The Fourier Transform of the Schwartz Space on a Semisimple Lie Group

Masaaki Eguchi
(Received September 17, 1973)

Table of Contents
§ 1. Introduction 133
§ 2. Notation and preliminaries .. 135

§ 4. The Plancherel measure and the Plancherel formula 149
§ 5. Statement of the main theorem 154
§ 6. Eisenstein integrals .. 157
§ 7. Proof of the injectivity of the map \mathscr{F}... . . . 161
§ 8. A sufficient condition for the map \mathscr{F} to be surjective 173
§ 9. Basic estimates for derivatives 175
§10. Spherical functions ... 176
§11. The functions Φ and Ψ... . . . 179
§12. Some estimates for Φ and Ψ. 183
§13. The functions Θ and θ... 185
§14. Some estimates for θ.. . . 195
§15. Application to the continuous series ... 200
§ 16. Completion of the proof of Theorem 8.1 204
§17. The Fourier transform of tempered distributions 207
Bibliography ... 208

1. Introduction

Let G be a semisimple Lie group and $L^{2}(G)$ denote the space of square-integrable functions on G with respect to the Haar measure. The Fourier transform \mathscr{F} can be regarded as an isometry of $L^{2}(G)$ onto the Hilbert space $L^{2}(\widehat{G})$ which is defined by irreducible unitary representations of G.

In his paper [6(m)], Harish-Chandra introduces the Schwartz space $\mathscr{C}(G)$ consisting of functions on G. It is analogous to the Schwartz space $\mathscr{S}\left(\boldsymbol{R}^{n}\right)$ of rapidly decreasing functions on a eulidean space \boldsymbol{R}^{n} and is contained densely in $L^{2}(G)$. It is of much interest to ask about the image of $\mathscr{C}(G)$ in $L^{2}(\widehat{G})$ under \mathscr{F}. This is a Paley-Wiener type question for $\mathscr{C}(G)$. There are some results for this problem. It is solved by J.G. Arthur[1] in the real rank one case. Moreover, the problems for the Schwartz space on Riemannian globally symmetric spaces and for a certain subspace are studied by Eguchi-Okamoto[4] and Harish-

Chandra [6(h, i)] respectively.
The purpose of this paper is to give a characterization of the Fourier image of the Schwartz space for non-compact real semisimple Lie groups G with only one conjugacy class of Cartan subgroups and without any complex structure (we shall discuss, in another paper, the case that G has a complex structure). Now we assume that G has the above mentioned properties. Then it is known that only one continuous series connects with the Plancherel formula. We can obtain the Plancherel measure in a concrete form via the method of integration by parts from the character formulae of the irreducible unitary representations of the principal series. As an immediate consequence of the main theorem we obtain the theory of Fourier analysis for tempered distributions on G.

The most difficult part of this theorem is to prove the surjectivity and the continuity of the inverse Fourier transform. We shall prove this by means of induction with respect to the real rank of G. For this, we have to study in detail the Eisenstein integrals, in particular, not only their constant terms but the asymptotic behaviour at infinity along the walls of Weyl chambers, and we use some of Harish-Chandra's estimates for differential equations with respect to the center of the universal enveloping algebra of the Lie algebra of G. Arthur's methods in [1] are very effective in our discussions.

The paper is arranged as follows. We fix an Iwasawa decomposition $\mathfrak{g}=\mathfrak{f}+$ $\mathfrak{a}+\mathfrak{n}$ of the Lie algebra of G and a nonzero element H in \mathfrak{a}. In Section 2 we prove that the derived algebra \bar{m}_{1} of the centralizer \mathfrak{n}_{1} of H in \mathfrak{g} has only one conjugacy class of Cartan subalgebras. In Section 3, we prove the character formula for the representations $\pi_{\sigma, \lambda}$ of the principal series, and in Section 4 we obtain the Plancherel measure in explicit form, which is a polynomial, and prove the Plancherel formula. We state the main theorem in Section 5 and prove the injectivity of the Fourier transform \mathscr{F} for $\mathscr{C}(G)$ in Section 7. We state Theorem 8.1 in Section 8, which is a sufficient condition for the map \mathscr{F} to be surjective, and in Sections 10-13 we describe Harish-Chandra's work in the form suitable for our purpose and show that his estimates are uniform in a sense. In Section 14, making use of his estimates, we obtain the functions θ_{j} on the analytic subgroup M_{1}^{\prime} of G corresponding to \bar{m}_{1}, and we prove that we can apply the induction hypothesis to $D \theta_{j}$, where D is the ratio of the Plancherel measure corresponding to G to that corresponding to M_{1}^{\prime}. In Section 17 , we define the Fourier transform of tempered distributions on G and characterize their images by this map.

It seems that, when we consider the analogue of Theorem 5.1 for arbitrary semisimple Lie group G, the part corresponding to continous series in the proof of the surjectivity of the Fourier transform map can be proved by induction on the real rank of G, similarly to our proof.

The author is pleased to express his gratitude to Professor K. Okamoto and Dr. M. Wakimoto for many stimulating conversations.

2. Notation and preliminaries

We shall use the standard notation \boldsymbol{R} and \boldsymbol{C} for the field of real numbers and the field of complex numbers respectively. We shall use i as well as $\sqrt{-1}$ to denote a square root of -1 . If S is a set, T a subset of S and f a function on S, the restriction of f to T is denoted by $f \mid T$. If S is a finite set $[S]$ denotes the number of elements in S. If S is a topological space $c l(T)$ denotes the closure of T in S. Composition of functions and operators will often be denoted by \circ.

If M is a manifold (satisfying the second countability axiom), the space of infinitely differentiable functions on M and the set of those of compact support are denoted by $C^{\infty}(M)$ and $C_{c}^{\infty}(M)$ respectively.

If V is a vector space over \boldsymbol{R}, V^{c} denotes the complexification $V \otimes_{\boldsymbol{R}} \boldsymbol{C}$ of V. V can be seen as a differentiable manifold in the usual manner. Let $\boldsymbol{D}(V)$ denote the algebra of differential operators on V of constant coefficients. Following Schwartz [13] we denote the space of rapidly decreasing functions on V with usual topology by $\mathscr{S}(V)$. If $f \in C^{\infty}(V)$ and $D \in \boldsymbol{D}(V)$ the value of $D f$ at a point v will usually be denoted by $f(v ; D)$ but sometimes by $D_{v}(f(v))$.

Lie groups will be denoted by Latin capital letters and their Lie algebras by corresponding lower case Germann letters. If G is a Lie group and \mathfrak{g} its Lie algebra the adjoint representation of G is denoted by $A d$ and the adjoint representation of \mathfrak{g} by $a d$.

Let \mathfrak{g} be a reductive Lie algebra and \mathfrak{h} a Cartan subalgebra of \mathfrak{g}. Let α be a linear function on the comlex vector space \mathfrak{h}^{c} and \mathfrak{g}^{α} denote the linear subspace of \mathfrak{g}^{c} given by

$$
\mathfrak{g}^{\alpha}=\left\{X \in \mathfrak{g}^{c}: \quad[H, X]=\alpha(H) X \quad \text { for all } H \in \mathfrak{h}^{c}\right\}
$$

The linear function α is called a root of the pair $\left(\mathfrak{g}^{c}, \mathfrak{b}^{c}\right)$ if $\mathfrak{g}^{\alpha} \neq\{0\}$. In this case \mathfrak{g}^{α} is called a root subspace.

Let L be a connected reductive Lie group over \boldsymbol{R} with Lie algebra I,

$$
j: \mathfrak{I} \subset \mathfrak{l}^{c}
$$

be the inclusion and L^{c} be a complex analytic group with Lie algebra $\mathfrak{I}^{c} . L^{c}$ is called a complexification of L if j extends to a homomorphism of L into L^{c}. Reductive Lie algebra \mathfrak{I} can be written as $\mathfrak{I}=I_{1}+\mathfrak{c}$, where \mathfrak{I}_{1} is a semisimple ideal of I and c is the center of I. Let $L_{1}, C\left(L_{1}^{c}, C^{c}\right)$ be the analytic subgroups of $L\left(L^{c}\right)$ corresponding to $\mathfrak{l}_{1}, \mathfrak{c}\left(l_{1}^{c}, \mathfrak{c}^{c}\right)$ respectively. L^{c} is said to be quasisimply connected (q.s.c.) if $L_{1}^{c} \cap C^{c}=\{1\}$, where 1 is the unit element of L^{c}, and if L_{1}^{c} is simply connected. L is called q.s.c. if it has a q. s. c. complexification.

Fix a complexification $j: L \rightarrow L^{c}$ and a Cartan subalgebra \mathfrak{h} of 1 . Let A and A^{c} be the Cartan subgroups of L and L^{c} associated with \mathfrak{h} and \mathfrak{h}^{c}, that is, the centralizers of \mathfrak{h} and \mathfrak{h}^{c} in L and L^{c} respectively. Clearly $j(A) \subset A^{c}$. It is
known that A^{c} is connected ([6(k), Corollary to Lemma 27]). If λ is a linear function on \mathfrak{b}^{c}, there exists at most one complex analytic homomorphism

$$
\xi_{\lambda}: A^{c} \rightarrow \boldsymbol{C}
$$

such that for every $H \in \mathfrak{b}^{c}$

$$
\xi_{\lambda}(\exp H)=e^{\lambda(H)}
$$

We also write ξ_{λ} for the homomorphism

$$
\xi_{\lambda^{\circ}} j: A \rightarrow \boldsymbol{C} .
$$

ξ_{λ} can be seen to be independent of the complexification A^{c} used, provided that ξ_{λ} is defined on that complexification.

Cleary ξ_{α} exists for any root α of $\left(\mathfrak{I}^{c}, \mathfrak{h}^{c}\right)$. If $P_{\mathfrak{h}}$ is the set of positive roots of (${ }^{c}, \mathfrak{h}^{c}$) relative to some ordering, let

$$
\rho=\frac{1}{2} \sum_{\alpha \in P_{\natural}} \alpha .
$$

It is easy to see that the question of the existence of ξ_{Q} is independent of the ordering of the roots $\left(\mathfrak{l}^{c}, \mathfrak{h}^{c}\right)$ and of the choice of Cartan subalgebra \mathfrak{h}. If ξ_{e} exists L^{c} is said to be acceptable. L is said to be acceptable if it has an acceptable complexification.

If L^{c} is q.s.c., it is known that it is acceptable ([6(k), Lemma 29]). If $L_{1} \cap C$ is finite, it is clear that L has a finite, and hence acceptable cover.

Suppose L is a compact, connected acceptable Lie group with Lie algebra I. Let $\mathfrak{h}, P_{\mathfrak{h}}, A$ and ρ be defined as above. For each α define an element H_{α} in \mathfrak{h}^{c} by

$$
B\left(H_{\alpha}, H\right)=\alpha(H) \quad \text { for all } H \in \mathfrak{h}^{c}
$$

where B denotes the Killing form of \mathfrak{I}^{c} restricted to \mathfrak{h}^{c}. Put

$$
\nabla=\prod_{\alpha \in P_{\mathfrak{h}}} H_{\alpha} .
$$

Then σ is in S, the symmetric algebra on \mathfrak{b}^{c}, and can be regarded as a polynomial function on \mathfrak{b}^{c}. Let Π be the lattice of linear functions

$$
\lambda: \sqrt{-1 \mathfrak{h}} \rightarrow \boldsymbol{R}
$$

for which ξ_{λ} exists. Let $\Pi^{\prime}=\{\lambda \in \Pi: m(\lambda) \neq 0\}$. If W_{I} is the Weyl group of $\left(\mathfrak{l}^{c}, \mathfrak{h}^{c}\right), W_{1}$ acts on $\sqrt{-1 \mathfrak{h}}$. Then W_{t} acts on Π as follows

$$
(s \mu)(H)=\mu\left(s^{-1} H\right), \quad \mu \in \Pi, s \in W_{\mathrm{I}} \text { and } H \in \sqrt{-1 \mathrm{~h}} .
$$

For $s \in W_{\mathfrak{l}}$, put $\varepsilon(s)=(-1)^{n(s)}$, where $n(s)$ is the number of positive roots that are
mapped by s into negative roots. For a regular element $h \in A$, put

$$
\Delta(h)=\xi_{Q}(h)_{\alpha \in P_{h}}\left(1-\xi_{\alpha}\left(h^{-1}\right)\right) .
$$

If σ is an irreducible unitary representation of L on a Hilbert space V_{σ} and $l \in L$, let $\operatorname{tr} \sigma(l)$ denote the trace of $\sigma(l)$ and let $\operatorname{dim} \sigma$ denote the dimension of V_{σ}.

Lemma 2.1. There is a map $\mu \rightarrow \sigma(\mu)$ from Π^{\prime} onto the set of unitary equivalence classes of irreducible representations of $L . \quad \sigma\left(\mu_{1}\right)=\sigma\left(\mu_{2}\right)$ if and only if $\mu_{1}=s \mu_{2}$ for some $s \in W_{\mathrm{r}}$. Furthermore, if h is a regular element of A,

$$
\operatorname{tr} \sigma(\mu)(h)=(\operatorname{sign} \varpi(\mu)) \cdot \Delta(h)^{-1}\left(\sum_{s \in W_{I}} \varepsilon(s) \xi_{s \mu}(h)\right) .
$$

Also there exists a constant c_{L}, independent of μ, such that

$$
\operatorname{dim} \sigma(\mu)=c_{L}|\varpi(\mu)| .
$$

Finally, if $\mu \in \Pi^{\prime}$ and $B(\mu, \alpha)>0$ for each $\alpha \in P_{\mathfrak{h}}$, then $\mu-\rho$ is the highest weight of the representation of the Lie algebra I^{c} corresponding to $\sigma(\mu)$.

For a proof see [1, Lemma 1].

If σ is an irreducible unitary representation of L and $\sigma=\sigma(\mu)$ for a linear function $\mu \in \Pi^{\prime}$ then μ is said to be associated with σ.

Let G be a connected semisimple Lie group and \mathfrak{g} its Lie algebra. Let $\mathfrak{g}=\mathfrak{f}+\mathfrak{p}$ be a fixed Cartan decomposition with Cartan involution θ. Let $\mathfrak{a}_{\mathfrak{p}}$ be a fixed maximal abelian subspace of \mathfrak{p} and \mathfrak{a} be a fixed maximal abelian subalgebra of \mathfrak{g}, which is a θ-stable Cartan subalgebra, that is, $\theta \mathfrak{a}=\mathfrak{a}$. We put $\mathfrak{a}_{\mathfrak{t}}=\mathfrak{a} \cap \mathfrak{f}$. Let K be the analytic subgroup of G corresponding to \mathfrak{f}. We assume that G has finite center. This implies that K is compact. If \mathfrak{h} is a Cartan subalgebra of \mathfrak{g}, we denote the set of non-zero roots of $\left(\mathfrak{g}^{c}, \mathfrak{h}^{c}\right)$ by $\Delta(\mathfrak{h})$, sometimes, we write simply Δ instead of $\Delta(\mathfrak{a})$.

Let \mathfrak{m} and M be the centralizers of $\mathfrak{a}_{\mathfrak{p}}$ in \mathfrak{f} and K respectively, and let M^{\prime} be the normalizer of $\mathfrak{a}_{\mathfrak{p}}$ in K. Then \mathfrak{a}_{t} is a Cartan subalgebra of reductive Lie algebra m . We write the finite factor group M^{\prime} / M as W, which is called the little Weyl group of \mathfrak{g} with respect to $\mathfrak{a}_{\mathfrak{p}}$.

Fix compatible orders on the real dual spaces of $\mathfrak{a}_{\mathfrak{p}}$ and $\mathfrak{a}_{\mathfrak{p}}+\sqrt{-1} \mathfrak{a}_{\mathrm{t}}=\mathfrak{a}_{R}$. Let P and P_{+}be the set of positive roots of $\left(\mathfrak{g}^{c}, \mathfrak{a}^{c}\right)$ relative to this order and the set of roots $\alpha \in P$ which do not vanish on $\mathfrak{a}_{\mathfrak{p}}$ respectively. We also denote the complement of P_{+}in P by P_{M}. For every non-zero root $\alpha \in \Delta, H_{\alpha} \in \mathfrak{a}_{R}$ is defined by

$$
B\left(H, H_{\alpha}\right)=\alpha(H) \quad \text { for every } H \in \mathfrak{a}
$$

where B denotes the Killing form of \mathfrak{g}^{c}. For simplicity, a root $\alpha \in \Delta$ is often iden-
tified with H_{α}. Since \mathfrak{a}_{t} is a Cartan subalgebra of int we call reganu \digamma_{M} as we set of positive roots of $\left(\mathfrak{m}^{c}, \mathfrak{a}_{\mathfrak{f}}^{c}\right)$. We put

$$
\mathfrak{a}_{\mathfrak{p}}^{+}=\left\{H \in \mathfrak{a}_{\mathfrak{p}}: \alpha(H)>0 \quad \text { for every } \quad \alpha \in P_{+}\right\},
$$

which is called the positive Weyl chamber of $\mathfrak{a}_{\mathfrak{p}}$. For each root $\alpha \in \Delta$ the linear function α^{θ} is defined by

$$
\alpha^{\theta}(H)=\alpha(\theta H), \quad H \in \mathfrak{a}
$$

A root α is said to be real (imaginary) if $\alpha(H)$ is real (pure imaginary) for every $H \in \mathfrak{a}$; if α is neither real nor imaginary, then α is said to be complex.

Two Cartan subalgebras $\mathfrak{h}_{1}, \mathfrak{h}_{2}$ of \mathfrak{g} (two Cartan subgroups A_{1}, A_{2} of G) are said to be conjugate under the adjoint group $\operatorname{Int}(\mathrm{g})$ (the group of inner automorphisms of G) if there exists $\psi \in \operatorname{Int}(\mathfrak{g})$ (an inner automorphism ψ of G) such that $\psi\left(\mathfrak{h}_{1}\right)=\mathfrak{h}_{2}\left(\psi\left(A_{1}\right)=A_{2}\right)$. It is known that the number $N(\mathfrak{g})$ of the conjugacy classes of Cartan sublgebras of \mathfrak{g} is finite ([14, Corollary to Theorem 5]). $N(\mathfrak{g}$) is clearly equal to the number $N(G)$ of the conjugacy classes of Cartan subgroups of G.

For every Cartan sublgebra \mathfrak{b} of \mathfrak{g} the following two subalgebras
$\mathfrak{h}_{I}=\{H \in \mathfrak{h}$: all eigenvalues of adH are pure imaginary $\}$,
$\mathfrak{h}_{\boldsymbol{R}}=\{H \in \mathfrak{h}$: all eigenvalues of ad H are real $\}$
are called the toroidal part and the vector part of \mathfrak{b} respectively.
A θ-stable Cartan subalgebra \mathfrak{h} of \mathfrak{g} is said to be standard with respect to the triple ($\mathfrak{f}, \mathfrak{p}, \mathfrak{a}$) (simply, standard) if

$$
\mathfrak{a}_{\mathfrak{t}} \subset \mathfrak{b}_{\mathfrak{t}}=\mathfrak{b} \cap \mathfrak{f} \text { and } \mathfrak{h} \cap \mathfrak{p}=\mathfrak{b}_{\mathfrak{p}} \subset \mathfrak{a}_{\mathfrak{p}} .
$$

It is known that there exists a finite number of Cartan subalgebras which are standard and that any Cartan sublgabre \mathfrak{h} of \mathfrak{g} is conjugate under the adjoint group $\operatorname{Int}(\mathrm{g})$ to one of them ($[14$, Theorem 2]).

Let $\omega: X \rightarrow \operatorname{tr}(a d(X))^{2}\left(X \in \mathfrak{g}^{c}\right)$ denote the Casimir polymonial of \mathfrak{g}^{c}. For any Cartan subalgebra \mathfrak{h} of \mathfrak{g} set $\mathfrak{l}_{-}(\mathfrak{b})=\sup \left(\operatorname{dim}\left(\mathfrak{h}_{-}\right)\right)$, where $\mathfrak{h}-$ runs over all subspaces of \mathfrak{h} on which ω is negative definite; put $\mathfrak{I}_{-}=\sup _{\mathfrak{h}} \mathfrak{l}_{-}(\mathfrak{h})$ (\mathfrak{h} running through the Cartan subalgebras of \mathfrak{g}). A Cartan subalgebra \mathfrak{h} of \mathfrak{g} is said to be fundamental if $I_{-}=I_{-}(\mathfrak{h})$. Then the rank of \mathfrak{f} is equal to I_{-}and, \mathfrak{h} is fundamental if and only if the pair $\left(\mathfrak{g}^{c}, \mathfrak{h}^{c}\right)$ admits no real roots.

The following lemma permits us to make use of induction to prove the main theorem (see Section 16).

Lemma 2.2. Let H be a non-zero element in $\operatorname{cl}\left(\mathfrak{a}_{\mathfrak{p}}^{+}\right), \mathfrak{m}_{1}$ the centralizer of H in \mathfrak{g} and $\overline{\mathfrak{m}}_{1}=\left[\mathfrak{m}_{1}, \mathfrak{m}_{1}\right]$. If the number of conjugacy classes of Cartan
subalgebras of \mathfrak{g} is one, then the number of conjugacy classes of Cartan subalgebras of $\overline{\mathrm{m}}_{1}$ is also one.

Proof. We have clearly,

$$
\begin{equation*}
\overline{\mathfrak{m}}_{1}^{c}=\sum_{\alpha \in P^{\prime}} \boldsymbol{C} H_{\alpha}+\sum_{\alpha \in P_{M}}\left(\mathfrak{g}^{\alpha}+\mathfrak{g}^{-\alpha}\right)+\sum_{\alpha \in P^{\prime} \cap P_{+}}\left(\mathfrak{g}^{\alpha}+\mathfrak{g}^{-\alpha}\right) \tag{2.1}
\end{equation*}
$$

and

$$
\bar{m}_{1}=\bar{m}_{1}^{c} \cap \mathfrak{g},
$$

where P^{\prime} denotes the set of $\alpha \in P$ such that $\alpha\left(H_{0}\right)=0$. Put

$$
\bar{m}_{1 \mathrm{t}}=\overline{\mathrm{m}}_{1} \cap \mathfrak{f} \quad \text { and } \quad \bar{m}_{1 p}=\bar{m}_{1} \cap \mathfrak{p} .
$$

Since $\alpha^{\theta}\left(H_{0}\right)=\alpha\left(\theta H_{0}\right)=-\alpha\left(H_{0}\right)$ the first term in the formula (2.1) is θ-stable. As is easily seen, if $\alpha \in P_{+}$then $-\alpha^{\theta} \in P_{+}$and if $\beta \in P_{M}$ then $\beta^{\theta}=\beta$. So the last two terms in (2.1) are both θ-stable. Thus \bar{m}_{1} is θ-stable. The sum $\bar{m}_{1}=\bar{m}_{1 t}+$ $\bar{m}_{1 \mathrm{p}}$ is a Cartan decomposition of \bar{m}_{1} and $\theta \mid \bar{m}_{1}$ is the corresponding Cartan involution. In fact, if we put

$$
\mathfrak{v}=\bar{m}_{1 \mathrm{t}}+\sqrt{-1} \cdot \bar{m}_{1 p}
$$

and denote the conjugation of $\overline{\mathfrak{m}}_{1}^{c}$ with respect to $\overline{\mathfrak{m}}_{1}$ by η, then

$$
\eta \mathfrak{v} \subset \mathfrak{v}, \overline{\mathfrak{m}}_{1 \mathfrak{t}}=\overline{\mathfrak{m}}_{1} \cap \mathfrak{v}, \overline{\mathfrak{m}}_{1 \mathfrak{p}}=\mathfrak{m}_{1} \cap(\sqrt{-1 \mathfrak{v}}) \text { and } \mathfrak{v} \subset \mathfrak{u}=\mathfrak{f}+\sqrt{-1} \mathfrak{p} .
$$

Since \mathfrak{u} is compact and \mathfrak{v} is semisimple, \mathfrak{v} is also compact (cf. [10, pg. 615]). Hence $\bar{m}_{1}=\bar{m}_{1 t}+\bar{m}_{1 p}$ is a Cartan decomposition.

Now put

$$
\mathfrak{b}=\left(\sum_{\alpha \in P^{\prime}} C H_{\alpha}\right) \cap \mathrm{g} .
$$

Then \mathfrak{b} is a Cartan subalgebra of $\overline{\mathfrak{m}}_{1}$ and $\theta \mathfrak{b}=\mathfrak{b}$ since $\theta\left(H_{0}\right)=H_{0}$. To prove the lemma, it is sufficient to see that \mathfrak{b} has a maximal and minimal vector part. By the previous remark, to prove that \mathfrak{b} has a minimal vector part we shall show that \mathfrak{b} is a fundamental Cartan subalgebra. We put

$$
\mathfrak{b}_{ \pm}=\{H \in \mathfrak{b}: \theta H= \pm H\} .
$$

Then, clearly, $\mathfrak{b}=\mathfrak{b}_{+}+\mathfrak{b}_{-}$is a direct sum, $\mathfrak{b}_{+} \subset \mathfrak{a}_{t}$ and $\mathfrak{b}_{-} \subset \mathfrak{a}_{p}$. We denote the center of \mathfrak{m}_{1} by \mathfrak{s}_{1}, the centralizer of \mathfrak{m}_{1} in $\mathfrak{a}_{\mathfrak{p}}$ by I and put

$$
3_{1 \pm}=\left\{Z \in 3_{1}: \theta(Z)= \pm Z\right\} .
$$

Then $\mathfrak{I} \subset \mathfrak{b}_{1}, \mathfrak{z}_{1+} \subset \mathfrak{a}_{t}$ and $\mathfrak{b}_{1-} \subset \mathfrak{a}_{\mathfrak{p}}$. So $\mathfrak{z}_{1-} \subset \mathfrak{l}$. Thereby $\mathfrak{z}_{1_{-}}=\mathrm{l}$. Let Δ_{0} denote the set of non-zero roots of ($\bar{m}_{1}^{c}, \mathfrak{b}^{c}$). Then each $\alpha \in \Delta_{0}$ can be regarded as a
root of $\left(\mathfrak{g}^{c}, \mathfrak{a}^{c}\right)$ and $\alpha \mid \mathfrak{3}_{1+}=0$. Since $N(\mathfrak{g})=1$ by the assumption, $\left(\mathfrak{g}^{c}, \mathfrak{a}^{c}\right)$ has no real roots. Therefore (\bar{m}_{1}^{c}, b^{c}) has no real roots. Hence \mathfrak{b} is fundamental and has a minimal vector part.

The following lemma assures that \mathfrak{b} has a maximal vector part, and hence it completes the proof.
Q.E.D.

Lemma 2.3. For a θ-stable Cartan subalgebra \mathfrak{h} of \mathfrak{g}, the following conditions 1) and 2) are equivalent:

1) \mathfrak{b} has a maximal vector part,
2) $\Sigma_{\mathfrak{p}}=\left\{\alpha \in \Delta(\mathfrak{h}): \mathfrak{g}^{\alpha} \subset \mathfrak{p}^{c}\right\}$ is empty.

For a proof see [11, Lemma 4.3].
Now in the following, we put on G the following assumption:

$$
N(G)=1
$$

that is, the number of conjugacy classes of Cartan subgroups of G is equal to one.
By going to a finite cover we can assume that G is q.s.c. and hence acceptable. Thus, if $j: \mathfrak{g} \subset \mathfrak{g}^{c}$ and G^{c} is a simply connected analytic group with Lie algebra \mathfrak{g}^{c} then j extends to a homomorphism

$$
j: G \longrightarrow G^{c} .
$$

Since K is reductive, by going to a further finite cover of G, we may also assume that K is acceptable.

If we understand the harmonic analysis of a finite cover \tilde{G} of G then we understand the theory for G. We throw out those unitary representations of G which are non-trivial on the kernel of the covering projection. Therefore, the above two assumptions can be made with no loss of generality.

Now let A be the Cartan subgroup of G associated with Cartan subalgebra \mathfrak{a}, that is, the centralizer of \mathfrak{a} in G. We put

$$
A_{I}=A \cap K, \quad A_{\mathfrak{p}}=\operatorname{expa} a_{\mathfrak{p}}
$$

Then

$$
A=A_{I} \cdot A_{\mathfrak{p}}
$$

We denote the inverse of the map exp: $\mathfrak{a}_{\mathfrak{p}} \rightarrow A_{\mathfrak{p}}$ by log. Since \mathfrak{a} is fundamental in our case, A_{I} is connected (cf. [16(a), Proposition 1.4.1.4 and its proof]). Let \mathfrak{m} be the centralizer of $\mathfrak{a}_{\mathfrak{p}}$ in $\mathfrak{f} . \quad M$ and M^{\prime} are the centralizer and normalizer of $\mathfrak{a}_{\mathfrak{p}}$ in K respectively.

Let M^{0} be the connected component of M. Let W_{g} and W_{m} be the Weyl groups of $(\mathfrak{g}, \mathfrak{a})$ and $\left(\mathfrak{m}, \mathfrak{a}_{\mathfrak{t}}\right)$ respectively. Fix any $m \in M$. Then $\mathfrak{a}_{\mathfrak{t}}$ and
$\operatorname{Ad}\left(m^{-1}\right) \mathfrak{a}_{\mathrm{t}}$ are maximal abelian subalgebras of m . So, there exists an element $m_{0} \in M^{0}$ such that $\operatorname{Ad}\left(m_{0}\right) \mathfrak{a}_{\mathrm{t}}=\operatorname{Ad}\left(m^{-1}\right) \mathfrak{a}_{\mathrm{t}}$ (cf. [7(a), Theorem 6.4, pg. 212]). If we put $\gamma=m m_{0}$ then

$$
\operatorname{Ad}(\gamma) a_{t}=a_{t}
$$

On the other hand, $\operatorname{Ad}(\gamma)$ fixes $\mathfrak{a}_{\mathfrak{p}}$ pointwise. Hence, $\operatorname{Ad}(\gamma) \mid \mathfrak{a}_{\mathfrak{t}}$ can be regarded as an element of the subgroup which consists of those elements of W_{g} generated by roots vanishing on $\mathfrak{a}_{\mathfrak{p}}$, and as an element of W_{m}. This being so, there exists an element $m_{1} \in M^{0}$ such that

$$
\operatorname{Ad}(\gamma) \mid \mathfrak{a}_{t}=\operatorname{Ad}\left(m_{1}\right)
$$

Hence, $\operatorname{Ad}\left(\gamma m_{1}^{-1}\right)$ fixes $\mathfrak{a}_{\mathfrak{t}}$ pointwise. $\gamma_{1}=\gamma m_{1}^{-1}$ is obviously in the coset $m M^{0} \cap A_{I}$. This implies that A_{I} has the same number of connected components as M. Therefore M is also connected.

Let $\mathscr{E}_{M}\left(\mathscr{E}_{K}\right)$ be the set of unitary equivalence classes of irreducible representations of $M\left(K\right.$ resp.). For $\sigma \in \mathscr{E}_{M}$, we define the norm $|\sigma|$ of σ by

$$
|\sigma|^{2}=B\left(\mu_{\sigma}, \mu_{\sigma}\right),
$$

where μ_{σ} is any real linear function on $\sqrt{-1} \mathfrak{a}_{t}$ associated with σ. Since the Killing form B of \mathfrak{g}^{c} can be regarded as a positive definite form on either $\sqrt{-1} a_{t}$ or its real dual space and W_{m} acts on $\sqrt{-1} a_{\mathrm{t}}$ as a group of isometries under B, $|\sigma|$ is well defined. Since K is acceptable by assumption, the representation in \mathscr{E}_{K} can be indexed by certain real linear functions on $\sqrt{-1} a_{t}$ as in Lemma 2.1. If $\tau \in \mathscr{E}_{K}$ and $\tau=\tau(v)$ for some real linear function v on $\sqrt{-1} \mathfrak{a}_{t}$, then we write

$$
|\tau|^{2}=B(v, v)
$$

$|\tau|$ is also well defined.
Define ρ by $\rho=\frac{1}{2} \sum_{\alpha \in P_{+}} \alpha$ on $\mathfrak{a}_{\mathfrak{p}}$ and $\rho=0$ on $\mathfrak{a}_{\mathrm{t}}$.
Let $l=\operatorname{dima}_{\mathfrak{p}}$. The Killing form induces euclidean measures on $A_{p}, \mathfrak{a}_{\mathfrak{p}}$ and $\mathfrak{a}_{\mathrm{p}}^{*}$; multiplying these by the factor $(2 \pi)^{-(1 / 2) l}$ we obtain invariant measures $d a$, $d H$ and $d \lambda$ so that the following Fourier transform holds without any multiplicative constant:

$$
\begin{aligned}
& f^{*}(\lambda)=\int_{A_{\mathfrak{p}}} f(a) e^{-i \lambda(\log a)} d a, \\
& f(a) \int_{a_{p}^{*}} f^{*}(\lambda) e^{i \lambda(\log a)} d \lambda, \lambda \in \mathfrak{a}_{\mathfrak{p}}^{*}, \quad f \in \mathscr{S}(A) .
\end{aligned}
$$

We put $\mathfrak{n}^{c}=\sum_{\alpha \in P_{+}} \mathfrak{g}^{\alpha}, \mathfrak{n}=\mathfrak{n}^{c} \cap \mathfrak{g}$ and $\overline{\mathfrak{n}}=\theta \mathfrak{n}$. Let N and \bar{N} be the analytic subgroups of ${\stackrel{\alpha}{G} \in P_{+}}_{\alpha}^{\alpha}$ corresponding to \mathfrak{n} and $\overline{\mathfrak{n}}$ respectively. Let $G=K A_{\mathfrak{p}} N$ be the Iwasawa decomposition of G (cf. [7(a), pg. 373]). Each $g \in G$ can be uniquely written as

$$
g=\kappa(g) \cdot \exp H(g) \cdot n(g), \quad \kappa(g) \in K, H(g) \in \mathfrak{a}_{\mathfrak{p}}, n(g) \in N .
$$

We normalize the Haar measures $d k, d m$ and $d u$ on the compact groups K, M and A_{I} respectively, so that the total measures are 1. The Haar measures of the nilpotent groups N and \bar{N} are normalized so that

$$
\theta(d n)=d \bar{n}, \quad \int_{\bar{N}} e^{-2 e(H(\bar{n}))} d \bar{n}=1
$$

The Haar measure $d g$ on G can be normalized so that

$$
\int_{G} f(g) d g=\int_{K \times A_{\mathfrak{p}} \times N} f(k a n) e^{2 \varrho(\log a)} d k d a d n, \quad f \in C_{c}^{\infty}(G) .
$$

Now $P=M A_{\mathfrak{p}} N$ is clearly a subgroup of G. If $\sigma \in \mathscr{E}_{M}$ acts on the finite dimensional Hilbert space V_{σ} and if $\lambda \in \mathfrak{a}_{\mathfrak{p}}^{*}$, then the map $\sigma \lambda$ from P into $\operatorname{End}\left(V_{\sigma}\right)$ (the algebra of linear endomorphisms of V_{σ}) given by

$$
(\sigma \lambda)(m \cdot \exp H \cdot n)=\sigma(m) e^{-i \lambda(H)}, \quad m \in M, n \in N, \lambda \in \mathfrak{a}_{\mathfrak{p}}^{*},
$$

is an irreducible unitary representation of P. Let $\pi_{\sigma, \lambda}$ be the unitary representation of G on the Hilbert space $\mathscr{H}_{\sigma, \lambda}$ obtained by inducing $\sigma \lambda$ from P to G; here $\mathscr{H}_{\sigma, \lambda}$ is the set of functions Φ from G into V_{σ} such that
(i) $\Phi\left(x \xi^{-1}\right)=(\sigma \lambda)(\xi) \quad \Phi(x), x \in G, \xi \in P$,
(ii) $\Phi(k)$ is a Borel function on K,
(iii) $\int_{K}|\Phi(k)|^{2} d k<+\infty$,
and the inner product on $\mathscr{H}_{\sigma, \lambda}$ is given by

$$
(\Phi, \Psi)=\int_{K}(\Phi(k), \Psi(k))_{V_{0}} d k, \quad \Phi, \Psi \in \mathscr{H}_{\sigma, \lambda}
$$

where (, $)_{V_{\sigma}}$ is the inner product in V_{σ}. If $\Phi \in \mathscr{H}_{\sigma, \lambda}, \pi_{\sigma, \lambda}(y) \Phi$ is given by

$$
\left(\pi_{\sigma, \lambda}(y) \Phi\right)(x)=\Phi\left(y^{-1} x\right) e^{-e\left(H\left(y^{-1} x\right)\right)+e(H(x))}, \quad x, y \in G .
$$

For any $\lambda \in \mathfrak{a}_{p}^{*}$ and any $\Phi \in \mathscr{H}_{\sigma, \lambda}$ we can define a function $\tilde{\Phi}$ from K to V_{σ} by restricting Φ to K. This identifies $\mathscr{H}_{\sigma, \lambda}$ with a Hilbert space \mathscr{H}_{σ} of squareintegrable functions from K into $V_{\sigma} . \mathscr{H}_{\sigma}$ is the Hilbert space on which π_{σ} acts. The above equivalence between \mathscr{H}_{σ} and $\mathscr{H}_{\sigma, \lambda}$ gives an intertwining operator bet-
ween π_{σ} and $\pi_{\sigma, \lambda} \mid K$, the restriction of $\pi_{\sigma, \lambda}$ to K.
Any element s in W (the little Weyl group) acts on $\mathfrak{a}_{\mathfrak{p}}$ by reflection and so on its dual space \mathfrak{a}_{p}^{*}. s also induces an automorphism of M, modulo the group of inner automorphisms. Therefore s defines a bijection:

$$
s: \sigma \longrightarrow s \sigma
$$

of \mathscr{E}_{M} onto itself. If we let s act on P, we can transform the representation $\sigma \lambda$ into the representation $(s \sigma)(s \lambda)$. Now, if $\lambda \in \mathfrak{a}_{\mathfrak{p}}^{*}$ and $\sigma \in \mathscr{E}_{M}$, it is known that $\pi_{\sigma, \lambda}$ is equivalent to $\pi_{s \sigma, s \lambda}$. Furthermore, the representations $\left\{\pi_{\sigma, \lambda}\right\}_{\sigma \in \delta_{M}, \lambda \in a_{p}^{*+}}$, where \mathfrak{a}_{p}^{*+} is the positive Weyl chamber in $\mathfrak{a}_{\mathfrak{p}}^{*}$, are all irreducible and inequivalent ([2, Theorem 7; 2]).

For each $\sigma \in E_{M}$ and regular $\lambda \in \mathfrak{a}_{p}^{*}$, that is, $\varpi(\lambda) \neq 0$ for $\varpi=\sum_{\alpha \in P_{+}} H_{\alpha}$, let $N_{\sigma}^{s}(\lambda)$ be a fixed unitary intertwining operator between $\pi_{\sigma, \lambda}$ and $\pi_{s \sigma, s \lambda}$. Then

$$
N_{\sigma}^{s}(\lambda) \pi_{\sigma, \lambda}(x) N_{\sigma}^{s}(\lambda)^{-1}=\pi_{s \sigma, s \lambda}(x), \quad x \in G
$$

3. The character of $\boldsymbol{\pi}_{\boldsymbol{\sigma}, \lambda}$

In order to obtain the Plancherel measure and the Plancherel formula we shall study the character of the unitary representation $\pi_{\sigma, \lambda}$ of G. To do this, we use notations by Harish-Chandra.

Put

$$
\Delta_{M}(a h)=\xi_{e}(a) \prod_{\alpha \in P_{M}}\left(1-\xi_{\alpha}\left(a^{-1}\right)\right), \quad a \in A_{I}, h \in A_{\mathfrak{p}}
$$

For $g \in C_{c}^{\infty}\left(M A_{\mathfrak{p}}\right)$, write

$$
F_{g}^{M}(a h)=\Delta_{M}(a) \int_{M / A_{I}} g\left(m^{*} a h m^{*-1}\right) d m^{*}, \quad a \in A_{I}, h \in A_{\mathfrak{p}}
$$

and ah is a regular element in A and $d m^{*}$ is the invariant measure on the homogeneous space M / A_{I}. Hereafter we denote the set of regular elements in A by A^{\prime}. It is known that there exists a constant $c_{1}>0$ such that for any $g \in C_{c}^{\infty}\left(M A_{\mathfrak{p}}\right)$

$$
\begin{equation*}
\int_{M \times A_{p}} g(m h) d m d h=c_{1} \int_{A_{I} \times A_{p}} \overline{\Delta_{M}(a)} F_{g}^{M}(a h) d a d h \tag{3.1}
\end{equation*}
$$

(see [6(k), Lemma 41]).
For $f \in C_{c}^{\infty}(G)$, write

$$
\begin{equation*}
F_{f}(a)=\Delta(a) \int_{G^{*}} f\left(a^{x^{*}}\right) d x^{*}, \quad a \in A^{\prime} \tag{3.2}
\end{equation*}
$$

where $G^{*}=G / A, a^{x^{*}}=x a x^{-1}(a \in A, x \in G)$ and $d x^{*}$ denotes the invariant measure on G^{*}. Here we remark that ε_{R} in the definition of F_{f} in $[6(\mathrm{k})]$ is 1 in our case bacause \mathfrak{a} is fundamental. Since \mathfrak{a} is fundamental we can apply the HarishChandra's limit formula to F_{f}. Namely, there is a positive constant c such that for any $f \in C_{c}^{\infty}(G)$

$$
\begin{equation*}
c f(1)=(-1)^{q} F_{f}(1 ; \pi), \tag{3.3}
\end{equation*}
$$

where $q=\frac{1}{2}\left[P_{+}\right]$and $\varpi=\prod_{\alpha \in P} H_{\alpha}$. We write $\varpi^{\mathrm{m}}=\prod_{\alpha \in P_{M}} H_{\alpha}$. Let \tilde{A} be the normalizer of A in G. Then $W_{A}=\tilde{A} / A$ is a finite group (see [6(k), pg. 488]). If $y \in \tilde{A}, s \in W_{A}$ and $y A=s$ then W_{A} acts on A and hence on \mathfrak{a} by

$$
h^{s}=y h y^{-1}, \quad h \in A .
$$

We put

$$
\left(\varpi^{m}\right)^{s}=\varepsilon_{0}(s) \varpi^{m}
$$

where $\varepsilon_{0}(s)=1$ or -1 . It is clear that for any $f \in C_{c}^{\infty}(G)$

$$
\begin{equation*}
F_{f}\left(h^{s}\right)=\varepsilon_{0}(s) F_{f}(h), \quad h \in A^{\prime}, s \in W_{A} . \tag{3.4}
\end{equation*}
$$

Lemma 3.1. Let U be a compact real semisimple Lie group with Lie algebra \mathfrak{u} and \mathfrak{g} the complexification of \mathfrak{u}. Let \mathfrak{h}_{0} be a Cartan subalgebra of $\mathfrak{u}, \mathfrak{h}$ its complexification and let $W_{\mathfrak{g}, \mathfrak{h}}$ denote the Weyl group of $(\mathfrak{g}, \mathfrak{h})$. If $s \in W_{\mathfrak{g}, \mathfrak{\emptyset}}$ then there exists an element $u \in U$ such that $s H=\operatorname{Adu}(H)(H \in \mathfrak{h})$.

Proof. Let Δ denote the set of non-zero roots of $(\mathfrak{g}, \mathfrak{h})$ and \mathfrak{g}^{α} the root subspace of $\alpha \in \Delta$. Let $E_{ \pm \alpha} \in \mathfrak{g}^{ \pm \alpha}$ such that $\left[E_{\alpha}, E_{-\alpha}\right]=-H_{\alpha}$ and put $X=\pi(2(\alpha$, $\alpha))^{-1 / 2}\left(E_{\alpha}+E_{-\alpha}\right)$, where the number π is the ratio of the circumference of the circle to the diameter. We put $\sigma=\exp \operatorname{ad}(X)$. Then σ is an automorphism of \mathfrak{g}. We shall prove that \mathfrak{h} is invariant under σ and that, if we denote the dual of σ which acts on the dual space \mathfrak{b}^{*} of \mathfrak{h} by σ^{*}, then $\left(\sigma^{*}\right)^{-1}=\hat{\sigma}$ can be regarded as the reflection s_{α} associated with α. By induction on p, we can prove easily that

$$
\begin{aligned}
& (\mathrm{ad} X)^{2 p+1} \cdot H=(-1)^{p+1} \pi^{2 p+1} \alpha(H)(2(\alpha, \alpha))^{-1 / 2}\left(E_{\alpha}-E_{-\alpha}\right), \\
& (\mathrm{ad} X)^{2 p+2} \cdot H=(-1)^{p+1} \pi^{2 p+2} \alpha(H)(\alpha, \alpha)^{-1} H_{\alpha}, \quad H \in \mathfrak{h} .
\end{aligned}
$$

Hence,

$$
\sigma(H)=H+\sum_{p=0}^{\infty} \frac{1}{(2 p+1)!}(\operatorname{ad} X)^{2 p+1} H+\sum_{p=0}^{\infty} \frac{1}{(2 p+2)!}(\operatorname{ad} X)^{2 p+2} H
$$

$$
\begin{aligned}
= & H+\alpha(H)(2(\alpha, \alpha))^{-1 / 2} \sum_{p=0}^{\infty}(-1)^{p+1} \frac{\pi^{2 p+1}}{(2 p+1)!}\left(E_{\alpha}-E_{-\alpha}\right) \\
& +\alpha(H)(\alpha, \alpha)^{-1} \sum_{p=0}^{\infty}(-1)^{p+1} \frac{\pi^{2 p+2}}{(2 p+2)!} H_{\alpha} \\
= & H-\alpha(H)(2(\alpha, \alpha))^{-1 / 2} \sin \pi\left(E_{\alpha}-E_{-\alpha}\right)+\alpha(H)(\alpha, \alpha)^{-1}(\cos \pi-1) H_{\alpha} \\
= & H-2 \alpha(H)(\alpha, \alpha)^{-1} H_{\alpha} .
\end{aligned}
$$

Therefore we obtain the above assertion.
Now let η be the conjugation of \mathfrak{g} with respect to \mathfrak{u}. Then \mathfrak{h} is invariant under η and there exists a vector $X_{\alpha} \in \mathfrak{g}^{\alpha}$ such that for all $\alpha \in \Delta$

$$
\sqrt{-1}\left(X_{\alpha}+X_{-\alpha}\right) \in \mathfrak{u}, \quad\left[X_{\alpha}, X_{-\alpha}\right]=2(\alpha, \alpha)^{-1} H_{\alpha}
$$

(cf. [7(a), pg. 219, Lemma 3.1]). If we put

$$
E_{ \pm \alpha}=\sqrt{-1}\{(\alpha, \alpha) / 2\}^{1 / 2} X_{ \pm \alpha}
$$

then they satisfy $\left[E_{\alpha}, E_{-\alpha}\right]=-H_{\alpha}$ and $X=\pi(2(\alpha, \alpha))^{-1 / 2}\left(E_{\alpha}+E_{-\alpha}\right) \in \mathfrak{u}$. This proves Lemma 3.1.
Q.E.D.

By the above lemma it is clear that, for any $s \in W_{\mathrm{m}}$, there exists an element $m \in M$ such that $s H=\operatorname{Ad}(m) H\left(H \in \mathfrak{a}_{\mathfrak{f}}^{c}\right)$. Since m fixes $\mathfrak{a}_{\mathfrak{p}}$ pointwise, we have $m \in \tilde{A}$. Hence, from the formulae (3.2) and (3.4) we obtain the following: For any $f \in C_{c}^{\infty}(G)$,

$$
\begin{equation*}
F_{f}\left(a^{s} h\right)=\varepsilon_{0}(s) F_{f}(h), \quad a \in A_{I}, h \in A_{p}, a h \in A^{\prime}, s \in W_{\mathrm{m}} . \tag{3.5}
\end{equation*}
$$

For $f \in C_{c}^{\infty}(G)$ define a function g_{f} in $C_{c}^{\infty}\left(M A_{\mathfrak{p}}\right)$ by

$$
g_{f}(m h)=e^{e(\log h)} \int_{N} \int_{K} f\left(k m h n k^{-1}\right) d k d n, \quad m \in M, h \in A_{\mathfrak{p}}
$$

By Lemma 52 in [6(k)] we know, in our case, that there exists a positive constant c_{2} scuh that

$$
\begin{equation*}
F_{f}(a h)=c_{2} F_{\mathscr{y}_{f}}^{M}(a h), \quad a \in A_{I}, a h \in G^{\prime} \tag{3.6}
\end{equation*}
$$

The map $K \times \mathfrak{a}_{p}^{+} \times K \rightarrow G$ given by

$$
\left(k_{1}, H, k_{2}\right) \longrightarrow k_{1} \cdot \exp H \cdot k_{2}
$$

is a diffeomorphism onto G^{\prime}. Furthermore, there exists a constant $c>0$ such that for any $f \in C_{c}^{\infty}(G)$

$$
\int_{G} f(x) d x=c \int_{a_{p}} \int_{K \times K} f\left(k_{1} \exp H \cdot k_{2}\right)|D(H)| d k_{1} d k_{2} d H
$$

where

$$
D(H)=\prod_{\alpha \in P_{+}} \sinh \alpha(H)
$$

Let π be an irreducible unitary representation of G on a Hilbert space \mathscr{H}. Let $f \in C_{c}^{\infty}(G)$. Then it is known that the operator

$$
\pi(f)=\int_{G} f(x) \pi(x) d x
$$

is of trace class and that the map

$$
f \longrightarrow \operatorname{tr} \pi(f)
$$

is a distribution on $C_{c}^{\infty}(G)$ (see [6(c), §5]). This distribution is called the character of π.

Let $\sigma \in \mathscr{E}_{M}, \lambda \in \mathfrak{a}_{\hat{\mu}}^{* \prime}$ and $\Theta_{\sigma, \lambda}$ be the character of the representation $\pi_{\sigma, \lambda}$. Put $t=\frac{1}{2}(\operatorname{dimg}-\mathrm{rankg})$ and choose $\mu \in \Pi^{\prime}$ such that $\sigma=\sigma(\mu)$ as in Lemma 2.1.

Theorem 3.1. There exists a constant $c_{0}>0$ such that for every $f \in C_{c}^{\infty}(G)$,

$$
\Theta_{\sigma, \lambda}(f)=c_{0}(-1)^{t}\left(\operatorname{sign} \varpi^{\mathrm{m}}(\mu)\right) \int_{A_{I} \times A_{\mathrm{p}}} F_{f}(a h) \xi_{\mu}(a) e^{-i \lambda(\log h)} d a d h
$$

Proof. Let A be the operator on $\mathscr{H}_{\sigma, \lambda}$ defined by

$$
A=\int_{G} f(x) \pi_{\sigma, \lambda}(x) d x, \quad f \in C_{c}^{\infty}(G)
$$

We want to compute the trace of $A . \operatorname{tr} A$ is equal to $\operatorname{tr} \overline{A^{*}}$, where A^{*} is the adjoint operator of A and the bar denotes complex conjugation. For $\Phi \in \mathscr{H}_{\sigma, \lambda}$ and $k_{1} \in K$,

$$
\begin{aligned}
\left(A^{*} \Phi\right)\left(k_{1}\right) & =\left(\int_{G} \overline{f(x)} \pi_{\sigma, \lambda}\left(x^{-1}\right) d x \cdot \Phi\right)\left(k_{1}\right) \\
& =\int_{G} \overline{f(x)} \Phi\left(x k_{1}\right) e^{-\varrho\left(H\left(x k_{1}\right)\right)} d x \\
& =\int_{G} \overline{f\left(x k_{1}^{-1}\right)} \Phi(x) e^{-\varrho(H(x))} d x \\
& =\int_{K \times A_{p} \times N} \overline{f\left(k h n k_{1}^{-1}\right)} \Phi(k) e^{(i \lambda+e)(\log h)} d k d h d n .
\end{aligned}
$$

In the last integral, substitute $k m$ for k and integrate with respect to M. Then

$$
\left(A^{*} \Phi\right)\left(k_{1}\right)=\int_{K \times M \times A_{p} \times N} \overline{f\left(k m h n k_{1}^{-1}\right)} \sigma\left(m^{-1}\right) e^{(i \lambda+e)(\log h)} \Phi(k) d k d m d h d n .
$$

Now to deal with this expression further we consider the principal fiber bundle

$$
M \longrightarrow K \longrightarrow K / M
$$

The map $m \rightarrow \sigma\left(m^{-1}\right)$ defines a complex vector bundle E_{σ} over K / M with fiber V_{σ}, the space on which σ acts. Let $F\left(k_{1}, k\right)$ be the operator-valued function defined by

$$
F\left(k_{1}, k\right)=\int_{M \times A_{p} \times N} \overline{f\left(k m h n k_{1}^{-1}\right)} \sigma\left(m^{-1}\right) e^{(i \lambda+e)(\log h)} d m d h d n .
$$

Now it is easy to see that M normalizes N and that for fixed $m \in M$ the measures $d n$ and $d\left(\mathrm{mnm}^{-1}\right)$ on N are equal. Then for $\bar{m}_{1}, \bar{m} \in M$

$$
F\left(k_{1} \bar{m}_{1}, k \bar{m}\right)=\left(\bar{m}_{1}^{-1}\right) F\left(k_{1}, k\right) \sigma(\bar{m})
$$

Therefore $F\left(k_{1}, k\right)$ can be regarded as a section of $E_{\sigma}|\bar{区}| E_{\sigma}^{*}$, where E_{σ}^{*} denotes the adjoint bundle of E_{σ} and $E_{\sigma}|\bar{X}| E_{\sigma}^{*}$ denotes the exterior tensor product of E_{σ} and E_{σ}^{*}, a bundle with base space $K / M \times K / M$ and fiber $V_{\sigma} \otimes V_{\sigma}^{*}$.

In $\S 2$ we note that there exists a natural equivalence between $\mathscr{H}_{\sigma, \lambda}$ and \mathscr{H}_{σ}. However, \mathscr{H}_{σ} is the space of square-integrable sections of E_{σ} with respect to a K-invariant measure on $K / M . \quad F\left(k_{1}, k\right)$ can be regarded as the kernel of the linear operator A^{*} on this space. Then for any Φ on \mathscr{H}_{σ}

$$
\left(A^{*} \Phi\right)\left(k_{1}\right)=\int_{K} F\left(k_{1}, k\right) \Phi(k) d k
$$

To evaluate the trace of A^{*} we need the following lemma.
Lemma 3.2. Let X be a compact infinitely differentiable manifold of dimension n. Let $d x$ be a positive nowhere vanishing differentiable n-form on X. If $E \rightarrow X$ is a differentiable Hilbert bundle of fiber dimension s, let $L^{2}(E)$ be the Hilbert space of square-integrable sections of E. If $F\left(x_{1}, x\right)$ is a continuous section of $E|\mathbb{X}| E^{*}, F\left(x_{1}, x\right)$ defines a bounded linear operator F on $L^{2}(E)$ in the obvious manner. Then if $F\left(x_{1}, z\right)$ is differentiable in both variables F is of trace class. Furthermore

$$
\operatorname{tr} F=\int_{X}(\operatorname{tr} F(x, x) d x
$$

For a proof see [1, Lemma 4].
By the lemma,

$$
\operatorname{tr} A^{*}=\int_{K \times M \times A_{p} \times N} \overline{f\left(k m h n k^{-1}\right)} \cdot \operatorname{tr} \sigma\left(m^{-1}\right) e^{(i \lambda+e)(\log h)} d k d m d h d n .
$$

Therefore,

$$
\begin{aligned}
\operatorname{tr} A & =\overline{\operatorname{tr} A^{*}} \\
& =\int_{K \times M \times A_{p} \times N} f\left(k m h n k^{-1}\right) \overline{\operatorname{tr} \sigma\left(m^{-1}\right)} e^{(-i \lambda+e)(\operatorname{logh)}} d k d m d h d n \\
& =\int_{M \times A_{p}} g_{f}(m h) \cdot \operatorname{tr} \sigma(m) e^{-i \lambda(\operatorname{logh})} d m d h,
\end{aligned}
$$

since

$$
\overline{\operatorname{tr} \sigma\left(m^{-1}\right)}=\overline{\operatorname{tr} \sigma(m)^{*}}=\operatorname{tr} \sigma(\mathrm{m}) .
$$

Recall that

$$
q=\frac{1}{2}\left[P_{+}\right], \quad[P]=t .
$$

Then

$$
\left[P_{M}\right]=[P]-\left[P_{+}\right]=t-2 \dot{q} .
$$

If $a \in A_{I}$ then

$$
\overline{\Delta_{M}(a)}=\Delta_{M}(a)(-1)^{\left[P_{M}\right]}=\Delta_{M}(a)(-1)^{t} .
$$

Now for any $m \in M$

$$
\operatorname{tr} \sigma\left(\mathrm{mam}^{-1}\right)=\operatorname{tr} \sigma(a), \quad\left(a \in A_{I}\right) .
$$

Therefore, from (3.1) we see that

$$
\operatorname{tr} A=c_{1} \int_{A_{I} \times A_{\mathfrak{p}}} F_{g_{f}}^{M}(a h) \overline{\Lambda_{M}(a)} \operatorname{tr} \sigma(a) e^{-i \lambda(\log h)} d a d h
$$

By Lemma 2.1, this equals

$$
\left(\text { singn } \varpi^{\mathrm{m}}(\mu)\right)(-1)^{t} c_{1} \int_{A_{I} \times A_{\mathrm{p}}} F_{g_{f}}^{M}(a h) e^{-i \lambda(\operatorname{logh})}\left(\sum_{s \in \bar{W}_{\mathrm{m}}} \varepsilon_{0}(s) \xi_{s \mu}(a)\right) d a d h .
$$

By formula (3.5) this expression equals

$$
\left(\operatorname{singn} \varpi^{\mathrm{m}}(\mu)\right)(-1)^{t}\left(c_{1} / c_{2}\right) \cdot \int_{A_{I} \times A_{\mathrm{p}}} F_{f}(a h) e^{-i \lambda(\operatorname{logh})}\left(\sum_{s \in W_{\mathrm{m}}} \varepsilon_{0}(s) \xi_{s \mu}(a)\right) d a d h
$$

Now if $s \in W_{\mathrm{m}}$, substitute $s a$ for a in the above expression. From (3.5) we obtain the formula
$\operatorname{tr} A$

$$
=\left(\operatorname{sign} \nabla^{\mathrm{m}}(\mu)\right)(-1)^{t}\left(c_{1} / c_{2}\right)\left[W_{\mathrm{m}}\right] \int_{A_{I} \times A_{\mathrm{p}}} F_{f}(a h) e^{-i \lambda(\operatorname{logh})} \xi_{\mu}(a) d a d h .
$$

This implies the theorem if we put $c_{0}=\left(c_{1} / c_{2}\right)\left[W_{\mathrm{m}}\right]$.
Q.E.D.

4. The Plancherel measure and the Plancherel formula

By means of the character formula for $\pi_{\sigma, \lambda}$, we shall find the explicit Plancherel measure.

For any real linear function $\mu \in \Pi^{\prime}$ on $\sqrt{-1} \mathfrak{a}_{\mathfrak{t}}$ and any $\lambda \in \mathfrak{a}_{\mathfrak{p}}^{*}$ we extend them to real linear functions on $\sqrt{-1} \mathfrak{a}_{\mathfrak{t}}+\mathfrak{a}_{\mathfrak{p}}$ defining $\mu=0$ on $\mathfrak{a}_{\mathfrak{p}}$ and $\lambda=0$ on $\sqrt{-1} a_{t}$. We write

$$
\varpi(\mu: \lambda)=\varpi(\mu+i \lambda),
$$

which is clearly equal to

$$
\sigma^{\mathrm{m}}(\mu) \prod_{\alpha \in P_{+}}<\mu+i \lambda, H_{\alpha}>.
$$

Since the Cartan subalgebra \mathfrak{a} is fundamental in our case, all elements in P_{+} are positive complex roots. If we denote the conjugation of \mathfrak{g}^{c} with respect to \mathfrak{g} by η, then for each $\alpha \in P_{+} \alpha^{\eta} \in P_{+}$, so the complex roots occur in pairs. We have the formula

$$
\begin{equation*}
<\mu+i \lambda, H_{\alpha}>\cdot<\mu+i \lambda, H_{\alpha^{\eta}}>=-\left(\mu\left(H_{\alpha}\right)^{2}+\lambda\left(H_{\alpha}\right)^{2}\right) . \tag{4.1}
\end{equation*}
$$

Therefore,

$$
\operatorname{sign}\left\{\prod_{\alpha \in P_{+}}<\mu+i \lambda, H_{\alpha}>\right\}=(-1)^{q},
$$

where $q=\frac{1}{2}\left[P_{+}\right]$.
It is clear that

$$
\begin{equation*}
\varpi(\mu: \lambda)|\varpi(\mu: \lambda)|^{-1}=(-1)^{q} \cdot \operatorname{sign} \varpi^{\mathrm{m}}(\mu) \tag{4.2}
\end{equation*}
$$

and

$$
\begin{equation*}
w(\mu:-\lambda)=w(\mu: \lambda) \tag{4.3}
\end{equation*}
$$

Let $\sigma \in \mathscr{E}_{M}, \mu \in \Pi^{\prime}$ and $\sigma=\sigma(\mu)$. In $\S 2$ we define $s \sigma \in \mathscr{E}_{M}$ (which we write also as σ^{s}) for each $s \in W$. Then we can choose $\mu_{s} \in \Pi^{\prime}$ such that $\sigma^{s}=$ $\sigma^{s}\left(\mu_{s}\right)$. For a given μ, μ_{s} is not uniquely defined. However the expression

$$
\operatorname{sign} \pi^{\mathrm{m}}\left(\mu_{s}\right) \boldsymbol{m}\left(\mu_{s}: \lambda\right)
$$

is well defined for any $\lambda \in \mathfrak{a}_{\mathfrak{p}}^{*}$. Furthermore

$$
\begin{equation*}
\operatorname{sign} \varpi^{\mathrm{m}}\left(\mu_{s}\right) \boldsymbol{}\left(\mu_{s}: \lambda\right)=\operatorname{sign} \boldsymbol{w}(\mu) \boldsymbol{m}(\mu: \lambda) \tag{4.4}
\end{equation*}
$$

Now let $f \in C_{c}^{\infty}(G)$, then from the formula (3.3)

$$
f(1)=(1 / c)(-1)^{q} F_{f}(1 ; w)
$$

By the Fourier inversion formula on the connected abelian group $A_{I} \times A_{\mathfrak{p}}$,

$$
f(1)=(1 / c)(-1)^{q} \sum_{\mu \in I} \int_{a_{p}^{*}}\left[\int_{A_{I} \times A_{p}} F_{f}(a h ; m) \xi_{\mu}(a) e^{-i \lambda(\log h)} d a d h\right] d \lambda
$$

Since imaginary roots are all compact in our case, by [6(k), Lemma 40] and [$6(\mathrm{~g})$, Theorem 2] we obtain $F_{f} \in C_{c}^{\infty}(A)$. So we can apply the integration by parts to the above and we see that

$$
f(1)=(1 / c) \cdot(-1)^{q+t} \sum_{\mu \in \Pi} \int_{a_{p}^{*}} w(\mu: \lambda)\left[\int_{A_{I} \times A_{p}} F_{f}(a h) \xi_{\mu}(a) e^{-i \lambda(\operatorname{logh})} d a d h\right] d \lambda,
$$

where $t=[P]$. By Theorem 3.1 this expression equals

$$
\left(1 / c_{0} c\right) \cdot(-1)^{q} \sum_{\mu \in I I} \int_{a_{\dot{p}}^{*}} \pi(\mu:-\lambda) \operatorname{sign} \sigma^{m}(\mu) \Theta_{\sigma(\mu), \lambda}(f) d \lambda .
$$

Now we define

$$
\beta(\mu: \lambda)=\left(\omega / c_{0} c\right)(-1)^{q} \varpi(\mu ;-\lambda) \operatorname{sign} \varpi^{m}(\mu),
$$

where $\omega=[W]$. Then we see from (4.2) that $\beta(\mu: \lambda)$ is nonnegative. Also from (4.3) we see that

$$
\begin{equation*}
\beta(\mu:-\lambda)=\beta(\mu: \lambda) . \tag{4.5}
\end{equation*}
$$

For $s \in W$, it is clear that the expression $\beta\left(\mu_{s}: \lambda\right)$ is well defined. (4.4) implies the formula

$$
\beta\left(\mu_{s}: \lambda\right)=\beta(\mu: \lambda)=\beta\left(\mu_{s}: s \lambda\right)
$$

Since, for any $\lambda \in \mathfrak{a}_{\dot{p}}^{* \prime}$ and $\sigma \in \mathscr{E}_{M}, \pi_{s \sigma, \lambda}$ and $\pi_{\sigma, s^{-1} \lambda}$ are equivalent,

$$
\Theta_{s \sigma, \lambda}=\Theta_{\sigma, s^{-1} \lambda}
$$

Therefore we obtain the formula

$$
f(1)=\sum_{\mu \in \Pi} \int_{a_{p}^{*+}} \beta(\mu: \lambda) \Theta_{\sigma(\mu), \lambda}(f) d \lambda
$$

It is clear that

$$
\beta(s \mu: \lambda)=\beta(\mu: \lambda), \quad\left(s \in W_{\mathrm{m}}\right) .
$$

Then if $\sigma \in \mathscr{E}_{M}$, choose any $\mu \in \Pi^{\prime}$ such that $\sigma=\sigma(\mu)$. Define

$$
\beta(\sigma: \lambda)=\left[W_{\mathrm{m}}\right] \beta(\mu: \lambda) .
$$

Then $\beta(\sigma: \lambda)$ is well defined and $\beta(\sigma: \lambda)$ satisfies the formula

$$
f(1)=\sum_{\sigma \in \Theta_{M}} \int_{a_{p}^{*+}} \beta(\sigma: \lambda) \Theta_{\sigma, \lambda}(f) d \lambda .
$$

If $\sigma \in \mathscr{E}_{M}$ and $\lambda \in \mathfrak{a}_{\mathfrak{p}}^{* \prime}$, then it is clear that $\beta(\sigma: \lambda) \neq 0$ from the definition of $\beta(\sigma: \lambda)$. Furthermore, since $\beta(\sigma: \lambda)$ is a polynomial in μ and λ, for every $d \in \boldsymbol{D}\left(\mathfrak{a}_{p}^{*}\right)$, there exist polynomials p_{1}, p_{2} such that for $\sigma \in \mathscr{E}_{M}, \lambda \in \mathfrak{a}_{\dot{p}}^{*}$

$$
|\beta(\sigma: \lambda ; d)| \leqq p_{1}(|\sigma|) p_{2}(|\lambda|) .
$$

Thus we obtain the following lemma.
Lemma 4.1. $\quad \beta(\sigma: \lambda)$ is a non-negative function on $\mathscr{E}_{M} \times \mathfrak{a}_{\hat{p}}^{*}$ such that for any $f \in C_{c}^{\infty}(G)$

$$
\begin{equation*}
f(1)=\sum_{\sigma \in \delta_{M}} \int_{a_{\hat{p}}^{*+}} \beta(\sigma: \lambda) \Theta_{\sigma, \lambda}(f) d \lambda . \tag{4.6}
\end{equation*}
$$

Moreover $\beta(\sigma: \lambda)$ has the following properties.
(i) $\beta(\sigma: \lambda)=\beta(\sigma,-\lambda)=\beta(s \sigma, s \lambda) \quad(s \in W)$.
(ii) For every $d \in \boldsymbol{D}\left(\mathfrak{a}_{\mathfrak{p}}^{*}\right)$, there exist polynomials p_{1}, p_{2} such that for $\sigma \in \mathscr{E}_{M}, \lambda \in \mathfrak{a}_{p}^{*}$

$$
\begin{equation*}
|\beta(\sigma: \lambda ; d)| \leqq p_{1}(|\sigma|) p_{2}(|\lambda|) . \tag{4.7}
\end{equation*}
$$

Now let $\mathscr{H}_{2}(\sigma)$ be the space of Hilbert-Schmidt operators on \mathscr{H}_{σ} with the Hilbert-Schmidt norm $\|\cdot\|_{2}$.

Let $L^{2}(\widehat{G})$ be the set of functions

$$
a: \mathscr{H}_{M} \times \mathfrak{a}_{\mathfrak{p}}^{*} \longrightarrow \underset{\sigma \in \mathcal{S}_{M}}{\oplus_{\mathcal{H}}} \mathscr{H}_{2}(\sigma)
$$

which satisfy the following conditions:
(i) $a(\sigma: \lambda) \in \mathscr{H}_{2}(\sigma)$ for each $\sigma \in \mathscr{E}_{M}$ and $\lambda \in \mathfrak{a}_{p}^{*}$.
(ii) $a(s \sigma: s \lambda)=N_{\sigma}^{s}(\lambda) \mathrm{a}(\sigma: \lambda) N_{\sigma}^{s}(\lambda)^{-1}, \sigma \in \mathscr{E}_{M}, \lambda \in \mathfrak{a}_{\mathfrak{p}}^{* \prime}$ and $s \in W$.
(iii) For any $\sigma \in \mathscr{E}_{M}, a(\sigma: \lambda)$ is a Borel function of λ.
(iv) $\|a\|^{2}=\omega^{-1} \sum_{\sigma \in \delta_{M}} \int_{a_{p}^{*}}\|a(\sigma: \lambda)\|_{2}^{2} \beta(\sigma: \lambda) d \lambda<+\infty$.
(In (ii) we can regard the operators $N_{\sigma}^{s}(\lambda)$ as maps from \mathscr{H}_{σ} to $\mathscr{H}_{s \sigma}$ if we recall the canonical isomorphisms $\left.\mathscr{H}_{\sigma, \lambda} \leftrightarrow \mathscr{H}_{\sigma}, \mathscr{H}_{s \sigma, s \lambda} \dot{H}_{s \sigma}\right)$.

Since every $N_{\sigma}^{s}(\lambda)$ is unitary, condition (ii) implies that

$$
\|a(s \sigma: s \lambda)\|_{2}^{2}=\|a(\sigma: \lambda)\|_{2}^{2} .
$$

Hence

$$
\begin{equation*}
\|a\|^{2}=\sum_{\sigma \in \delta_{M}} \int_{a_{p}^{*+}}\|a(\sigma: \lambda)\|_{2}^{2} \beta(\sigma: \lambda) d \lambda . \tag{4.8}
\end{equation*}
$$

It is easy to see that $L^{2}(\hat{G})$ is a Hilbert space. For $f \in C_{c}^{\infty}(G)$, define $\hat{f} \in L^{2}(\hat{G})$ by

$$
\hat{f}(\sigma, \lambda)=\int_{G} f(x) \pi_{\sigma, \lambda}(x) d x, \quad \sigma \in \mathscr{E}_{M}, \lambda \in \mathfrak{a}_{p}^{*} .
$$

Then $\hat{f}(\sigma, \lambda)$ can be regarded as an operator on \mathscr{H}_{σ}. We call the map

$$
f \longrightarrow \hat{f}, \quad f \in C_{c}^{\infty}(G),
$$

the Fourier transform.
The Fourier transform $f \rightarrow \hat{f}\left(f \in C_{c}^{\infty}(G)\right)$ clearly extends uniquely to a map from $L^{2}(G)$ into $L^{2}(\hat{G})$. Now we shall prove the following Plancherel formula by the same method as in [1].

Theorem 4.1. (Plancherel formula). The Fourier transform

$$
f \longrightarrow \hat{f}, \quad f \in C_{c}^{\infty}(G)
$$

extends uniquely to an isometry from $L^{2}(G)$ onto $L^{2}(\widehat{G})$.
Proof. Fix $f \in C_{c}^{\infty}(G)$. Define

$$
g(x)=\int_{G} f(y) \overline{f\left(x^{-1} y\right)} d y, \quad x \in G
$$

then clearly $g \in C_{c}^{\infty}(G)$ and $g(1)=\|f\|_{2}^{2}$. If π is an irreducible unitary representation of G,

$$
\begin{aligned}
\pi(g) & =\int_{G \times G} f(y) \overline{f\left(x^{-1} y\right)} d y \pi(x) d x \\
& =\int_{G \times G} f(y) \overline{f\left(x^{-1}\right)} \pi(y x) d y d x
\end{aligned}
$$

$$
\begin{aligned}
& \left.=\left(\int_{G} f(y) \pi(y) d y\right)\right)\left(\int_{G} f(x) \pi(x) d x\right)^{*} \\
& =\pi(f) \cdot \pi(f)^{*}
\end{aligned}
$$

where $\pi(f)^{*}$ is the adjoint of $\pi(f)$. Therefore

$$
\operatorname{tr} \pi(g)=\|\pi(f)\|_{2}^{2}=\|\hat{f}(\pi)\|_{2}^{2} .
$$

Therefore, applying Lemma 4.1 to $g(x)$ we see that

$$
\|f\|_{2}^{2}=\|\hat{f}\|^{2}
$$

Thus, the $\operatorname{map} f \rightarrow \hat{f}$ is an isometry.
We have to show that the map is surjective.
Let $\hat{\rho}$ be the representation of $G \times G$ on $L^{2}(\hat{G})$ given by

$$
(\hat{\rho}(x, y) a)(\sigma, \lambda)=\pi_{\sigma, \lambda}(x) a(\sigma, \lambda) \pi_{\sigma, \lambda}\left(y^{-1}\right)
$$

for $\sigma \in \mathscr{E}_{M}, \lambda \in \mathfrak{a}_{\hat{p}}^{*}$, and $(x, y) \in G \times G$. Then we can see that $\hat{\rho}$ is multiplicity free, and hence the algebra $R(\hat{\rho}, \hat{\rho})$ of intertwining operators of $\hat{\rho}$ is commutative (see the proof of Theorem 2 in [1]).

Let ρ be the two-sided regular representation of $G \times G$ on $L^{2}(G)$. Then the map

$$
f \longrightarrow \hat{f}, \quad f \in L^{2}(G)
$$

is an intertwining operator between ρ and $\hat{\rho}$. Thus if L is the closure of the set $\left\{\hat{f}: f \in L^{2}(G)\right\}$, and P is the orthogonal projection of $L^{2}(\hat{G})$ onto L, then P is contained in $R(\hat{\rho}, \hat{\rho})$. But since $R(\hat{\rho}, \hat{\rho})$ is commutative, it is well known that P is of the form P_{E}, where E is a Borel subset of $S=\mathscr{E}_{M} \times \mathfrak{a}_{\dot{p}}^{*+}$ and

$$
P_{E}=\left\{a \in L^{2}(\widehat{G}): \text { a vanishes outside } E\right\} .
$$

In order to complete the proof of the surjectivity of the map $f \rightarrow \hat{f}$, we prove that the complement of E in S is a null set with respect the measure class C on S defined by the discrete measure on \mathscr{E}_{M} and the Lebesgue measure on \mathfrak{a}_{p}^{*+}.

Let us assume the contrary. Then there is a $\sigma \in \mathscr{E}_{M}$ and a subset R_{1} of $\mathfrak{a}_{\mathfrak{p}}^{* \prime}$ of positive Lebesque measure such that for any $f \in C_{c}^{\infty}(G)$,

$$
\hat{f}(\sigma, \lambda)=0 \quad \text { for almost all } \lambda \in R_{1} .
$$

Choose a $\tau \in \mathscr{E}_{K}$ for which there is a non-zero intertwining operator \boldsymbol{T} between the restriction of τ to M and σ. Choose a unit vector ξ in the space on which τ acts such that $T \xi \neq 0$. Define

$$
\Phi(k)=T\left(\tau\left(k^{-1}\right) \xi\right), \quad k \in K .
$$

Then $\Phi \in \mathscr{H}{ }_{\sigma} . \quad$ For any $f \in C_{c}^{\infty}(G)$,

$$
\begin{aligned}
(\hat{f}(\sigma, \lambda) \Phi)(1) & =\left(\int_{G} f(x) \pi_{\sigma, \lambda}(x) d x \cdot \Phi\right)(1) \\
& =\int_{G} f\left(x^{-1}\right) \Phi(x) e^{-\varrho(H(x))} d x .
\end{aligned}
$$

Then

$$
\begin{aligned}
& (\hat{f}(\sigma, \lambda) \Phi)(1) \\
& \quad=\int_{K \times a_{p}^{*} \times N} f\left(n^{-1} \cdot \exp (-H) \cdot k^{-1}\right) e^{(i \lambda+e)(H)} \Phi(k) d k d H d n .
\end{aligned}
$$

Let $f\left(n^{-1} \cdot \exp (-H) \cdot k^{-1}\right)=\chi(k) \cdot \alpha(H) \cdot v(n)$, where $\chi(k)=(\tau(k) \xi, \xi)$ and v is any function in $C_{c}^{\infty}(N)$ such that $\int_{N} v(n) d n=1$, and α is some function in $C_{c}^{\infty}\left(\mathfrak{a}_{p}^{*}\right)$ such that $\int_{\alpha_{\hat{p}}^{*}} \alpha(H) e^{(i \lambda+e)(H)} d H$ is not equal to zero for any λ belonging to a subset R_{2} of R_{1} of positive measure. Clearly such an α exists.

For a fixed $\lambda_{0} \in R_{2}$,

$$
\left(\hat{f}\left(\sigma, \lambda_{0}\right) \Phi\right)(1)=T(\xi) \int_{a_{\hat{p}}^{*}} \alpha(H) e^{(i \lambda+e)(H)} d H .
$$

This is a non-zero vector in the space on which σ acts. However, $(\hat{f}(\sigma, \lambda) \Phi)(k)$ is a continuous function of k, so $\left(\hat{f}\left(\sigma, \lambda_{0}\right) \Phi\right)(k)$ is nonzero on a subset of K of positive measure. Therefore $\hat{f}\left(\sigma, \lambda_{0}\right) \Phi$ is a nonzero vector in \mathscr{H}_{σ}. This means that the operators $\hat{f}(\sigma, \lambda)$ do not vanish for any $\lambda \in R_{2}$. We have a contradiction. The proof of Theorem 4.1 is now complete.
Q.E.D.

5. Statement of the main theorem

We shall define the Schwartz space for G according to $[6(\mathrm{~m})]$ and state the main theorem.

For $x \in G$, define

$$
\Xi(x)=\int_{K} e^{-\varrho(H(x k))} d k
$$

As usual we define a norm on \mathfrak{g} by

$$
|X|^{2}=-B(X, \theta X), \quad x \in \mathfrak{g}
$$

where B is the Killing form on \mathfrak{g} and θ is the Cartan involution of \mathfrak{g}. Since $G=K A_{\mathfrak{p}} K$ there exists a unique function σ on G such that
(i) $\sigma\left(k_{1} x k_{2}\right)=\sigma(x), k_{1}, k_{2} \in K$ and $x \in G$,
(ii) $\sigma(\exp H)=|H|, \quad H \in \mathfrak{a}_{\mathfrak{p}}$.

It is clear that

$$
\begin{gather*}
\Xi\left(x^{-1}\right)=\Xi(x), \tag{5.1}\\
\sigma\left(x^{-1}\right)=\sigma(x) \quad x \in G .
\end{gather*}
$$

It is known that there exist positive numbers c, d such that

$$
\begin{equation*}
1 \leqq \Xi(a) e^{e(\log a)} \leqq c(1+\sigma(a))^{d}, \quad a \in \operatorname{cl}\left(A_{p}^{+}\right) \tag{5.2}
\end{equation*}
$$

(see [6(h), Theorem 3 and Lemma 36]), and that

$$
\begin{equation*}
\sigma(x y) \leqq \sigma(x)+\sigma(y), \quad x, y \in G \tag{5.3}
\end{equation*}
$$

(see [6(m), Lemma 10]), and also that there exists an $r_{0}>0$ such that

$$
\begin{equation*}
\int_{G} \Xi(x)^{2}(1+\sigma(x))^{-r_{0}} d x=N\left(r_{0}\right)<+\infty \tag{5.4}
\end{equation*}
$$

(see [6(m), Lemma 11]).
Let \mathfrak{B} be the universal enveloping algebra of \mathfrak{g}^{c}. We can identify \mathfrak{B} with the algebra of left invariant differential operators on G. Let ξ be the canonical anti-isomorphism of \mathfrak{B} with the algebra of right invariant differential operators on G. If $g_{1}, g_{2} \in \mathfrak{B}$ and $f \in C^{\infty}(G)$, then the actions of $\xi\left(g_{1}\right)$ and g_{2} on f commute. We denote the resultant of this action at any $x \in G$ by $f\left(g_{1} ; x ; g_{2}\right)$.

Now for $f \in C^{\infty}(G)$ and $g_{1}, g_{2} \in \mathfrak{B}$ and $r \in \boldsymbol{R}$ we put

$$
\|f\|_{g_{1}, g_{2}, r}=\sup _{x \in G}\left|f\left(g_{1} ; x ; g_{2}\right)\right| \Xi(x)^{-1}(1+\sigma(x))^{r}
$$

Let

$$
\mathscr{C}(G)=\left\{f \in C^{\infty}(G):\|f\|_{g_{1}, g_{2}, r}<+\infty, \quad \text { for any } g_{1}, g_{2} \in \mathfrak{B} \text { and } r \in \boldsymbol{R}\right\} .
$$

These semi-norms make $\mathscr{C}(G)$ into a Fréchet space. The space $\mathscr{C}(G)$ is called the Schwartz space of G.

Clearly

$$
C_{c}^{\infty}(G) \subset \mathscr{C}(G)
$$

and the inclusion is continuous, and it is known that $C_{c}^{\infty}(\grave{G})$ is dense in $\mathscr{C}(G)$ ($[6(\mathrm{~m})$, Theorem 2]). Also from (5.4) we see that there is a continuous inclusion of $\mathscr{C}(G)$ into $L^{2}(G)$.

We wish to define a subspace of $L^{2}(\hat{G})$ which will ultimately turn out to be the image of $\mathscr{C}(G)$ under the Fourier transform $\mathscr{F}: f \rightarrow \hat{f}$. We shall need to fix an appropriate basis for the Hilbert space $\mathscr{H}_{\sigma, \lambda}$. As we remarked earlier, there is a canonical intertwining operator between the representations $\pi_{\sigma, \lambda} \mid K$ and π_{σ} of K. Therefore we shall choose a fixed orthonormal basis for the Hilbert space \mathscr{H}_{σ}.

The multiplicity of τ in $\pi_{\sigma, \lambda} \mid K$ equals the multiplicity of τ in π_{σ}. But π_{σ} is just the representation σ induced to K. Therefore by the Frobenius reciprocity theorem for compact groups ([9(a), Theorem 8.2]), these multiplicities are just equal to $[\tau: \sigma]$, the multiplicity of σ in $\tau \mid M$.

Fix $\tau \in \mathscr{E}_{K}$ and $\sigma \in \mathscr{E}_{M}$ acting on the Hilbert spaces V_{τ} and V_{σ} of dimension t and s respectively. Let $R(\tau, \sigma)$ be the set of intertwining operators from V_{τ} to V_{σ} for $\tau \mid M$ and σ. The Hilbert-Schmidt norm makes $R(\tau, \sigma)$ into a Hilbert space of dimension $[\tau: \sigma]$.

Now suppose $T \in R(\tau, \sigma)$. Since σ is irreducible, we can assume that there are orthonormal bases $\left\{\xi_{1}, \ldots, \xi_{t}\right\}$ and $\left\{\eta_{1}, \ldots, \eta_{s}\right\}$ of V_{τ} and V_{σ} respectively so that there is a constant c for which

$$
\begin{aligned}
T \xi_{i} & =c \eta_{i}, & 1 \leqq i \leqq s \\
T \xi_{i} & =0, & s<i \leqq t
\end{aligned}
$$

Suppose T has been normalized such that $c=(t / s)^{1 / 2}$. Then

$$
\begin{gather*}
T \xi_{i}=(t / s)^{1 / 2} \eta_{i}, \quad 1 \leqq i \leqq s, \tag{5.5}\\
\|T\|=t^{1 / 2} .
\end{gather*}
$$

Fix an element $\xi \in V_{\tau}$ of norm 1. Write $\tau^{*}(k)$ for $\tau\left(k^{-1}\right), k \in K$. Define

$$
\Phi(k)=T\left(\tau^{*}(k) \xi\right), \quad k \in K .
$$

Then it is not difficult to see that

$$
\Phi \in H_{\sigma}, \quad\|\Phi\|=1
$$

Conversely, let Φ be any unit vector in \mathscr{H}_{σ} so that Φ transforms under π_{σ} according to τ. Then there exist a unit vector $\xi \in V_{\tau}$ and an intertwining operator $T \in R(\tau, \sigma)$ with $\|T\|=(\operatorname{dim} \tau)^{1 / 2}$ such that

$$
\Phi(k)=T\left(\tau^{*}(k) \xi\right), \quad k \in K .
$$

For Φ defined as above and $s \in W$, the little Weyl group, the vector $N_{\sigma}^{s}(\lambda) \Phi$ is contained in $\mathscr{H}_{s \sigma}$. Clearly $N_{\sigma}^{s}\left(\lambda_{\lambda}\right) \Phi$ transforms under $\pi_{s \sigma}$ according to τ. Then there exists a unique $T_{s} \in R(\tau, s \sigma)$ with $\left\|T_{s}\right\|=(\operatorname{dim} \tau)^{1 / 2}$ such that

$$
\left(N_{\sigma}^{s}(\lambda) \Phi\right)(k)=T_{s}\left(\tau^{*}(k) \xi\right), \quad k \in K
$$

The map $T \rightarrow T_{s}$ from $R(\tau, \sigma)$ into $R(\tau, \sigma \sigma)$ will be denoted by $n_{\sigma}^{s}(\lambda)$. So $T_{s}=$. $n_{\sigma}^{s}(\lambda) T$. $n_{\sigma}^{s}(\lambda)$ is norm preserving and hence unitary.

Fix an orthonormal base $\left\{T_{1}, \ldots, T_{r}\right\}$ of $R(\tau, \sigma)$ of elements of norm equal to $(\operatorname{dim} \tau)^{1 / 2}$. For $1 \leqq l \leqq r, 1 \leqq j \leqq t$, and $k \in K$, define

$$
\begin{equation*}
\Phi_{\tau,(l-1) t+j}(k)=T_{l}\left(\tau^{*}(k) \xi_{j}\right) . \tag{5.6}
\end{equation*}
$$

Then $\left\{\Phi_{\tau, i}: \tau \in \mathscr{E}_{K}, 1 \leqq i \leqq[\tau: \sigma] \cdot \operatorname{dim} \tau\right\}$ is an orthonormal base for \mathscr{H}_{σ}.
Let $\mathscr{C}(\widehat{G})$ denote the set of functions $a(\sigma, \lambda)$ of $\mathscr{E}_{M} \times \mathfrak{a}_{\dot{p}}^{*}$ into $\mathscr{H}_{2}(\sigma)$ which satisfy the following conditions (i), (ii) and (iii):
(i) For each $\sigma \in \mathscr{E}_{M}, a(\sigma, \lambda)$ is a matrix-valued C^{∞} function on \mathfrak{a}_{p}^{*}.
(ii) $a(s \sigma, s \lambda)=N_{\sigma}^{s}(\lambda) a(\sigma, \lambda) N_{\sigma}^{s}(\lambda)^{-1}, \sigma \in \mathscr{E}_{M}, \lambda \in \mathfrak{a}_{p}^{* \prime}, \quad s \in W$.
(iii) For every quartet ($p_{1}, p_{2}, q_{1}, q_{2}$) of polynomials and each $d \in \boldsymbol{D}\left(\mathfrak{a}_{p}^{*}\right)$,

$$
\begin{equation*}
=\underset{\lambda, \sigma, \tau_{1}, i_{1}, \tau_{2}, i_{2}}{ }\left|d_{\lambda}\left(\Phi_{\tau_{1}, i_{1}}, a(\sigma, \lambda) \Phi_{\tau_{1}, p_{2}, i_{2}}\right)\right| p_{1}(|\sigma|) p_{2}(|\lambda|) q_{1}\left(\left|\tau_{1}\right|\right) q_{2}\left(\left|\tau_{2}\right|\right)<+\infty . \tag{5.6}
\end{equation*}
$$

Then the above semi-norms define a topology on $\mathscr{C}(\hat{G})$ so that $\mathscr{C}(\hat{G})$ is a Fréchet space. $\mathscr{C}(\widehat{G})$ is contained densely in $L^{2}(\widehat{G})$.

Theorem 5.1. The Fourier transform $\mathscr{F}: f \rightarrow \hat{f}$ is a topological isomorphism of $\mathscr{C}(G)$ onto $\mathscr{C}(\hat{G})$.

We shall spend the most of the rest of this paper to prove this theorem.

6. Eisenstein integrals

In this section we shall define τ-spherical functions and study the matrix elements.

Let τ be a unitary double representation of the compact group K on a Hilbert space V_{τ}, that is, V_{τ} is a left and right unitary K-module and the K-actions from the left and right commute with each other. We denote both the left and right K-actions of K by τ.

A function Φ from G to V_{τ} is said to be τ-spherical if

$$
\Phi\left(k_{1} x k_{2}\right)=\tau\left(k_{1}\right) \Phi(x) \tau\left(k_{2}\right), \quad k_{1}, k_{2} \in K, x \in G .
$$

We write the norm of $\Phi(x)$ in V_{τ} as $|\Phi(x)|$.
Let $f(x)$ be a continuous complex valued function on G such that the left and right translations of f by elements in K span a finite dimensional space of functions on G. Let ϕ be the function from G into $L^{2}(K \times K)$ defined by

$$
\phi(x)\left(k_{1}, k_{2}\right)=f\left(k_{1}^{-1} x k_{2}\right), \quad x \in G, k_{1}, k_{2} \in K .
$$

Define a double representation μ of K on $L^{2}(K \times K)$ by

$$
\begin{aligned}
& {\left[\mu\left(k_{1}\right) u\right]\left(k_{1}, k_{2}\right)=u\left(k_{1}^{-1} k_{1}, k_{2}\right),} \\
& {\left[u \mu\left(k_{2}\right)\right]\left(k_{1}, k_{2}\right)=u\left(k_{1}, k_{2} k_{2}^{-1}\right)}
\end{aligned}
$$

for $u \in L^{2}(K \times K), k_{1}, k_{2}, k_{1}, k_{2} \in K$. Let $V_{\mu}=\operatorname{sp}_{x \in G}\{\phi(x)\}$, the finite dimensional subspace of $L^{2}(K \times K)$ spanned by $\{\phi(x): x \in G\}$. Then it is clear that $f \in V_{\mu}$ and ϕ is a μ-spherical function. ϕ is called the μ-spherical function associated with f.

Notice that if τ is an irreducible unitary double representation of K on the finite dimensional Hilbert space V_{τ}, then τ can be regarded as an irreducible representation $\tau_{1} \otimes \tau_{2}^{*}$ of $K \times K$ on $V_{1} \otimes V_{2}^{*}$. Here τ_{1} and τ_{2} are irreducible representations of K on the spaces V_{1} and V_{2}, and τ_{2}^{*} is the dual representation of τ_{2} acting on V_{2}^{*}, the dual space of V_{2}. We write τ as $\left(\tau_{1}, \tau_{2}\right)$ and $|\tau|$ as $\left|\tau_{1}\right|+$ $\left|\tau_{2}\right|$. Let \mathscr{E}_{K}^{2} be the set of equivalence classes of irreducible unitary double representations of K.

Suppose that $f(x)=\left(\Phi_{1}, \pi(x) \Phi_{2}\right)$, where π is a unitary representation of G on a Hilbert space \mathscr{H}, and for each $\alpha=1$ or $2, \Phi_{\alpha}$ is a unit vector in \mathscr{H} that transforms under $\pi \mid K$ according to the irreducible unitary representation τ_{α} of K, acting on the Hilbert space V_{α}. Let $\tau=\left(\tau_{1}, \tau_{2}\right) \in \mathscr{E}_{K}^{2}$ act on the Hilbert space $V_{\tau}=$ $V_{1} \otimes V_{2}^{*}$. We shall find a formula for the spherical function ϕ associated with f.

Let τ_{α} have dimension t_{α} and let $\left\{\xi_{\alpha 1}, \ldots, \xi_{\alpha t_{\alpha}}\right\}$ be an orthonormal basis for V_{α}, for $\alpha=1$ or 2 . Let V_{α}^{\prime} be the subspace of \mathscr{H} spanned by $\{\pi(k) \Phi: k \in K\}$. Choose an orthonormal basis $\left\{\Phi_{\alpha 1}, \ldots, \Phi_{\alpha t_{\alpha}}\right\}$ of V_{α}^{\prime} such that the correspondence

$$
\xi_{\alpha i} \leftrightarrow \Phi_{\alpha i}, \quad i=1,2, \ldots, t_{\alpha}
$$

gives an intertwining operator between τ_{α} and $\pi \mid K$ acting on the space V_{α}^{\prime}. Define functions $e_{\alpha i}\left(i=1,2, \ldots, t_{\alpha}, \alpha=1,2\right)$ on K as follows:

$$
\begin{gathered}
e_{1 i}\left(k_{1}\right)=\left(\pi\left(k_{1}\right) \Phi_{1}, \Phi_{1 i}\right), \quad k_{1} \in K, \\
e_{2 j}\left(k_{2}\right)=\overline{\left(\pi\left(k_{2}^{-1}\right) \Phi_{2}, \Phi_{2 j}\right)}=\left(\pi\left(k_{2}\right) \Phi_{2 j}, \Phi_{2}\right), \quad k_{2} \in K,
\end{gathered}
$$

where the bar denotes the complex conjugate. Then

$$
\phi(x)\left(k_{1}, k_{2}\right)=f\left(k_{1}^{-1} x k_{2}^{-1}\right)=\left(\pi\left(k_{1}\right) \Phi_{1}, \pi(x) \pi\left(k_{2}^{-1}\right) \Phi_{2}\right)
$$

This is equal to the expression

$$
\sum_{i j} e_{1 i}\left(k_{1}\right) e_{2 j}\left(k_{2}\right)\left(\Phi_{1 i}, \pi(x) \Phi_{2 j}\right)
$$

V_{μ} is the subspace of $L^{2}(K \times K)$ spanned by the functions $e_{1 i}\left(k_{1}\right) e_{2 j}\left(k_{2}\right)$. Let $\left\{\xi_{21}^{*}, \ldots, \xi_{2 t_{2}}^{*}\right\}$ be the dual basis in V_{2}^{*} of $\left\{\xi_{21}, \ldots, \xi_{2 t_{2}}\right\}$. Then for $1 \leqq i \leqq t_{1}$, $1 \leqq j \leqq t_{2}$, identify $e_{1 i}\left(k_{1}\right) \cdot e_{2 j}\left(k_{2}\right)$ with $\left(t_{1} t_{2}\right)^{-1 / 2} \xi_{1 i} \otimes \xi_{2}^{*} j$. This gives an intertwining operator between the double representations μ and τ. Therefore, we can regard ϕ as a τ-spherical function from G to V_{τ}. We have the formula

$$
\begin{equation*}
\phi(x)=\left(t_{1} t_{2}\right)^{-1 / 2} \sum_{i, j} \xi_{1 i} \otimes \xi_{2}^{*}{ }_{j}\left(\Phi_{1 i}, \pi(x) \Phi_{2 j}\right), \quad x \in G . \tag{6.1}
\end{equation*}
$$

Now suppose $\pi=\pi_{\sigma, \lambda}\left(\sigma \in \mathscr{E}_{M}, \lambda \in \mathfrak{a}_{p}^{*}\right)$ and recall that $R\left(\tau_{\alpha}, \sigma\right)$ is the space of intertwining operators between τ_{α} and σ. Fix $T_{\alpha} \in R\left(\tau_{\alpha}, \sigma\right)$ such that

$$
\left\|T_{\alpha}\right\|^{2}=\operatorname{dim} \tau_{\alpha}=t_{\alpha}, \quad \alpha=1,2
$$

Suppose that $\xi_{1} \in V_{1}, \xi_{2} \in V_{2}$ are unit vectors. Let

$$
\Phi_{\alpha}(k)=T_{\alpha}\left(\tau_{\alpha}^{*}(k) \xi_{\alpha}\right), \quad k \in K, \alpha=1,2 .
$$

Then clearly, Φ_{1} and Φ_{2} are unit vectors in \mathscr{H}_{σ}. Define

$$
\Phi_{\alpha i}(k)=T_{\alpha}\left(\tau_{\alpha}^{*}(k) \xi_{\alpha i}\right), \quad k \in K, \quad \alpha=1,2,1 \leqq i \leqq t_{\alpha}
$$

Then $\left\{\Phi_{\alpha i}\right\}$ is an orthonormal basis of V_{α}^{\prime}. Put

$$
f_{\sigma, \lambda}(x)=\left(\Phi_{1}, \pi_{\sigma, \lambda}(x) \Phi_{2}\right)=\left(\pi_{\sigma, \lambda}\left(x^{-1}\right) \Phi_{1}, \Phi_{2}\right) .
$$

This is equal to the expression

$$
\begin{equation*}
\int_{K}\left(T_{1}\left[\tau_{1}^{*}\left(k(x k) \xi_{1}\right], T_{2}\left[\tau_{2}^{*}(k) \xi_{2}\right]\right)_{V_{\sigma}} e^{(i \lambda-e)(H(x k))} d x\right. \tag{6.2}
\end{equation*}
$$

where $(,)_{V_{\sigma}}$ denotes the inner product on V_{σ}, the space on which σ.acts. Combining the formulae (6.1) and (6.2) we obtain the following formula:

$$
\begin{align*}
& \phi_{\sigma, \lambda}(x)=\left(t_{1} t_{2}\right)^{-1 / 2} \sum_{i, j} \xi_{1 i} \otimes \xi_{2 j}^{*} \int_{K}\left(T_{1}\left[\tau_{1}^{*}(\kappa(x k)) \xi_{1 i}\right], T_{2}\left[\tau_{2}^{*}(k) \xi_{2 j}\right]\right)_{V_{g}} . \tag{6.3}\\
& \quad \cdot e^{(i \lambda-\varrho)(H(x k))} d k .
\end{align*}
$$

Let $L=L^{\tau}$ be the following set of functions on $M:\left\{\psi: M \rightarrow V_{\tau}: \psi\left(m_{1} m m_{2}\right)\right.$ $\left.=\tau\left(m_{1}\right) \psi(m) \tau\left(m_{2}\right), m, m_{1}, m_{2} \in M\right\}$.
Then L^{τ} is a Hilbert space with inner product

$$
\begin{aligned}
& \left(\psi_{1}, \psi_{2}\right)_{M}=\int_{M}\left(\psi_{1}(m), \psi_{2}(m)\right) d m=\int_{M}\left(\tau_{1}(m) \psi_{1}(1), \tau_{1}(m) \psi_{2}(1)\right) d m \\
& =\left(\psi_{1}(1), \psi_{2}(1)\right)
\end{aligned}
$$

If $\psi \in L^{\tau}$, then $\psi(1) \in V_{1} \otimes V_{2}^{*}$ and it can be regarded as an intertwining operator
from V_{2} to V_{1} for $\tau_{2} \mid M$ and $\tau_{1} \mid M$. Conversely, if S is such an intertwining operator, then

$$
\psi(m)=\tau_{1}(m) S=S \tau_{2}(m)
$$

is contained in L^{τ}.
If $\sigma \in \mathscr{E}_{M}$, let L_{σ}^{τ} be the set of functions $\psi \in L^{\tau}$ such that $\psi(m)$ transforms under left and right translates of M according to the representation σ of M. Then there exists a finite number of representations $\left\{\sigma_{1}, \ldots, \sigma_{r}\right\}$ in \mathscr{E}_{M} such that

$$
L^{\tau}=L_{\sigma_{1}}^{\tau} \oplus \cdots \oplus L_{\sigma_{r}}^{\tau} .
$$

For any $\psi \in L^{\tau}$ let us extend the domain of ψ to all of G by defining

$$
\psi(k a n)=\tau_{1}(k) \psi(1), \quad k \in K, a \in A_{\mathfrak{p}}, n \in N
$$

Let us return to our function $\phi(x)$ above. Define

$$
T_{1}^{*}: V_{\sigma} \longrightarrow V_{1}
$$

as the adjoint of T_{1}. Let

$$
S=T_{1}^{*} T_{2}: V_{2} \longrightarrow V_{1}
$$

Then S is an intertwining operator for $\tau_{2} \mid M$ and $\tau_{1} \mid M$, and can be regarded canonically as an element in $V_{1} \otimes V_{2}^{*}$, and moreover,

$$
\begin{aligned}
S & =\left(t_{1} t_{2}\right)^{-1 / 2} \sum_{i, j} \xi_{1 i} \otimes \xi_{2 j}^{*}\left(\xi_{1 i}, S \xi_{2 j}\right)_{V_{1}} \\
& =\left(t_{1} t_{2}\right)^{-1 / 2} \sum_{i, j} \xi_{1 i} \otimes \xi_{2 j}^{*}\left(T_{1} \xi_{1 i}, T_{2} \xi_{2 j}\right)_{V_{0}}
\end{aligned}
$$

where subscripts V_{1}, V_{σ} indecate in what space the inner product is taken. If we define ψ by

$$
\psi(m)=\tau_{1}(m) S=S \tau_{2}(m), \quad m \in M
$$

then $\psi \in L_{\sigma}^{\tau}$ and

$$
\begin{aligned}
& \|\psi\|_{M}^{2}=(\psi(1), \psi(1))=(S, S) \\
& \quad=\left(t_{1} t_{2}\right)^{-1} \sum_{i, j}\left|\left(T_{1} \xi_{1 i}, T_{2} \xi_{2 j}\right)\right|^{2} .
\end{aligned}
$$

From (5.5), the last expression is equal to $(\operatorname{dim} \sigma)^{-1}$.
From (6.3) and (6.4) we obtain the formula

$$
\begin{equation*}
\phi_{\sigma, \lambda}(x)=\int_{K} \psi(x k) \tau\left(k^{-1}\right) e^{(i \lambda-\varrho)(H(x k))} d k \tag{6.5}
\end{equation*}
$$

For any $\psi \in L^{\tau}$ we write

$$
\begin{equation*}
E(\psi: \lambda: x)=\int_{K} \psi(x k) \tau\left(k^{-1}\right) e^{(i \lambda-\varrho)(H(x k))} d k \tag{6.6}
\end{equation*}
$$

$E(\psi: \lambda: x)$ is called the Eisenstein integral of ψ and λ.
Suppose, conversely, that we were given $\psi \in L_{\sigma}^{\tau}$ such that $\|\psi\|_{M}^{2}=(\operatorname{dim} \sigma)^{-1}$. Then we could choose $T_{\alpha} \in R\left(\tau_{\alpha}, \sigma\right)$ with $\left\|T_{\alpha}\right\|^{2}=\operatorname{dim} \tau_{\alpha}$ for $\alpha=1$ or 2 such that

$$
\psi(1)=T_{1}^{*} T_{2}
$$

Again we can define $\Phi_{\alpha i}$ by

$$
\Phi_{\alpha i}(k)=T_{\alpha}\left(\tau_{\alpha}^{*}(k) \xi_{\alpha i}\right), \quad k \in K, \alpha=1,2
$$

Then $\Phi_{\alpha i}$ is a unit vector in \mathscr{H}_{σ}. Working backwards we can obtain the formula

$$
\begin{equation*}
E(\psi: \lambda: x)=\left(t_{1} t_{2}\right)^{-1 / 2} \sum_{i, j} \xi_{1 i} \otimes \xi_{2}^{*}\left(\Phi_{1 i}, \pi_{\sigma, \lambda}(x) \Phi_{2 j}\right) \tag{6.7}
\end{equation*}
$$

Now, if $\psi(1)=T_{1}^{*} T_{2}$ as above, and $\lambda \in \mathfrak{a}_{\dot{p}}^{* \prime}$, then $n_{\sigma}^{s}(\lambda) T_{\alpha} \in R\left(\tau_{\alpha}, s \sigma\right)$ and $\left\|T_{\alpha}\right\|^{2}$ $=t_{\alpha}$ for $\alpha=1$ or $2, s \in W$. Define

$$
\begin{equation*}
\left(M_{\sigma}^{s}(\lambda) \psi\right)(1)=\left(n_{\sigma}^{s}(\lambda) T_{1}\right)^{*}\left(n_{\sigma}^{s}(\lambda) T_{2}\right) \tag{6.8}
\end{equation*}
$$

Then $M_{\sigma}^{s}(\lambda) \psi$ can be regarded as a function in $L_{s \sigma}^{\tau}$. It has the same norm as ψ. Therefore, $M_{\sigma}^{s}(\lambda)$ is a unitary map of L_{σ}^{τ} onto $L_{s \sigma}^{\tau}$. We can then define a unitary linear transformation $M^{s}(\lambda)$ of L^{τ} by defining it to be $M_{\sigma}^{s}(\lambda)$ on each of the orthogonal subspaces L_{σ}^{τ} of L^{τ}.

If $\lambda \in \mathfrak{a}_{\dot{p}}^{* \prime}$ we have the equation

$$
\left(\Phi_{1}, \pi_{\sigma, \lambda}(x) \Phi_{2}\right)=\left(N_{\sigma}^{s}(\lambda) \Phi_{1}, \pi_{s \sigma, s \lambda}(x) N_{\sigma}^{s}(\lambda) \Phi_{2}\right)
$$

Then from (6.7) we obtain the formula

$$
\begin{equation*}
E(\psi: \lambda: x)=E\left(M^{s}(\lambda) \psi: s \lambda: x\right), \quad s \in W \tag{6.9}
\end{equation*}
$$

This is the functional equation for the Eisenstein integral with respect to the little Weyl group W.

7. Proof of the injectivity of the map \mathscr{F}

Let π be a unitary representation of G on a Hilbert space \mathscr{F}. If v is a vector in \mathscr{H} such that the map from G to \mathscr{H} given by

$$
x \longrightarrow \pi(x) v, \quad x \in G
$$

is infinitely differentiable, v is called a differentiable vector. Let \mathscr{H}^{∞} be the set
of differentiable vectors in \mathscr{H}. If $v \in \mathscr{H}^{\infty}$ and $X \in \mathfrak{g}$, define

$$
\pi(X) v=\lim _{t \rightarrow 0} \frac{1}{t}(\pi(\exp t X) v-v) .
$$

It can be checked that this gives a representation of the Lie algebra g on the vector space \mathscr{H}^{∞}. It extends to a representation, again denoted by π, of the universal enveloping algebra \mathfrak{B} of \mathfrak{g}^{c}.

Let 3 be the center of \mathfrak{B}. If the restriction of π to 3 is one dimensional, we obtain a homomorphism

$$
\chi: 3 \longrightarrow C .
$$

In this case π is said to be quasi-simple, and χ is called the infinitesimal character of π. It is known that any irreducible unitary representation of G is quasi-simple.

Let η be the conjugation of \mathfrak{g}^{c} with respect to the real form \mathfrak{g}. We define three involutions on \mathfrak{g}^{c} by

$$
\begin{array}{ll}
X^{*}=-\eta X, & X \in \mathfrak{g}^{c}, \\
X^{+}=-X, & X \in \mathfrak{g}^{c}, \\
\bar{X}=\eta X, & X \in \mathfrak{g}^{c} .
\end{array}
$$

If $X, Y \in \mathfrak{g}^{c}$ and $c \in \boldsymbol{C}$, it is easy to show that

$$
\begin{array}{ll}
{[\bar{X}, \bar{Y}]=[\overline{X, Y}],} & (\overline{c X})=\bar{c} \bar{X}, \\
{\left[X^{+}, Y^{+}\right]=-[X, Y]^{+},} & (c X)^{+}=c X_{+}, \\
{\left[X^{*}, Y^{*}\right]=-[X, Y]^{*},} & (c X)^{*}=\bar{c} X^{*} .
\end{array}
$$

All three involutions extend to involutions of \mathfrak{B}.
If π is a unitary representation of G, then for $g \in \mathfrak{B}$,

$$
\pi\left(g^{*}\right)=\pi(\bar{g})^{*}
$$

where $\pi(g)^{*}$ denotes the adjoint operator of $\pi(g)$.
Lemma 7.1. Suppose that π is quasi-simple. Assume Φ_{1} and Φ_{2} are vectors in \mathscr{H} such that the vector spaces

$$
\operatorname{sp}\left\{\pi(k) \Phi_{\alpha}: k \in K\right\}, \quad \alpha=1,2,
$$

are both finite dimensional. Then $\Phi_{1}, \Phi_{2} \in \mathscr{H}^{\infty}$. Furthermore if $g_{1}, g_{2} \in \mathfrak{B}$, and

$$
h(x)=\left(\Phi_{1}, \pi(x) \Phi_{2}\right),
$$

then

$$
h\left(g_{1} ; x ; g_{2}\right)=\left(\pi\left(g_{1}^{+}\right) \Phi_{1}, \pi(x) \pi\left(\bar{g}_{2}\right) \Phi_{2}\right)
$$

For a proof see [1, Lemma 6].
Let $\mathfrak{M}, \mathfrak{A}_{\mathfrak{p}}, \mathfrak{A}_{\mathfrak{t}}$ and \mathfrak{A} be the universal enveloping algebras of $\mathfrak{m}^{c}, \mathfrak{a}_{\mathfrak{p}}^{c}, \mathfrak{a}_{\mathfrak{f}}^{\boldsymbol{c}}$ and $\mathfrak{a}^{\boldsymbol{c}}$ respectively. Let $\mathcal{3}_{M}$ be the center of \mathfrak{M}. Then $\mathfrak{M Q}_{\mathrm{p}}$ is the universal enveloping algebra of $\mathfrak{m}^{c}+\mathfrak{a}_{p}^{c}$, and its center is $3_{M} \mathfrak{A}_{p}$.

If $z \in \mathcal{3}$, there exists a unique element $\gamma_{0}^{\prime}(z) \in \mathcal{3}_{M} \mathfrak{V}_{\mathfrak{p}}$ such that

$$
z-\gamma_{0}^{\prime}(z) \in \sum_{\alpha \in P_{+}} \mathfrak{B} X_{\alpha}
$$

([6(e), Lemma 18]).
If $z_{1} \in \mathfrak{3}_{M} \mathfrak{A}_{p}$, there exists a unique element $\gamma_{1}^{\prime}\left(z_{1}\right) \in \mathfrak{A}$ such that

$$
z_{1}-\gamma_{1}^{\prime}\left(z_{1}\right) \in \sum_{\alpha \in P_{-}} \mathfrak{M 2}_{p} X_{\alpha}
$$

([6(e), Lemma 18]).
If $z \in \mathcal{3}$, there exists a unique element $\gamma^{\prime}(z) \in \mathfrak{A}$ such that

$$
z-\gamma^{\prime}(z) \in \sum_{\alpha \in P} \mathfrak{B} X_{\alpha}
$$

Notice that if z is an element in $\mathcal{3}$,

$$
z-\gamma_{1}^{\prime}\left(\gamma_{0}^{\prime}(z)\right)=\left(z-\gamma_{0}^{\prime}(z)\right)+\left(\gamma_{0}^{\prime}(z)-\gamma_{1}^{\prime}\left(\gamma_{0}^{\prime}(z)\right) .\right.
$$

The right hand sum is an element in $\sum_{\alpha \in P} \mathfrak{B} X_{\alpha}$. Therefore

$$
\begin{equation*}
\gamma_{1}^{\prime} \circ \gamma_{0}^{\prime}=\gamma^{\prime} . \tag{7.1}
\end{equation*}
$$

Define automorphisms β and β_{1} of \mathfrak{A} by

$$
\begin{array}{ll}
\beta(H)=H+\rho(H), & H \in \mathfrak{a}^{c}, \\
\beta_{1}(H)=H+\rho_{\mathrm{m}}(H), & H \in \mathfrak{a}^{c} .
\end{array}
$$

Let

$$
\gamma=\beta^{-1} \circ \gamma^{\prime}, \quad \gamma_{1}=\beta_{1}^{-1} \circ \gamma_{1}^{\prime} .
$$

It is known that the maps

$$
\gamma: \mathfrak{3} \longrightarrow \mathfrak{A}, \quad \gamma_{1}: \mathfrak{3}_{M} \mathfrak{A}_{\mathfrak{p}} \longrightarrow \mathfrak{A},
$$

are algebraic isomorphisms onto the subalgabras consisting of the elements in \mathfrak{H} which are invariant under $W_{\mathfrak{g}}$ and $W_{\mathfrak{m}}$ respectively ([6(e), Lemma 19]). \mathfrak{A} can be regarded as the algebra of polynomial functions from the dual space $\mathfrak{a}^{c *}$
of \mathfrak{a}^{c}, into \boldsymbol{C}. If $\lambda \in \mathfrak{a}^{c *}$ denote the evaluation of $p \in S\left(\mathfrak{a}^{c}\right)$ at λ by $<p, \lambda>$. Then for any λ in $\mathfrak{a}^{c *}$ define a homomorphism $\chi_{\lambda}: \mathcal{B} \rightarrow \boldsymbol{C}$ by

$$
\chi_{\lambda}(z)=<\gamma(z), \lambda>, \quad z \in \mathcal{3}
$$

Any homomorphism from 3 into \boldsymbol{C} is of this form and $\chi_{\lambda_{1}}=\chi_{\lambda_{2}}$ if and only if $\lambda_{1}=s \lambda_{2}$ for some $s \in W_{g} . \quad \chi_{\lambda}$ is called the homomorphism corresponding to the linear function λ. Similarly, we can define $\chi_{\lambda}^{M}: \mathbf{3}_{M} \mathfrak{A}_{\mathfrak{p}} \rightarrow \boldsymbol{C}$ by

$$
\chi_{\lambda}^{M}\left(z_{1}\right)=<\gamma_{1}\left(z_{1}\right), \lambda>, \quad z_{1} \in \mathcal{3}_{M} \mathfrak{n}_{p} .
$$

Define an automorphism β_{0} as follows:

$$
\begin{gathered}
\beta_{0}(X)=X, \quad X \in \mathfrak{m}^{c}, \\
\beta_{0}(H)=H+\rho(H), \quad H \in \mathfrak{a}_{p}^{c} .
\end{gathered}
$$

β_{0} takes $\mathbf{3}_{M} \mathfrak{A}_{p}$ onto itself. Put

$$
\gamma_{0}=\beta_{0}^{-1} \circ \gamma_{0}^{\prime} .
$$

By (7.1)

$$
\begin{equation*}
\gamma=\gamma_{1} \circ \gamma_{0} \tag{7.2}
\end{equation*}
$$

We can now find the infinitesimal character of $\pi_{\sigma, \lambda}$. If $\sigma \in \mathscr{E}_{K}$, let μ be a real linear function on $\sqrt{-1} a_{t}$ associated with σ. Regard μ as a linear function on $\sqrt{-1} a_{t}+a_{p}$ by making it equal zero on a_{p}. By looking at a highest weight vector for σ, we can easily check that for any $z_{1} \in \boldsymbol{3}_{M}$

$$
\begin{equation*}
\sigma\left(z_{1}\right)=\chi_{\mu}^{M}\left(z_{1}\right)=<\gamma_{1}\left(z_{1}\right), \mu>. \tag{7.3}
\end{equation*}
$$

Lemma 7.2. Fix $\sigma \in \mathscr{E}_{M}$ and $\lambda \in \mathfrak{a}_{p}^{*}$. Then for any $z \in \mathcal{Z}$,

$$
\pi_{\sigma, \lambda}(z)=\chi_{-\mu-i \lambda}(z)
$$

Proof. It is known that the representation $\pi_{\sigma, \lambda}$ is quasi-simple ([6(a), pg. 243]). Therefore, there exists a complex linear function v on \mathfrak{a}^{c} such that

$$
\pi_{\sigma, \lambda}(z)=\chi_{v}, \quad z \in \mathcal{3} .
$$

Choose a $\tau \in \mathscr{E}_{K}^{2}$ such that $L_{\sigma}^{\tau} \neq 0$. Fix ψ in L_{σ}^{τ} such that

$$
\|\psi\|_{M}^{2}=(\operatorname{dim} \sigma)^{-1}
$$

Then by (6.7) (using the notation in that formula) and Lemma 7.1, we obtain the formula

$$
\begin{aligned}
& \overline{\chi_{v}(\bar{z})} E(\psi: \lambda: x) \\
& \left.\quad=\sum_{i, j}\left(t_{1} t_{2}\right)^{-1 / 2} \cdot \xi_{1 i} \otimes \xi_{2}^{*} j^{(} \Phi_{1 i}, \pi_{\sigma, \lambda}(x) \pi_{\sigma, \lambda}(\bar{z}) \Phi_{2 j}\right) \\
& = \\
& =E(\psi: \lambda: x ; z), \quad z \in \mathcal{3}
\end{aligned}
$$

Put

$$
F(x)=\psi(x) e^{(i \lambda-\varrho)(H(x))},
$$

and define

$$
F(x: k)=F(x k) \tau\left(k^{-1}\right), \quad x \in G, k \in K .
$$

Then by (6.6),

$$
E(\psi: \lambda: x)=\int_{K} F(x: k) d k
$$

Let z be an arbitrary element in 3. It can be regarded as a left and right invariant differential operator, so

$$
F(x ; z: k)=F(x k ; z) \tau\left(k^{-1}\right) .
$$

Therefore

$$
\begin{aligned}
E(\psi: \lambda: x ; z) & =\int_{K} F(x ; z: k) d k \\
& =\int_{K} F(x k ; z) \tau\left(k^{-1}\right) d k
\end{aligned}
$$

Clearly $F(x n)=F(x)$ for any $n \in N$, so if $g \in \mathfrak{B n}$ then

$$
F(x ; g)=0 .
$$

Therefore

$$
\begin{aligned}
E(\psi: \lambda: x ; z) & =\int_{K} F\left(x k ; \gamma_{0}^{\prime}(z)\right) \tau\left(k^{-1}\right) d k \\
& =\int_{K} F\left(x k ; \beta_{0} \gamma_{0}(z)\right) \tau\left(k^{-1}\right) d k
\end{aligned}
$$

Suppose that

$$
\begin{equation*}
\gamma_{0}(z)=\sum_{i} z_{i} h_{i}, \quad z_{i} \in \mathcal{3}_{M}, h \in \mathfrak{a}_{\mathfrak{p}} . \tag{7.5}
\end{equation*}
$$

Then

$$
\beta_{0} \gamma_{0}(z)=\sum_{i} z_{i} \beta_{0}\left(h_{i}\right) .
$$

Now

$$
F(y \exp H)=F(y) e^{(i \lambda-a)(H)}, \quad H \in \mathfrak{a}_{\mathfrak{p}}
$$

so for any $h \in \mathfrak{A}_{p}$,

$$
\begin{gathered}
F\left(y ; \beta_{0}(h)\right)=F(y)<\beta_{0}(h), i \lambda-\rho> \\
=F(y)<h, i \lambda>.
\end{gathered}
$$

On the other hand, if $m \in M$,

$$
\begin{aligned}
F(y m) & =\psi(y m) e^{(i \lambda-\varrho)(H(y))} \\
& =\tau_{1}(\kappa(y)) \tau_{1}(m) \psi(1) e^{(i \lambda-\varrho)(H(y))} \\
& =\tau_{1}(\kappa(y)) T_{1}^{*} \sigma(m) T_{2} e^{(i \lambda-\varrho)(H(y))},
\end{aligned}
$$

where $\psi(1)=T_{1}^{*} T_{2}$ in the notation of Section 5. Therfore, if $z_{M} \in \mathcal{Z}_{M}$,

$$
\begin{align*}
F\left(y ; z_{M}\right) & =\tau_{1}(\kappa(y)) T_{1}^{*} \sigma\left(z_{M}\right) T_{2} e^{(i \lambda-e)(H(y))} \\
& =\tau_{1}(\kappa(y)) T_{1}^{*}<\gamma_{1}\left(z_{M}\right), \mu>T_{2} e^{(i \lambda-e)(H(y))} \tag{7.7}\\
& =<\gamma_{1}\left(z_{M}\right), \mu>F(y) .
\end{align*}
$$

From (7.4), (7.5), (7.6) and (7.7) we see that

$$
\begin{aligned}
F\left(y ; \beta_{0} \gamma_{0}(z)\right) & =F(y)<\sum_{i} \gamma_{1}\left(z_{i}\right) h_{i}, \mu+i \lambda> \\
& =F(y)<\gamma_{1} \gamma_{0}(z), \mu+i \lambda> \\
& =F(y)<\gamma(z), \mu+i \lambda>
\end{aligned}
$$

So, from (7.4) we have

$$
E(\psi: \lambda: x ; z)=<\gamma(z), \mu+i \lambda>E(\psi: \lambda: x), \quad z \in \mathcal{Z} .
$$

It follows that

$$
\left.\overline{\chi_{v}(\bar{z}}\right)=<\gamma(z), \mu+i \lambda>.
$$

It is easy to show that $v=-\mu-i \lambda$. This proves our Lemma 7.2.
Q.E.D.

From the above proof we obtain the following corollary.
Corollary. Let $\tau \in \mathscr{E}_{K}^{2}$ and $\sigma \in \mathscr{E}_{M}$ such that $L_{\sigma}^{\tau} \neq 0$. Let $\psi \in L_{\sigma}^{\tau}$ such
that $\|\psi\|_{M}^{2}=(\operatorname{dim} \sigma)^{-1}$. If $\lambda \in \mathfrak{a}_{p}^{*}$, then for any $z \in \mathcal{Z}$,

$$
E(\psi: \lambda: x ; z)=<\gamma(z), \mu+i \lambda>E(\psi: \lambda: x) .
$$

Let X_{1}, \ldots, X_{n} be a basis for \mathfrak{g}^{c} and $g_{i j}=B\left(X_{i}, X_{j}\right)(1 \leqq i, j \leqq n)$. As is well known the matrix $\left(g_{i j}\right)_{1 \leqq i, j \leqq n}$ is non-singular. Let ($g^{i j}$) be the inverse matrix of the matrix $\left(g_{i j}\right)$ and $\omega_{\mathrm{g}}=\sum_{i, j} g^{i j} X_{i} X_{j}$. It is known that ω_{g} is independent of the choice of basis for $\mathfrak{g}^{c}{ }^{c}$ and is contained in $3 . \omega_{8}$ is called the Casimir element of \mathfrak{B}. If v is any linear function on $\mathfrak{a}^{\boldsymbol{c}}$,

$$
\begin{equation*}
\chi_{v}\left(\omega_{\mathfrak{g}}\right)=B(v, v)-B(\rho, \rho) \tag{7.8}
\end{equation*}
$$

(see $[1,(6.8)]$).
Since

$$
B(-\mu-i \lambda,-\mu-i \lambda)=B(\mu, \mu)-B(\lambda, \lambda),
$$

from Lemma 7.2

$$
\begin{equation*}
\pi_{\sigma, \lambda}\left(\omega_{\mathfrak{g}}\right)=|\sigma|^{2}-B(\lambda, \lambda)-B(\rho, \rho) . \tag{7.9}
\end{equation*}
$$

In order to prove the injectivity of the Fourier transform \mathscr{F}, we use the following

Lemma 7.3. Let sup $_{0}$ denote the supremum over all $(\sigma, \lambda),\left(\tau_{1}, i_{1}\right),\left(\tau_{2}, i_{2}\right)$. Then for non-negative integers m, m_{1}, m_{2} and differential operators $d \in \boldsymbol{D}\left(\mathfrak{a}_{p}^{*}\right)$, the semi-norms

$$
\begin{aligned}
& \|a\|_{\left(m, m_{1}, m_{2}, d\right)} \\
& =\sup _{0}\left|d_{\lambda}\left[\left(\Phi_{\tau_{1}, i_{1}}, \quad a(\sigma, \lambda) \Phi_{\tau_{2}, i_{2}}\right)\left(1+|\sigma|^{2}-|\lambda|^{2}\right)^{m}\right]\right|\left(1+\left|\tau_{1}\right|^{2}\right)^{m_{1}} . \\
& \quad \cdot\left(1+\left|\tau_{2}\right|^{2}\right)^{m_{2}}, \quad a \in \mathscr{C}(\hat{G}),
\end{aligned}
$$

form a basis for the topology of $\mathscr{C}(\hat{G})$.
Proof. By Leibnitz' rule and induction on the degree of d, we can see that it is enough to prove the lemma for the semi-norms

$$
\begin{gather*}
\sup _{0}\left|d_{\lambda}\left[\left(\Phi_{\tau_{1}, i_{1}}, a(\sigma, \lambda) \Phi_{\tau_{2}, i_{2}}\right)\right]\right|\left|\left(1+|\sigma|^{2}-|\lambda|^{2}\right)\right|^{m} . \tag{7.10}\\
\cdot\left(1+\left|\tau_{1}\right|^{2}\right)^{m_{1}}\left(1+\left|\tau_{2}\right|^{2}\right)^{m_{2}}, \quad a \in \mathscr{C}(G) .
\end{gather*}
$$

Fix $\sigma \in \mathscr{E}_{M}$ and $\tau \in \mathscr{E}_{K}$. There is a non-zero vector of the form $\Phi_{\tau, i}$ in our basis for \mathscr{H}_{σ} if and only if the representation σ occurs in $\tau \mid M$. Suppose that this is the case. Then if τ acts on the finite dimensional vector space V_{τ}, σ acts on a subspace of V_{τ}. The Cartan subalgebras of \mathfrak{m} and \mathfrak{f} are both $\mathfrak{a}_{\mathfrak{t}}$, and we
have already ordered its dual space. Let v and μ be the highest weights of the representations τ and σ respectively. Then

$$
\begin{aligned}
& |\sigma|^{2}=B\left(\mu+\rho_{M}, \mu+\rho_{M}\right) \\
& |\tau|^{2}=B\left(v+\rho_{K}, v+\rho_{K}\right),
\end{aligned}
$$

where ρ_{M} and ρ_{K} are the halves of the sum of positive roots of $\left(\mathfrak{i r}^{c}, \mathfrak{a}_{t}^{c}\right)$ and ($\mathfrak{f}^{c}, \mathfrak{a}_{\mathfrak{f}}^{c}$) respectively.

Let ξ be a highest weight vector in V_{τ} for $\sigma . \quad V_{\tau}$ is a direct sum of weight spaces for τ. Examine the action of $\tau\left(\mathfrak{a}_{\boldsymbol{t}}\right)$ on ξ. Since \mathfrak{a}_{t} is a Cartan subalgebra of \mathfrak{f}, we can regard μ as a weight for τ. However

$$
B(\mu, \mu)^{1 / 2} \leqq B\left(\mu+\rho_{K}, \mu+\rho_{K}\right)^{1 / 2}+B\left(\rho_{K}, \rho_{K}\right)^{1 / 2}
$$

Since v is the highest weight for τ, we see by [8, Lemma 3, pg. 248] that

$$
B\left(\mu+\rho_{K}, \mu+\rho_{K}\right) \leqq B\left(v+\rho_{K}, v+\rho_{K}\right) .
$$

Therefore, we have

$$
|\sigma| \leqq B\left(v+\rho_{K}, v+\rho_{K}\right)^{1 / 2}+B\left(\rho_{K}, \rho_{K}\right)^{1 / 2}+B\left(\rho_{M}, \rho_{M}\right)^{1 / 2}
$$

Hence, we can find a constant $c>0$, independent of τ and σ, such that

$$
\begin{equation*}
|\sigma| \leqq|\tau|+c . \tag{7.11}
\end{equation*}
$$

From this inequality we obtain the additional formula

$$
\begin{equation*}
|\lambda|^{2} \leqq\left|1+|\sigma|^{2}-|\lambda|^{2}\right|+\left(1+(c+|\tau|)^{2}\right) \tag{7.12}
\end{equation*}
$$

Formulae (7.11) and (7.12) show that any semi-norm of the form (5.6) is dominated by a semi-norm of the form (7.10). Since the semi-norms (5.6) form a basis for the topology of $\mathscr{C}(\hat{G})$, our Lemma 7.3 is proved.
Q.E.D.

The Lie algebra \mathfrak{f} is reductive, so $\mathfrak{f}=\mathfrak{f}_{1}+\mathfrak{f}_{2}$, where \mathfrak{f}_{1} is semisimple and \mathfrak{f}_{2} is abelian. Let Ω be the universal enveloping algebra of \mathfrak{f}^{c}, and let 3_{K} be its center. $\mathfrak{a}_{\mathfrak{t}}$ is a Cartan subalgebra of \mathfrak{f}. For linear functions v on $\mathfrak{a}_{\mathfrak{f}}^{\boldsymbol{c}}$ we can define the homomorphisms

$$
\chi_{v}^{K}: 3_{K} \longrightarrow C .
$$

Since the Killing form of \mathfrak{g}^{c} when restricted to \mathfrak{f}_{1} is K-invariant, this Killing form is a linear combination of the Killing forms of $\mathfrak{f}_{1, i}$ on \mathfrak{f}_{1}, where $\mathfrak{f}_{1, i}$ are simple ideals of \mathfrak{f}_{1}. Then it is clear that we can choose an element $\omega_{t} \in \boldsymbol{3}_{K}$ such that

$$
\begin{equation*}
\chi_{v}^{K}\left(\omega_{t}\right)=B(v, v)-B\left(\rho_{K}, \rho_{K}\right) \tag{7.13}
\end{equation*}
$$

for any linear function v on $\mathfrak{a}_{\mathfrak{t}}^{c}$.
Notice that

$$
\begin{array}{lll}
\omega_{8}^{*}=\omega_{g}, & \overline{\omega_{8}}=\omega_{8}, & \omega_{8}^{+}=\omega_{8}, \tag{7.14}\\
\omega_{t}^{*}=\omega_{t}, & \overline{\omega_{t}}=\omega_{t}, & \omega_{t}^{+}=\omega_{t}
\end{array}
$$

Lemma 7.4. The Fourier transform $\mathscr{F}: f \rightarrow \hat{f}$ is a continuous map from $\mathscr{C}(G)$ into $\mathscr{C}(\hat{G})$.

Proof. Let $\|\cdot\|_{0}$ be an arbitrary continuous semi-norm on $\mathscr{C}(\hat{G})$. Since $\operatorname{dim} \sigma, \operatorname{dim} \tau_{1}$ and $\operatorname{dim} \tau_{2}$ are bounded by polynomials in $|\sigma|,\left|\tau_{1}\right|$ and $\left|\tau_{2}\right|$ respectively, we can use the previous lemma to choose integers m, m_{1}, m_{2} and a differential operator $d \in \boldsymbol{D}\left(\mathfrak{a}_{p}^{*}\right)$ such that for any $a \in \mathscr{C}(\widehat{G})$

$$
\begin{aligned}
\|a\|_{0} \leqq & \sup _{0}(\operatorname{dim} \sigma)^{1 / 2}\left(\operatorname{dim} \tau_{1} \cdot \operatorname{dim} \tau_{2}\right)^{-1 / 2} \mid d_{\lambda}\left[\left(\Phi_{\tau_{1}, i_{1}}, a(\sigma, \lambda) \Phi_{\tau_{2}, i_{2}}\right)\right. \\
& \left.\cdot\left(1+|\sigma|^{2}-|\lambda|^{2}\right)^{m}\right] \mid\left(1+\left|\tau_{1}\right|^{2}\right)^{m_{1}}\left(1+\left|\tau_{2}\right|^{2}\right)^{m_{2}} .
\end{aligned}
$$

Define elements g_{1} and g_{2} in \mathfrak{B} by

$$
\begin{aligned}
& g_{1}=\left(\omega_{\mathrm{t}}+B\left(\rho_{K}, \rho_{K}\right)+1\right)^{m_{1}} \\
& g_{2}=\left(\omega_{\mathrm{g}}+B(\rho, \rho)+1\right)^{m^{2} \cdot\left(\omega_{\mathrm{t}}+B\left(\rho_{K}, \rho_{K}\right)+1\right)^{m_{2}}} .
\end{aligned}
$$

By (7.13), $g_{1}^{+}=g_{1}$ and $\bar{g}_{2}=g$. Since $\Phi_{\tau_{1}, i_{1}}$ and $\Phi_{\tau_{2}, i_{2}}$ transform under $\pi_{\sigma, \lambda}$ according to τ_{1} and τ_{2} respectively, we have by (7.9) that

$$
\begin{gathered}
\pi_{\sigma, \lambda}\left(g_{1}\right) \Phi_{\tau_{1}, i_{1}}=\left(1+\left|\tau_{1}\right|^{2}\right)^{m_{1}} \Phi_{\tau_{1}, i_{1}}, \\
\pi_{\sigma, \lambda}\left(g_{2}\right) \Phi_{\tau_{2}, i_{2}}=\left(1+\left|\tau_{2}\right|^{2}\right)^{m_{2}} \cdot\left(1+|\sigma|^{2}-|\lambda|^{2}\right)^{m} \Phi_{\tau_{2}, i_{2}} .
\end{gathered}
$$

Therefore, for any $f \in C_{c}^{\infty}(G)$ we have from Lemma 7.1 that

$$
\|\hat{f}\|_{0} \leqq \sup _{0}(\operatorname{dim} \sigma)^{1 / 2}\left(t_{1} t_{2}\right)^{-1 / 2}\left|d_{\lambda} \int_{G} h\left(g_{1} ; x ; g_{2}\right) \overline{f(x)} d x\right|,
$$

where

$$
\begin{aligned}
t_{i} & =\operatorname{dim} \tau_{i}, \quad i=1,2, \\
h(x) & =\left(\Phi_{\tau_{1}, i_{1}}, \pi_{\sigma, \lambda}(x) \Phi_{\tau_{2}, i_{2}}\right) .
\end{aligned}
$$

Now in order to see that by means of the G-invariance of $d x$ we can transfer the differentaition of $h(x)$ to the differentiation of $f(x)$ in the above inequality, we
need a few lemmas.
Lemma 7.5. If $f \in \mathscr{C}(G), b_{1}, b_{2} \in \mathfrak{B}$ and Ω is any compact set in G, then the integral

$$
\int_{G}\left|h\left(x y ; b_{1}\right) f\left(x ; b_{2}\right)\right| d x
$$

converges uniformly with respect to y on Ω.
Proof. We have

$$
h(x)=\left(\Phi_{\tau_{1}, i_{1}}, \pi_{\sigma, \lambda}(x) \Phi_{\tau_{2}, i_{2}}\right)
$$

By Lemma 7.1, for any $b \in \mathfrak{B}$ and $x \in G$

$$
h(x ; b)=\left(\Phi_{\tau_{1}, i_{1}}, \pi_{\sigma, \lambda}(x) \pi_{\sigma, \lambda}(b) \Phi_{\tau_{2}, i_{2}}\right)
$$

So, it follows that there exists a constant $c_{1}>0$ such that

$$
\left|h\left(x y ; b_{1}\right)\right| \leqq c_{1} \int_{K} e^{-e\left(H\left(y^{-1} x^{-1} k\right)\right)} d k
$$

On the other hand, it is known that we can choose a constant $c_{2}>0$ such that

$$
e^{-\varrho\left(H\left(y^{-1} x^{-1} k\right)\right)} \leqq c_{2} e^{-\varrho\left(H\left(x^{-1} k\right)\right)}
$$

for $y \in \Omega$ (see [6(h), the proof of Lemma 48]). Since $f \in \mathscr{C}(G)$, Lemma 7.5 follows.
Q.E.D.

Corollary 1. Let $f \in \mathscr{C}(G), b_{1}, b_{2} \in \mathfrak{B}$ and Ω be any compact set in $G \times G$. Then the integral

$$
\int_{G}\left|h\left(x y ; b_{1}\right) f\left(x z ; b_{2}\right)\right| d x
$$

converges uniformly with respect to (y, z) on Ω.
Proof. Without loss of generality we may assume that $\Omega=\omega_{1} \times \omega_{2}$ where ω_{1}, ω_{2} are compact subsets of G. Let ω be the image of Ω in G under the mapping $(y, z) \rightarrow z^{-1} y$. Then ω is also compact. For any $\varepsilon>0$ we can, by the above lemma, select a compact set V in G such that

$$
\int_{c_{V}}\left|h\left(x y ; b_{1}\right) f\left(x ; b_{2}\right)\right|<\varepsilon
$$

for $y \in \omega$; where ${ }^{c} V$ denotes the complement of V in G. Put $U=V \omega_{2}^{-1}$. Then U is also compact and ${ }^{c} U z \subset^{c} V$ for $z \in \omega_{2}$. Hence if $y \in \omega_{1}$ and $z \in \omega_{2}$, it is
clear that

$$
\int_{c_{U}}\left|h\left(x y ; b_{1}\right) f\left(x z ; b_{2}\right)\right| d x=\int_{c_{U z}}\left|h\left(x z^{-1} y ; b_{1}\right) f\left(x ; b_{2}\right)\right| d x<\varepsilon
$$

from the right-invariance of the measure $d x$. This proves Corollary 1 .
Q.E.D.

Let $g \rightarrow g^{*}$ denote the anti-automorphism of \mathfrak{B} over \boldsymbol{R} defined by the involution $X \rightarrow X^{*}$ of \mathfrak{g}^{c}.

Colollary 2. For any $g \in \mathfrak{B}, f \in \mathscr{C}(G)$

$$
\int_{G} h(x ; g) \overline{f(x)} d x=\int_{G} h(x) \overline{f\left(x ; g^{*}\right)} d x .
$$

Proof. We put

$$
F(y: z)=\int_{G} h(x y) \overline{f(x z)} d x, \quad y, z \in G .
$$

Then the above Corollary implies that F is a C^{∞}-function and

$$
F\left(y ; g_{1}: z ; g_{2}\right)=\int_{G} h\left(x y ; g_{1}\right) \overline{f\left(x z ; g_{2}\right)} d x
$$

for $b_{1}, b_{2} \in \mathfrak{B}$. On the other hand

$$
F\left(y ; g_{1}: z ; g_{2}\right)=F\left(z^{-1} y ; g_{1}: 1 ; g_{2}\right)
$$

by the right-invariance of $d x$. Hence if we put $y=1$ and $z=\exp t X(X \in \mathfrak{g}$, $t \in \boldsymbol{R}$) and differentiate with respect to t at $t=0$, we get

$$
F\left(1 ; g_{1}: 1 ; X g_{2}\right)=-F\left(1 ; X g_{1}: 1 ; g_{2}\right)
$$

From this our Corollary 2 follows.
Q.E.D.

By an argument similar to the above, we obtain the following
Lemma 7.6. For any $g_{1}, g_{2} \in \mathfrak{B}, f \in \mathscr{C}(G)$

$$
\int_{G} h\left(g_{1} ; x ; g_{2}\right) \overline{f(x)} d x=\int_{G} h(x) \overline{f\left(g_{1}^{*} ; x ; g_{2}^{*}\right)} d x .
$$

Now we return to the proof of Lemma 7.4. By Lemma 7.5 and (7.14), we have the inequality

$$
\|\hat{f}\|_{0}<\sup _{0}(\operatorname{dim} \sigma)^{1 / 2}\left(t_{1} t_{2}\right)^{-1 / 2}\left|d_{\lambda} \int_{G} h(x) \overline{f\left(g_{1} ; x ; g_{2}\right)} d x\right| .
$$

Let τ be the double representation (τ_{1}, τ_{2}) of K. From (6.7) we obtain the following estimation.

$$
\begin{aligned}
|E(\psi: \lambda ; d: x)| & =\left(t_{1} t_{2}\right)^{-1 / 2} \mid \sum_{i, j}\left(\xi_{1 i} \otimes \xi_{2 j}^{*}\right) d_{\lambda}\left(\Phi_{1 i}, \pi_{\sigma, \lambda}(x) \Phi_{2 j}\right) \\
& =\left(t_{1} t_{2}\right)^{-1 / 2}\left(\sum_{i, j}\left|d_{\lambda}\left(\Phi_{1 i}, \pi_{\sigma, \lambda}(x) \Phi_{2 j}\right)\right|^{2}\right)^{1 / 2} \\
& \geqq\left(t_{1} t_{2}\right)^{-1 / 2}\left|d_{\lambda}\left(\Phi_{1 i}, \pi_{\sigma, \lambda}(x) \Phi_{2 j}\right)\right|, \quad 1 \leqq i \leqq t_{1}, \quad 1 \leqq j \leqq t_{2} .
\end{aligned}
$$

So we can find a $\psi \in L_{\sigma}^{\tau}$, with $\|\psi\|_{M}^{2}=(\operatorname{dim} \sigma)^{-1}$, so that the last expression in the above inequality is bounded by

$$
\sup _{0}(\operatorname{dim} \sigma)^{1 / 2} \int_{G}\left|f\left(g_{1} ; x ; g_{2}\right)\right||E(\psi: \lambda ; d: x)| d x
$$

Now if $k \in K$,

$$
|\psi(k)|=|\psi(1)|=\|\psi\|_{M}=(\operatorname{dim} \sigma)^{-1 / 2} .
$$

So, by (6.6)

$$
\begin{aligned}
& (\operatorname{dim} \sigma)^{1 / 2}|E(\psi: \lambda ; d: x)| \\
& \quad=(\operatorname{dim} \sigma)^{1 / 2}\left|\int_{K} \psi(x k) \tau\left(k^{-1}\right)\left[i \lambda_{d}(H(x k))\right] e^{(i \lambda-\varrho)(H(x k))} d k\right| \\
& \quad \leqq \int_{K}\left|\lambda_{d}(H(x k))\right| e^{-\varrho(H(x k))} d k,
\end{aligned}
$$

where $\lambda_{d} \in S\left(\mathfrak{a}_{p}^{*}\right)$ is the polynomial function corresponding to d. To complete the proof of our lemma we need the following

Lemma 7.6. For every $p \in S\left(\mathfrak{a}_{p}^{*}\right)$ we can select a polynomial \bar{p} such that for any $x \in G$

$$
|p(H(x))| \leqq \bar{p}(\sigma(x))
$$

where σ is the function defined in Section 5.
Proof. Each $x \in G$ can be rwitten in the form

$$
x=k^{\prime} \cdot \exp t H \cdot k, \quad k^{\prime}, k \in K, \exp H \in \operatorname{cl}\left(A_{p}^{+}\right), t \geqq 0,
$$

where $A_{\mathfrak{p}}^{+}$denotes $\exp \mathfrak{a}_{\mathfrak{p}}^{+}\left(\mathfrak{a}_{\mathfrak{p}}^{+}\right.$is the positive Weyl chamber of $\left.\mathfrak{a}_{\mathfrak{p}}\right)$. Then we can select a $t_{k} \in \boldsymbol{R}$ such that

$$
H(x)=H(\exp t H \cdot k)=t_{k} H^{\prime}, \quad H^{\prime} \in c l\left(\mathfrak{a}_{\mathfrak{p}}^{+}\right)
$$

Now [6(h), Lemma 35] and [6(h), Lemma 35, Corollary 2] establish precisely that

$$
-t \leqq t_{k} \leqq t
$$

Therefore we can select a polynomial \bar{p} such that

$$
|p(H(x))| \leqq \bar{p}\left(\left|t_{k}\right|\right) \leqq \bar{p}(t)=\bar{p}(\sigma(x)) .
$$

Q.E.D.

Now let us return to the proof of Lemma 7.4. From Lemma 7.7 we can select a polynomial q which satisfies

$$
\begin{aligned}
& (\operatorname{dim} \sigma)^{1 / 2}|E(\psi: \lambda ; d: x)| \\
& \quad \leqq \int_{K} q(\sigma(x k)) \cdot e^{-\varrho(H(x k))} d k \\
& \quad=q(\sigma(x)) \int_{K} e^{-\varrho(H(x k))} d k=q(\sigma(x)) \Xi(x) .
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
\|\hat{f}\|_{0} \leqq \int_{G}\left|f\left(g_{1} ; x ; g_{2}\right)\right| q(\sigma(x)) \Xi(x) d x \tag{7.15}
\end{equation*}
$$

Clearly, there exist a positive integer n and $c \in \boldsymbol{R}(c \geqq 0)$ such that

$$
q(\sigma(x)) \leqq c(1+\sigma(x))^{n}, \quad x \in G .
$$

By (5.3), the right hand side of (7.15) is bounded by

$$
c N\left(r_{0}\right) \sup _{x \in G}\left\{\Xi(x)^{-1} \cdot(1+\sigma(x))^{n+r_{0}}\left|f\left(g_{1} ; x ; g_{2}\right)\right|\right\} .
$$

We have dominated $\|\hat{f}\|_{0}$ by a continuous seminorm on f. Since $C_{c}^{\infty}(G)$ is dense in $\mathscr{C}(G)$, this is enough to prove Lemma 7.4.
Q.E.D.

8. A sufficient condition for the map \mathscr{F} to be surjective

In this Section we shall find the inversion formula and give a statement about a sufficient condition for \mathscr{F} to be a surjective map from $\mathscr{C}(G)$ onto $\mathscr{C}(\hat{G})$.

Let a be an element in $\mathscr{F}\left(L^{2}(G)\right)$, the image of $L^{2}(G)$ by \mathscr{F}. Then there exists a unique function $f \in L^{2}(G)$ such that $\hat{f}=a . \quad f$ is the unique function in $L^{2}(G)$ such that for every $g \in C_{c}^{\infty}(G)$

$$
\int_{G} f(x) g(x) d x=(a, \hat{g})
$$

where the latter inner product is that of $L^{2}(\hat{G})$. We shall write Σ_{0} to denote the summation over all $\sigma,\left(\tau_{1}, i_{1}\right)$ and $\left(\tau_{2}, i_{2}\right)$. Then

$$
\begin{aligned}
& (a, \hat{g}) \\
& =\frac{1}{\omega} \sum_{0} \int_{a_{\hat{p}}^{*}}\left(a(\sigma, \lambda) \Phi_{\tau_{2}, i_{2}}, \Phi_{\tau_{1}, i_{1}}\right)\left(\Phi_{\tau_{1}, i_{1}}, \hat{g}(\sigma, \lambda) \Phi_{\tau_{2}, i_{2}}\right) \beta(\sigma: \lambda) d \lambda \\
& =\frac{1}{\omega} \sum_{0} \int_{a_{\hat{p}}^{*}} \int_{G}\left(a(\sigma, \lambda) \Phi_{\tau_{2}, i_{2}}, \Phi_{\tau_{1}, i_{1}}\right)\left(\Phi_{\tau_{1}, i_{1}}, \pi_{\sigma, \lambda}(x) \Phi_{\tau_{2}, i_{2}}\right) \beta(\sigma: \lambda) \overline{g(x)} d x d \lambda .
\end{aligned}
$$

Let us assume that the integrals in the last espression are absolutely convergent. This is true for example if $a \in \mathscr{C}(\hat{G})$. Then we may take the integration of G outside. Define a function \check{a} on G by

$$
\begin{equation*}
\check{a}(x)=\frac{1}{\omega} \sum_{0} \int_{a_{\dot{p}}^{*}}\left(a(\sigma, \lambda) \Phi_{\tau_{2}, i_{2}}, \Phi_{\tau_{1}, i_{1}}\right)\left(\Phi_{\tau_{1}, i_{1}}, \pi_{\sigma, \lambda}(x) \Phi_{\tau_{2}, i_{2}}\right) \beta(\sigma: \lambda) d \lambda, \tag{8.1}
\end{equation*}
$$ as is easily seen, which is equal to

$$
\begin{equation*}
\frac{1}{\omega} \sum_{\sigma} \int_{a_{p}^{*}} \operatorname{tr}\left[\pi_{\sigma, \lambda}\left(x^{-1}\right) a(\sigma, \lambda)\right] \beta(\sigma: \lambda) d \lambda . \tag{8.2}
\end{equation*}
$$

Then we have the formula

$$
\int_{G} f(x) \overline{g(x)} d x=\int_{G} \check{a}(x) \overline{g(x)} d x, \quad g \in C_{c}^{\infty}(G) .
$$

Since the function g is arbitrary we have

$$
f(x)=\check{a}(x) \quad(a . e .)
$$

We call the transform (8.2) the Fourier inverse transform.
To prove the surjectivity of the map \mathscr{F} in Theorem 5.1, we have to show that \check{a} is in $\mathscr{C}(G)$. Put

$$
\begin{aligned}
& h_{\tau_{1}, i_{1}, \tau_{2}, i_{2}}(\sigma: \lambda)=\left(a(\sigma, \lambda) \Phi_{\tau_{2}, i_{2}}, \Phi_{\tau_{1}, i_{1}}\right), \\
& \phi_{\tau_{1}, i_{1}, \tau_{2}, i_{2}}(\sigma: \lambda: x)=\left(\Phi_{\tau_{1}, i_{1}}, \pi_{\sigma, \lambda}(x) \Phi_{\tau_{2}, i_{2}}\right) .
\end{aligned}
$$

Then, since the sum is absolutely convergent, for any g_{1} and g_{2} in \mathfrak{B} we have

$$
\begin{aligned}
& \omega \check{a}\left(g_{1} ; x ; g_{2}\right) \\
& \quad=\sum_{0} \int_{a_{\dot{p}}^{*}} h_{\tau_{1}, i_{1}, \tau_{2}, i_{2}}(\sigma: \lambda) \phi_{\tau_{1}, i_{1}, \tau_{2}, i_{2}}\left(\sigma: \lambda: g_{1} ; x ; g_{2}\right) \beta(\sigma: \lambda) d \lambda \\
& \quad=\sum_{\tau, \sigma} \sum_{i_{1}, i_{2}} \int_{a_{\hat{p}}^{*}} h_{\tau_{1}, i_{1}, \tau_{2}, i_{2}}(\sigma: \lambda) \phi_{\tau_{1}, i_{1}, \tau_{2}, i_{2}}\left(\sigma: \lambda: g_{1} ; x ; g_{2}\right) \beta(\sigma ; \lambda) d \lambda .
\end{aligned}
$$

On the other hand it is clear that

$$
\begin{aligned}
& \left(t_{1} t_{2}\right)^{-1 / 2}\left|\int_{a_{\mathfrak{p}}^{*}} h_{\tau_{1}, i_{1}, \tau_{2}, i_{2}}(\sigma: \lambda) \phi_{\tau_{1}, i_{1}, \tau_{2}, i_{2}}\left(\sigma: \lambda: g_{1} ; x ; g_{2}\right) \beta(\sigma: \lambda) d \lambda\right| \\
& \quad \leqq\left(t_{1} t_{2}\right)^{-1 / 2}\left(\sum_{j_{1}=1}^{t_{1}} \sum_{j_{2}=1}^{t_{2}} \mid \int_{a_{\hat{p}}^{*}} h_{\tau_{1}, i_{1}, \tau_{2}, i_{2}}(\sigma: \lambda) \phi_{\tau_{1}, j_{1}, \tau_{2}, j_{2}}\left(\sigma: \lambda: g_{1} ; x ; g_{2}\right)\right. \\
& \left.\left.\quad \cdot \beta(\sigma: \lambda) d \lambda\right|^{2}\right)^{1 / 2} \\
& \quad=\left|\int_{a_{\dot{p}}^{*}} h_{\tau_{1}, i_{1}, \tau_{2}, i_{2}}(\sigma: \lambda) E\left(\psi: \lambda: g_{1} ; x ; g_{2}\right) \beta(\sigma: \lambda) d \lambda\right|
\end{aligned}
$$

So,

$$
\begin{aligned}
& \left|\check{a}\left(g_{1} ; x ; g_{2}\right)\right| \\
& \quad \leqq(1 / \omega) \sum_{\tau_{,}, \sigma}\left(t_{1} t_{2}\right)^{1 / 2} \sum_{i_{1}, i_{2}}\left|\int_{a_{\mathfrak{p}}^{*}} h_{\tau_{1}, i_{1}, \tau_{2}, i_{2}}(\sigma: \lambda) E\left(\psi: \lambda: g_{1} ; x ; g_{2}\right) \beta(\sigma: \lambda) d \lambda\right| .
\end{aligned}
$$

From the dimension formula (Lemma 2.1), t_{1} and t_{2} are bounded by certain polynomials of $\left|\tau_{1}\right|$ and $\left|\tau_{2}\right|$ respectively, and $\left(t_{1} t_{2}\right)^{1 / 2}$ is also bounded by a polynomial of $\left|\tau_{1}\right|$ and $\left|\tau_{2}\right|$. Moreover, since $a \in \mathscr{C}(\widehat{G}), h_{\tau_{1}, i_{1}, \tau_{2}, i_{2}} \in \mathscr{S}\left(\mathfrak{a}_{\mathfrak{p}}^{*}\right)$ for each $\sigma \in \mathscr{E}_{M}$.

Now it is easy to check that, to complete the proof of Theorem 5.1 it is enough to prove the following

Theorem 8.1. If $\sigma \in \mathscr{E}_{M}$ and $\psi \in L_{\sigma}^{\tau}$ with $\|\psi\|_{M}=1$, let $E(\psi: \lambda: x)$ be the Eisenstein integral as in (6.6). Then for each $g_{1}, g_{2} \in \mathcal{B}$ and $s \in \boldsymbol{R}$, there exist a finite number of polynomials $p_{1}, p_{21}, \ldots, p_{2 N}, q$ and a finite number of differential operators $d_{1}, \ldots, d_{N} \in \boldsymbol{D}\left(\mathfrak{a}_{\mathfrak{p}}^{*}\right)$ such that whenever $h \in \mathscr{S}\left(\mathfrak{a}_{\mathfrak{p}}^{*}\right)$

$$
\begin{aligned}
& \sup _{x \in G}\left|\int_{a_{\dot{p}}^{*}} h(\lambda) E\left(\psi: \lambda: g_{1} ; x ; g_{2}\right) \beta(\sigma: \lambda) d \lambda\right| \Xi(x)^{-1}(1+\sigma(x))^{s} \\
& \quad \leqq p_{1}(|\sigma|) q(|\tau|) \sum_{i=1}^{N} \sup _{\lambda \in a_{\hat{p}}^{*}} p_{2 i}(|\lambda|)\left|h\left(\lambda ; d_{i}\right)\right| .
\end{aligned}
$$

9. Basic estimates for derivatives

We mention here some estimates for derivatives of matrix elements by Arthur [1].

Let η be the conjugation of \mathfrak{g}^{c} with respect to the compact real form $\mathfrak{u}=$ $\mathfrak{f}+\sqrt{-1} \mathfrak{p}$. As usual, we obtain a Hermitian scalar product on \mathfrak{g}^{c} by

$$
(X, Y)=-B(X, \eta Y), \quad X, Y \in \mathfrak{g}^{c}
$$

and a Hermitian inner product on \mathfrak{a}^{c} by restriction. This permits us to define an inner product on the dual space of \mathfrak{a}^{c}. If λ is a complex valued linear function on $\mathfrak{a}^{c},|\lambda|$ denotes the norm of λ with respect to this inner product.

Suppose τ_{1} and τ_{2} are in \mathscr{E}_{K}. Write τ as the double representation $\left(\tau_{1}, \tau_{2}\right)$ of K. Then

$$
\begin{aligned}
& |\tau|=\left|\tau_{1}\right|+\left|\tau_{2}\right|, \\
& \operatorname{dim} \tau=\operatorname{dim} \tau_{1} \cdot \operatorname{dim} \tau_{2} .
\end{aligned}
$$

Lemma 9.1 ([1, Lemma 13]). Let π be an irreducible unitary representation of G on the Hilbert space \mathscr{H}, with infinitesimal character χ_{λ}, for a linear function λ on \mathfrak{a}^{c}. Suppose $g_{1}, g_{2} \in \mathfrak{B}$. Then there exist polynomials p and q, independent of λ, such that the following (some what complicated) property is satisfied:

Whenever Φ_{1} and Φ_{2} are unit vectors in \mathscr{H} that transform under $\pi \mid K$ according to the representations τ_{1} and τ_{2} in \mathscr{E}_{K} set $f(x)=\left(\Phi_{1}, \pi(x) \Phi_{2}\right)$. Then there are two sets $\left\{\Psi_{1 \alpha}: 1 \leqq \alpha \leqq t_{1}\right\},\left\{\Psi_{2 \beta}: 1 \leqq \beta \leqq t_{2}\right\}$ of orthogonal vectors in \mathscr{H}, and two sets $\left\{\tau_{1 \alpha}: 1 \leqq \alpha \leqq t_{1}\right\},\left\{\tau_{2 \beta}, 1 \leqq \beta \leqq t_{2}\right\}$ of representations in \mathscr{E}_{K} such that
(i) $\quad\left(\left\|\Psi_{1 \alpha}\right\|+\left\|\Psi_{2 \beta}\right\|\right) \leqq p(|\lambda|) \cdot q(|\tau|)$,
(ii) $\Psi_{1 \alpha}$ and $\Psi_{2 \beta}$ transform under $\pi \mid K$ according to the representations $\tau_{1 \alpha}$ and $\tau_{2 \beta}$ respectively,
(iii) $\quad\left(\left|\tau_{1 \alpha}\right|+\left|\tau_{2 \beta}\right|\right) \leqq q(|\tau|)$,
(iv) $t_{1}+t_{2} \leqq q(|\tau|)$,
(v) $f\left(g_{1} ; x ; g_{2}\right)=\sum_{\alpha=1}^{t_{1}} \sum_{\beta=1}^{t_{2}}\left(\Psi_{1 \alpha}, \pi(x) \Psi_{2 \beta}\right)$.

For a proof see [1, Section 8].
If $\pi=\pi_{\sigma, \lambda}$ for $\sigma \in \mathscr{E}_{M}$, choose a real linear function μ on $\sqrt{-1} a_{\mathfrak{t}}$ associated with σ. The infinitesimal character of $\pi_{\sigma, \lambda}$ is $\chi_{-\mu-i \lambda} . \quad \eta(\mu)=-\mu$ and $\eta(i \lambda)=i \lambda$. Therefore

$$
\begin{align*}
|-\mu-i \lambda|^{2} & =-B(\mu+i \lambda, \eta(\mu+i \lambda)) \tag{9.1}\\
& =B(\mu, \mu)+B(\lambda, \lambda)=|\sigma|^{2}+|\lambda|^{2} .
\end{align*}
$$

10. Spherical functions

Suppose $\left\{\phi_{v}^{\tau}: v \in E, \tau \in T\right\}$ is a collection of infinitely differentiable τ-spherical functions where τ indexes certain irreducible unitary double representations
$\tau=\left(\tau_{1}, \tau_{2}\right)$ of K on the finite dimensional Hilbert spaces $V_{\tau}=V_{\tau_{1}} \otimes V_{\tau_{2}}^{*}$ and v indexes linear functions from \mathfrak{a}^{c} to \boldsymbol{C}. We have the homomorphism $\chi_{v}: \mathbf{3} \rightarrow \boldsymbol{C}$ defined in §7. $|v|$ denotes the real number $\{-B(v, \eta(v))\}^{1 / 2}$. We assume that ϕ_{v}^{τ} satisfies the following conditions:

$$
\begin{equation*}
z \phi_{v}^{\tau}=\chi_{v}(z) \phi_{v}^{\tau}, \quad z \in \mathcal{3} \tag{i}
\end{equation*}
$$

(ii) For any $g_{1}, g_{2} \in \mathfrak{B}$ there are polynomials p, q and a number $r \geqq 0$, independent of v and τ, such that

$$
\begin{equation*}
\left|\phi_{v}^{\tau}(x)\right| \leqq p(|v|) q(|\tau|) \Xi(x)(1+\sigma(x))^{r}, \quad x \in G \tag{10.1}
\end{equation*}
$$

where the functions Ξ and σ are defined in $\S 5$.
Now, \mathfrak{p} can be regarded as a Hilbert space with respect to the norm $|X|=$ $B(X, X)^{1 / 2}(X \in \mathfrak{p})$. Consider the set S^{+}of all points $H \in \mathfrak{a}_{p}^{+}$with $|H|=1$. Fix $H_{0} \in S^{+}$and let m_{1} be the centralizer of H_{0} in \mathfrak{g} and M_{1} be the analytic subgroup of G corresponding to \mathfrak{m}_{1}. Let \mathfrak{I} be the centralizer of \mathfrak{m}_{1} in $\mathfrak{a}_{\mathfrak{p}}, \Sigma$ the set of all positive restricted roots of $\left(\mathfrak{g}, \mathfrak{a}_{\mathfrak{p}}\right)$ and Σ_{2} the subset of those $\alpha \in \Sigma$ which do not vanish identically on I. Put

$$
\mathfrak{n}_{2}=\sum_{\alpha \in \mathcal{E}_{2}} \mathfrak{g}^{\alpha},
$$

and

$$
\rho_{2}=\frac{1}{2} \sum_{\alpha \in \Sigma_{2}} m_{\alpha} \alpha,
$$

where m_{α} is the number of multiplicity of α.
In [6(m), §27-§30] Harish-Chandra defined for each ϕ_{v}^{τ} a C^{∞} function θ which maps M_{1} into $V_{\tau} . \quad \theta$ is $\bar{\tau}$-spherical, where $\bar{\tau}=\tau \mid M_{1}$. We shall make two assumptions on the collection of linear functions $\{v: v \in E\}$. It then turns out that there exist polynomials p and q, an open neighborhood U of H_{0} in S_{+}and positive numbers $\varepsilon, r>0$, independent of ($v, \tau)$, such that for each $t \geqq 0$ and $H \in U$,

$$
\begin{equation*}
\left|e^{t \rho_{2}(H)} \phi_{v}^{\tau}(\exp t H)-\theta_{v}^{\tau}(\exp t H)\right|<p(|v|) q(|\tau|) e^{-\varepsilon t}(1+t)^{r} . \tag{10.2}
\end{equation*}
$$

We shall review Harish-Chandra's work and prove the estimate (10.2) in § $10-$ § 13.

Lfmma 10.1. For any two elements g, $g^{\prime} \in \mathfrak{B}$, we can choose a finite number of $g_{i} \in \mathfrak{B}(1 \leqq i \leqq p)$ with the following property. If ϕ is a $C^{\infty} \tau$-spherical function, then

$$
\left|\phi\left(g ; x ; g^{\prime}\right)\right| \leqq \sum_{1 \leqq j \leqq p}\left|\phi\left(x ; g_{j}\right)\right|, \quad, x \in G,
$$

$$
\left|\phi\left(g ; x ; g^{\prime}\right)\right| \leqq \sum_{1 \leqq j \leqq p}\left|\phi\left(g_{j} ; x\right)\right|, \quad x \in G .
$$

(See [6(m), Lemma 17].)
Define the convolution $f * g\left(f \in C_{c}(G), g \in C(G)\right)$, as usual, by

$$
(f * g)(x)=\int_{G} f(y) g\left(y^{-1} x\right) d y, \quad x \in G .
$$

For $f \in C_{c}(G)$ we denote the support of f by Supp f. Let Ω be the subalgebra of \mathfrak{B} generated by $\left(1, \mathfrak{f}^{c}\right)$. The following lemma is proved by Harish-Chandra [6(m), Theorem 1].

Lemma 10.2. Let V be a complex vector space of finite dimension and f a C^{∞} function from G to V such that the functions $z f(z \in \mathcal{Z} \Omega)$ span a finite dimensional space. Fix a neighborhood U of 1 in G and let J be the space of all $\alpha \in C_{c}^{\infty}(G)$ such that Supp $\alpha \subset U$ and $\alpha\left(k x k^{-1}\right)=\alpha(x)(k \in K, x \in G)$. Then there exists an element $\alpha \in J$ such that $f * \alpha=f$.

Lemma 10.3. For any $g_{1}, g_{2} \in \mathfrak{B}$ there exist polynomials p, q and a number $r \geqq 0$, independent of (v, τ), such that

$$
\begin{equation*}
\left|\phi_{v}^{\tau}\left(g_{1} ; x ; g_{2}\right)\right| \leqq p(|v|) q(|\tau|) \Xi(x)(1+\sigma(x))^{r}, \quad x \in G . \tag{10.3}
\end{equation*}
$$

Proof. To prove this, by Lemma 10.1, it is sufficient to consider the case $g_{1}=1$. By Lemma 10.2 we can find a function $\alpha \in C_{c}^{\infty}(G)$ such that

$$
\phi_{v}^{\tau} * \alpha=\phi_{v}^{\tau},
$$

and

$$
g \phi_{v}^{\tau}=\phi_{v}^{\tau} *(g \alpha), \quad g \in \mathfrak{B} .
$$

Then

$$
\left|\phi_{v}^{\tau}(x ; g)\right|=\left|\phi_{v}^{\tau} *(g \alpha)(x)\right|=\left|\int_{G} \phi_{v}^{\tau}(y) \alpha\left(y^{-1} x ; g\right) d y\right| .
$$

Since there exist polynomials p, q and a number $r^{\prime}>0$ such that

$$
\left|\phi_{v}^{\tau}(y)\right| \leqq p(|v|) q(|\tau|) \Xi(y)(1+\sigma(y))^{r^{\prime}},
$$

the last expression is bounded by

$$
\begin{aligned}
& p(|v|) q(|\tau|) \int_{G} \Xi(y)(1+\sigma(y))^{r^{\prime}}\left|\alpha\left(y^{-1} x ; g\right)\right| d y \\
& =p(|v|) q(|\tau|) \int_{G} \Xi\left(x y^{-1}\right)\left(1+\sigma\left(x y^{-1}\right)\right)^{\prime}|(g \alpha)(y)| d y
\end{aligned}
$$

where we use that g is left invariant. It is known that

$$
\sigma\left(x y^{-1}\right) \leqq \sigma(x)+\sigma\left(y^{-1}\right)=\sigma(x)+\sigma(y)
$$

(See [6(m), Lemma 10].)
So, we can select a number $r>0$ such that

$$
\left(1+\sigma\left(x y^{-1}\right)\right)^{r^{\prime}} \leqq(1+\sigma(x))^{r}(1+\sigma(y))^{r}
$$

On the other hand there exists a number $c^{\prime}>0$ such that

$$
\Xi\left(x y^{-1}\right) \leqq c^{\prime} \Xi(x), \quad y \in \operatorname{Supp} \alpha
$$

(See [6(1), Lemma 32].) Therefore

$$
\left|\phi_{v}^{\tau}(x ; g)\right| \leqq c^{\prime} p(|v|) q(|\tau|) \Xi(x)(1+\sigma(x))^{r} \int_{G}(1+\sigma(y))^{r}|\alpha(y ; g)| d y .
$$

If we put

$$
c(g)=c^{\prime} \int_{G}(1+\sigma(y))^{r}|\alpha(y ; g)| d y
$$

we have the inequality

$$
\left|\phi_{v}^{\tau}(x ; g)\right| \leqq c(g) p(|v|) q(|\tau|) \Xi(x)(1+\sigma(x))^{r} .
$$

This proves our assertion.
Q.E.D.

11. The functions Φ and Ψ.

Let \mathfrak{M}_{1} be the universal enveloping algebra of \mathfrak{m}_{1}^{c} and \mathcal{Z}_{1} the center of \mathfrak{M}_{1}. $\mathfrak{a}=\mathfrak{a}_{\mathfrak{t}}+\mathfrak{a}_{\mathfrak{p}}$ is a Cartan subalgebra of \mathfrak{g} and \mathfrak{m}_{1}. Let $W_{\mathfrak{g}}, W_{\mathfrak{m}_{1}}$ be the Weyl groups of ($\mathfrak{g}, \mathfrak{a}$) and $\left(\mathfrak{m}_{1}, \mathfrak{a}\right)$ respectively. Then $W_{\mathfrak{m}_{1}}$ can be regarded as the subgroup of W_{g}, consisting of the elements of W_{g} which are generated by reflections with respect to the roots of $(\mathfrak{g}, \mathfrak{a})$ vanishing at H_{0}. Let $\mathfrak{Y}_{\mathfrak{p}}$ and \mathfrak{A} be the universal enveloping algebras of $\mathfrak{a}_{\mathfrak{p}}^{c}$ and \mathfrak{a}^{c} respectively. Let $S\left(\mathfrak{a}^{c}\right)$ be the symmetric algebra over \mathfrak{a}^{c}. Let J and J_{1} be the subalgebras of $S\left(\mathfrak{a}^{c}\right)$ consisting of the elements in $S\left(\mathfrak{a}^{c}\right)$ which are invariant under $W_{\mathfrak{g}}$ and $W_{\mathrm{m}_{1}}$ respectively. J is contained in J_{1}. Let P_{0} be the set of positive roots $\alpha \in P$ which vanish at H_{0} and P_{1} the complement of P_{0} in P. In $\S 7$ we define the isomorphism

$$
\gamma: 3 \longrightarrow J .
$$

On the other hand, for each $z_{1} \in \mathfrak{Z}_{1}$ there exists a unique element $\gamma_{m_{1}}^{\prime}\left(z_{1}\right) \in \mathfrak{A}$ such that

$$
z_{1}-\gamma_{m_{1}}^{\prime}\left(z_{1}\right) \in \sum_{\alpha \in P_{0}} \mathfrak{M}_{1} X_{\alpha}
$$

Put

$$
\rho_{m_{1}}=\frac{1}{2} \sum_{\alpha \in P_{1}} \alpha,
$$

and define an automorphism $\beta_{\mathrm{m}_{1}}$ of \mathfrak{A} by

$$
\beta_{\mathrm{m}_{1}}(H)=H+\rho_{\mathrm{m}_{1}}(H), \quad H \in \mathfrak{a}^{c} .
$$

Let $\gamma_{1}=\beta_{\mathrm{m}_{1}}^{-1} \gamma_{\mathrm{m}_{1}}^{\prime}$. Then

$$
\gamma_{1}: \mathfrak{3}_{1} \longrightarrow J_{1}
$$

is an algebraic isomorphism (surjective) ([6(e), Lemma 19]), and $\mu_{0}=\gamma_{1}^{-1} \circ \gamma$ is a homomorphism (injective) of 3 into 3_{1}.

Now we fix $\tau \in \mathscr{E}_{K}^{2}$. Let \mathfrak{U}_{v} be the annihilator of ϕ_{v}^{τ} in $\mathfrak{3}$, and let $\mathfrak{U}_{1 v}=$ $\mathbf{3}_{1} \cdot \mu_{0}\left(\mathfrak{U}_{v}\right)$. Let $\mathfrak{3}_{1}^{*}$ be the quotient algebra $\mathbf{3}_{1} / \mathfrak{l}_{1 v}$. We can regard $\mathbf{3}_{1}^{*}$ as a complex vector space on which there is a natural 3_{1} action.

If $\zeta \in \mathfrak{Z}_{1}$, let ζ^{*} be the projection of ζ onto $\mathbf{3}_{1}^{*}$. Let $\mathfrak{3}_{1}^{* *}$ be the dual vector space of 3_{1}^{*}. Let $\mathscr{V}_{\tau}=V_{\tau} \otimes 3_{1}^{* *}$. Make \mathscr{V}_{τ} a double K-module by letting K act trivially on $\mathbf{3}_{1}^{* *}$. Make it a $\mathbf{3}_{1}$-module by defining

$$
\Gamma(z)\left(v \otimes \zeta^{* *}\right)=v \otimes z \zeta^{* *}, \quad z \in 3_{1}, v \in V_{\tau}, \zeta^{* *} \in 3_{1}^{* *} .
$$

(Since 3_{1}^{*} is a 3_{1}-module, there is a natural action of 3_{1} on $3_{1}^{* *}$ obtained by taking transposes.)

To obtain a basis of 3_{1}^{*}, we examine the algebra J and J_{1} more closely. Such results appear in $[6(\mathrm{~h}), \S 3]$. We identify $S=S\left(\mathfrak{a}^{c}\right)$ with the algebra of polynomial functions on $\mathfrak{a}^{c *}$, the dual space of \mathfrak{a}^{c}. Let $C(S), C\left(J_{1}\right)$ and $C(J)$ be the quotient fields of S, J_{1} and J respectively.

Lemma 11.1. If $\left[W_{\mathrm{g}}: W_{\mathrm{m}_{1}}\right]=r$, then there are homogeneous elements $v_{1}=1, v_{2}, \ldots, v_{r} \in J_{1}$ such that $J_{1}=\sum_{1 \leqq j \leqq r} J v_{j}$. Moreover, the elements v_{1}, \ldots, v_{r} are linearly independent over $C(J)$.

For a proof see [6(h), Lemma 8].
Now suppose that $v \in \mathfrak{a}^{c *}$. Let S_{v} be the ideal of polynomial functions in S that vanish at v. Let $J_{v}=J \cap S_{v}$ and let $J_{1 v}=J_{1} \cap S_{v} . \quad J=C+J_{v}$ is a vector space decomposition of J and the projection from J onto $J / J_{v}=C$ is given by

$$
w \longrightarrow w(v), \quad w \in J .
$$

$J_{1} J_{v}$ is an ideal in J_{1} and it is clear that $\gamma_{\mathrm{m}_{1}}$ defines an isomorphism from 3_{1}^{*} onto
$J_{1} / J_{1} J_{v}$. We shall obtain a basis of $J_{1} / J_{1} J_{v}$ over the field \boldsymbol{C} of complex numbers. We have the formula

$$
J_{1}=\sum_{1 \leqq j \leqq r} J v_{j}=\sum_{j} \boldsymbol{C} v_{j}+\sum_{j} J_{v} v_{j}
$$

But $\Sigma_{j} J_{v} v_{j} \in J_{1} J_{v}$, so $\left\{v_{j}: 1 \leqq j \leqq r\right\}$ spans $J_{1} / J_{1} J_{v}$. On the other hand, suppose $\left\{c_{j}\right\}$ is a set of complex numbers such that the vector $\Sigma_{j} c_{j} v_{j} \in J_{1} J_{v}$. Now

$$
J_{1} J_{v}=\left(\sum_{j} J v_{j}\right) J_{v}=\sum_{j} J_{v} v_{j}
$$

However, $\left\{v_{j}: 1 \leqq j \leqq r\right\}$ is linearly independent over $C(J)$, so each $c_{j} \in J_{v}$. This implies that each c_{j} equals zero. Therefore, $\left\{v_{j}: 1 \leqq j \leqq r\right\}$ is a basis for the space $J_{1} / J_{1} J_{v}$. Let us regard $J_{1} / J_{1} J_{v}$ as a Hilbert space with orthonormal basis $\left\{v_{1}, \ldots, v_{r}\right\}$.

Define elements $\eta_{1}=1, \eta_{2}, \ldots, \eta_{r} \in \mathbf{3}_{1}$ by

$$
\gamma_{1}\left(\eta_{j}\right)=v_{j}, \quad 1 \leqq j \leqq r
$$

Then $\left\{\eta_{1}^{*}, \ldots, \eta_{r}^{*}\right\}$ is a basis for 3_{1}^{*}. Let $\left\{\eta_{1}^{* *}, \ldots, \eta_{r}^{* *}\right\}$ be the dual basis of $3_{1}^{* *}$. If we make $\mathcal{Z}_{1}^{* *}$ into a Hilbert space with orthonormal basis $\left\{\eta_{1}^{* *}, \ldots, \eta_{r}^{* *}\right\}$, we can regard \mathscr{V}_{τ} as a Hilbert space.

We defined Σ, Σ_{2} and I in the previous section. Let Σ_{1} be the complement of Σ_{2} in Σ, that is, the subset of those $\alpha \in \Sigma$ which vanish identically on $\mathfrak{l}=\mathfrak{a}_{2}$. Put

$$
\mathfrak{n}_{j}=\sum_{\alpha \in \Sigma_{j}} \mathfrak{g}^{\alpha}, \quad(j=1,2)
$$

where \mathfrak{g}^{α} is defined by

$$
\mathfrak{g}^{\alpha}=\left\{X \in \mathfrak{g}:[H, X]=\alpha(H) X \quad \text { for all } H \in \mathfrak{a}_{\mathfrak{p}}\right\}
$$

then $\mathfrak{n}=\mathfrak{n}_{1}+\mathfrak{n}_{2}$. Now M_{1} normalizes \mathfrak{n}_{2}. Define a function d on M_{1} by

$$
d(m)=\left|\operatorname{det}(A d(m))_{\mathfrak{n}_{2}}\right|^{1 / 2} \quad m \in M_{1}
$$

and put $\zeta^{\prime}=d^{-1} \zeta \circ d$ for $\zeta \in 3_{1}$. It is easy to verify (see [6(m), Appendix, §45]) that $\zeta \rightarrow \zeta^{\prime}$ is an automorphism of 3_{1}. Now define

$$
\Phi(m)=\sum_{1 \leqq j \leqq r} \phi_{j}(m) \otimes \eta_{j}^{* *}, \quad m \in M_{1}
$$

where

$$
\phi_{j}(m)=d(m) \phi\left(m ; \eta_{j}^{\prime}\right)
$$

For any $\zeta \in \mathfrak{Z}_{1}$, there exist unique complex numbers $c_{l j}$ such that

$$
u_{l}(\zeta)=\zeta \eta_{l}-\sum_{1 \leqq j \leqq r} c_{l j} \eta_{j} \in \mathfrak{U}_{1 v}, \quad 1 \leqq l \leqq r .
$$

Then define

$$
\Psi_{\zeta}(m)=\sum_{j} d(m) \cdot \phi_{v}^{\tau}\left(m ; u_{j}(\zeta)^{\prime}\right) \otimes \eta_{j}^{* *}, \quad m \in M_{1}
$$

Φ and Ψ are functions from M_{1} to the vector space \mathscr{V}_{τ}. Also, Φ and Ψ_{ζ} are both $\bar{\tau}\left(\right.$ the restriction of τ to $\left.K_{1}=M_{1} \cap K\right)$-spherical functions on M_{1}, since elements in 3_{1} act on $C^{\infty}\left(M_{1}\right)$ as left and right invariant differential operators.

Lemma 11.2. Let $\zeta \in 3_{1}$. Then

$$
\Phi(m ; \zeta)=\Gamma(\zeta) \Phi(m)+\Psi_{\zeta}(m), \quad m \in M_{1} .
$$

Proof. We have the equation

$$
\Phi(m ; \zeta)=\sum_{l} d(m) \phi_{v}^{\tau}\left(m ; \zeta^{\prime} \eta_{\eta}^{\prime}\right) \otimes \eta_{l}^{* *}
$$

Also

$$
\zeta^{\prime} \eta_{l}^{\prime}=\left(\zeta \eta_{l}\right)^{\prime}=\sum_{j} c_{l j} \eta_{j}^{\prime}+u_{l}(\xi)^{\prime} .
$$

Therefore, $\Phi(m ; \zeta)$ is equal to

$$
\sum_{l} \sum_{j} c_{l j} d(m) \phi_{v}^{\tau}\left(m ; \eta_{j}^{\prime}\right) \otimes \eta_{l}^{* *}+\sum_{l} d(m) \phi_{v}^{\tau}\left(m ; u_{l}(\zeta)^{\prime}\right) \eta_{l}^{* *},
$$

which in turn equals

$$
\sum_{i, j} c_{l j} \phi_{j}(m) \otimes \eta_{l}^{* *}+\Psi_{\zeta}(m)
$$

Since $u_{l}(\zeta)^{*}=0$, we have the formula

$$
\left(\zeta \eta_{l}\right)^{*}=\sum_{j} c_{l j} \eta_{j}^{*} .
$$

Since $\left\{\eta_{l}^{* *}\right\}$ is the dual basis of $\left\{\eta_{l}^{*}\right\}$, the matrix of the linear transformation ζ acting on $3_{1}^{* *}$ is the transposed matrix of its action on 3_{1}^{*}, with respect to these bases. Therefore,

$$
\begin{aligned}
\Gamma(\zeta) \Phi(m) & =\sum_{l, j} c_{j l} \phi_{l}(m) \otimes \eta_{j}^{* *} \\
& =\sum_{l, j} c_{l j} \phi_{j}(m) \otimes \eta_{j}^{* *} .
\end{aligned}
$$

This proves Lemma 11.2.
Q.E.D.

Now \mathfrak{I} lies in the center of \mathfrak{m}_{1}. Hence if $H \in \mathfrak{l}$, we conclude from the above lemma that

$$
d\left(e^{-t \Gamma(H)}(m \cdot \exp t H)\right) / d t=e^{-t \Gamma(H)} \Psi_{H}(m \cdot \exp t H), \quad t \in \boldsymbol{R}, m \in M_{1}
$$

Therefore the following result is now obvious.
Corollary. For any $m \in M_{1}, H \in \mathfrak{I}$ and $T \in \boldsymbol{R}$, we have the integral equation

$$
\Phi(m \cdot \exp T H)=e^{T(H)} \Phi(m)+\int_{0}^{T} e^{(T-t) \Gamma(H)} \Psi_{H}(m \cdot \exp t H) d t
$$

12. Some estimates for Φ and Ψ

We shall obtain some estimates for Φ and Ψ.
Let $K_{1}=M_{1} \cap K$. Let Ξ_{1} be the function on M_{1} which corresponds to Ξ when (G, K) is replaced by $\left(M_{1}, K_{1}\right)$. Put $M_{1}^{+}=K_{1} A_{p}^{+} K_{1}$.

Lemma 12.1. For a given $v \in \mathfrak{M}_{1}$, we can choose polynomials p, q and a real number $r \geqq 0$ such that

$$
|\Phi(m ; v)| \leqq p(|v|) q(|\tau|) \Xi_{1}(m)(1+\sigma(m))^{r}, \quad m \in M_{1}^{+} .
$$

Proof. This lemma follows easily from (10.1) and the definition of Φ.
Q.E.D.

Now fix $\zeta \in \mathcal{3}_{1}$. From Lemma 11.1, it follows that there exist elements $w_{l j} \in J$ such that for $1 \leqq l \leqq r$,

$$
\gamma_{1}(\zeta) v_{l}=\sum_{j} w_{l j} v_{j} .
$$

Now, the coordinates of $\gamma_{1}(\zeta) v_{l}$ relative to the basis $\left\{v_{j}\right\}$ of $J_{1} / J_{1} J_{v}$ are clearly $\left\{w_{l j}(v): 1 \leqq j \leqq r\right\}$. Then the element

$$
\gamma_{1}\left(u_{l}(\zeta)\right)=\gamma_{1}(\zeta) v_{l}-\sum_{j} w_{l j}(v) v_{j}
$$

is contained in $J_{1} J_{v} . \quad \gamma_{1}\left(u_{l}(\zeta)\right)$ is equal to

$$
\sum_{j}\left(w_{l j}-w_{l j}(v)\right) v_{j}
$$

For each l and $j,\left(w_{l j}-w_{l j}(v)\right) \in J_{v}$. Let

$$
z_{l j}^{v}=\gamma^{-1}\left(w_{l j}-w_{l j}(v)\right) .
$$

Then

$$
u_{l}(\zeta)=\sum_{j} \mu_{0}\left(z_{l j}^{v}\right) \gamma_{1}^{-1}\left(v_{j}\right)=\sum_{j} \mu_{0}\left(z_{l j}\right) \eta_{j}
$$

Let $u_{i j}^{v}$ be the differential operator given by

$$
u_{l j}^{v}=-z_{l j}^{v}+\mu_{0}\left(z_{l j}^{v}\right)^{\prime} .
$$

Then $u_{l j}^{v}$ is an element of \mathfrak{B}, and it is independent of v. So, we write $u_{l j}^{v}$ simply as $u_{l j}$. Recall that θ is the Cartan involution of \mathfrak{g}^{c}. In the appendix of [6(m)] it is known that there exist elements $N_{l j} \in \mathfrak{n}_{2}$, and $g_{l j} \in \mathfrak{B}$, both independent of v, such that

$$
u_{l j}=\theta\left(N_{l j}\right) g_{l j}, \quad 1 \leqq l, j \leqq r
$$

Also it is known ([6(m), Appendix]) that $v \rightarrow v^{\prime}=d^{-1} v \circ d\left(v \in \mathfrak{M}_{1}\right)$ gives an automorphism of \mathfrak{M}_{1} which preserves $\boldsymbol{3}_{1}$.

It is known ([6(m), Lemma 47 and its corollary]) that there exist numbers $c_{0}, r_{0}>0$ such that

$$
\begin{equation*}
d(\exp H) \Xi(\exp H) \leqq c_{0} \Xi_{1}(\exp H)(1+|H|)^{\text {ro }}, \quad H \in \mathfrak{a}_{\mathfrak{p}}^{+}, \tag{12.1}
\end{equation*}
$$

and

$$
\begin{equation*}
d(m) \Xi(m) \leqq c_{0} \Xi_{1}(m)(1+\sigma(m))^{r_{0}}, \quad m \in M_{1}^{+} . \tag{12.2}
\end{equation*}
$$

Lemma 12.2. For fixed $\zeta \in \mathcal{3}_{1}$ and $v \in \mathfrak{M}_{1}$, there are polynomials p, q and an integer $n \geqq 0$, independent of ($v, \tau)$, such that

$$
\left|\Psi_{\zeta}(m \exp t H ; v)\right| \leqq p(|v|) q(|\tau|) e^{-t \beta(H)}(1+t)^{n} \Xi_{1}(m)(1+\sigma(m))^{n}
$$

for every $t \geqq 0, H \in S^{+} \cap \mathrm{I}$ and $m \in M_{1}^{+}$. Here

$$
\beta(H)=\min _{\alpha \in \Sigma_{2}} \alpha(H) .
$$

Proof. We have the equation

$$
\begin{aligned}
\Psi_{\zeta}(m \exp t H ; v) & =\sum_{l} d(m \exp t H) \phi_{v}^{\tau}\left(m \exp t H ; v^{\prime} u_{l}(\zeta)^{\prime}\right) \otimes \eta_{l}^{* *} \\
& =\sum_{l, j} d(m \exp t H) \phi_{v}^{\tau}\left(m \exp t H ; v^{\prime} \eta_{j}^{\prime} \mu_{0}\left(z_{l j}^{v}\right)\right) \otimes \eta_{l}^{* *} .
\end{aligned}
$$

Since $z_{l j}^{v} \in \mathfrak{U}_{v}$, the annihilator of ϕ_{v}^{τ}, this last expression is equal to

$$
\begin{aligned}
& \sum_{l, j} d(m \exp t H) \phi_{v}^{\tau}\left(m \exp t H ; u_{l j} v^{\prime} \eta_{j}^{\prime}\right) \otimes \eta_{l}^{* *} \\
= & \sum_{l, j} d(m \exp t H) \phi_{v}^{\tau}\left(m \exp t H ; \theta\left(N_{l j}\right) g_{l j} \eta_{j}^{\prime} v^{\prime}\right) \otimes \eta_{l}^{* *},
\end{aligned}
$$

here we used that $u_{1 j}, \eta_{j} \in \mathfrak{Z}_{1}$.
If $N \in \mathfrak{n}_{2}, N$ is written in the form $\sum_{\alpha \in \Sigma_{2}} X_{\alpha}$, where $X_{\alpha} \in \mathfrak{g}^{\alpha}$. But if $\alpha \in \Sigma_{2}$,

$$
\phi_{v}^{\tau}\left(m \exp t H ; \theta\left(X_{\alpha}\right) g_{l j} \eta_{j}^{\prime} v^{\prime}\right)=e^{-t \alpha(H)} \phi_{v}^{\tau}\left(\theta\left(X_{\alpha}\right): m \exp t H ; g_{l j} \eta_{j}^{\prime} v^{\prime}\right)
$$

for $H \in S^{+} \cap \mathfrak{I}, t \geqq 0, m \in M_{1}^{+}$. Our lemma 12.2 now follows from (5.3), (10.1) and (12.2).
Q.E.D.

13. The functions Θ and θ

We shall obtain a $\bar{\tau}$-spherical function Θ mapping M_{1} into \mathscr{V}_{τ}, and a $\bar{\tau}$ spherical V_{τ}-valued function θ on M_{1}, which is the $\eta_{1}^{* *}$-coefficient of Θ. The function θ plays an essential role in the discussion of the induction to prove Theorem 8.1.

Recall $m=\prod_{\alpha \in P} H_{\alpha}$, which is an element in S. In this section we make the following assumption.

Assumption 1: For each $v \in E, \boldsymbol{w}(v) \neq 0$.
We would like to find the eigenvalues of the linear transformation H_{0} acting on the vector space $J_{1} / J_{1} J_{v}$. We also want to find the norms of the projections of $J_{1} / J_{1} J_{v}$ into these eigenspaces. (These are norms as operators on the Hilbert space $J_{1} / J_{1} J_{v}$; these projections are not necessarily self-adjoint).

The field $C\left(J_{1}\right)$ is an extension of degree r of the field $C(J)$. Therefore the trace $\operatorname{tr}_{C\left(J_{1}\right) / C(J)}$ is a function from $C\left(J_{1}\right)$ into $C(J)$. Define an element v^{i} in $C\left(J_{1}\right)$ by

$$
\operatorname{tr}_{C\left(J_{1}\right) / C(J)}\left(v^{i} v_{j}\right)=\delta_{j}^{i}, \quad 1 \leqq i, j \leqq r
$$

($\delta_{j}^{i}=0$ if $i \neq j, \delta_{i}^{i}=1$).
Recall that P_{0} is the set of all positive roots $\alpha \in P$ which vanish at H_{0} and that $\varpi^{m_{1}}=\prod_{\alpha \in P_{0}} H_{\alpha} . \quad w$ and $\varpi^{m_{1}}$ are both in S.
Define

$$
D=\varpi / \varpi^{m_{1}}, \quad \tau^{i}=D v^{i} .
$$

Then D and τ^{i} are both in $C(S)$. In [6(h), Lemma 12] Harish-Chandra shows that τ^{i} is actually in S.

Let $\left\{s_{1}=1, s_{2}, \ldots, s_{r}\right\}$ be a set of representatives of right cosets of $W_{\mathrm{m}_{1}}$ in W_{8}. If $v \in C\left(J_{1}\right)$, then

$$
\begin{equation*}
\operatorname{tr}_{C\left(J_{1}\right) / C(J)}(v)=\sum_{1 \leqq i \leqq r} s_{i}^{-1}(v) . \tag{13.1}
\end{equation*}
$$

However,

$$
\begin{equation*}
\sum_{1 \leqq k \leqq r} \tau^{i}\left(s_{k} v\right) v_{j}\left(s_{k} v\right) / D\left(s_{k} v\right)=\delta_{j}^{i} . \tag{13.2}
\end{equation*}
$$

Difine

$$
A_{i k}=\tau^{i}\left(s_{k} v\right), \quad B_{k j}=v_{j}\left(s_{k} v\right) / D\left(s_{k} v\right) .
$$

Then $A=\left(A_{i k}\right)$ and $B=\left(B_{k j}\right)$ are both $r \times r$ matrices, and $A B=I$ (identity matrix). Define

$$
\begin{equation*}
f_{s_{i} v}=\sum_{1 \leqq k \leqq r} \tau^{k}\left(s_{i} v\right) v_{k} . \tag{13.3}
\end{equation*}
$$

Then $\left\{f_{s_{i} v}: 1 \leqq i \leqq r\right\}$ is a basis for $J_{1} / J_{1} J_{v}$. Also,

$$
\begin{equation*}
v_{j}=\sum_{k}\left(v_{j}\left(s_{k} v\right) / D\left(s_{k} v\right)\right) f_{s_{k} v} . \tag{13.4}
\end{equation*}
$$

Lemma 13.1. If $p \in J_{1}$, then we have the equation

$$
p f_{s_{i} v} \equiv p\left(s_{i} v\right) f_{s_{i} v} \quad\left(\bmod J_{1} J_{v}\right)
$$

For a proof see [6(h), Lemma 15].
In particular, the operator p on $J_{1} / J_{1} J_{v}$ is semisimple. Since $H_{0} \in J_{1}$, the lemma tells us that the set of eigenvalues of H_{0} is

$$
\begin{equation*}
Q=\left\{v\left(H_{0}\right), v\left(s_{2}^{-1} H_{0}\right), \ldots, v\left(s_{r}^{-1} H_{0}\right)\right\} . \tag{13.5}
\end{equation*}
$$

We can lift J_{1} to \mathcal{Z}_{1} by γ_{1}^{-1}. Then if $\zeta \in \mathcal{Z}_{1}$, we have an analogous statement to Lemma 17 in [1] for the eigenvalues of the operator $\Gamma(\zeta)$ on \mathscr{V}_{τ}. In particular, the eigenvalues of $\Gamma\left(H_{0}\right)$ are also given by (13.5).

Let $\left\{E_{s_{1}}^{\prime}, \ldots, E_{s_{r}}^{\prime}\right\}$ be the projections in $J_{1} / J_{1} J_{v}$ relative to the direct decomposition

$$
J_{1} / J_{1} J_{v}=\boldsymbol{C} f_{s_{1} v}+\cdots+\boldsymbol{C} f_{s_{r} v} .
$$

Difine

$$
E_{s_{l}}=(\mathrm{Id}) \otimes\left(\gamma_{1}^{-1} E_{s_{l}}^{\prime} \gamma_{1}\right)^{*}, \quad 1 \leqq l \leqq r,
$$

where Id denotes the identity operator on V_{τ} and the star ${ }^{*}$ denotes the vector space transpose operator. Then the operators $\left\{E_{s_{l}}\right\}$ are the projections of \mathscr{V}_{τ} onto the eigenspaces of $\Gamma\left(\mathfrak{3}_{1}\right)$, and $\Gamma(\zeta)\left(\zeta \in \mathfrak{Z}_{1}\right)$ are commutative with the projections $E_{s_{l}}$.

If $u \in \mathscr{V}_{\tau}$, there are elements $u_{1}, \ldots, u_{r} \in V_{\tau}$ such that

$$
u=\left(u_{1} \otimes \eta_{1}^{* *}\right)+\cdots+\left(u_{r} \otimes \eta_{r}^{* *}\right) .
$$

Denote u_{i} by $t_{i}(u)$.
Lemma 13.2. There is a fixed set of elements $\left\{p_{i j}^{l}: 1 \leqq i, j, l \leqq r\right\}$ in S,
independent of τ and v, such that for any $u \in \mathscr{V}_{\tau}$,

$$
t_{i}\left(E_{s_{l}} u\right)=\sum_{1 \leqq j \leqq r}\left(p_{i j}^{l}(v) / D(v)\right) t_{j}(u), \quad u \in \mathscr{V}_{\tau} .
$$

Proof. (13.4) implies the formula

$$
\begin{aligned}
E_{s_{l}}^{\prime} v_{i} & =E_{s_{l}}^{\prime}\left(\sum_{1 \leqq j \leqq r}\left(v_{i}\left(s_{j} v\right) / D\left(s_{j} v\right)\right) f_{s_{j} v}\right) \\
& =\left(v_{i}\left(s_{l} v\right) / D\left(s_{l} v\right)\right) f_{s_{l} v} .
\end{aligned}
$$

From the definition of $f_{s, v}$ it follows that the last expression is equal to

$$
\left(v_{i}\left(s_{l} v\right) / D\left(s_{l} v\right)\right) \sum_{1 \leqq j \leqq r} \tau^{j}\left(s_{l} v\right) v_{j}
$$

where $D=\boldsymbol{m} / \boldsymbol{w}^{m_{1}}$ and $\tau^{i}=D v^{i}$. As we mentioned above, it is known that $\tau^{i} \in S$ $(1 \leqq i \leqq r)$. $\quad D\left(s_{l} v\right)$ equals $\left(m(v) / w^{m_{1}}(v)\right) \varepsilon$, where ε equals either 1 or -1 . Therefore, our assertion follows.
Q.E.D.

Either the set of eigenvalues of the linear transformation H_{0} on $J_{1} / J_{1} J_{v}$ or that of $\Gamma\left(H_{0}\right)$ on \mathscr{V}_{τ} is given by (13.5). Let Q^{+}, Q^{-}and Q^{0} be the subsets of these eigenvalues with real parts greater than, less than and equal to zero respectively. Let $E^{\prime+}, E^{\prime-}, E^{\prime 0}$, and E^{+}, E^{-}, E^{0} be the corresponding projections in $J_{1} / J_{1} J_{v}$ and \mathscr{V}_{τ} respectively. Put $Q^{\prime}=Q^{+} \cup Q^{-}$and let

$$
4 \varepsilon_{0}=\min _{\lambda \in Q^{\prime}}\left|\lambda_{R}\right| .
$$

Set $\varepsilon_{0}=1$ if $Q^{+} \cup Q^{-}$is empty. Then $\varepsilon_{0}>0$. Put

$$
\beta(H)=\min _{\alpha \in \Sigma_{2}} \alpha(H), \quad H \in \mathrm{I} .
$$

Then $\beta\left(H_{0}\right)>0$. Fix a number $\varepsilon\left(0<\varepsilon \leqq \varepsilon_{0}\right)$ and an open and relatively compact neighborhood Ω of H_{0} in I. By selecting them sufficiently small, we can arrange that

$$
\beta\left(H_{0}\right) \geqq 5 \varepsilon, \quad 0<\varepsilon<1, \quad(1-\varepsilon) H_{0} \in \Omega
$$

and

$$
\beta(H) \geqq 4 \varepsilon, \quad\left|\Gamma(H)-\Gamma\left(H_{0}\right)\right|<\varepsilon / 2
$$

for $H \in \Omega$.
For the remainder of this section and for the following section we make the following assumption.

Assumption 2. The real parts of all eigenvalues (13.5), as v ranges in E, are the sum of a finite number of lattices in \boldsymbol{R}.

Lemma 13.3. Choose a complex number ξ in the resolvent set of the operator H_{0}. Let d be the distance from ξ to the spectrum of H_{0}. Then there are polynomials p_{1} and p_{2}, independent of ξ and v, such that the norm of the operator $\left(\xi-H_{0}\right)^{-1}$ is bounded by $d^{-r} p_{1}(|\xi|) p_{2}(|v|)$.

For a proof see [1, Lemma 20].
Lemma 13.4. There exists a polynomial p, independent of v, such that

$$
\left|e^{-t \Gamma(H)} E^{+}\right|+\left|e^{t \Gamma(H)} E^{-}\right| \leqq p(|v|) e^{-2 \varepsilon t}, \quad t \geqq 0,
$$

and

$$
\left|e^{t \Gamma(H)} E^{0}\right| \leqq p(|v|) e^{\varepsilon t}, \quad t \in \boldsymbol{R}
$$

for $H \in \Omega$.
Proof. First we can prove the lemma for $H=H_{0}$ as follows, by an argument similar to the one in the proof of [1, Lemma 21]. To do this, it is clearly enough to prove the same statements for the linear transformations $e^{-t H_{0}} E^{\prime+}, e^{t H_{0}} E^{\prime-}$ and $e^{t H_{0}} E^{\prime 0}$ on the Hilbert space $J_{1} / J_{1} J_{v}$.

Let Γ^{+}, Γ^{-}and Γ^{0} be closed curves in the complex plane that wind around the corresponding sets of eigenvalues Q^{+}, Q^{-}and Q^{0} in a positive sense, but which contain no other eigenvalues. By looking at Assumption 2 and the eigenvalues (13.5) we see that the curves can be chosen to satisfy the following conditions:
(i) $|\xi|$ is bounded by a polynomial in $|v|$ for any ξ on one of the curves.
(ii) The arc length of each of the curves is bounded by a polynomial in $|v|$.
(iii) If ξ is on one of the curves, the distance from ξ to the spectrum of H_{0} is not less than ε.
(iv) If ξ is a complex number, let $\mathscr{R} \xi$ be its real part. Then

$$
\begin{array}{ll}
\mathscr{R} \xi \geqq 2 \varepsilon & \text { for } \xi \text { on } \Gamma^{+}, \\
\mathscr{R} \xi \leqq-2 \varepsilon & \text { for } \xi \text { on } \Gamma^{-}, \\
\mid \mathscr{R} \xi \leqq \varepsilon & \text { for } \xi \text { on } \Gamma^{0} .
\end{array}
$$

From the spectral theory for a linear transformation on a finite dimensional vector space we have the following formulae.

$$
\begin{array}{ll}
e^{-t H_{0}} E^{\prime+}=\int_{\Gamma^{+}} e^{-t \xi}\left(\xi-H_{0}\right)^{-1} d \xi, & t \geqq 0, \\
e^{t H_{0}} E^{\prime-}=\int_{\Gamma^{-}} e^{t \xi}\left(\xi-H_{0}\right)^{-1} d \xi, & t \geqq 0
\end{array}
$$

$$
e^{t H_{0}} E^{\prime 0}=\int_{\Gamma^{0}} e^{t \xi}\left(\xi-H_{0}\right)^{-1} d \xi, \quad t \in \boldsymbol{R}
$$

Therefore if $t \geqq 0$

$$
\left|e^{-t H_{0}} E^{\prime+}\right| \leqq \int_{\Gamma^{+}}\left|e^{-t \xi}\right| \cdot\left|\left(\xi-H_{0}\right)^{-1}\right| d \xi
$$

By Lemma 13.3 and conditions (iii) and (iv), this last expression is bounded by

$$
e^{-2 \varepsilon t} d^{-r} p_{2}(|v|) \int_{\Gamma^{+}} p_{1}(|\xi|) d \xi
$$

Therefore by conditions (i) and (ii) there exists a polynomial p such that

$$
\left|e^{-t H_{0}} E^{\prime+}\right| \leqq e^{-2 \varepsilon t} p(|v|), \quad t \geqq 0
$$

The inequalities for $\left|e^{i H_{0}} E^{\prime-}\right|$ and $\left|e^{t H_{0}} E^{\prime 0}\right|$ follow from the same way.
Next, from the definition it follows that

$$
\begin{aligned}
\left|e^{-t \Gamma(H)} E^{+}\right| & \leqq\left|e^{-t\left(\Gamma(H)-\Gamma\left(H_{0}\right)\right)}\right| \cdot\left|e^{-t \Gamma\left(H_{0}\right)} E^{+}\right| \\
& \leqq p(|v|) e^{-\varepsilon t / 2} e^{-2 \varepsilon t} \leqq p(|v|) e^{-2 \varepsilon t}, \quad t \geqq 0, H \in \Omega .
\end{aligned}
$$

The inequalities for $\left|e^{t \Gamma(H)} E^{-}\right|$and $\left|e^{t \Gamma(H)} E^{0}\right|$ follow from the same way.
Q.E.D.

Put $\quad \Phi^{ \pm}(m)=E^{ \pm} \Phi(m), \quad \Phi^{0}(m)=E^{0} \Phi(m), \quad m \in M_{1}$.
Lemma 13.5. For any fixed $v \in \mathfrak{M}_{1}$ there are polynomials p and q, and a real number $d>0$, independent of (v, τ), such that

$$
\left|\Phi^{-}(m \cdot \exp T H ; v)\right| \leqq p(|v|) q(|\tau|) e^{-\varepsilon T} \Xi_{1}(m)(1+\sigma(m))^{d}
$$

for $H \in \Omega, T \geqq 0$ and $m \in M_{1}^{+}$.
Proof. $\Gamma(H)$ and E^{-}commute. Therefore by the corollary to Lemma 11.2, for any $H \in \Omega$ and $T \geqq 0$ we have the equation

$$
\Phi^{-}(m \cdot \exp T H ; v)=e^{T \Gamma(H)} \Phi^{-}(m ; v)+\int_{0}^{T} e^{(T-t) \Gamma(H)} \cdot E^{-} \Psi_{H}(m \cdot \exp t H ; v) d t
$$

The first term of this expression is easily handled with the help of Lemma 12.1 and Lemma 13.4. On the other hand, Lemma 13.4 tells us that there exists a polynomial p such that

$$
\left|\int_{0}^{T} e^{(T-t) \Gamma(H)} \cdot E^{-} \Psi_{H}(m \cdot \exp t H ; v) d t\right|
$$

$$
\begin{aligned}
& \leqq p(|v|) \int_{0}^{T} e^{-2 \varepsilon(T-t)}\left|\Psi_{H}(m \cdot \exp t H ; v)\right| d t \\
& \leqq p(|v|) e^{-\varepsilon T} \int_{0}^{T / 2}\left|\Psi_{H}(m \cdot \exp t H ; v)\right| d t+p(|v|) \int_{T / 2}^{T}\left|\Psi_{H}(m \cdot \exp t H ; v)\right| d t .
\end{aligned}
$$

Our Lemma 13.5 then follows from Lemma 12.2.
Q.E.D.

Lemma 13.6. For any fixed $v \in \mathfrak{M}_{1}$ there are polynomials p and q, and a real number $d>0$, independent of (v, τ), such that

$$
\left|\Phi^{+}(m \cdot \exp t H ; v)\right| \leqq p(|v|) q(|\tau|) e^{-\varepsilon T} \Xi_{1}(m)(1+\sigma(m))^{d}
$$

for $H \in \Omega, T \geqq 0$ and $m \in M_{1}^{+}$.
Proof. By means of a change of variables we can rewrite the integral equation of the corollary to Lemma 11.2. Then for $h \in A_{\mathfrak{p}}, H \in \Omega, T \geqq 0$ and $m \in M_{1}$

$$
\Phi(m h ; v)=e^{-T \Gamma(H)} \Phi(m h \cdot \exp T H ; v)-\int_{0}^{T} e^{-t \Gamma(H)} \Psi_{H}(m h \cdot \exp t H ; v) d t
$$

Operate E^{+}on both sides of this equation, and let T approach $+\infty$. Now $\left|e^{-T \Gamma(H)} E^{+}\right|$decreases exponentially in T. However, by Lemma 12.1 and (5.1) $|\Phi(m h \cdot \exp T H ; v)|$ is bounded by a polynomial in T. Therefore, the first term of the right hand side of the above equation approaches zero. We have the formula

$$
\Phi^{+}(m h ; v)=-\int_{0}^{\infty} e^{-t \Gamma(H)} E^{+} \Psi_{H}(m h \cdot \exp t H ; v) d t .
$$

Let h equal $\exp T H$. We obtain the equation

$$
\Phi^{+}(m \cdot \exp t H ; v)=-\int_{T}^{\infty} e^{-(t-T) \Gamma(H)} E^{+} \Psi_{H}(m \cdot \exp t H ; v) d t .
$$

Now $\left|e^{-(t-T) \Gamma(H)} E^{+}\right|$is bounded by a polynomial in $|v|$ if $t \geqq T$. Our Lemma 13.6 then follows from Lemma 12.2.
Q.E.D.

For $m \in M_{1}$ and $H \in \Omega$, define

$$
\Theta_{H}(m)=\Phi^{0}(m)+\int_{0}^{\infty} e^{-t \Gamma(H)} E^{0} \Psi_{H}(m \cdot \exp t H) d t .
$$

(The integral converges absolutely by Lemma 12.2 and Lemma 13.4). It is clear that Θ_{H} is a C^{∞} function on M_{1} and

$$
\Theta_{H}(m ; v)=\Phi^{0}(m ; v)+\int_{0}^{\infty} e^{-t \Gamma(H)} E^{0} \Psi_{H}(m \cdot \exp t H ; v) d t .
$$

Moreover, it follows from the corollary to Lemma 11.2 that

$$
\Theta_{H}(m ; v)=\lim _{T \rightarrow \infty} e^{-T \Gamma(H)} \Phi^{0}(m \cdot \exp T H ; v)
$$

Therefore

$$
\begin{equation*}
\Theta_{H}(m \cdot \exp t H)=e^{t \Gamma(H)} \Theta_{H}(m), \quad m \in M_{1}, H \in \Omega, t \in \boldsymbol{R} \tag{13.6}
\end{equation*}
$$

We now claim that Θ_{H} is actually independent of H. Fix $H_{1}, H_{2} \in \Omega$ and $m \in M_{1}$. We can choose ($\left[6(\mathrm{~m})\right.$, Lemma 54]) $T_{0} \geqq 0$ such that $m \cdot \exp t H \in M_{1}^{+}$ for $t \geqq T_{0}$ and $H \in \Omega$. Put $m_{2}=m \cdot \exp T_{2} H_{2}\left(T_{2} \geqq T_{0}\right)$. Then by Corollary to Lemma 11.2

$$
e^{-\Gamma\left(T_{1} H_{1}\right)} \Phi^{Q}\left(m_{2} \cdot \exp T_{1} H_{1}\right)=\Phi^{0}\left(m_{2}\right)+\int_{0}^{T_{1}} e^{-t \Gamma\left(H_{1}\right)} E^{0} \Psi_{H_{1}}\left(m_{2} \cdot \exp t H_{1}\right) d t
$$

and therefore,

$$
\begin{aligned}
& e^{-\Gamma\left(T_{1} H_{1}+T_{2} H_{2}\right) \Phi^{0}\left(m \cdot \exp \left(T_{1} H_{1}+T_{2} H_{2}\right)\right)-e^{-\Gamma\left(T_{2} H_{2}\right)} \Phi^{0}\left(m \cdot \exp T_{2} H_{2}\right)} \\
& =\int_{0}^{T_{1}} e^{-\Gamma\left(t_{1} H_{1}+T_{2} H_{2}\right)} E^{0} \Psi_{H_{1}}\left(m \cdot \exp \left(t_{1} H_{1}+T_{2} H_{2}\right)\right) d t_{1}, \quad T_{1} \geqq 0 .
\end{aligned}
$$

It follows from Lemma 12.2 and Lemma 13.4 that there exist polynomials p, q and a number $d \geqq 0$ such that for $t_{1} \geqq 0$ and $T_{2} \geqq T_{0}$

$$
e^{-\Gamma\left(t_{1} H_{1}+T_{2} H_{2}\right)} E^{0} \Psi_{H_{1}}\left(m \cdot \exp \left(t_{1} H_{1}+T_{2} H_{2}\right)\right) \mid<p(|v|) q(|\tau|) e^{-\varepsilon\left(t_{1}+T_{2}-T_{0}\right)} .
$$

Therefore by making T_{1}, T_{2} tend to $+\infty$, we get

$$
\Theta_{H_{2}}(m)=\lim _{T_{1}, T_{2} \rightarrow \infty} e^{-\Gamma\left(T_{1} H_{1}+T_{2} H_{2}\right)} \Phi^{0}\left(m \cdot \exp \left(T_{1} H_{1}+T_{2} H_{2}\right)\right) .
$$

Since the right hand side is symmetrical in H_{1}, H_{2}, we conclude that $\Theta_{H_{1}}(m)=$ $\Theta_{H_{2}}(m), m \in M_{1}$.

Hence we may now write Θ instead of Θ_{H}.
Since Ω is open in \mathfrak{I}, every $H \in \mathfrak{I}$ can be written in the form $H=\sum_{1 \leqq i \leq q} t_{i} H_{i}\left(t_{i} \in \boldsymbol{R}\right.$, $H_{i} \in \Omega$). So, from (13.6), we have

$$
\begin{equation*}
\Theta(m \cdot \exp H)=e^{\Gamma(H)} \dot{\Theta}(m), \quad m \in M_{1}, H \in \mathfrak{I} . \tag{13.7}
\end{equation*}
$$

Since Ψ is $\bar{\tau}$-spherical, and since both the left and right actions of $\bar{\tau}(m)$ on \mathscr{V}_{τ} commute with E^{0}, we have the formula

$$
\begin{equation*}
\Theta\left(k_{1} m k_{2}\right)=\tau\left(k_{1}\right) \Theta(m) \tau\left(k_{2}\right), \quad k_{1}, k_{2} \in K_{1}, m \in M_{1} . \tag{13.8}
\end{equation*}
$$

If $\zeta \in \boldsymbol{3}_{\mathbf{1}}$

$$
\Theta(m ; \zeta)=\lim _{t \rightarrow \infty} e^{-t \Gamma(H)} \Phi^{0}(m \cdot \exp t H ; \zeta)
$$

By Lemma 11.2 this expression is equal to

$$
\Gamma(\zeta) \Theta(m)+\lim _{t \rightarrow \infty} e^{-t \Gamma(H)} E^{0} \Psi_{\zeta}(m \cdot \exp t H) .
$$

Now, the last term in this formula approaches 0 as t approaches $+\infty$ by Lemma 12.2 and Lemma 13.4. Therefore

$$
\begin{equation*}
\Theta(m ; \zeta)=\Gamma(\zeta) \Theta(m), \quad \zeta \in 3_{1}, m \in M_{1} . \tag{13.9}
\end{equation*}
$$

Lemma 13.7. For any fixed $v \in \mathfrak{M}_{1}$ there are polynomials p, q and a number $d>0$, independent of (v, τ), such that

$$
\left|e^{-t \Gamma(H)} \Phi^{0}(m \exp t H ; v)-\Theta(m ; v)\right|<p(|v|) q(|\tau|) e^{-2 \varepsilon t} \Xi_{1}(m)(1+\sigma(m))^{d}
$$

for $H \in \Omega, t \geqq 0$ and $m \in M_{1}^{+}$.
Proof. Using the definition of Θ and the formula (13.7) we see that

$$
\begin{aligned}
& \Theta(m ; v)=e^{-T \Gamma(H)} \Theta(m \exp T H ; v) \\
& \quad=e^{-T \Gamma(H)} \Phi^{0}(m \exp T H ; v)+\int_{T}^{\infty} e^{-t \Gamma(H)} E^{0} \Psi(m \exp t H ; v) d t .
\end{aligned}
$$

Lemma 13.7 then follows from Lemma 12.2 and Lemma 13.4.
Q.E.D.

Corollary. For any fixed $v \in \mathfrak{M}_{1}$ there are polynomials p, q and a number $d>0$, independent of (v, τ), such that

$$
|\Phi(m \exp t H ; v)-\Theta(m \exp t H ; v)|<p(|v|) q(|\tau|) e^{-\varepsilon t} \Xi_{1}(m)(1+\sigma(m))^{d}
$$

for $H \in \Omega, t \geqq 0$ and $m \in M_{1}$.
Proof. We see that

$$
\begin{aligned}
& |\Phi(m \cdot \exp t H ; v)-\Theta(m \cdot \exp t H ; v)| \\
& \quad \leqq\left|\Phi^{+}(m \cdot \exp t H ; v)\right|+\left|\Phi^{-}(m \cdot \exp t H ; v)\right| \\
& \quad+\left|e^{t r(H)} E^{0}\right| \cdot\left|e^{-t \Gamma(H)} \Phi^{0}(m \cdot \exp t H ; v)-\Theta(m ; v)\right| .
\end{aligned}
$$

Our assertion follows from Lemmas 13.4, 13.5, 13.6 and 13.7. Q.E.D.
Lemma 13.8. For any fixed $v \in \mathfrak{M}_{1}$ there are a neighborhood U of H_{0} in $\operatorname{cl}\left(\mathfrak{a}_{\mathfrak{p}}^{+}\right)$, polynomials p, q and numbers $\varepsilon_{1}, d_{1}>0$, independent of (v, τ), such that

$$
|\Phi(\exp t H ; v)-\Theta(\exp t H ; v)|<p(|v|) q(|\tau|) e^{-\varepsilon_{1} t}(1+t)^{d_{1}}
$$

for any $H \in U$ and $t \geqq 0$.
Proof. Recall that ε satisfies $0<\varepsilon<1$. Let U be the set of all $H \in \operatorname{cl}\left(\mathfrak{a}_{p}^{+}\right)$ which satisfy $\alpha(H) \geqq(1-\varepsilon) \alpha\left(H_{0}\right)$ for any $\alpha \in P$ and $|H| \leqq(1+\varepsilon)| | H_{0} \mid$. Then U is a neighborhood of H_{0} in $c l\left(\mathfrak{a}_{\mathfrak{p}}^{+}\right)$. Put $H_{\varepsilon}=H-(1-\varepsilon) H_{0}$ for $H \in U$. Then $H_{\varepsilon} \in c l\left(\mathfrak{a}_{\mathfrak{p}}^{+}\right)$and

$$
\exp t H=\exp t(1-\varepsilon) H_{0} \cdot \exp t H_{\varepsilon}(t \in \boldsymbol{R})
$$

Hence, it follows from the corollary to Lemma 13.7 that there exist polynomials p, q and a number $d \geqq 0$, independent of (v, τ), such that

$$
\begin{aligned}
& |\Phi(\exp t H ; v)-\Theta(\exp t H ; v)| \\
& \quad=\mid \Phi\left(\exp t H_{\varepsilon} \cdot \exp t(1-\varepsilon) H_{0} ; v\right)-\Theta\left(\exp t H_{\varepsilon} \cdot \exp t(1-\varepsilon) H_{0} ; v\right) \\
& \quad<p(|v|) q(|\tau|) e^{-\varepsilon t(1-\varepsilon)} \Xi_{1}\left(\exp t H_{\varepsilon}\right)\left(1+t\left|H_{\varepsilon}\right|\right)^{d} .
\end{aligned}
$$

Now put $\varepsilon(1-\varepsilon)=\varepsilon_{1}$ and remark that

$$
\begin{aligned}
\left|H_{\varepsilon}\right| & \leqq|H|+(1-\varepsilon)\left|H_{0}\right| \\
& \leqq(1+\varepsilon)\left|H_{0}\right|+(1-\varepsilon)\left|H_{0}\right|=2 .
\end{aligned}
$$

Then it follows from the inequality (5.2) that we can select a number $d_{1} \geqq 0$ so that the last expression of the above inequality is bounded by

$$
p(|v|) q(|\tau|) e^{-\varepsilon_{1} t}(1+t)^{d_{1}} .
$$

Q.E.D.

For $a \in A_{\mathfrak{p}}$ and $1 \leqq j \leqq r, t_{j}(\Theta(a))$ is the vector in V_{τ} such that

$$
\Theta(a)=\sum_{1 \leqq j \leqq r} t_{j}(\Theta(a)) \otimes \eta_{j}^{* *}
$$

We put $t_{1}(\Theta)=\theta$. Recall that $\rho_{2}=\frac{1}{2} \sum_{\alpha \in \Sigma_{2}} m_{\alpha} \alpha$.
Corollary. There exist a neighborhood U of H_{0} in cl($\left.\mathfrak{a}_{\mathfrak{p}}^{+}\right)$, polynomials p, q and numbers $\varepsilon_{1}, d_{1}>0$ such that

$$
\left|e^{t_{e_{2}}(H)} \phi_{v}^{\tau}(\exp t H)-\theta_{v}^{\tau}(\exp t H)\right|<p(|v|) q(|\tau|) e^{-\varepsilon_{1} t}(1+t)^{d_{1}}
$$

for any $H \in U$ and $t \geqq 0$.
Proof. From the definition we have

$$
e^{t_{Q_{2}(H)}} \phi_{v}^{\tau}(\exp t H)-\theta_{v}^{\tau}(\exp t H)
$$

$$
=t_{1}(\Phi(\exp t H)-\Theta(\exp t H)) .
$$

Since for any $u \in \mathscr{V}_{\tau},\left|t_{1}(u)\right| \leqq|u|$, our Corollary follows from Lemma 13.8.
Q.E.D.

Now put $v=1$ and $t=0$ in Lemma 13.7. Then we conclude from Lemma 12.1 and Lemma 12.2 that there exist polynomials p, q and a number $d_{1} \geqq 0$, independent of ($v, \tau)$, such that

$$
|\Theta(m)|<p(|v|) q(|\tau|) \Xi_{1}(m)(1+\sigma(m))^{d_{1}}, m \in M_{1}^{+} .
$$

On the other hand we can obviously choose a number $\delta_{0} \geqq 0$ such that

$$
|\alpha(\log h)| \leqq \delta_{0} \sigma(h), \quad \alpha \in \Sigma_{2}, h \in A_{\mathfrak{p}}
$$

Put $\delta=\max \left(1, \delta_{0} / 4 \varepsilon\right)$. Then it is clear that $m \exp t H \in M_{1}^{+}\left(m \in M_{1}, H \in \Omega\right)$ provided $t \geqq \delta \sigma(m)$. Now fix $m_{0} \in M_{1}$ and put $t_{0}=\delta \sigma(m)$ and $m_{0}=m \exp t_{0} H_{0}$. Then $m_{0} \in M_{1}^{+}$and by (13.6)

$$
\Theta(m)=e^{-t_{0} \Gamma\left(H_{0}\right)} \Theta\left(m_{0}\right)
$$

Therefore,

$$
|\Theta(m)|<p(|v|) q(|\tau|)\left|e^{-t_{0} \Gamma\left(H_{0}\right)} E^{0}\right| \Xi_{1}\left(m_{0}\right)\left(1+\sigma\left(m_{0}\right)\right)^{d_{1}}
$$

But $\Xi_{1}\left(m_{0}\right)=\Xi_{1}(m), \sigma\left(m_{0}\right) \leqq \sigma(m)+t_{0}=(\delta+1) \sigma(m)$ and $\Gamma\left(H_{0}\right) E^{0}$ has only pure imaginary eigenvalues. Therefore, for a sufficiently large $d \geqq 0$, we have

$$
\begin{equation*}
|\Theta(m)|<p(|v|) q(|\tau|) \Xi_{1}(m)(1+\sigma(m))^{d}, \quad m \in M_{1} \tag{13.10}
\end{equation*}
$$

Form (13.8), (13.9) and (13.10) we obtain the following lemma.
Lemma 13.9. Let $k_{1}, k_{2} \in K_{1}, m \in M_{1}$ and $\zeta \in Z_{1}$. Then
(i) $\Theta\left(k_{1} m k_{2}\right)=\tau\left(k_{1}\right) \Theta(m) \tau\left(k_{2}\right)$,
(ii) $\Theta(m ; \zeta)=\Gamma(\zeta) \Theta(m)$,
(iii) there are polynomials p, q and a number $d \geqq 0$, independent of (v, τ), such that

$$
|\Theta(m)|<p(|v|) q(|\tau|) \Xi_{1}(m)(1+\sigma(m))^{d}, m \in M_{1} .
$$

For any linear function λ on \mathfrak{I}^{c}, let $\mathscr{V}_{\tau}(\lambda)$ denote the subspace of all $v \in \mathscr{V}_{\tau}$ such that

$$
(\Gamma(H)-\lambda(H)))^{r} v=0, \quad H \in \mathfrak{I}^{c},
$$

where $r=\operatorname{dim} J_{1} / J_{1} J_{v}$. Let $0_{\mathscr{V}}^{\tau}$ denote the sum

$$
\sum_{\mathscr{R} \lambda=0} \mathscr{V}_{\tau}(\lambda)
$$

where λ runs over those linear functions which take only pure imaginary values on I.

Lemma 13.10. $\quad \Theta(m) \in{ }^{0} \mathscr{V}_{\tau}, \quad m \in M_{1}$.
Proof. Since $\Theta(m \exp t H)=e^{t \Gamma(H)} \Theta(m)(H \in \Omega, t \in \boldsymbol{R})$, this is obvious from the last statement of Lemma 13.9.
Q.E.D.

14. Some estimates for θ

Let τ be an element in $\mathscr{E}_{\mathbf{K}}^{2}$. In $\S 10$ we put two assumptions (i), (ii) on the spherical function ϕ_{v}^{τ} on G. We put another two assumptions (iii), (iv) on ϕ_{v}^{τ}, which are satisfied for the Eisenstein integrals (see following Section 15), and then we show that the spherical function θ on M_{1} is a direct sum of functions $D(v) \theta_{j}$, and that $D(v) \theta_{j}$ are the functions on M_{1} corresponding to ϕ_{v}^{τ} on G and satisfy these assumptions. The functions $D(v) \theta_{j}$ are important tools when we use induction to prove the main theorem.

Now we assume that v is parametrized by a real linear function μ on $\sqrt{-1} a_{t}$ and a λ in \mathfrak{a}_{p}^{*} with $\nu=\mu+i \lambda$ and ϕ_{ν}^{τ} satisfies the following two conditions:
(iii) For any fixed real linear function μ on $\sqrt{-1} \mathfrak{a}_{t}, g_{1}, g_{2} \in \mathfrak{B}$ and $x \in G$, the function

$$
\phi_{v}^{\tau}\left(g_{1} ; x ; g_{2}\right)=\phi^{\tau}\left(\mu: \lambda: g_{1} ; x ; g_{2}\right)
$$

in λ can be regarded as an entire holomorphic function on $\mathfrak{a}_{\mathfrak{p}}^{* c}$. We write $\lambda \in \mathfrak{a}_{p}^{* c}$ as $\lambda=\lambda_{R}+i \lambda_{I}, \lambda_{R}, \lambda_{I} \in \mathfrak{a}_{p}^{*}$.
(iv) For any $g_{1}, g_{2} \in \mathfrak{B}$ and $d \in \boldsymbol{D}\left(\mathfrak{a}_{巾}^{* c}\right)$ we can choose polynomials p_{1}, p_{2}, q and an integer $n \geqq 0$, independent of (μ, λ, τ), such that

$$
\begin{gathered}
\left|\phi^{\tau}\left(\mu: \lambda ; d: g_{1}: a ; g_{2}\right)\right| \\
<p_{1}(|\mu|) p_{2}(|\lambda|) q(|\tau|) e^{\left|\lambda_{I}\right||\log a| \Xi(a)(1+|\log a|)^{n}}
\end{gathered}
$$

for each $a \in \operatorname{cl}\left(A_{\mathfrak{p}}^{+}\right)$and $\lambda \in \mathfrak{a}_{\mathfrak{p}}^{* c}$.
For $u \in \mathscr{V}_{\tau}$ there are elements $u_{1}, \ldots, u_{r} \in V_{\tau}$ such that

$$
u=\left(u_{1} \otimes \eta_{1}^{* *}\right)+\cdots+\left(u_{r} \otimes \eta_{r}^{* *}\right) .
$$

Then t_{l} is defined by $t_{l}(u)=u_{l}$. Recall the function Ψ,

$$
\Psi(m)=\Psi(\mu: \lambda: m)=\sum_{j} d(m) \phi^{\tau}\left(\mu: \lambda: m ; u_{j}\left(H_{0}\right)^{\prime}\right) \otimes \eta_{j}^{* *}, \quad m \in M_{1}
$$

Then we have

$$
t_{l}(\Psi(\mu: \lambda: m))=d(m) \phi^{\tau}\left(\mu: \lambda: m ; u_{l}\left(H_{0}\right)^{\prime}\right) .
$$

Let ε and U be the positive number and the neighborhood of H_{0} given in $\S 13$, respectively. Recall that ρ_{1} is the half of the sum of positive restricted roots which vanish identically on I.

Lemma 14.1. Fix any element $m \in M_{1}$ and a real linear function μ on $\sqrt{-1} a_{t}$. Then for each $l(1 \leqq l \leqq r)$ the function $t_{l}(\Psi(\mu: \lambda: m)$) in λ can be regarded as an entire holomorphic function on $\mathfrak{a}_{\hat{p}}^{* c}$. Moreover, for each $d \in$ $D\left(\mathfrak{a}_{\hat{p}}^{* c}\right)$ there exist polynomials p_{1}, p_{2}, q and an integer $n \geqq 0$, independent of (μ, λ, τ), such that

$$
\begin{gathered}
\mid t_{l}(\Psi(\mu: \lambda ; d: a \exp t H) \mid \\
<p_{1}(|\mu|) p_{2}(|\lambda|) q(|\tau|) e^{-\left(4 \varepsilon-\left|\lambda_{I}\right|\right) t}(1+t)^{n} e^{\left|\lambda_{1}\right||\log a|} \Xi_{1}(a)(1+|\log a|)^{n}
\end{gathered}
$$

for each $a \in \operatorname{cl}\left(A_{\mathfrak{p}}^{+}\right), H \in U, t \geqq 0$ and $\lambda \in \mathfrak{a}_{\mathfrak{p}}^{* c}$.
Proof. The first statement of our assertion follows clearly from the assumption (iii) and the formula of $t_{l}(\Psi(\mu: \lambda: m)$).

Now using the notation of the proof of Lemma 12.2, we see that for every $a \in c l\left(A_{\mathfrak{p}}^{+}\right), H \in U, t \geqq 0$ and $1 \leqq l \leqq r$,

$$
\begin{aligned}
& \left|t_{l}(\Psi(\mu: \lambda ; d: a \exp t H))\right| \\
& \quad=\left|\sum_{j} e^{t \rho_{2}(H)+\rho_{2}(\log a)} \phi^{\tau}\left(\mu: \lambda ; d: a \exp t H ; \theta\left(N_{l j}\right) g_{l j} \eta_{j}^{\prime}\right)\right| \\
& \quad<e^{-t \beta(H)-\beta(\log a)+\rho_{2}(t H+\log a)}\left|\sum_{j} \phi^{\tau}\left(\mu: \lambda ; d: \theta\left(N_{l j}\right) ; a \exp t H ; g_{l j} \eta_{j}^{\prime}\right)\right| .
\end{aligned}
$$

By the assumption (iv) we can choose polynomials p_{1}, p_{2}, q and an integer $n^{\prime} \geqq 0$, independent of (μ, λ, τ), so that

$$
\left|\sum_{j} \phi^{\tau}\left(\mu: \lambda ; d: \theta\left(N_{l j}\right): a \exp t H ; g_{l j} \eta_{j}^{\prime}\right)\right|
$$

is bounded by

$$
p_{1}(|\mu|) p_{2}(|\lambda|) q(|\tau|) e^{\left|\lambda_{r}\right|(|\log a|+t)} \Xi(a \exp t H)(1+|\log a+t H|)^{n^{\prime}} .
$$

Therefore, by (5.2) we can choose an integer $n \geqq 0$ such that

$$
\begin{aligned}
& \left|t_{l}(\Psi(\mu: \lambda ; d: a \exp t H))\right| \\
& \quad \leqq p_{1}(|\mu|) p_{2}(|\lambda|) q(|\tau|) e^{-t\left(\beta(H)-\left|\lambda_{I}\right|\right)+\left|\lambda_{I}\right||\log a|}(1+t)^{n} \cdot e^{-\rho_{1}(\log a)}(1+|\log a|)^{n} .
\end{aligned}
$$

From the definition of ε and the relation for M_{1} corresponding to (5.2) (see $[6(m)$,

Appendix]) it follows that the last expression is bounded by

$$
p_{1}(|\mu|) p_{2}(|\lambda|) q(|\tau|) e^{-\left(4 \varepsilon-\left|\lambda_{I}\right|\right) t}(1+t)^{n} e^{\left|\lambda_{1}\right||\log a|} \Xi_{1}(a)(1+|\log a|)^{n} .
$$

This proves our Lemma 14.1.
Q.E.D.

Recall that $E_{s, j}$ is the projection of \mathscr{V}_{τ} into the eigenspace of $\Gamma\left(3_{1}\right)$ and that $D=\boldsymbol{\sigma} / w^{m_{1}}$. By definition

$$
\left.\Theta(\mu: \lambda: a)=E^{0} \Phi(\mu: \lambda: a)+\int_{0}^{\infty} e^{-t \Gamma\left(H_{0}\right)} E^{0} \Psi\left(\mu: \lambda: a \exp t H_{0}\right)\right) d t .
$$

We write $E_{s_{j}} \Theta$ as Θ_{j}.
Lemma 14.2. Fix any element $m \in M_{1}$ and a real linear function μ on $\sqrt{-1} \mathfrak{a}_{\mathbf{t}}$. Then for each $l(1 \leqq l \leqq r)$ the function $D(\mu+i \lambda) t_{l}\left(\Theta_{j}(\mu: \lambda: m)\right)$ in λ is entire holomorphic on $\mathfrak{a}_{\hat{p}}^{* c}$. Moreover, for each $d \in \boldsymbol{D}\left(\mathfrak{a}_{p}^{* c}\right)$ there exist polynomials p_{1}, p_{2}, q and an integer $n \geqq 0$, independent of (μ, λ, τ), such that

$$
\begin{aligned}
& \left|d_{\lambda}\left[D(\mu+i \lambda) t_{l} \Theta_{j}(\mu: \lambda: a)\right]\right| \\
& \quad<p_{1}(|\mu|) p_{2}(|\lambda|) q(|\tau|) e^{\left|\lambda_{1}\right||\log a|} \Xi_{1}(a)(1+|\log a|)^{n}
\end{aligned}
$$

for each $a \in \operatorname{cl}\left(A_{\mathfrak{p}}^{+}\right)$and $\lambda \in \mathfrak{a}_{\mathfrak{p}}^{* c}$.
Proof. $E_{s_{j}}$ is the projection of \mathscr{V}_{τ} onto the eigenspace of $\Gamma\left(H_{0}\right)$ corresponding to the eigenvalue $\left\langle s_{j}(\mu+i \lambda), H_{0}\right\rangle$. If the eigenvalue $\left\langle s_{j}(\mu+i \lambda), H_{0}\right\rangle$ is not pure imaginary for $\lambda \in \mathfrak{a}_{p}^{*}$ then by definition $E_{s_{j}} E^{0}=0$, and if pure imaginary then $E_{s_{j}} E^{0}=E_{s_{j}}$. So, to prove our lemma, it is sufficient to consider the latter case. Now if $1 \leqq l \leqq r$ then

$$
t_{l}(\Phi(\mu: \lambda ; d: a))=d(a) \phi^{\tau}\left(\mu: \lambda ; d: a ; \eta_{l}^{\prime}\right)
$$

By Lemma 13.2 and the assumption (iv), $D(\mu+i \lambda) \cdot t_{l}\left(E_{s_{j}} \Phi(\mu: \lambda: a)\right)$ can be clearly regarded as an entire holomorphic function on $\mathfrak{a}_{\mathfrak{p}}^{* c}$ and for any $d \in \boldsymbol{D}\left(\mathfrak{a}_{\mathfrak{p}}^{* c}\right)$ there are polynomials p_{1}, p_{2}, q and an integer $n^{\prime} \geqq 0$, independent of (μ, λ, τ), such that for every $a \in \operatorname{cl}\left(A_{\mathfrak{p}}^{+}\right)$and $\lambda \in \mathfrak{a}_{\mathfrak{p}}^{* c}$

$$
\begin{aligned}
& \left|d_{\lambda}\left[D(\mu+i \lambda) t_{l}\left(E_{s_{j}} \Phi(\mu: \lambda: a)\right)\right]\right| \\
& \quad<p_{1}(|\mu|) p_{2}(|\lambda|) q(|\tau|) e^{\left|\lambda_{\mathrm{I}}\right||\log a|} \Xi(a)(1+|\log a|)^{n^{\prime}} d(a) .
\end{aligned}
$$

From the formula (5.2), it follows immediately that there exist numbers c_{0}, $r_{0}>0$ such that

$$
d(a) \Xi(a) \leqq c_{0} \Xi_{1}(a)(1+|\log a|)^{r_{0}}, \quad a \in \operatorname{cl}\left(A_{p}^{+}\right)
$$

Hence we can choose polynomials p_{1}, p_{2}, q and an integer $n \geqq 0$, independent of (μ, λ, τ), such that for every $a \in \operatorname{cl}\left(A_{\mathfrak{p}}^{+}\right)$and $\lambda \in \mathfrak{a}_{\mathfrak{p}}^{* c}$

$$
\begin{aligned}
& \left|d_{\lambda}\left[D(\mu+i \lambda) t_{l}\left(E_{s_{j}} \Phi(\mu: \lambda: a)\right)\right]\right| \\
& \quad<p_{1}(|\mu|) p_{2}(|\lambda|) q(|\tau|) e^{\left|\lambda_{I}\right||\log a|} \Xi_{1}(a)(1++|\log a|)^{n}
\end{aligned}
$$

On the other hand, by the last lemma for any $d^{\prime} \in \boldsymbol{D}\left(\mathfrak{a}_{p}^{* c}\right)$ we can also choose polynomials p_{1}, p_{2}, q and an integer $n \geqq 0$, independent of (μ, λ, τ), such that

$$
\begin{aligned}
& \left|e^{<s_{J}(\mu+i \lambda), H_{0}>} t_{l}\left(\Psi\left(\mu: \lambda ; d^{\prime}: a \exp t H_{0}\right)\right)\right| \\
& \quad<p_{1}(|\mu|) p_{2}(|\lambda|) q(|\tau|) e^{-\left(4 \varepsilon-\left|\lambda_{I}\right|\right) t}(1+t)^{n} e^{\left|\lambda_{I}\right||\log a|-\rho_{1}(\log a)}(1+|\log a|)^{n}
\end{aligned}
$$

for $a \in \operatorname{cl}\left(A_{\mathfrak{p}}^{+}\right)$and $\lambda \in \mathfrak{a}_{\mathfrak{p}}^{* c}$. Therefore, the integral

$$
\int_{0}^{\infty} e^{\left\langle s_{J}(\mu+i \lambda), H_{0}>\right.} t_{1}\left(\Psi\left(\mu: \lambda ; d^{\prime}: a \exp t H_{0}\right)\right) d t
$$

converges uniformly for λ in compact sets in $\mathfrak{a}_{\mathfrak{p}}^{* c}$, and so is an entire holomorphic function on $\mathfrak{a}_{\mathfrak{p}}^{* c}$. By Lemma 13.2 we can choose polynomials p_{1}, p_{2}, q and an integer n, independent of (μ, λ, τ), such that

$$
\begin{gathered}
\left|d \lambda\left[D(\mu \pm i \lambda) E_{s_{j}} \int_{0}^{\infty} e^{-t \Gamma\left(H_{0}\right)} t_{l}\left(E^{0} \Psi\left(\mu: \lambda: a \exp t H_{0}\right)\right) d t\right]\right| \\
\quad<p_{1}(|\mu|) p_{2}(|\lambda|) q(|\tau|) e^{\left|\lambda_{I}\right||\log a|} \Xi_{1}(a)(1+|\log a|)^{n}
\end{gathered}
$$

for each $a \in \operatorname{cl}\left(A_{\mathfrak{p}}^{+}\right), \lambda \in \mathfrak{a}_{\mathfrak{p}}^{* c}$ and $t \geqq 0$. Now our Lemma 14.2 follows immediately.
Q.E.D.

Now we put

$$
\begin{aligned}
& t_{1} \Theta(\mu: \lambda: m)=\theta(m) \\
& t_{1} \Theta_{j}(\mu: \lambda: m)=\theta_{j}(m), m \in M_{1}
\end{aligned}
$$

Then

$$
\begin{equation*}
\theta=\theta_{1}+\cdots+\theta_{r} \tag{14.1}
\end{equation*}
$$

and the following corollary is obvious.
Corollary 1. Fix any element $m \in M_{1}$ and a real linear function μ on $\sqrt{-1} a_{\mathrm{t}}$. Then the function $D(\mu+i \lambda) \theta_{j}(\mu: \lambda: m)$ in λ can be regarded as an entire holomorphic function on $\mathfrak{a}_{\mathfrak{p}}^{* c}$. Moreover, for each $d \in \boldsymbol{D}\left(\mathfrak{a}_{p}^{* c}\right)$ there exist polynomials p_{1}, p_{2}, q and an integer $n \geqq 0$, independent of (μ, λ, τ), such that

$$
\begin{aligned}
& \left|d_{\lambda}\left[D(\mu+i \lambda) \theta_{j}(\mu: \lambda: a)\right]\right| \\
& \quad<p_{1}(|\mu|) p_{2}(|\lambda|) q(|\tau|) e^{\left|\lambda_{I}\right||\log a|} \Xi_{1}(a)(1+|\log a|)^{n}
\end{aligned}
$$

for each $a \in \operatorname{cl}\left(A_{\mathfrak{p}}^{+}\right)$and $\lambda \in \mathfrak{a}_{\mathfrak{p}}^{* c}$.
In particular, if we put

$$
\Gamma_{j}(\mu: \lambda)=D(\mu+i \lambda) \theta_{j}(\mu: \lambda: 1)
$$

we have the following
Corollary 2. Fix a real linear function μ on $\sqrt{-1} a_{t}$. Then the function $\Gamma_{j}(\mu: \lambda)$ in λ can be regarded as an entire holomorphic function on $\mathfrak{a}_{p}^{* c}$. Moreover, for any $d \in \boldsymbol{D}\left(\mathfrak{a}_{\mathfrak{p}}^{* c}\right)$ there exist polynomials p_{1}, p_{2} and q, independent of (μ, λ, τ), such that

$$
\left|\Gamma_{j}(\mu: \lambda ; d)\right|<p_{1}(|\mu|) p_{2}(|\lambda|) q(|\tau|)
$$

for any $\lambda \in \mathfrak{a}_{\mathfrak{p}}^{* c}$.
Recall that $\bar{\tau}$ is the restriction of τ to K_{1}. By Lemma 13.9, Θ is $\bar{\tau}$-spherical. Since the action of $\bar{\tau}\left(K_{1}\right)$ and $\Gamma\left(3_{1}\right)$ on the vector space \mathscr{V}_{τ} commute and the Θ_{j} are eigenvectors of $\Gamma(\zeta)$, each Θ_{j} is a $\bar{\tau}$-spherical function. By definition $\mathscr{V}_{\tau}=V_{\tau} \otimes 3_{1}^{* *}$ is a double K-module so that K acts trivially on $3_{1}^{* *}$. So the maps $t_{l}\left(\mathscr{V}_{\tau} \rightarrow V_{\tau}(1 \leqq l \leqq r)\right)$ and the action of $\bar{\tau}\left(K_{1}\right)$ also commute. Therefore the function $D(\mu+i \lambda) \theta_{j}(\mu: \lambda: m)$ on M_{1} is $\bar{\tau}$-spherical and it is clear that for any $d \in \boldsymbol{D}\left(\mathfrak{a}_{\mathfrak{p}}^{* c}\right)$ the function $d_{\lambda}\left[D(\mu+i \lambda) \theta_{j}(\mu: \lambda: m)\right]$ on M_{1} is also $\bar{\tau}$-spherical. This being so, from Corollary 1 it follows that for any $d \in \boldsymbol{D}\left(\mathfrak{a}_{\mathfrak{p}}^{* c}\right)$ we can choose polynomials p_{1}, p_{2}, q and an integer $n \geqq 0$, independent of (μ, λ, τ), such that for any $m \in M_{1}$ and $\lambda \in \mathfrak{a}_{p}^{* c}$

$$
\left|d_{\lambda}\left[D(\mu+i \lambda) \theta_{j}(\mu: \lambda: m)\right]\right|<p_{1}(|\mu|) p_{2}(|\lambda|) q(|\tau|) e^{\left|\lambda_{I}\right||\log a|} \Xi_{1}(a)(1+|\log a|)^{n}
$$

where $m=k_{1} a k_{2}, k_{1}, k_{2} \in K_{1}$ and $a \in \operatorname{cl}\left(A_{\mathfrak{p}}^{+}\right)$. Clearly, for fixed $v_{1}, v_{2} \in M_{1}$ and $m \in M_{1}$ the function $D(\mu+i \lambda) \theta_{j}\left(\mu: \lambda: v_{1}: m ; v_{2}\right)$ is entire holomorphic on $\mathfrak{a}_{\hat{p}}^{* c}$. By an argument similar to the proof of Lemma 13.2 it can be proved easily that for any $d \in \boldsymbol{D}\left(\mathfrak{a}_{p}^{* c}\right)$ and $v_{1}, v_{2} \in \mathfrak{M}_{1}$ we can choose polynomials p_{1}, p_{2}, q and an integer $n \geqq 0$, independent of (μ, λ, τ), such that

$$
\begin{aligned}
& \left|d_{\lambda}\left[D(\mu+i \lambda) \theta_{j}\left(\mu: \lambda: v_{1}: a ; v_{2}\right)\right]\right| \\
& \quad<p_{1}(|\mu|) p_{2}(|\lambda|) q(|\tau|) e^{\left|\lambda_{1}\right||\log a| \Xi_{1}(a)(1+|\log a|)^{n}}
\end{aligned}
$$

for every $a \in \operatorname{cl}\left(A_{\mathfrak{p}}^{+}\right)$and $\lambda \in \mathfrak{a}_{p}^{* c}$. Thus we obtain the following

Lemma 14.3. Fix a real linear function μ on $\sqrt{-1} \mathfrak{a}_{t}$. Then the function $D(\mu+i \lambda) \theta_{j}(\mu: \lambda: m)$ on M_{1} is $\bar{\tau}$-spherical and satisfies the following conditions:
(i) $D(\mu+i \lambda) \theta_{j}(\mu: \lambda: m ; \zeta)=<\gamma_{1}(\zeta), s_{j}(\mu+i \lambda)>D(\mu+i \lambda) \theta_{j}(\mu: \lambda: m)$ for $m \in M_{1}, \lambda \in \mathfrak{a}_{p}^{* c}$ and $\zeta \in \mathcal{Z}_{1}$.
(ii) For any fixed $v_{1}, v_{2} \in \mathfrak{M}_{1}$ and $m \in M_{1}$ the function $D(\mu+i \lambda) \theta_{j}(\mu: \lambda$: $v_{1} ; m ; v_{2}$) in λ is entire holomorphic on $\mathfrak{a}_{p}^{* c}$. Moreover for any v_{1}, $v_{2} \in \mathfrak{M}_{1}$ and $d \in D\left(\mathfrak{a}_{p}^{* c}\right)$ we can choose polynomials p_{1}, p_{2}, q and an integer $n \geqq 0$, independent of (μ, λ, τ), such that

$$
\begin{aligned}
& \left|d_{\lambda}\left[D(\mu+i \lambda) \theta_{j}\left(\mu: \lambda: v_{1}: a ; v_{2}\right)\right]\right| \\
& \quad<p_{1}(|\mu|) p_{2}(|\lambda|) q(|\tau|) e^{\left|\lambda_{I}\right||\log a|} \Xi_{1}(a)(1+|\log a|)^{n}
\end{aligned}
$$

for any $a \in \operatorname{cl}\left(A_{\mathfrak{p}}^{+}\right)$and $\lambda \in \mathfrak{a}_{\mathfrak{p}}^{* c}$.

15. Application to the continuous series

Let τ be an irreducible unitary double representation of K on the Hilbert space V_{τ}. Recall from $\S 6$ that

$$
L^{\tau}=\underset{\sigma \in \mathcal{E}_{M}}{\oplus} L_{\sigma}^{\tau}
$$

is an orthogonal direct sum. For any fixed $\tau, L_{\sigma}^{\tau}=0$ for all but a finite number of σ.

We would like to apply the results of the previous sections to the collection $\left\{E\left(\psi_{\sigma}^{\tau}: \lambda: x\right)\right\}$ of Eisenstein integrals. λ is to range over $\mathfrak{a}_{\mathfrak{p}}^{* \prime}$, and τ and σ will range over \mathscr{E}_{K}^{2} and \mathscr{E}_{M} respectively. ψ_{σ}^{τ} will be any unit vector in L_{σ}^{τ}.

We will have to check the estimate (10.1), Assumptions 1 and 2 of $\S 13$ and the conditions (iii) and (iv) in $\S 14$ for our collection $\left\{E\left(\psi_{\sigma}^{\tau}: \lambda: x\right)\right\}$.

Lemma 15.1. Fix $g_{1}, g_{2} \in \mathfrak{B}$. Then for fixed $x \in G, E\left(\psi_{\sigma}^{\tau}: \lambda: g_{1} ; x ; g_{2}\right)$ can be regarded as an entire holomorphic function of λ. Also, there are polynomials p_{1}, p_{2} and q, dependent only on g_{1} and g_{2}, and for any $d \in \boldsymbol{D}\left(\mathfrak{a}_{p}^{* c}\right)$ there exists a polynomial p, dependent only on d, such that

$$
\begin{aligned}
& \left|E\left(\psi_{\sigma}^{\tau}: \lambda ; d: g_{1}: a ; g_{2}\right)\right| \\
& \quad<p_{1}(|\sigma|) p_{2}(|\lambda|) e^{\left|\lambda_{2}\right||\log a|} \Xi(a) p(|\log a|)
\end{aligned}
$$

for any $a \in \operatorname{cl}\left(A_{\mathfrak{p}}^{+}\right)$.
Proof. We have the formula (6.6):

$$
E\left(\psi_{\sigma}^{\tau}: \lambda: x\right)=\int_{K} \psi_{\sigma}^{\tau}(x k) \tau\left(k^{-1}\right) e^{(i \lambda-\rho)(H(x k))} d k
$$

For a fixed x, this is clearly an entire function of λ. Also, derivatives of $E\left(\psi_{\sigma}^{\tau}: \lambda: x\right)$ with respect to left or right invariant differential operators are entire functions in λ.

From (6.7) we obtain the formula

$$
E\left(\psi_{\sigma}^{\tau}: \lambda ; d: x\right)=\left(t_{1} t_{2}\right)^{1 / 2} \sum_{i, j} \xi_{1 i} \otimes \xi_{2 j}^{*}\left[d_{\lambda}\left(\Phi_{1 i}, \pi_{\sigma, \lambda}(x) \Phi_{2 j}\right)\right],
$$

where $t_{1} t_{2}$ is the dimension of the representation τ. We apply Lemma 9.1 to each of the functions ($\Phi_{1 i}, \pi_{\sigma, \lambda}(x) \Phi_{2 j}$). As a result we obtain polynomials p_{1}, q, orthogonal sets of vectors

$$
\left\{\Psi_{1 \alpha}^{i}: 1 \leqq \alpha \leqq t_{1}\right\},\left\{\Psi_{2 \beta}^{j}: 1 \leqq \beta \leqq t_{2}\right\}, \quad\left(1 \leqq i \leqq t_{1}, 1 \leqq j \leqq t_{2}\right)
$$

in $\mathscr{H}_{\sigma, \lambda}$, and the representations

$$
\left\{\tau_{1 \alpha}^{i}: 1 \leqq \alpha \leqq t_{1}\right\},\left\{\tau_{2 \beta}^{j}: 1 \leqq \beta \leqq t_{2}\right\}, \quad\left(1 \leqq i \leqq t_{1}, 1 \leqq j \leqq t_{2}\right),
$$

in \mathscr{E}_{K} that satisfy the conditions of Lemma 9.1. In addition

$$
\begin{equation*}
\left|E\left(\psi_{\sigma}^{\tau}: \lambda ; d: g_{1} ; x ; g_{2}\right)\right|^{2}=\sum_{i, \alpha} \sum_{j, \beta}\left|d_{\lambda}\left(\Psi_{1 \alpha}^{i}, \pi_{\sigma, \lambda}(x) \Psi_{2 \beta}^{j}\right)\right|^{2} \tag{15.1}
\end{equation*}
$$

For any (i, j, α, β), the vectors $\Psi_{i \alpha}^{i}$ and $\Psi_{2 \beta}^{j}$ transform under $\pi_{\sigma, \lambda} \mid K$ according to the representations $\tau_{1 \alpha}^{i}$ and $\tau_{2 \beta}^{j}$ respectively. Let $\tau(i, j, \alpha, \beta)$ be the double representation ($\tau_{1 \alpha}^{i}, \tau_{2 \beta}^{j}$) of K. Fix a vector $\psi_{\alpha \beta}^{i j}$ in $L_{\sigma}^{\tau(i, j, \alpha, \beta)}$ such that $E\left(\psi_{\alpha \beta}^{i j}: \lambda: x\right)$ is the $\tau(i, j, \alpha, \beta)$-spherical function associated with the function $\left(\Psi_{1 \alpha}^{i}, \pi_{\sigma, \lambda}(x) \Psi_{2 \beta}^{j}\right)$. By (6.6) we have that for $H \in S^{+}$and $t \geqq 0$

$$
\begin{aligned}
& \left|d_{\lambda}\left(\Psi_{1 \alpha}^{i}, \pi_{\sigma, \lambda}(\exp t H) \Psi_{2 \beta}^{j}\right)\right| \\
& \quad \leqq\left(\operatorname{dim} \tau(i, j, \alpha, \beta)^{i / 2}\left|E\left(\psi_{\alpha \beta}^{i j}: \lambda ; d: \exp t H\right)\right|\right. \\
& = \\
& \quad(\operatorname{dim} \tau(i, j, \alpha, \beta))^{1 / 2} \mid d_{\lambda} \int_{K} \psi_{\alpha \beta}^{i j}(\exp t H \cdot k) \tau\left(i, j, \alpha, \beta: k^{-1}\right) . \\
& \quad \cdot e^{(i \lambda-\rho)(H(\exp t H \cdot k))} d k \mid,
\end{aligned}
$$

and this expression equals

$$
\begin{aligned}
& (\operatorname{dim} \tau(i, j, \alpha, \beta))^{1 / 2} \mid \int_{K} \psi_{\alpha \beta}^{i j}(\exp t H \cdot k) \tau\left(i, j, \alpha, \beta: k^{-1}\right) p^{\prime}(\lambda: H(\exp t H \cdot k)) \\
& \quad \cdot e^{(i \lambda-\rho)(H(\exp t H \cdot k)} d k \mid
\end{aligned}
$$

where p^{\prime} is a function of λ and $H(\exp t H \cdot k)$, and dependent only on d. Now there exist a number $t_{k} \geqq 0, s \in W$ (W is the little Weyl group) and $H_{1} \in S^{+}$such that

$$
H(\exp t H \cdot k)=t_{k}\left(s H_{1}\right)
$$

Since

$$
\sigma(a) \leqq \sigma(a n), \quad a \in A_{\mathfrak{p}} n \in N .
$$

we have

$$
\left|t_{k}\right| \leqq t, \quad t \geqq 0, k \in K .
$$

Therefore we can choose polynomials p_{2} and p, dependent only on d, such that

$$
\mid p^{\prime}(\lambda: H(\exp t H \cdot k) \mid)<p_{2}(|\lambda|) p(t)
$$

On the other hand we have that

$$
\left|e^{(i \lambda-\rho)(H(\exp t H \cdot k))}\right|=e^{\left|\lambda_{I}\right| t-\rho(H(\exp t H \cdot k))}
$$

and that

$$
\left|\psi_{\alpha \beta}^{i j}(\exp t H \cdot k) \tau\left(i, j, \alpha, \beta: k^{-1}\right)\right|=\left|\psi_{\alpha \beta}^{i j}(1)\right| .
$$

Therefore, for each $t \geqq 0$, we have the inequality

$$
\begin{aligned}
& \left|d_{\lambda}\left(\Psi_{1 \alpha}^{i}, \pi_{\sigma, \lambda}(\exp t H) \Psi_{2 \beta}^{j}\right)\right| \\
& \quad \leqq(\operatorname{dim} \tau(i, j, \alpha, \beta))^{1 / 2}\left|\psi_{\alpha \beta}^{i j}(1)\right| e^{\left|\lambda_{I}\right| t} p(t) \int_{K} e^{-\rho(H(\exp t H \cdot k))} d k \\
& \quad=(\operatorname{dim} \tau(i, j, \alpha, \beta))^{1 / 2}\left|\psi_{\alpha \beta}^{i j}(1)\right| e^{\left|\lambda_{I}\right| t} p(t) \Xi(\exp t H) .
\end{aligned}
$$

But $\left|\psi_{\alpha \beta}^{i j}(1)\right|=\left\|\psi_{\alpha \beta}^{i j}\right\|_{M}$. From the remarks in $\S 6$ we see that

$$
\left\|\psi_{\alpha \beta}^{i j}\right\|_{M}=(\operatorname{dim} \sigma)^{-1 / 2}\left\|\Psi_{1 \alpha}^{i}\right\|\left\|\Psi_{2 \beta}^{j}\right\| .
$$

However, by Lemma 9.1 and formula (9.1),

$$
\left\|\Psi_{1 \alpha}^{i}\right\|^{2}\left\|\Psi_{2 \beta}^{j}\right\|^{2} \leqq p_{1}^{\prime}\left(\left(|\sigma|^{2}+|\lambda|^{2}\right)^{1 / 2}\right)^{2} \cdot q^{\prime}(|\tau|)^{2} .
$$

Now $\operatorname{dim} \tau(i, j, \alpha, \beta)$ and $\operatorname{dim} \sigma$ are bounded by polynomials in $|\tau(i, j, \alpha, \beta)|$ and $|\sigma|$ respectively, by the Weyl dimension formula. But Lemma $9.1|\tau(i, j, \alpha, \beta)|$, t_{1} and t_{2} are all bounded by polynomials in $|\tau|$. The inequality in our Lemma 15.1 then follows from (15.1).
Q.E.D.

Recall the definitions of $w^{m_{1}}, \Pi$ and Π^{\prime} in $\S 2$. Let $\tilde{\Pi}$ be the lattice of real linear functions on $\sqrt{-1} a_{t}$ which is generated by the roots of $\left(m_{1}, a_{t}\right)$. Then $\tilde{\Pi} \subset \Pi$ and $\tilde{\Pi}$ is a lattice of finite index in Π. We put

$$
\nabla_{1}=\prod_{\alpha \in P_{+}} H_{\alpha}=\sigma / \sigma^{m_{1}} .
$$

Lemma 15.2. There is a number $\delta_{1}>0$ such that for any $\mu \in \Pi^{\prime}$ the function

$$
\varpi_{1}(\lambda) w(-\mu-i \lambda)^{-1}
$$

is holomorphic in the region $\left|\lambda_{I}\right|<\delta_{1}$. In addition, there exists a polynomial p, independent of μ, such that for $\mu \in \Pi^{\prime}$ and $\left|\lambda_{I}\right|<\delta_{1}$

$$
\left|\varpi_{1}(\lambda) \varpi(-\mu-i \lambda)^{-1}\right|<p(|\lambda|) .
$$

Proof. We have the formula

$$
w(-\mu-i \lambda)^{-1}=w^{m_{1}}(-\mu)^{-1} \prod_{\alpha \in P_{+}}<-\mu-i \lambda, H_{\alpha}>^{-1}
$$

$m_{1}(\lambda) w(-\mu-i \lambda)$ is a meromorphic function in λ.
Since $\mu \in I I^{\prime}, \varpi^{m^{1}}(\mu)$ is not equal to zero. The numbers $\left\{\left|\boldsymbol{w}^{m^{1}}(\mu)\right|: \mu \in I I^{\prime}\right\}$ are actually bounded away from zero. In fact, it is known that $\Pi / \tilde{\Pi}$ is isomorphic to the center of M, which is finite. For any $\alpha \in P_{M}\left\{\tilde{\mu}\left(H_{\alpha}\right): \mu \in \Pi\right\}$ is a sum of a finite number of lattices in \boldsymbol{R}, and hence $\left\{\mu\left(H_{\alpha}\right): \mu \in \Pi\right\}$ is also so. Since, for $\mu \in \Pi^{\prime}, \mu\left(H_{\alpha}\right) \neq 0,\left\{\Phi^{m_{1}}(-\mu): \mu \in \Pi^{\prime}\right\}$ is bounded away from zero.

If $\alpha \in P_{+}$, then the number $<-\mu-i \lambda, H_{\alpha}>$ equals zero only if

$$
\lambda\left(H_{\alpha}\right)=-i \mu\left(H_{\alpha}\right) .
$$

Since $\left\{\tilde{\mu}\left(\boldsymbol{H}_{\alpha}\right): \tilde{\mu} \in \tilde{\Pi}\right\}$ is a sum of a finite number of lattices in \boldsymbol{R} and \tilde{I} is of finite index in $\Pi,\left\{\mu\left(H_{\alpha}\right): \mu \in \Pi\right\}$ is also a sum of a finite number of lattices in \boldsymbol{R}. Now let ε_{α} be the positive generators of them. Put

$$
\delta_{1}^{\prime}=\inf _{\alpha \in P_{+}}\left\{\frac{1}{2} \varepsilon_{\alpha}\right\} .
$$

Then for any $\alpha \in P_{+}$and $\mu \in \Pi^{\prime}$,

$$
\begin{array}{cl}
\text { either } & \mu\left(H_{\alpha}\right)=0 \\
\text { or } & \left|\mu\left(H_{\alpha}\right)\right| \geqq 2 \delta_{1}^{\prime} .
\end{array}
$$

In either case, we can choose a sufficiently small $\delta_{1}>0$ such that

$$
\alpha(\lambda)<-\mu-i \lambda, H_{\alpha}>^{-1}
$$

is holomorphic in the region $\left|\lambda_{I}\right|<\delta_{1}$, and it is bounded by a polynomial in $|\lambda|$ and its bound is independent of μ. Our Lemma 15.2 follows immediately.
Q.E.D.

Corollary. If $\mu \in \Pi^{\prime}$ and $\lambda \in \mathfrak{a}_{\mathfrak{p}}^{* \prime}$ then $m(-\mu-i \lambda)$ is not equal to zero.
Lemma 15.3. The set of real parts of the set

$$
\left\{<-\mu-i \lambda, s H_{0}>: \mu \in \Pi, \lambda \in \mathfrak{a}_{\mathfrak{p}}^{*}, s \in W_{\mathfrak{g}}\right\}
$$

of complex numbers is a sum of a finite number of lattices in \boldsymbol{R}.
Proof. Since each element $s \in W_{\mathrm{g}}$ maps $\sqrt{-1} \mathfrak{a}_{\mathfrak{t}}+\mathfrak{a}_{\mathfrak{p}}$ onto itself and since $\mathfrak{a}_{\mathfrak{t}}$ and $\mathfrak{a}_{\mathfrak{p}}$ are mutually orthogonal, the real part of $\left.<-\mu-i \lambda, s H_{0}\right\rangle$ is equal to $\left.-<s^{-1} \mu, H_{0}\right\rangle$. If $\mu \in \tilde{\Pi}$ we can regard μ as an integral sum of roots of $(\mathfrak{g}, \mathfrak{a})$. Then $s^{-1} \mu$ is also an integral sum of roots of $(\mathfrak{g}, \mathfrak{a})$. Therefore $\{\mathscr{R}<$ $\left.-\mu-i \lambda, s H_{0}>: \mu \in \tilde{\Pi}\right\}$ is a sum of a finite number of lattices in \boldsymbol{R}. Since $\tilde{\Pi}$ is of finite index in $\Pi,\left\{\mathscr{R}<-\mu-i \lambda, s H_{0}>: \mu \in \Pi\right\}$ is a sum of a finite number of lattices in \boldsymbol{R}. Our Lemma 15.3 is now obvious.
Q.E.D.

16. Completion of the proof of Theorem 8.1

We shall prove Theorem 8.1.
Let $\phi^{\tau}(\mu: \lambda:$.$) be the \tau$-spherical function which satisfies the conditions (i), (ii) in $\S 10$ and (iii), (iv) in § 14. We shall prove the following lemma instead of Theorem 8.1.

Lemma 16.1. Fix a real linear function μ_{σ} on $\sqrt{-1} a_{t}$ which is associated with $a \sigma \in \mathscr{E}_{M}$. Then for every non-negative integer s we can choose a finite number of elements d_{1}, \ldots, d_{N} in $\boldsymbol{D}\left(\mathfrak{a}_{p}^{*}\right)$ and polynomials $p_{1}, q, p_{21}, \ldots, p_{2 N}$ such that for every $a \in \mathscr{S}\left(\mathfrak{a}_{\mathfrak{p}}^{*}\right)$

$$
\begin{aligned}
& \sup _{x \in G}\left|\int_{a_{\hat{p}}^{*}} a(\lambda) \phi^{\tau}\left(\mu_{\sigma}: \lambda: x\right) \beta(\sigma: \lambda) d \lambda \cdot \Xi(x)^{-1}(1+\sigma(x))^{s}\right| \\
& \leqq p_{1}(|\sigma|) q(|\tau|) \sum_{j} \sup _{\lambda \in a_{\hat{p}}^{*}} p_{2 j}(|\lambda|)\left|a\left(\lambda ; d_{j}\right)\right| .
\end{aligned}
$$

Proof. Since ϕ^{τ} is τ-spherical, it is sufficient to prove for $h \in \operatorname{cl}\left(A_{\hat{p}}^{+}\right)$instead of x. We shall use induction on $\operatorname{dim} \mathfrak{a}_{\mathfrak{p}}$. The case $\mathfrak{a}_{\mathfrak{p}}=\{0\}$ is obviously trivial. So let us assume that $\operatorname{dim} \mathfrak{a}_{p} \geqq 1$. Define S^{+}as in $\S 10$. Since S^{+}is compact, if we attend to (5.2) it is enough to prove the following

Lemma 16.2. Fix μ_{σ} and s as above. Then for a given $H_{0} \in S^{+}$, we can choose a neighborhood V of H_{0} in S^{+}and a finite number of elements d_{1}, \ldots, d_{N} in $\boldsymbol{D}\left(\mathfrak{a}_{\mathfrak{p}}^{*}\right)$ and polynomials $p_{1}, q, p_{21}, \ldots, p_{2 N}$ such that for every $a \in \mathscr{S}\left(\mathfrak{a}_{p}^{*}\right)$, $H \in V$ and $t \geqq 0$

$$
\begin{aligned}
& (1+t)^{s} e^{t \rho(H)}\left|\int_{a_{p}^{*}} a(\lambda) \phi^{\tau}\left(\mu_{\sigma}: \lambda: x\right) \beta(\rho: \lambda) d \lambda\right| \\
& \leqq p_{1}(|\sigma|) q(|\tau|) \sum_{j} \sup _{\lambda \in \mathfrak{a}_{\mathfrak{p}}^{*}} p_{2_{j}}(|\lambda|)\left|a\left(\lambda ; d_{j}\right)\right| .
\end{aligned}
$$

Proof. If $t \geqq 0$ and $H \in V$, by (14.1) the expression

$$
(1+t)^{s} e^{t_{\rho}(H)}\left|\int_{\mathfrak{a}_{\mathfrak{p}}^{*}} a(\lambda) \phi^{\tau}\left(\mu_{\sigma}: \lambda: x\right) \beta(\sigma: \lambda) d \lambda\right|
$$

is bounded by the sum of the following two expressions:
(i) $I_{1}(t)=(1+t)^{s} e^{t \rho_{1}(H)} \mid \int_{a_{\dot{p}}^{*}} a(\lambda)\left(e^{t \rho_{2}(H)} \phi^{\tau}\left(\mu_{\sigma}: \lambda: \exp t H\right)\right.$

$$
\left.-\theta^{\tau}\left(\mu_{\sigma}: \lambda: \exp t H\right)\right) \beta(\sigma: \lambda) d \lambda \mid,
$$

(ii) $\quad I_{2}(t)=(1+t)^{s} e^{t \rho_{1}(H)} \sum_{j} \mid \int_{a_{\dot{p}}^{*}} a(\lambda)\left(\beta(\sigma: \lambda) / \beta_{1}(\sigma: \lambda)\right)$.

$$
\cdot \theta_{j}^{\tau}\left(\mu_{\sigma}: \lambda: \exp t H\right) \beta_{1}(\sigma: \lambda) d \lambda \mid .
$$

By the corollary to Lemma 13.8 and the continuity of the function on \mathfrak{a}_{p}^{*}, we can choose a neighborhood V of H_{0} in S^{+}, polynomials $p_{1}^{\prime}, p_{2}^{\prime}$ and q, and numbers $\varepsilon_{1}, d_{1}>0$, independent of (σ, λ, τ), such that

$$
\begin{aligned}
& e^{t \rho_{1}(H)}\left|e^{t \rho_{2}(H)} \phi^{\tau}\left(\mu_{\sigma}: \lambda: \exp t H\right)-\theta^{\tau}\left(\mu_{\sigma}: \lambda: \exp t H\right)\right| \\
& \quad<p_{1}^{\prime}(|\sigma|) p_{2}(|\lambda|) q(|\tau|) e^{-\varepsilon_{1} t}(1+t)^{d_{1}},
\end{aligned}
$$

for every $H \in V, t \geqq 0$ and $\lambda \in \mathfrak{a}_{p}^{*}$. This being so,

$$
I_{1}(t) \leqq p_{1}^{\prime}(|\sigma|) q(|\tau|) e^{-\varepsilon_{1} t}(1+t)^{s+d_{1}} \int_{a_{\dot{p}}^{*}} p_{2}^{\prime}(|\lambda|)|a(\lambda)||\beta(\sigma: \lambda)| d \lambda
$$

But by Lemma 4.1, there exist polynomials $p_{1}^{\prime \prime}$ and $p_{2}^{\prime \prime}$ such that

$$
|\beta(\sigma: \lambda)| \leqq p_{1}(|\sigma|) p_{2}(|\lambda|) .
$$

Therefore

$$
\begin{aligned}
& \sup _{t \geqq 0} I_{1}(t) \\
& \quad \leqq c \cdot p_{1}^{\prime}(|\sigma|) p_{1}^{\prime \prime}(|\sigma|) q(|\tau|) \cdot \sup _{\lambda \in a_{\mathfrak{p}}^{*}}\left[p_{2}^{\prime}(|\lambda|) p_{2}^{\prime \prime}(|\lambda|)\left(1+|\lambda|^{2}\right)^{r}|a(\lambda)|\right]
\end{aligned}
$$

where $r=\operatorname{dim} \mathfrak{a}_{\mathfrak{p}}$ and

$$
c=\int_{a_{p}^{*}}\left(1+|\lambda|^{2}\right)^{-r} d \lambda \cdot \sup _{t \geqq 0}\left[e^{-\varepsilon_{1} t}(1+t)^{t+d_{1}}\right] .
$$

This deals with $I_{1}(t)$.

We now obtain a bound for $I_{2}(t)$. From the definitions of the Plancherel measures $\beta(\sigma: \lambda), \beta_{1}(\sigma: \lambda)$ and the function $D(\mu+i \lambda)$, there exists a constant $c^{\prime} \neq 0$ such that

$$
\beta(\sigma: \lambda) / \beta_{1}(\sigma: \lambda)=c^{\prime} \cdot D\left(\mu_{\sigma}+i \lambda\right)
$$

Then by induction hypothesis, Lemma 16.1 is applicable to $\mathfrak{m}_{1}^{\prime}=\left[\mathfrak{m}_{1}, \mathfrak{m}_{1}\right]$. Recall that $\mathfrak{a}_{2}=\mathfrak{l}$, the centralizer of \mathfrak{m}_{1} in $\mathfrak{a}_{\mathfrak{p}}$, and that \mathfrak{a}_{1} is the orthogonal complement of \mathfrak{a}_{2} in $\mathfrak{a}_{\mathfrak{p}}$. Let E_{j} denote the orthogonal projections of $\mathfrak{a}_{\mathfrak{p}}$ on \mathfrak{a}_{j} $(j=1,2)$. For $H \in V$ we can write H as $H=H_{1}+H_{2}\left(H_{j}=E_{j} H, j=1,2\right)$. Then for $t \in \boldsymbol{R}$

$$
\theta_{j}^{\tau}(\mu: \lambda: \exp t H)=e^{t<s_{j}(\mu+i \lambda), H_{2}>} \theta_{j}^{\tau}\left(\mu: \lambda: \exp t H_{1}\right)
$$

where $<s_{j}(\mu+i \lambda), H_{2}>$ is pure imaginary by Lemma 13.10. Attending to (5.2) and Corollary 2 to Lemma 14.2 , for each $j(1 \leqq j \leqq r)$ we can choose a finite number of elements $d_{1}^{\prime}, \ldots, d_{k}^{\prime}$ in $\boldsymbol{D}\left(\mathfrak{a}_{\mathfrak{p}}^{*}\right)$ and polynomials $p_{1}^{\prime}, q^{\prime}, p_{21}^{\prime}, \ldots, p_{2 k}^{\prime}$ such that for every $a \in \mathscr{S}\left(\mathfrak{a}_{p}^{*}\right), H \in V$ and $t \geqq 0$

$$
\begin{aligned}
& (1+t)^{s} e^{t \rho_{1}(H)}\left|\int_{a_{\mathfrak{p}}^{*}} a(\lambda)\left(\beta(\sigma: \lambda) / \beta_{1}(\sigma: \lambda)\right) \theta_{j}^{\tau}\left(\mu_{\sigma}: \lambda: \exp t H\right) \beta_{1}(\sigma: \lambda) d \lambda\right| \\
& \quad<p_{1}^{\prime}(|\sigma|) q^{\prime}(|\tau|) \sum_{1 \leqq 1 \leqq k} \sup _{\lambda \in a_{p}^{*}} p_{2 l}^{\prime}(|\lambda|)\left|a\left(\lambda ; d_{l}^{\prime}\right)\right|
\end{aligned}
$$

Now our assertion follows immediately.
Q.E.D.

In particular, applying Lemma 16.1 for Eisenstein integrals, we obtain the following corollary.

Corollary 1. Fix $\psi \in L_{\sigma}^{\tau}$ with $\|\psi\|_{M}=1$. Then for every non-negative integer s we can choose a finite number of elements d_{1}, \ldots, d_{N} in $\boldsymbol{D}\left(\mathfrak{a}_{p}^{*}\right)$ and polynomials $p_{1}, q, p_{21}, \ldots, p_{2 N}$ such that for every $a \in \mathscr{S}\left(\mathfrak{a}_{\mathfrak{p}}^{*}\right)$,

$$
\begin{aligned}
& \sup _{x \in G}\left|\int_{a_{p}^{*}} a(\lambda) E\left(\psi_{\sigma}^{\tau}: \lambda: x\right) \beta(\sigma: \lambda) d \lambda \cdot \Xi(x)^{-1}(1+\sigma(x))^{s}\right| \\
& \quad \leqq p_{1}(|\sigma|) q(|\tau|) \sum_{j} \sup _{\lambda \in a_{p}^{*}} p_{2 j}(|\lambda|)\left|a\left(\lambda ; d_{j}\right)\right| .
\end{aligned}
$$

Corollary 2. Fix $\psi \in L_{\sigma}^{\tau}$ with $\|\psi\|_{M}=1$. Then for every g_{1}, g_{2} in \mathfrak{B} and non-negative integer s, we can choose a finite number of elements d_{1}, \ldots, d_{N} in $\boldsymbol{D}\left(\mathfrak{a}_{\mathfrak{p}}^{*}\right)$ and polynomials $p_{1}, q p_{21}, \ldots, p_{2 N}$ such that for every $a \in \mathscr{S}\left(\mathfrak{a}_{\mathfrak{p}}^{*}\right)$,

$$
\sup _{x \in G}\left|\int_{a_{p}^{*}} a(\lambda) E\left(\psi_{\sigma}^{\tau}: \lambda: g_{1} ; x ; g_{2}\right) \beta(\sigma: \lambda) d \lambda \cdot \Xi(x)^{-1}(1+\sigma(x))^{s}\right|
$$

$$
\leqq p_{1}(|\sigma|) q(|\tau|) \sum_{j} \sup _{\lambda \in a_{\dot{p}}^{*}} p_{2 j}(|\lambda|)\left|a\left(\lambda ; d_{j}\right)\right| .
$$

Proof. By (15.1)

$$
\left.\left|E\left(\psi_{\sigma}^{\tau}: \lambda: g_{1}^{-} ; x ; g_{2}\right)\right|^{2}=\sum_{i, \alpha=1}^{t_{1}} \sum_{j, \beta=1}^{t_{2}} \mid \Psi_{1 \alpha}^{i}, \pi_{\sigma, \lambda}(x) \Psi_{2 \beta}^{j}\right)\left.\right|^{2},
$$

where $\Psi_{1 \alpha}^{i}$ and $\Psi^{2}{ }_{2 \beta}$ are the same as in (15.1). Now let $E\left(\psi_{\alpha \beta}^{i j}: \lambda: x\right)$ be the ($\tau_{1 \alpha}^{i}, \tau_{2 \beta}^{j}$)-spherical function corresponding to $\left(\Psi_{1 \alpha}^{i}, \pi_{\sigma, \lambda}(x) \Psi_{2 \beta}^{j}\right)$. Apply Lemma 16.1 to $E\left(\psi_{\alpha \beta}^{i j}: \lambda: x\right)$. The corollary follows from the conditions on $\left\{\Psi_{1 \alpha}^{i}\right\}$, $\left\{\Psi_{2 \beta}^{j}\right\}$ and $\left\{\tau_{1 \alpha}^{i}\right\},\left\{\tau_{2 \beta}^{j}\right\}$ given in Lemma 9.1. Q.E.D.

This Corollary gives Theorem 8.1. Therefore the proof of Theorem 5.1 is now complete.

17. The Fourier transform of tempered distributions

Having proved Theorem 5.1, we can now extend the definition of the Fourier transform to tempered distributions on G.

A distribution on G is said to be tempered if it extends to a continuous linear functional from $\mathscr{C}(G)$ to \boldsymbol{C}. Since $C_{c}^{\infty}(G)$ is dense in $\mathscr{C}(G)$, and since the inclusion map

$$
C_{c}^{\infty}(G) \subset \mathscr{C}(G)
$$

is continuous, we can regard the space of tempered distributions as the dual space of $\mathscr{C}(G)$; that is, the space of continuous linear functionals from $\mathscr{C}(G)$ into \boldsymbol{C}.

Let $\mathscr{C}^{\prime}(G)$ be the set of tempered distributions on G. It becomes a locally convex topological vector space when endowed with the strong topology.

Let $\mathscr{C}^{\prime}(\hat{G})$ be the strong dual space of $\mathscr{C}(\hat{G})$ and let $\left(\mathscr{F}^{-1}\right)^{*}$ denote the transposed inverse of the Fourier transform $\mathscr{F}: \mathscr{C}(G) \rightarrow \mathscr{C}(\hat{G})$.

Theorem 17.1. The mapping $\left(\mathscr{F}^{-1}\right)^{*}$ is a linear topological isomorphism of $\mathscr{C}^{\prime}(G)$ onto $\mathscr{C}^{\prime}(\widehat{G})$.

Proof. The theorem follows directly from the fact that \mathscr{F} is a topological isomorphism of $\mathscr{C}(G)$ onto $\mathscr{C}(\hat{G})$.
Q.E.D.

Bibliography

[1] J. G. Arthur, Harmonic analysis of tempered distributions on semisimple Lie groups of real rank one, Ph. D. Thesis, Yale University, 1970.
[2] F. Bruhat, Sur les représentations induits des groupes de Lie, Bull. Soc. Math. France, 84 (1956), 97-205.
[3] M. Eguchi, Harmonic analysis on some types of semisimple Lie groups, (to appear in Proc. Japan Acad.).
[4] M. Eguchi and K. Okamoto, The Fourier transform of the Schwartz space on a symmetric space, (to appear in Proc. Japan Acad.).
[5] M. Eguchi, M. Hashizume and K. Okamoto, The Paley-Wiener theorem for distributions on symmetric spaces, Hiroshima Math. J., 3 (1973).
[6] Harish-Chandra,
(a) Representations of a semisimple Lie group on a Banach space I, Trans. Amer. Math. Soc., 75 (1953), 185-243.
(b) Representations of semisimple Lie groups II, Trans. Amer. Math. Soc., 76 (1954), 26-65.
(c) Representations of semisimple Lie groups III, Trans. Amer. Math. Soc., 76 (1954), 234253.
(d) Representations of semisimple Lie groups VI, Amer. J. Math., 78 (1956), 564-628.
(e) The characters of semisimple Lie groups, Trans. Amer. Math. Soc., 83 (1956), 98-163.
(f) Fourier transforms on a semisimple Lie algebra I, Amer. J. Math., 79 (1957), 193-257.
(g) A formula for semisimple Lie groups, Amer. J. Math., 79 (1957), 733-760.
(h) Spherical functions on a semisimple Lie group I, Amer. J. Math., 80 (1958), 241-310.
(i) Spherical functions on a semisimple Lie group II, Amer. J. Math., 80 (1958), 553-613.
(j) Some results on an invariant integral on a semisimple Lie algebra, Ann. of Math., 80 (1964), 551-593.
(k) Invariant eigendistributions on a semisimple Lie group, Trans. Amer. Math. Soc., 119 (1965), 457-508.
(1) Two theorems on semisimple Lie groups, Ann. of Math., 83 (1966), 74-128.
(m) Discrete series for semisimple Lie groups II, Acta Math., 116 (1966), 1-111.
(n) Harmonic analysis on semisimple Lie groups, Bull. Amer. Math. Soc., 76 (1970), 529-551.
(o) On the theory of the Eisenstein integral, Lecture Notes in Mathematics, Springer-Verlag, 266 (1971), 123-149.
[7] S. Helgason,
(a) Differential geometry and symmetric spaces, Academic Press, New York, 1962.
(b) Fundamental solutions of invariant differential operators on symmetric spaces, Amer. J. Math., 86 (1964), 565-601.
(c) A duality for symmetric spaces with applications to group representations, Advances in Math., 5 (1970), 1-154.
(d) Paley-Wiener theorems and surjectivity of invariant differential operators on symmetric spaces and Lie groups, Bull. Amer. Math. Soc., 79 (1973), 129-132.
(e) Function theory on symmetric spaces, Lecture notes, Summer institute on harmonic analysis on homogeneous space, 1972 (preprint).
[8] N. Jacobson, Lie algebra, Interscience, 1962.
[9] G. W. Mackey,
(a) Induced representations on locally compact group I, Ann. of Math., 55 (1952), 101-139.
(b) Borel structure in groups and their duals, Trans. Amer. Math. Soc., 85 (1957), 134-165.
[10] G. D. Mostow, The extensibility of local Lie groups of transformations and groups on surfaces,

Ann. of Math., 52 (1950), 606-636.
[11] H. Ozeki and M. Wakimoto, On polarizations of certain homogeneous spaces, Hiroshima Math. J., 2 (1973),
[12] P. J. Sally and G. Warner, The Fourier transform of invariant distributions, Lecture Notes in Mathematics, Springer-Verlag, 266 (1971), 297-320.
[13] L. Schwartz, Théorie des distributions, Hermann, Paris, 1967.
[14] M. Sugiura, Conjugate classes of Cartan subalgebras in real semisimple Lie algebras, J. Math. Soc., Japan, 11 (1959), 374-434.
[15] P. Trombi, On the continuous spectrum for a semisimple Lie group, Lecture notes, Summer institute on harmonic analysis on homogeneous spaces, 1972 (preprint).
[16] G. Warner,
(a) Harmonic analysis on semi-simple Lie groups I, Springer-Verlag, Berlin-Heidelberg-New York, 1972.
(b) Harmonic analysis on semi-simple Lie groups II, Springer-Verlag, Berlin-Heidelberg-New York, 1972.

> Department of Mathematics, Faculty of General Education, Hiroshima University

