgebra of g and m^ Let WQ, Wmι be the Weyl groups
of (g, α) and (m l 5 α) respectively. Then Wmί can be regarded as the subgroup
of WQ, consisting of the elements of WQ which are generated by reflections with
respect to the roots of (c$, α) vanishing at i ί 0 . Let 91̂ , and 91 be the universal
enveloping algebras of α£ and αc respectively. Let S(αc) be the symmetric
algebra over αc. Let J and Jt be the subalgebras of S(ac) consisting of the
elements in S(ac) which are invariant under WQ and Wmι respectively. J is
contained in Jt. Let Po be the set of positive roots α e P which vanish at Ho and
Px the complement of P o in P. In § 7 we define the isomorphism

y : 3 — * J.

On the other hand, for each 2 ^ 3 1 there exists a unique element y'mi(
such that
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Put %

and define an automorphism βmι of 91 by

r Then

is an algebraic isomorphism (surjective) ([6(e), Lemma 19]), and μo=y 1ίoy is
a homomorphism (injective) of 3 into 3i

Now we fix τe«f|. Let Uv be the annihilator of φ\ in 3, and let l ί l v =
3i'j"o(Wv) Let 3T be the quotient algebra 3i/U ί v. We can regard 3* a s a

complex vector space on which there is a natural 3i action.
If £ e 3 l s let £* be the projection of ζ onto 3?. Let 3f * be the dual vector

space of 3?. Let -Tτ= F t®3?*. Make *% a double iC-module by letting X
act trivially on 3 Ϊ * Make it a 31-module by defining

Γ(z)(v®ζ**)=v®zζ**, -ze3i, ^ F t , C**e3f*.

(Since 3 ΐ is a 3i"module, there is a natural action of 3i on 3ΐ* obtained.by
taking transposes.)

To obtain a basis of 3ί> we examine the algebra J and J x more closely.
Such results appear in [6(h), §3]. We identify S = S(ac) with the algebra of
polynomial functions on αc*, the dual space of αc. Let C(S), C(Jt) and C(J)
be the quotient fields of S9 Jx and J respectively.

LEMMA 11.1. // [WQ: Wmι']=r9 then there are homogeneous elements

vt=l, v29 ..., vr^Jx such that Jχ=Σ ^ / Moreover, the elements vί9...,vr

are linearly independent over C(J).

For a proof see [6(h), Lemma 8].
Now suppose that v£α c *. Let Sv be the ideal of polynomial functions in

S that vanish at v. Let Jv=JnSv and let J l v = J i Π Sv. J=C+JV is a vector
space decomposition of J and the projection from J onto J/JV=C is given by

w > w(v), W G J .

JXJV is an ideal in Jx and it is clear that γmi defines an isomorphism from 3* onto
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ΛAΊ Λr We shall obtain a basis of J1/JίJv over the field C of complex numbers.
We have the formula

Λ= Σ JΌJ=ΣCVJ+ΣJVVJ.
lϊjύ j j

But ΣjJvVj&JίJv, so {vji l^j^Ξr} spans Jί/J1Jv. On the other hand, suppose
{cj} is a set of complex numbers such that the vector ΣJCJVJ^J^^ Now

However, {vy. l^jt^r} is linearly independent over C(J)9 so each Cj^Jv. This
implies that each Cj equals zero. Therefore, {of. l^j^r} is a basis for the
space J1/JiJv. Let us regard J^/J^y, as a Hubert space with orthonormal basis
{vί9 ...,ιv}

Define elements η1=l9 η2, ••-, ̂ e 3 i by

Then {>/?, ..., >;*} is a basis for 3?. Let {itf*, ..., η?*} be the dual basis of 3?*.
If we make 3** ^° a Hubert space with orthonormal basis {η**, ..., η?*}, we
can regard Ψ*τ as a Hubert space.

We defined Σ, Σ2 and I in the previous section. Let Σί be the complement
of Σ2 in Σ, that is, the subset of those α e l which vanish identically on I=α 2 .
Put

ttrΣίβ, 0 = 1,2),

where gα is defined by

9α = { I e g : [H, X]=α(H)X /or α/I flεαj,

then n = n 1 + n2. Now Mx normalizes n2. Define a function J on Mx by

and put ζ'=d~1ζod for Ce3i It is easy to verify (see [6(m), Appendix, §45])
that C-+C is an automorphism of 3i Now define

Φ(m)= Σ Φ/(w)(x)/7**,

where

φj(m)=d(m)φ(m; η)).

For any ζe3i> there exist unique complex numbers ctj such that
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Then define

Φ and Ψ are functions from Mx to the vector space y%. Also, Φ and 5^ are both
f(the restriction of τ to Kt =MX Π iQ-spherical functions on Mί9 since elements
in 3i act on O ί M ! ) as left and right invariant differential operators.

LEMMA 11.2. LetζζΞ^^ Then

Φ(m; O=Γ(C)Φ(m)+ Ψζ(m),

PROOF. We have the equation

Φ(m; ζ) = Σd(m)φl(m;

Also

Therefore, Φ{m ζ) is equal to

Σ Σ
i j

which in turn equals

Since M Z (()*=0, we have the formula

Since {η**} is the dual basis of {η*}9 the matrix of the linear transformation ζ
acting on 3 ί* is the transposed matrix of its action on 3*> with respect to these
bases. Therefore,

Γ(ζ)Φ(m) = Σ CjiΦι(m)(S)ηJ*
U

l.j

This proves Lemma 11.2. Q.E.D.

Now I lies in the center of xnx. Hence if H G I, we conclude from the above
lemma that
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Therefore the following result is now obvious.

COROLLARY. For any m^Mί9 H e I and T^R, we have the integral equa-

tion

12. Some estimates for Φ and Ψ

We shall obtain some estimates for Φ and Ψ.
Let Kt =Mί Π K. Let Ξγ be the function on Mt which corresponds to Ξ

when (G, K) is replaced by (Mu KJ. Put M\ =KιA^Kί.

LEMMA 12.1. For a given t;e9Kl5 we can choose polynomials p, q and a
real number r^O such that

\Φ(m; ^ I ^

PROOF. This lemma follows easily from (10.1) and the definition of Φ.
Q.E.D.

Now fix ζ e 3 i From Lemma' 11.1, it follows that there exist elements
wtj e J such that for 1 ̂  / ^ r,

Now, the coordinates of yi(ζ)vι relative to the basis {vj} of J1/JίJv are clearly

{wιj(v): 1 ̂  J'^ r} Then the element

is contained in 3γ Jv. yι{ut{ζ)) is equal to

Σίwy-Wj/v))^.

For each / and j , (w^ — wo (v)) e Jv. Let

zŷ . = y - i (w/7-w0.(v))

Then

uι(ζ) = Σ μo(zh)yl* (vj) = Σ



184 Masaaki EGUCHI

Let ujj be the differential operator given by

Then ufj is an element of©, and it is independent of v. So, we write ujj simply
as Uij. Recall that Θ is the Cartan involution of gc. In the appendix of [6(m)]
it is known that there exist elements JVZj e n 2 , and # 0 e33, both independent
of v, such that

Also it is known ([6(m), Appendix]) that υ-*υ' =d~ivod(v^fflli) gives an auto-
morphism of yjlί which preserves 3i

It is known ([6(m), Lemma 47 and its corollary]) that there exist numbers

Cθ> 7*0 > 0 S U C n t n a t

(12.1) d(exp H)Ξ(cxp H) £ c^ipxp H)(l + |H |y», H e α+,

and

(12.2)

LEMMA 12.2. For ^x r̂f C^3i β^ί/ f eSBli, ί/î rg are polynomials p, q
and an integer rc^O, independent of(v, τ), such that

ζ ; υ)\ ^

/or gt βr.v ί^O, /f G 5 + n I αnrf WIGM}.

j8(/0=minα(iϊ).

PROOF. We have the equation

Ψc(m exp tH v) = Σ d(m exp tH)φ\(m exp tH t/u^O')

= Σ d{m exp tH)φ\(m exp iff; vfηfjμ0(

Since z^elίv, the annihilator of φ$, this last expression is equal to
Σ d(mexptH)φl(mexptH; uuv^fj
i . j

Σ ( p )0τ

v(m exp tH; θ{Nlj)gljη)v')®ηΓ,

here we used that w/7 , ^ e 3 i

If NGn 2 , JV is written in the form Σ ^ α , where Z α eg α . But if αe2ί

2>
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φKmoxptH; θ(Xa)gιjη
f

jυ') = e-t*Wφ\φ(Xΰ)\ mexptH; guη'jΌ')

for HeS+nl, /^0, m^M\. Our lemma 12.2 now follows from (5.3), (10.1)
and (12.2). Q.E.D.

13. The functions Θ and 0

We shall obtain a f-spherical function Θ mapping Mΐ into f t, and a f-
spherical Fτ-valued function θ on Mί9 which is the */**-coefficient of (9. The
function θ plays an essential role in thα discussion of the induction to prove
Theorem 8.1.

Recall tσ= Π Ha, which is an element in S. In this section we make the
aeP

following assumption.

Assumption 1: For each VGE, tσ(v)^0.

We would like to find the eigenvalues of the linear transformation Ho acting
on the vector space Jί/JίJv. We also want to find the norms of the projections
of JJJχJy into these eigenspaces. (These are norms as operators on the Hubert
space Ji/JιJv'9 these projections are not necessarily self-adjoint).

The field C(Jγ) is an extension of degree r of the field C(J). Therefore the
trace ^cμo/cμ) ^S a function from C(J^) into C(J). Define an element vι in
C(Jt) by

Recall that Po is the set of all positive roots α ε P which vanish at Ho and
that tσmi = Π HΛ. w and mmi are both in S.

aePo

Define

Then D and τι* are both in C(S). In [6(h), Lemma 12] Harish-Chandra shows
that τ* is actually in S.

Let {si=l, 52) ..., sr} be a set of representatives of right cosets of Wmί in
Wr If ϋeCC/i), then

(13.1) t r c ( J l ) / C ( J ) ( i ; )=

However,

(13.2)
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Diίine

Aik = τι'(skv), Bkj = Vj(skv)/D(skv).

T h e n A=(Aik) a n d B=(Bkj) are b o t h rxr matrices, a n d AB=I (identity matr ix) .

Define

(13.3) fSiV= Σ τk(Siv)vk.

Then {fSiV: 1 ̂ i^r} is a basis for J^jJiJ^. Also,

(13.4) Vj = Σ(v£s
k

LEMMA 13.1. If p^Jl9 then we have the equation

t Jv).

For a proof see [6(h), Lemma 15].

In particular, the operator p on JJJiJ,, is semisimple. Since H0^Jί9 the

lemma tells us that the set of eigenvalues of H0 is

(13.5) ρ = {v(H0), v(&H0)9..., vis-'Ho)}.

We can lift Jί to 3 i by 771. Then if ζ^3l9 we have an analogous statement

to Lemma 17 in [1] for the eigenvalues of the operator Γ(ζ) on τΓτ. In particular,

the eigenvalues of Γ(H0) are also given by (13.5).

Let {E'Sί, ..., E'Sr} be the projections in Ji/Ji*/V relative to the direct decom-

position

Difine

where Id denotes the identity operator on Vτ and the star * denotes the vector

space transpose operator. Then the operators {Esι} are the projections of Vx

onto the eigenspaces of Γ(3i), and Γ(ζ) ( ζ e 3 i ) are commutative with the projec-

tions ESι.

If u G f t , there are elements uί9 ..., « r e Vτ such that

Denote ut by if(«).

LEMMA 13.2. There is a fixed set of elements {plji l^i,j9 ISr} in S,
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independent of τ and v, such that for any u^Vt,

tt(Esιu) = Σ (plij(v)ID(v))tj(u)9

PROOF. (13.4) implies the formula

From the definition of fsιV it follows that the last expression is equal to

(I;I.(5/v)/D(5iv)) Σ

where D = tσ/tσmi and τi=Dvi. As we mentioned above, it is known that

( l ^ i ^ r ) . D(SiV) equals (τz7(v)/mmi(v))ε, where ε equals either 1 or — 1 . There-

fore, our assertion follows. Q.E.D.

Either the set of eigenvalues of the linear transformation H0 on Jι/JιJv or

that of Γ(H0) on i^τ is given by (13.5). Let Q+, Q~ and Q° be the subsets of

these eigenvalues with real parts greater than, less than and equal to zero re-

spectively. Let E'+, E'~9 E'°, and £ + , £~, E° be the corresponding projections

in Jί/J1Jv and Y\ respectively. Put Q' =Q+ U Q~ and let

Set ε 0 = 1 if Q+ U β " is empty. Then ε 0 > 0. Put

β(H)=mina(H),
Σ

Then β(H0)>0. Fix a number ε ( 0 < ε ^ ε o ) and an open and relatively compact

neighborhood Ω of Ho in I. By selecting them sufficiently small, we can arrange

that

and

β(H)^4ε, \Γ(H)-Γ(H0)\<εl2

for //€ΞΩ.

For the remainder of this section and for the following section we make the

following assumption.

Assumption 2. The real parts of all eigenvalues (13.5), as v ranges in E,

are the sum of a finite number of lattices in R.
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LEMMA 13.3. Choose a complex number ξ in the resolvent set of the opera-

tor Ho. Let d be the distance from ξ to the spectrum of Ho. Then there are

polynomials pί and p2, independent of ξ and v, such that the norm of the operator

(ξ-H0)-i is bounded by d-r

Pl(\ξ\)p2(\v\).

For a proof see [1, Lemma 20].

LEMMA 13.4. There exists a polynomial p, independent of v, such that

\e-tΓ(H)β+\

and

for H<=Ω.

PROOF. First we can prove the lemma for H =H0 as follows, by an argument

similar to the one in the proof of [1, Lemma 21]. To do this, it is clearly enough

to prove the same statements for the linear transformations e~tHoE'+, etH°E'~

and etH°E'° on the Hubert space JιlJγJv.

Let Γ+, Γ~ and Γ° be closed curves in the complex plane that wind around

the corresponding sets of eigenvalues Q+, Q~ and Q° in a positive sense, but which

contain no other eigenvalues. By looking at Assumption 2 and the eigenvalues

(13.5) we see that the curves can be chosen to satisfy the following conditions:

(i) \ξ\ is bounded by a polynomial in |v| for any ξ on one of the curves.

(ii) The arc length of each of the curves is bounded by a polynomial in |v|.

(iii) If ξ is on one of the curves, the distance from ξ to the spectrum of Ho

is not less than ε.

(iv) If ξ is a complex number, let &ξ be its real part. Then

&ξ^2ε for ξ on Γ+,

2ε for ξ on Γ~,

i for ξ on Γ°.

From the spectral theory for a linear transformation on a finite dimensional

vector space we have the following formulae.

={
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Therefore if

By Lemma 13.3 and conditions (iii) and (iv), this last expression is bounded by

Therefore by conditions (i) and (ii) there exists a polynomial p such that

\e-'H°E'+\^e-2etp(\v\)9

The inequalities for \etH°E'~\ and \etH°E'°\ follow from the same way.

Next, from the definition it follows that

The inequalities for \etΓiH)E~\ and |̂ fJΓ^-HΓ>J^01 follow from the same way.

Q.E.D.

Put Φ±(m)=E±Φ(m), Φ0(m)=E°Φ(m), mt=Mt.

LEMMA 13.5. For any fixed v&$Jlί there are polynomials p and q, and

a real number d>09 independent of (v, τ), such that

for H<=Ω, T ^ O and m<=M\.

PROOF. Γ(H) and E~ commute. Therefore by the corollary to Lemma

11.2, for any H G Ω and T ^ O w e have the equation

φ-(mexpTH; v) = eTΓ^φ-(m; v) + [**<r-or<ff) E-ψH(mexptH; v)dt.
Jo

The first term of this expression is easily handled with the help of Lemma 12.1

and Lemma 13.4. On the other hand, Lemma 13.4 tells us that there exists a

polynomial p such that
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o

rrτ/2 ΓT

\ΨH(m-exptH; v)\dί+p(\v\)\ \ΨH (mcxpίH; υ)\dt.

Our Lemma 13.5 then follows from Lemma 12.2. Q.E.D.

LEMMA 13.6. For any fixed υ^<^l1 there are polynomials p and q, and
a real number d>0, independent of (v, τ), such that

for H^Ω, T^O and m<=M\.

PROOF. By means of a change of variables we can rewrite the integral
equation of the corollary to Lemma 11.2. Then for h^Ap> i/eΩ, T:>0 and

Φ(mh; v)=e-TΓWφ(mhexpTH; v)-[Te-tΓ^ΨH (mft expίH; v)dt.
Jo

Operate E+ on both sides of this equation, and let T approach +oo. Now
\e-τr(H)β+\ decreases exponentially in T. However, by Lemma 12.1 and (5.1)
\Φ(mhexpTH ύ)\ is bounded by a polynomial in T. Therefore, the first term
of the right hand side of the above equation approaches zero. We have the
formula

Φ+(mh; v) = -[<ae-tΓ^E+ΨH(mh'exptH; υ)dt.
Jo

Let h equal exp TH. We obtain the equation

Φ+(m exp tH;v) = - f V < f " τ > Γ W £ + y H (m exp tH v)dt.
JT

Now \e~^~τ^Γ(<H)E+\ is bounded by a polynomial in |v| if ί^T. Our Lemma
13.6 then follows from Lemma 12.2. Q.E.D.

For m^Mί and H ε Ω , define

(The integral converges absolutely by Lemma 12.2 and Lemma 13.4). It is clear
that ΘH is a C00 function on Mx and

ΘH(m; v) = Φ°(m; ») + ("V-fΓ<H>E°ΨH(m-exptH; υ)dt.
Jo
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Moreover, it follows from the corollary to Lemma 11.2 that

H(;)
T-*ao

Therefore

(13.6) ΘH(m'QxptH) = etΓ^ΘH(m), rn<=Mu HCΞΩ, t<=R.

We now claim that ΘH is actually independent of H. Fix Hu H2^Ω and
meA^. We can choose ([6(m), Lemma 54]) Γ o ^0 such that m expίi/eMJ
for t^T0 and ΉeΩ. Put m2 = m expT2H2 (Γ 2 ^Γ 0 ) . Then by Corollary to
Lemma 11.2

2 . e x p TtHJ = Φ°(m2) + [Tie~tΓ(<H^E0ΨHι (m2-

Jo

and therefore,

e-r(TίH i + r 2 f l 2 ) φ 0 ( w . e χ p ( Γ i ^ i + τ2H2)) - e-
Γ(τ*H^Φ° (m exp T2H2)

It follows from Lemma 12.2 and Lemma 13.4 that there exist polynomials p9 q
and a number d^O such that for tx^0 and T2^T0

t i H i + τ2H2))\

Therefore by making Tl9 T2 tend to + oo, we get

ΘH (m)= lim ^ Γ ' ^ + ^

Since the right hand side is symmetrical in Hί9 H2, we conclude that ΘHί(m) =

Hence we may now write Θ instead of ΘH.

Since Ω is open in I, every H e I can be written in the form H = 2 ^

. So, from (13.6), we have

(13.7) <9(m expH)=^<")<9(m), m<=Mu flel.

Since !F is f-spherical, and since both the left and right actions of f(m) on
yτ commute with E°, we have the formula

(13.8) Θ(A:1mfc2)=τ(fc1)β(m)τ(fc2), klf k2(=Kί9
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θ(m; 0 =lim e~trwΦ° (m-exptH; ζ).
t-κx>

By Lemma 11.2 this expression is equal to

Γ(ζ)Θ(m) + lim e~tΓ^ E ° Ψζ (m exp tH).
ί-»oo

Now, the last term in this formula approaches 0 as t approaches + oo by Lemma
12.2 and Lemma 13.4. Therefore

(13.9) Θ(m; ζ)=Γ(ζ)Θ(m), ζ^3u m e M l β

LEMMA 13.7. For any fixed υ^W1 there are polynomials p, q and a
number d>0, independent of(v, τ), such that

for HZΞΩ, t^O and m(ΞM\.

PROOF. Using the definition of Θ and the formula (13.7) we see that

Θ(m; v)=e-TΓWΘ(mexpTH; v)

= e-
TΓWφ°(mexpTH; v) + {C°e-tΓ^EoΨ(m&xptH; v)dt.

' JT

Lemma 13.7 then follows from Lemma 12.2 and Lemma 13.4. Q.E.D.

COROLLARY. For any fixed v^<3Jlί there are polynomials p, q and a
number d>0, independent of(v, τ), such that

|Φ(mexpίH; v)-Θ(mexptH; v^

for H^Ω, f^O and m<=M1.

PROOF. We see that

\Φ(m-exptH; v)-Θ(mexp tH; v)\

; v)\

\ v)-Θ(m; υ)\.

Our assertion follows from Lemmas 13.4, 13.5, 13.6 and 13.7. Q.E.D.

LEMMA 13.8. For any fixed v^^Άί there are a neighborhood U of Ho in
ap)> polynomials p, q and numbers εί9 d1>0, independent of (v, τ), such that

\Φ(exptH; v)-Θ(exptH; Ό)\<p(
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for any H e U and

PROOF. Recall that ε satisfies 0 < ε < l . Let U be the set of all
which satisfy α(#)^( l-ε)α(# 0 ) for any α ε ? and \H\ ^ ( l + ε)||ifo|. Then U
is a neighborhood of Ho in cl(a+). Put Hε=H-(l-έ)H0 for H<ΞU. Then
Heec/(α+) and

exp ίif =exp ί(l - ε)if 0 exp ίif ε(t e Jt).

Hence, it follows from the corollary to Lemma 13.7 that there exist polynomials
p9 q and a number d ̂ 0 , independent of (v, τ), such that

I Φ(exp tH v)- <9(exp tH;v)\

= IΦ(exptHe Qxpt(l-ε)H0 ι;)-Θ(exptH εexpt(l-ε)H 0 v)

Now put ε(l— ε)=ει and remark that

Then it follows from the inequality (5.2) that we can select a number dx^0 so
that the last expression of the above inequality is bounded by

Q.E.D.

For a&Ap and l^j^r, tj(Θ(a)) is the vector in Vτ such that

Θ(a)= Σ

We put tί(Θ) = θ. Recall that p 2 = 4 ~ Σ ™αα.
£ Σ

Σ
aeΣ2

COROLLARY. There exist a neighborhood U of Ho in cl(a^), polynomials
p, q and numbers εl9 dx>0 such that

for any H^U and /^0.

PROOF. From the definition we have

v(exp tH) - θτ

v(exp tH)
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= t i(Φ(exp tH) - <9(exp tH)).

Since for any u e y τ , 1̂ (11)! ̂ | t ι | , our Corollary follows from Lemma 13.8.

Q.E.D.

Now put υ = 1 and t=0 in Lemma 13.7. Then we conclude from Lemma 12.1

and Lemma 12.2 that there exist polynomials p, q and a number dx^09 indepen-

dent of (v, τ), such that

On the other hand we can obviously choose a number <50^0 such that

Put (5=max(l, δo/4ε). Then it is clear that m e x p ί i ί e M ί (mGM l 5

provided ί^<5σ(m). Now fix mo^Mi and put ίo=<5σ(m) and mo=mexptoHo.

Then m 0 GMί and by (13.6)

Therefore,

But Ξί(m0)=Ξί(m), σ(mo)<:σ(m) + to=(δ + l)σ(m) and Γ(H0)E° has only pure

imaginary eigenvalues. Therefore, for a sufficiently large d^O, we have

(13.10) IΘ^^K

Form (13.8), (13.9) and (13.10) we obtain the following lemma.

LEMMA 13.9. Let ku k2&Ku m^Mί and ζ^Zu Then

(i) Θ(fc1mfc2)=τ(fc1)β(m)τ(fc2),

(ii) Θ(m;ζ)=Γ(ζ)Θ(m),

(iii) there are polynomials p, q and a number d^O, independent of (v, τ),

such that

For any linear function λ on Ic, let ^τ(A) denote the subspace of all

such that

(Γ(H)-λ(H)yv=09

where r=dimJ 1 // 1 J v . Let oy^T denote the sum
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where λ runs over those linear functions which take only pure imaginary values on

I.

LEMMA 13.10. Θ(m)e°f t , m^M^

PROOF. Since Θ(mexptH)=etΓ(HW(m) ( i ϊeΩ, ί e β ) , this is obvious from
the last statement of Lemma 13.9. Q.E.D.

14. Some estimates for θ

Let τ be an element in <f | . In § 10 we put two assumptions (i), (ii) on the
spherical function φ\ on G. We put another two assumptions (iii), (iv) on φ\,
which are satisfied for the Eisenstein integrals (see following Section 15), and
then we show that the spherical function 0 on Mj is a direct sum of functions
D(v)θj, and that D(v)θj are the functions on M1 corresponding to φ\ on G and
satisfy these assumptions. The functions D(v)θj are important tools when we
use induction to prove the main theorem.

Now we assume that v is parametrized by a real linear function μ on ->/ — 1 αf

and a λ in αj with v=μ + iλ and φτ

v satisfies the following two conditions:

(iii) For any fixed real linear function μ on ^J — lα f, gί9 g2^^B and X G G ,
the function

Φl(9i x; 9i)=Φτ{μ'' λ: gt x; g2)

in λ can be regarded as an entire holomorphic function on αj c .
We write lGα* c as λ=λR + iλl9 λR, λj^a*.

(iv) For any gu g2^& and d&D(a%c) we can choose polynomials pl9

p29 q and an integer nΞ>0, independent of (μ, λ, τ), such that

IΦXμiλ dig^.a g^

for each a^cl{Aζ) and j

For « G f t there are elements ul9 ..., u r e Vτ such that

Then tx is defined by ίί(w)=wί. Recall the function Ψ,

:m) = Σ d(m)φ*(μ: λ: m;uj(H0)')(g)ηJ*9
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Then we have

tt(Ψ{μ: λ: m)) = d(m)φ*(μ: λ: m;

Let ε and U be the positive number and the neighborhood of Ho given in § 13,
respectively. Recall that pγ is the half of the sum of positive restricted roots
which vanish identically on I.

LEMMA 14.1. Fix any element m^Mx and a real linear function μ on

yj — lat. Then for each /(l^Z^r) the function tι{Ψ{μ: λ: m)) in λ can be
regarded as an entire holomorphic function on α*c. Moreover, for each d e
D(aξc) there exist polynomials pu p2, q and an integer n^O, independent of
(μ, λ, τ), such that

\tjΨ(μ:λ;d:aexptH)\

for each a(Ξcl(Λ+), HEΞU, t^O and 1 G O * C .

PROOF. The first statement of our assertion follows clearly from the assum-
ption (iii) and the formula of t^Ψ^μ: λ: m)).

Now using the notation of the proof of Lemma 12.2, we see that for every
and

\ttΨ(μ:λ;d:aexptH))\

(β: λ; d: aexptH; Θ{NlJ)gljη'j)\

. fl e χ p fH.

By the assumption (iv) we can choose polynomials pί9 p2, q and an integer n '^0,
independent of (μ, λ, τ), so that

| Σ Φτ(μ- λ\d: θ(Ntj) a exp tH gijη'j)\
j

is bounded by

Pi(\μ\)P2(WM\τ\) e\ A'l (' l o ^ ί + ί ) Ξ(a exp tH){\ + [log a + tH\)n'.

Therefore, by (5.2) we can choose an integer n^O such that

From the definition of ε and the relation for Mί corresponding to (5.2) (see [6(m),
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Appendix]) it follows that the last expression is bounded by

This proves our Lemma 14.1. Q.E.D.

Recall that ESJ is the projection of Ψ* τ into the eigenspace of Γ(3i) and that
D = w/wmί. By definition

Θ(μ:λ: a)=E°Φ(μ: λ: a)+[^ e~tΓ<<H^ E°Ψ{μ: λ: aexptH0))dt.
Jo

We write ESJΘ as θj.

LEMMA 14.2. Fix any element m^Mγ and a real linear function μ on
yf^Tat. Then for each /(1^/^r) the function D(μ + ίλ)t£Θj(μ: λ: m)) in λ is
entire holomorphic on αj c . Moreover, for each d^D(a*c) there exist poly-
nomials pί9 p2, q and an integer n^O, independent of (μ, λ, τ), such that

for each a^cl(A^) and J

PROOF. ESj is the projection of Ψ*x onto the eigenspace of Γ(H0) corres-
ponding to the eigenvalue <s/μ + iλ), Ho>. If the eigenvalue <s/μ + iλ), Ho>
is not pure imaginary for /lea* then by definition ESjE° =0, and if pure
imaginary then ESjE° =ESj. So, to prove our lemma, it is sufficient to consider
the latter case. Now if 1^/^r then

tJiΦ(μ: λ; d: a))=d(a)φτ(μ: λ; d: a; η\).

By Lemma 13.2 and the assumption (iv), D(μ + iλ) tι(ESJΦ(μ: λ: a)) can be clearly
regarded as an entire holomorphic function on a%c and for any d^D(a^c)
there are polynomials pl9 p2, q and an integer n '^0, independent of (μ, λ, τ),
such that for every a^cl(A+) and

From the formula (5.2), it follows immediately that there exist numbers c0,
r0 > 0 such that
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Hence we can choose polynomials pί9 p2, q and an integer w^O, independent of

(μ, λ9 τ), such that for every a^cl(A+) and λ^a$c

\dλίD(μ+iλ)t^EajΦ(μ:λ:a)y]\

<Pi(\μ\)p2(W)q(\τ\)βl^11i β-I Ξ ^ X l + + |loga\)\

On the other hand, by the last lemma for any d ' e D ( α J c ) we can also choose

polynomials pl9 p2, q and an integer n^O, independent of (μ, λ, τ), such that

\ λ; d'\ aQxptH0))\

for a^cl(A^) and AeαJc. Therefore, the integral

<sj(μ+iλ),Ho> t^Ψiμ: λ; d': aexp tH0))dt[*)

e<s
Jo

converges uniformly for λ in compact sets in α j c , and so is an entire holomorphic

function on a$c. By Lemma 13.2 we can choose polynomials pί9 p2, q and an

integer n, independent of (μ, λ, τ), such that

ι ( ( μ : λ: aexptH0))df]\

<PiQμ\)P2(W)q(\τ\) e\W fl> Ξt(ayi + |log a\)»

for each a^cl(A^), AGα*c and t>0. Now our Lemma 14.2 follows immedi-

ately. Q.E.D.

Now we put

tιΘ(μ: λ :ni) = θ(m\

tγΘjiμ: λ: m)=θj(m)9

Then

(14.1) 0 = 01 + . - . + 0 r

and the following corollary is obvious.

COROLLARY 1. Fix any element m^Mγ and a real linear function μ on

yj — lα f . Then the function D(μ + iλ)θj(μ: λ: m) in λ can be regarded as an

entire holomorphic function on a$c. Moreover, for each d&D(a$c) there exist

polynomials pί9 p2, q and an integer n^O, independent of(μ9 λ9 τ), such that
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for each a^cl(Ap) and Λ,eα

In particular, if we put

Γj(μ:λ)=D(μ+iλ)θj(μ:λ:l)

we have the following

COROLLARY 2. Fix a real linear function μ on j—lat. Then the func-
tion Γj(μ:λ) in λ can be regarded as an entire holomorphic function on a%c.
Moreover, for any d^D(a%c) there exist polynomials pu p2 and q, independent
of (μ, λ, τ), such that

\ΓjO*:λ;d)\<PlQμ\)P2(\λ\)<l(\τ\)

for any

Recall that f is the restriction of τ to K1. By Lemma 13.9, Θ is f-spherical.
Since the action of f(Kt) and Γ(3i) on the vector space Ψ*x commute and the
Θj are eigenvectors of Γ(ζ), each Θj is a f-spherical function. By definition
^ τ = F τ ( x ) 3 * * is a double K-module so that K acts trivially on 3?*. So the
maps tι(ir

τ-+ F τ(l^Z^r)) and the action of tiK^ also commute. Therefore
the function D(μ+iλ)θj(μ: λ: m) on Mx is f-spherical and it is clear that for any
deD(α* c ) the function dλ[mD(μ + iλ)θj(μ: λ: m)] on Mγ is also f-spherical.
This being so, from Corollary 1 it follows that for any deD(α* c ) we can choose
polynomials pί9 p2, q and an integer n^O, independent of (μ, A, τ), such that for
any m^Mι and Λ,eαJc

where m=kίak2, kί9 k2^Kί and a&cl(A+). Clearly, for fixed υl9

and m^M1 the function D(μ + iλ)Θj(μ: λ: vί\ m; v2) is entire holomorphic on
αj c . By an argument similar to the proof of Lemma 13.2 it can be proved
easily that for any d^D(a%c) and vί9 v2^$Jlί we can choose polynomials pί9 p2i

q and an integer n ̂  0, independent of (μ, λ, τ), such that

for every a^cl(A^) and Λeα*c. Thus we obtain the following
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LEMMA 14.3. Fix a real linear function μ on ^J — l α f . Then the function

D(μ+iλ)θj(μ: λ: m) on Mί is f-spherical and satisfies the following conditions:

(i) D(μ + ίλ)θj(μ :λ:m;ζ) = < y,{ζ\ Sj(μ + iλ) > D(μ + iλ)Θj(μ: λ: m)

for m<=Mu 2 e α * c and ζ^3ί-

(ii) For any fixed υu t?2^9Dili and m^Mγ the function D(μ + iλ).θj(μ: λ:

vί't m; v2) in λ is entire holomorphic on o*c. Moreover for any vu

^eSDίi and rfeZ)(α*c) we can choose polynomials pί9 p2, q and an

integer n^O, independent of(μ,λ,τ), such that

\dλίD(μ+iλ)θj(μ:λ:vί'<a;v2)-]\

<pΛ\μ\)P2(W)q(\τ\)e^

for any a^cl(A^) and Aeα* c .

15. Application to the continuous series

Let τ be an irreducible unitary double representation of K on the Hubert

space Vτ. Recall from § 6 that

Lτ= θ LI
σe#M

is an orthogonal direct sum. For any fixed τ, Lτ

σ=0 for all but a finite number

of σ.

We would like to apply the results of the previous sections to the collection

{E(φτ

σ: λ: x)} of Eisenstein integrals, λ is to range over α j ' , and τ and σ will

range over S\ and SM respectively. ψτ

σ will be any unit vector in L*.

We will have to check the estimate (10.1), Assumptions 1 and 2 of § 13 and

the conditions (iii) and (iv) in § 14 for our collection {E(ψτ

σ: λ: x)}.

LEMMA 15.1. Fix gl9 g2^®- Then for fixed X G G , E(ψτ

σ: λ: gγ x\ g2)

can be regarded as an entire holomorphic function of λ. Also, there are poly-

nomials pί9 p2 and q, dependent only on gγ and g2, and for any d^D(a*e)

there exists a polynomial p, dependent only on d, such that

\E(ψl:λ;d:g1\a;g2)\

for any a

PROOF. We have the formula (6.6):

E(φτ

σ: λ:x) =
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For a fixed x, this is clearly an entire function of λ. Also, derivatives of

E(φτ

σ: λ: x) with respect to left or right invariant differential operators are entire

functions in λ.

From (6.7) we obtain the formula

E(ψy. λ; d: x) = (/1/2)
1/2 Σξu®ξίjldλ(Φu, «uW*2i)],

where t1t2 is the dimension of the representation τ. We apply Lemnia 9.1 to each

of the functions (Φίi9 πσtλ(x)Φ2j). As a result we obtain polynomials pί9 q, ortho-

gonal sets of vectors

{Ψ[a: l ^ α ^ } , {Ψj

2β:

in Jt?σtλ9 and the representations

{τ[a: l ^ α ^ } , {τJ

2β: l

in ^ κ that satisfy the conditions of Lemma 9.1. In addition

(15.1) \E(ψl: λ; d: gx x; g2)\2 = Σ Σ \dλ(Ψ[a9 nσt

i jβ

For any (i,j, α, β), the vectors !Piα and ΨJ

2β transform under πσA\K according

to the representations τ[Λ and τJ

2β respectively. Let τ(i,j, α, β) be the double

representation (τ\a9 τJ

2β) of K. Fix a vector f̂jj in Lτ

σ

u>j'a>β) such that

Eiφi/βi λ: x) is the τ(ι, j , α, /?)-spherical function associated with the function

(Vi*>πσtλ(x)ΨJ

2fi). By (6.6) we have that for H < Ξ S + and ί^O

\dλ(Ψ[Λ9 πσtλ(cxptH)ΨJ

2β)\

^(dimτ(/, U «> β)1/2\E(ΨίJ

β: λ; d: txptH)\

= (dimτ(/ f j , α, i?))1/2 | ^ ^ ( e x p / ^ /:)τ(/, y, α, j5: A:"1)'

and this expression equals

(dim τ(z\ j , α, W 1 / 2 | ̂ ^ ( e x p / / Γ *)τ(ι, j , α, /ϊ: A:- 1 )^ '^ : H(exptH'k))

where p' is a function of λ and iϊ(exp tH-k), and dependent only on d. Now there

exist a number tk^0, s^W(Wis the little Weyl group) and H^^^S^ such that
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Since

we have

Therefore we can choose polynomials p2 and p, dependent only on d, such that

\p'(λ: H(exptH k)\)<p2(\λ\)p(t).

On the other hand we have that

\e(iλ-pKH(exptH-k))\=e\λI\t-p(H(cxptH k))

and that

WJβicxptH kMi, j , α, β: k^)\ = |tfr

Therefore, for each ί^O, we have the inequality

\dλ(Ψ[aiπσtλ(cxptH)ΨJ

2β)\

(/, j 9 α,

= (dimτ(ι, y, α, ^

But |^ai(OI = l|iA^IU- From the remarks in §6 we see that

However, by Lemma 9.1 and formula (9.1),

Now dimτ(f, j , α, β) and dimσ are bounded by polynomials in |τ(i, j , α, β)\ and

|σ| respectively, by the Weyl dimension formula. But Lemma 9.1 \τ(i, j , α, β)\9

tx and t2 are all bounded by polynomials in |τ | . The inequality in our Lemma

15.1 then follows from (15.1). Q.E.D.

Recall the definitions of tπ m i , 77 and 77' in §2. Let 77 be the lattice of

real linear functions on λ / —lα f which is generated by the roots of (mί9 α f).

Then 77 c 77 and 77 is a lattice of finite index in 77. We put

07!= Π HΛ = mlwmK
aeP +
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LEMMA 15.2. There is a number δί>0 such that for any μG/7' the function

w1(λ)m( — μ — iλ)~ι

is holomorphic in the region |AΓ|<5±. In addition, there exists a polynomial

p, independent of μ, such that for μe77' and \λI\<δί

\mί(λ)m(-μ-iλyi\<p(\λ\).

PROOF. We have the formula

ro(-μ-/λ)-1=i!J«i(-/ι)-1 Π <-μ-iλ,Ha>-1.
aeP+

tσi(λ)τπ( —μ —ίλ) is a meromorphic function in λ.

Since με//', tσmi(μ) is not equal to zero. The numbers {|tσmi(μ)|: μe77'}

are actually bounded away from zero. In fact, it is known that 77/77 is isomorphic

to the center of M, which is finite. For any aePM{/*(ifa): μe77} is a sum of

a finite number of lattices in R, and hence {μ(Ha): μe/7} is also so. Since, for

μe77', μ(Ha)φ0, {mmi( —μ): μe77'} is bounded away from zero.

If αei° + , then the number < —μ — iλ, Ha> equals zero only if

Since {μ(Ha): β^Π) is a sum of a finite number of lattices in R and 77 is of

finite index in 77, {μ(Ha): μe77} is also a sum of a finite number of lattices in R.

Now let εα be the positive generators of them. Put

aeP+

Then for any α e P + and μe77',

either μ(#α)=0

or

In either case, we can choose a sufficiently small <51>0 such that

oc(λ)<-μ-iλ, H^-1

is holomorphic in the region \λj\<δu and it is bounded by a polynomial in |λ|

and its bound is independent of μ. Our Lemma 15.2 follows immediately.

Q.E.D.

COROLLARY. J/μe77' and Λeα*' then m(-μ-iλ) is not equal to zero.

LEMMA 15.3. The set of real parts of the set
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{<-μ-ίλ,sH0>:μζΞΠ,

of complex numbers is a sum of a finite number of lattices in R.

PROOF. Since each element s&WQ maps yf — 1 αf + αj, onto itself and since

αf and ap are mutually orthogonal, the real part of <—μ—iλ, sH0> is equal

to — <s~ V> Ho>. If μ e / 7 we can regard μ as an integral sum of roots of

(g, α). Then s~λμ is also an integral sum of roots of (g, α). Therefore {&<

— μ—iλ, sH0> : μe/7} is a sum of a finite number of lattices in R. Since Π

is of finite index in 77, {β< —μ — iλ, sH0> : μe/7} is a sum of a finite number

of lattices in R. Our Lemma 15.3 is now obvious. Q.E.D.

16. Completion of the proof of Theorem 8.1

We shall prove Theorem 8.1.

Let φτ(μ: λ: •) be the τ-spherical function which satisfies the conditions (i),

(ii) in § 10 and (iii), (iv) in § 14. We shall prove the following lemma instead of Th-

eorem 8.1.

LEMMA 16.1. Fix a real linear function μσ on yj — lat which is associated

with a ( J G ^ M . Then for every non-negative integer s we can choose a finite

number of elements du ...9dN in D(a*) and polynomials pu q, p2ι, -. J

such that for every

su
xeG

pl \ s(λ)φτ(μσ:λ: x)β(σ:
G I Jap

^Pi(\σ\)q(\τ\)Σsupp2j(\λ\)\a(λ;dj)\.
j λeαj

PROOF. Since φτ is τ-spherical, it is sufficient to prove for h^cl(A+) instead

of x. We shall use induction on dirnα^,. The case ap ={0} is obviously trivial.

So let us assume that d i m α ^ 1. Define S+ as in § 10. Since S+ is compact,

if we attend to (5.2) it is enough to prove the following

LEMMA 16.2. Fix μσ and s as above. Then for a given H0^S+, we can

choose a neighborhood V of Ho in S+ and a finite number of elements dlf ..., dN

in D(a%) and polynomials pu q, p2U ..., P2N
 s u c n that for every α

*(μσ: A: x)β(p: λ)dλ

Σ supp2J(\λ\)\a(λ;dj)\.
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PROOF. If f^O and H^V, by (14.1) the expression

a(λ)φτ(μσ: λ: x)β(σ: λ)dλ

is bounded by the sum of the following two expressions:

(i) 71(0

- θτ(μσ: λ: exp tH))β(σ: λ)dλ

(ii) J 2 ( 0 =

By the corollary to Lemma 13.8 and the continuity of the function on α*,
we can choose a neighborhood Fof Ho in S+, polynomials p'ί9 p'2 and q, and
numbers εί9 dί>0, independent of (σ, λ, τ), such that

μff: λ : QXptH)-θτ(μσ: λ: exptH)\

for every H^V, ί^O and l e a * . This being so,

: λ)\dλ.

But by Lemma 4.1, there exist polynomials p\ and p"2 such that

\β(σ:λ)\^Pl(\σ\)p2(\λ\).

Therefore

su

where r=dimα ί ) and

This deals with Ix(t).
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We now obtain a bound for /2(0 From the definitions of the Plancherel
measures β(σ:λ), β^σ λ) and the function D(μ + iλ), there exists a constant
c'φO such that

β(σ:λ)lβi(σ:λ)=C'D(μc + iλ).

Then by induction hypothesis, Lemma 16.1 is applicable to mi = [m1, m ^ .
Recall that α 2 =I, the centralizer of \nί in ap, and that at is the orthogonal
complement of α2 in ap. Let Ej denote the orthogonal projections of ap on α7-
0 = 1 , 2). For HZΞV we can write # as H=H1+H2(Hj=EjHJ = l9 2). Then
for

where <s/β+iλ), H2> is pure imaginary by Lemma 13.10. Attending to (5.2)
and Corollary 2 to Lemma 14.2, for each j(l^j£r) we can choose a finite
number of elements d'u...,d'k in D(α*) and polynomials p'l9 q', p'2i, ..., p2fc
such that for every α e ^ ( α * ) , i / e F a n d

V(|τ|) Σ sup

Now our assertion follows immediately. Q.E.D.

In particular, applying Lemma 16.1 for Eisenstein integrals, we obtain the
following corollary.

COROLLARY 1. Fix ψ^Lτ

σ with | |^ | |M = 1 Then for every non-negative
integer s we can choose a finite number of elements dί9 ..., dN in D(a*) and
polynomials pu q, p2ί9 ..., p2N such that for every a^y(a%),

sup I ( a(λ)E(φl: λ: x)β(σ: λ)dλ'Ξ(x)~ *(! + σ(x))s

xeG\Ja*p

supp2j(\λ\)\a(λ; dj)\.

COROLLARY 2. Fix ψ^Lτ

σ with | |^ | |M = 1 Then for every gu g2 in S
and non-negative integer s, we can choose a finite number of elements du ..., dN

in D(a$) and polynomials pl9qp2ί, ...,p2N such that for every

supK ma(X)E(ffc: λ: 9 l x; g2)β(σ:
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^Pi(l*l)*(M)Σ supp2j(\λ\)\a(λ;dj)\.
j AeαJ

PROOF. By (15.1)

\E(ψl:λ:gϊ;x;g2)\2=Σ Σ l^lα, πσ>λ(x)Ψ{β)\\
i,0L=l j,β=l

where Ψ\Λ and ΨJ

2β are the same as in (15.1). Now let £(ι/^: A:x) be the
(τiα> τ^)-spherical function corresponding to (Ψ[a, πσ,λ(x)ΨJ2β)- Apply Lemma
16.1 to E(ψiJ

β: λ: x). The corollary follows from the conditions on {Ψ[a},
{ΨJ

2β} and {τ[a}, {τJ

2β} given in Lemma 9.1. Q.E.D.

This Corollary gives Theorem 8.1. Therefore the proof of Theorem 5.1
is now complete.

17. The Fourier transform of tempered distributions

Having proved Theorem 5.1, we can now extend the definition of the
Fourier transform to tempered distributions on G.

A distribution on G is said to be tempered if it extends to a continuous linear
functional from #(G) to C. Since Cf(G) is dense in #(G), and since the inclu-
sion map

is continuous, we can regard the space of tempered distributions as the dual space
of #(G); that is, the space of continuous linear functional from ^(G) into C.

Let #'(G) be the set of tempered distributions on G. It becomes a locally
convex topological vector space when endowed with the strong topology.

Let ^ ( O ) be the strong dual space of V(G) and let {^~ιY denote the
transposed inverse of the Fourier transform fF\

THEOREM 17.1. The mapping (^r~1)* is a linear topological isomorphism
of <β'(G) onto tf'(G).

PROOF. The theorem follows directly from the fact that & is a topological
isomorphism of #(G) onto # ( δ ) . Q.E.D.
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