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§1. Introduction

In the previous paper [3], we proved that, for non-zero eigenvalues, arbit-
rary eigenfunctions of the laplacian can be given by the ‘“Poisson integral” of
elements of a certain space % (S"!) which contains the space of hyperfunctions
on the (n—1) dimensional unit sphere as a proper subspace.

In case the eigenvalue is zero, however, the Poisson integral gives only con-
stant functions.

In this paper, we shall give the modification of the Poisson integral so that,
using the Borel-Weil theorem, the modified “Poisson integral’’ gives the canonical
. isomorphism between the space of all homogeneous harmonic polynomials on
R" of degree m and the space of all holomorphic sections of a certain SO(n, C)
-homogeneous holomorphic line bundle L,, over the Grassmann manifold SO(n)/
SO(2) x SO(n—2). In the last section, we shall consider a certain space @ZE)I‘

(L,) and show that every harmonic function on R" can be represented by an
analogue of the “Poisson integral”” of the unique element of @ > I'(L,,).
mz0

§ 2. Homogeneous harmonic polynomials

In this section we shall refer to general properties about harmonic polynomials
which we need in the following sections. In this paper, we denote by G the rota-
tion group of degree n, where n is a positive integer. For each non-negative
integer m, let s#™™ denote the space of all homogeneous harmonic polynomials
on R" of degree m. By left translations, one obtains an irreducible (unitary)
representation t,, of G on s#™™. The representation 7, is of class one with
respect to the subgroup H' of G consisting of all elements of the form

10 ‘
: heSOo(n—-1, R),
(0 h> (n=1, B
and every irreducible representation of G of class one with respect to H' is equiva-

lent to 7, for some non-negative integer m.
Let P* be the ring of polynomial function on R" with coefficients in the
complex field C, and P™™ be the subspace of P" consisting of all m-homogeneous
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elements. We define the harmonic projection H, of P~™ into #™™ by

_tml2] (= D¥r2k(A ) (x)
pr(x)— k=Zo 2k (n+2m—4)---(n+2m—2k—2)

for x=(x,, ..., x,) € R" where r is the norm of x with respect to the usual Eucli-
dean metric and 4 is the Laplace-Beltrami operator. Then the following sequence
is exact (see Vilenkin [8]):

0——r2pmm=2— prm Hey onm 0 (1)

The group G acts on P* by left-translations, and this projection H pis a G-homomor-
phism of P™™ onto s#™™ for each m. In this paper, we write [f] instead
of H,(f) for every f& p™™.

For each non-negative integer m, there exists a set J,, of multi-indices (iy, ...,
i,) of non-negative integers such that 1) i, + ... +i,=m and 2) {[f;, ..1: (iy, ...,
i)€J,} is a basis of s#™™, where f; ; is a polynomial function on R"
defined by f;, ; (%) =xit---xi= for x=(x4, ..., x,) ER".

§3. The Borel-Weil theorem for SO(n, R)

In this section we shall construct a G-irreducible subspace of C*(SO(n, R)/
SO(n—2, R)) equivalent to t,,.
Define subgroups H and K of G by

10
0
H=:]01 :heSOonh-2,R),,
- |
k{0
K= : K, eS02, R), k,eS0(n—-2, R);.
0 k&,
The group SO(2, R) acts on the Stiefel manifold G/H as right-translations:
us0--- 0
(gH) ug=g|0 1---0|H
001

where g= G and u, =< _ f,orfg gg; g) €S0(2, R).

The space G/H is a fibre bundle over G/K with fibre SO(2, R). For each non-
negative integer m, let £, be the unitary character of SO(2, R) defined by
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£, (up)=eim for u,eS0(2, R)

then we have an associated line bundle L, on G/K. The space C*(L,) of all
C=-sections on L,, becomes a G-module by left-translations and it is isomorphic
to the G-module;

{f€C=(G/H); f(pus)=E,(u)~' f(p); PEG/H, uyeSO(2, R)}

Thus, we regard C*(L,,) as a subspace of C*(G/H).

Now the space G/K has a G-invariant complex structure holomorphically
isomorphic to G¢/K€P,, where G¢ and K€ are complexifications of G and K
respectively and P, is the subgroup of G€¢, consisting of all elements of the form;

= p(z3+o+2d). LG+ tzd), — 2 -2,

5—(z§+---+z,f), 1+—;—(z§+---+zﬁ), iz3y ey izy | 123y .eny 2,€C

z3, —iz,, 1 0

z,, —iz,, 0o 1

For each non-negative integer m, we define the holomorphic character &, of
K€P, by

ug 0

¢ (uz)=ei™® for every u=<
0 u

>EKC and zeP,

cos@, sinf
Where Ug=

>ESO(2, C) and u' €S0O(n-2, C).
—sin#6, cosf

Then we obtain a G¢-homogeneous holomorphic line bundle L, over G¢/K€P .,
which is C-isomorphic to L,. The space I'(L,) of all holomorphic sections
of L,, may be identified with the space.

{f€Hol(50(n, €): flwy)=E.' (M fw), w€S0(n, C),yEKCP. },

and the group G acts on them by left-translations. Thus, we obtain the following
relations:

I' (L) C*(Ly) = C*(L,)>C*(G/H),

where & or = implies a G-module inclusion or a G-module isomorphism respec-
tively. By the well-known Borel-Weil theorem, the representation x,, of G on
I'(L,) is irreducible and equivalent to 7,
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For a multi-indéx (iy ... i,) of non-negative integers, we define a holomor-
phic function ¢;,.;, on SO(n, C) by

x

Pir.in(9)=(x1—iy )it (x,—iy,)" for each g=< E1 yl *)ESO('I, 0

xn yn
It is easily seen that ¢;, ; satisfies ¢; . ; (0y)=&,.(¥) ¢, i, (w) for every w in
SO(n, C) and y in K€P, and so ¢;, ;. is included in I'(L,).

Moreover {¢;, ;.: (iy ... i,)€J,} forms a basis of I'(L,) since the space
I'(L,) can be identified with the space C[z, ...z,]/(z}+ --- +z2%); where C
[z4, ..., z,] denotes the polynomial ring of n-variables z,, ..., z, and (z}+--- +z2)
is the ideal in C[z, ..., z,] generated by z}+-..-+z2. This identification is
given by the assignment of zit---zi» to ¢;, ;.

§4. Poisson integral

In view of §2 and § 3, the representation of G on I'(L,,) is equivalent to (z,,
s#"m). In this section, we shall show that the Poisson integral gives an inter-
twining operater between them. We fix w,=*(1, i, 0, ..., 0), once for all.

ProrosITION 4.1. For each holomorphic section ¢ in I'(L,), we define a
function f on R" by the following integral:

f(x)=g ei<»v>y(w)dw for each xe&R"
G/H

where dw is the G-invariant measure on G{H normalized by S dw=1 and
GIH

<x, w> denotes the complex-bilinear inner product <x, g wy> for w=gH.
Then f is in s£™™,

Proor. For each x in R" we can regard e!<* > ¢(w) as a function on G,

1) = _er<moen>o(g)dg

where dg is the Haar measure on G normalized by g dg=1. Since dg is a
G
Haar measure on G, we have

2n 0 s
f(x)=gc|:%go ei<x,gwo>e "e tml)dg}(p(g)dg
im

=_-!—SG(<x, gwo>)"0(g)dg

=__S (<x, o>)"¢(w)dw,
G/H
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and so f is a homogeneous polynomial of the degree m on R". The fact that f
is in ™™ is an immediate consequence from A(<x, w>)"=0 where 4 is
the Laplacian with respect to the variable x.

By Proposition 4.1, the correspondence ¢ — f defines a linear transformation
2 of I'(L,) to s#™mm,

THEOREM 1. The map % is a G-isomorphism of I'(L,) onto s#™™.

Proor. Both I'(L,) and s#™™ are irreducible G-module and, as one can
see easily from its definition, 2 commutes with the action of G, and so it is sufficient
for the proof of this theorem to show that there exists ¢ in I'(L,,) such that £
(¢)#0. Indeed, for ¢ =g, .0, We have

lm

2(o)xo=L{ (x3+rDmdg+0

X1 V1
where x,=/(1,0 ... 0)€ R" and g=< H *>e G.
xn y"
This completes the proof of the theorem.
We set

21 (p) I (2p—2)i"(2m) 12" (m+ p—1)

T(r=Dm!Cm+2p—2) [ (m+2p—2) (if n is an even integer 2p)

Con

F(p—%)m!(2m+2p—2)!F(m+2p—1) 2m+2p—1

(if n is an odd integer 2p+1)
Then we have

COROLLARY 4.2
g(goil...i,.)=cm[fi|...i,.]s fO[' every (ih ceey in)e‘]m’

Proor.' Itis not difficult to see that {¢;, ; : (iy ... i,)€J,} and {[f;, ;]
(iy ... i,)€J,,} are bases of I'(L,) and s#™™ equivalent under the action of G.
And so there exists a non-zero constant C},, which depends only n, m, such
that 2(¢;,.:,)=Cnlf,.i,] for every (i; ...i,)€J,. In order to know this
constant, we shall calculate the value of 2(¢, . ) at the point (1, 0, ..., 0) in
Rr. 1t is shown in Vilenkin [8] that

”;z)r(m+n—2)

a
[fmo..03(1, 0--‘0)=2mr(m+”%2)r(n—2)
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On the other hand, we have

P(omo.0)(1,0..0=L  (01+0prde

J2”‘1r(p)m'(2l;:(i’g;!_ o (if m=0(mod2))
V(P4 ) iom £ g =T dmg=1747  (fm=1(mod 2),

Thus we have C,,=C,,.

§5. Harmonic functions and Poisson transform

Let us consider the differential equation

Af=0  feC2(R")

_ 0
where A= i;; 72

We denote by C*(R"), the space of all C*-differentiable functions f which
satisfy 4f=0, and by (—D Z.}f""‘ the space of the series Zf,,,(f,,,eaf,, m)
which converges absolutely and uniformly on every compact subset in R
Then we have the following

PROPOSITION 5.1. C®(R"),=@® ) s#™™m
mz0

Proor. By definition it is easy to see that C*(R"), contains @ Z, Hmm,
So we have only to prove that @ ), s#™™ contains C*(R"),. Smce the

mz0
laplacian 4 is an elliptic defferential operator, each element in C®(R"), is a
real analytic function on R". It is well-known that a harmonic function f has
an expansion f= Z fuw (fue P™™) which converges absolutely and uniformly

on every compact subsets in R*. From 4f=0, we have 4f,=0 each m. There-
fore f,, is in s#™™, and as fis in @ ), s#™™. This completes the proof of the

m20
lemma.
Let {¢;,. i, (iy ... i,y€J,} be the basis of I'(L,), which is defined in §3.

We denote by @ Z I'(L,,) the space of all formal series }; 2 Ay i Piyin

m20 (ij...in)etn
with complex coefficients satlsfymg Z la "'”s"‘< + oo for all >0 where ||a,,,n—
20

max |a;, ;|- Weremark here 1 that every element 2 Qi Piyis
(i1.in)edm m20 (ij...in)eJm
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in® >, I'(L,,) satisfies 2] |—’Lm)—l“a"'“s"‘< +co for any polynomial P in m and
m=0 " !

m=0

3

for all s>0.
The following proposition assures that the Poisson integral £ may be ex-
tended to a linear transformation of @ >, I'(L,,) into C*(R"),
m=20

ProrosiTION 5.2. For every 2 i i, €D 2 I(L,), the
m20 (i1...in)em mz0
series

S(x)=X 2 ai1...i,.§G/Hei<x’w>§0i1...i,.((-”)dw

m20  (i1...in)elm
converges absolutely and uniformly on compact subsets in R*, and f is an ele-
ment of C*(R") .

Proor. For non-negative integers k and m and for a multi-index (iy, ..., i,)
in J,,, we have

[(A¥f;,..0. ()| S n2m2kpm=2k

where x?+x3+---+x2=r2. It follows from the above inequality and the de-
finition of the harmonic projection that |[f;  ; J(x)|<n%e™2rm for every
(iy...i,))€J,. We fix r,>0. For any x in R" such that |x||<r,, we have

i<x.
i fail...i,.g el<xo>g, i(0)do]
m20 (ii...in)edm G/H

=2 2 lCmail...i,.[fi,...i,,](x),

mz0 (it...in)edm

=X 2. leail...i,.lI[fil...i,.](x)l

T mz0 (igein)edm

=z b,,d(m)”%»;”(z\/zr)m (where d(m)=dim ™)
<X bud(m) 12nll (2, fero)m

where

a,=2r"1p2I'(p)I'(2p—2)
I'(p—-1)

bn=‘\/521’_1(2p+1)2F<p+%)F(2p—1)
: Gf n=2p+1)
r(r=3)

(if n=2p)
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which is convergent since d is a polynomial function is m, thus the series in the
proposition converges absolutely and uniformly on every compact subset in R".
Moreover, f belongs to C*(R") 4, since each term in the expansion of f is a har-
monic function on R". This completes the proof of Proposition 5.2.
Now we can define the Poisson transform £ of @ ;01" (L,,) into C®(R") 4:
m=

@@= D a0, @)do
G/H

m20 (ig...in)etm

for every o= x a;,..1,0i,..i, I D Z I'(L,). Then the following

m=0 (ii...in)edm
theorem says that every solution of the dlﬁerentlal equation 4f=0 can be given

by the “Poisson transform” of an element in @ ), I'(L,,).
m=0

THEOREM 2. The map £ is a linear isomorphism of @ ), I'(L,) onto
m=0
C?(R") 4.

Proor. From Corollary 4.2. and Proposition 5.2, £ is injective, and so it
suffices to show that £ is surjective.

Let f be an arbitrary element of C*(R"),. By. Proposition 5.1, f has an
absolutely convergent expansion:

f=2 2 ail...i,.[fil...i,.]

m20 (i1 -in)elm

where a;, ; €C.
Since each term a;, ; [f;,.;.] ((iy ... i,)€J,,) is a polynomial of degree
m, the series ), P a;,..i,[fi,.:.] converges absolutely not only on R"

m20 (it...in)edm

but also on C". Especially the above series converges absolutely at the point

. . ... . T
(t, ot, ..., " 11) in C", where t is a positive real number and a)=cosg+ism;.
Thus we have

la;,..c I[fi,..0,1(, o, ..., 0" 11)| < +

m20 (i1...in)etm
By the exactness of the sequence (1) in §2, we have
Lfirisd =iy i, EP2 D2,
so we have
[[fiyind(t, 02, ..., @" )| =]|f;, 0. (2,..., @" 28)|=2™
Therefore

|a;,...i,/8" < + o0 (for any t>0)

mZ0 (ig...in)em
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Hence Z lanllt™< + oo for any t>0 where ||a,,||=max {|a;, ; |:(i; ... i) EJ,}

From Cauchy-Hadamard’s test, we have

lim (||a,,|))!/"=0
m-—oo

and so,

() o

This implies that

1

mZOm'

Gm |l sm < + oo for any s>0.

Now we put o= PN Calai,. i, @iy.in

m20 (ige.in)eJm

Then ¢ lies in @ Z I'(L,,) and satisfies 2¢ =f.
This completes the proof of the theorem.
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