On the l-Number of 1-Cycles on an Abelian Variety

Tsutomu Sekiguchi
(Received September 13, 1973)

Introduction

For any divisor D on an abelian variety X of dimension r, we denote by ϕ_{D} the homomorphism from X to the Picard variety \hat{X} of X associated with the divisorial correspondence $m^{*} \mathcal{O}_{X}(D) \otimes p_{1}^{*} \mathcal{O}_{X}(-D) \otimes p_{2}^{*} \mathcal{O}_{X}(-D)$ on $X \times X$, where $m: X \times X \rightarrow X$ is the addition morphism of X and $p_{i}: X \times X \rightarrow X$ means the projection to the i-th component for $i=1,2$. By Riemann-Roch theorem, the number of Euler-Poincaré $\chi\left(\mathcal{O}_{X}(D)\right.$) is related with the self-intersection number (D^{r}) and with $\operatorname{deg} \phi_{D}$ as follows;

$$
\chi\left(\mathcal{O}_{X}(D)\right)=\frac{\left(D^{r}\right)}{r!} \quad \text { and } \quad \operatorname{deg} \phi_{D}=\left\{\chi\left(\mathcal{O}_{X}(D)\right)\right\}^{2}
$$

In particular, if D is ample, then $\chi\left(\mathcal{O}_{X}(D)\right)=\operatorname{dim} H^{\circ}\left(X, \mathcal{O}_{X}(D)\right)=l(D)$, where $l(D)$ is the dimension of the linear system $L(D)$, and $\operatorname{deg} \phi_{D}$ becomes $l(D)^{2}$.

On the other hand, for 1-cycles on an abelian variety, an analogy to the relation $\operatorname{deg} \phi_{D}=1(D)^{2}$ was given by K. Toki [6], in the following way; that is, for a positive 1-cycle C on an r-dimensional abelian variety X over the complex number field \boldsymbol{C}, the l-number $l(C)$, defined by $l(C)=\operatorname{deg}\left({ }_{*}^{r} C\right) / r!$ where ${ }_{*}^{r} C$ means the r-times Pontrjagin product of C, satisfies the equality

$$
\operatorname{deg} \phi_{C}=l(C)^{2}
$$

Here ϕ_{c} is the homomorphism from Picard variety \hat{X} of X to X defined by $\phi_{C}(\hat{x})=S\left(C \cdot\left(\left.P\right|_{\{\hat{x}\} \times x}\right)\right)$ for any $\hat{x} \in \hat{X}$, where P is the Poincaré divisor on $\hat{X} \times X$ and S means the sum on X. He proved this equality replacing the intersection and the Pontrjagin products by cohomological languages.

The purpose in this paper is to prove the same equality with no restriction on the characteristic of the ground field, by means of Jacobian varieties of curves.

In $n^{\circ} 1$, we shall review some results on abelian varieties and curves as preliminaries for our main theorem which will be proved in $\mathrm{n}^{\circ} 2$.

My hearty thanks are due to Prof. Shoji Koizumi for his critisism, and his valuable advice.

1. Let k be an algebraically closed field of any characteristic, which will be fixed throughout the paper. Let K, X and Y be three abelian varieties over k. If these abelian varieties form an exact sequence $0 \longrightarrow K \xrightarrow{\iota} X \xrightarrow{\pi} Y \longrightarrow 0$ in the
category of commutative group schemes of finite type over the field k, then the dual varieties of them also make the exact sequence $0 \longrightarrow \hat{Y} \xrightarrow{\hat{\pi}} \hat{X} \xrightarrow{\hat{\imath}} \hat{K} \longrightarrow 0$.

For an invertible sheaf L on an abelian variety X, as stated in the introduction we denote by ϕ_{L} the homomorphism associated with the divisorial correspondence $m^{*} L \otimes p_{1}^{*} L^{-1} \otimes p_{2}^{*} L^{-1}$ on $X \times X$, where $m: X \times X \rightarrow X$ is the addition morphism of X and $p_{i}: X \times X \rightarrow X$ means the projection to the i-th component for $i=1,2$. We denote by $K(L)$ the scheme theoretic kernel of ϕ_{L}. Under this situation we obtain

Proposition 1. Let K, X, Y and ι, π be as above. Let L be a non-degenerate invertible sheaf on X with $|\chi(L)|=1$. Then $K\left(\iota^{*} L\right) \xrightarrow[\rightarrow]{\sim} K\left(\pi^{*} L\right)$, in particular $\operatorname{deg}\left(\phi_{L^{*} L}\right)=\operatorname{deg}\left(\phi_{\pi^{*} L}\right)$.

In fact, let P_{X} and P_{Y} be the Poincaré invertible sheaves of $\hat{X} \times X$ and $\hat{Y} \times Y$ respectively. We identify X and $\hat{\hat{X}}$ (resp. Y and $\hat{\hat{Y}}$) by the divisorial correspondence P_{X} (resp. P_{Y}). Moreover we identify X and \hat{X} by the isomorphism ϕ_{L}.

Then under these identifications, $\phi_{L}^{-1}=\phi_{\left(\phi_{L}\right) * L}$ and we obtain the commutative diagram:

Then obviously our assertion follows from this diagram.
Moreover we quote a result of T. Matsusaka [2], which will paly an essential part in the proof of our main theorem in next section.

Let J^{g} be the Jacobian variety of a complete non-singular curve C, φ be the canonical inclusion map of C into J, and Θ be the corresponding canonical divisor on J. For any integer r such that $1 \leq r \leq g$, we put $\varphi^{(r)}=\varphi \circ p_{1}+\cdots+\varphi \circ p_{r}: C^{r}=\overbrace{C \times \cdots \times C}^{r} \rightarrow J$, and $W^{r}=$ the set theoretic image of $\varphi^{(r)}$, where $p_{i}: \overparen{C \times \cdots \times C} \rightarrow C$ means the projection to the i-th component for
$i=1, \ldots, n$.
Proposition 2. $\operatorname{deg}\left(\varphi^{(r)}: C^{r} \rightarrow W^{r}\right)=r!$.
(cf. [1], p. 37)
Proposition 3. (T. Matsusaka) Let u_{1}, \ldots, u_{g-r} be $g-r$ independent generic points of J. Then $\Theta_{u_{1}} \ldots \Theta_{u_{g-r}}$ is numerically equivalent to $(g-r)!W^{r}$. (cf. [2], appendix.)
2. Let X be an abelian variety of dimension r over the field k. For an irreducible curve C on X, and its inclusion morphism f, we define a morphism $f^{(s)}$ by

$$
f^{(s)}=f \circ p_{1}+\cdots+f \circ p_{s}: C^{s}=\overparen{C \times \cdots \times C} \rightarrow X
$$

for any positive integer s, where p_{i} means as above. In particular for $s=0$, we mean by C° a point and by $f^{(\circ)}$ a constant map $C^{\circ} \hookrightarrow X$ with value origin O.

For a given positive integer n, let $C_{i}(i=1, \ldots, n)$ be irreducible curves on X and f_{i} be the inclusion morphism $C_{i} \leftrightarrows X$ for each i. Let r_{1}, \ldots, r_{n} be n nonnegative integers such that $r_{1}+\cdots+r_{n}=r$. We denote by $F^{\left(r_{1}, \ldots, r_{n}\right)}$ the morphism

$$
f_{1}^{\left(r_{1}\right)} \circ p_{1}^{\left(r_{1}\right)}+\cdots+f_{n}^{\left(r_{n}\right)} \circ p_{n}^{\left(r_{n}\right)}: C_{1}^{r_{1}} \times \cdots \times C_{n}^{r_{n}} \longrightarrow X,
$$

and we put $d\left(C_{1}^{r_{1}}, \ldots, C_{n}^{r_{n}}\right)=\operatorname{deg} F^{\left(r_{1}, \ldots, r_{n}\right)}$, where $p_{i}^{\left(r_{i}\right)}: C_{1}^{r_{1}} \times \cdots \times C_{n}^{r_{n}} \rightarrow C_{i}^{r i}$ means the projection to the component $C_{i}^{r^{t}}$ for each i. Obviously, if $r_{i}>$ genus of C_{i} for some i, then $d\left(C_{1}^{r_{1}}, \cdots, C_{n}^{r_{n}}\right)=0$.

For any 1 -cycle $C=\sum_{i=1}^{n} m_{i} C_{i} \in \mathscr{Z}^{1}(X)$, we define the Pontrjagin product ${ }_{*}^{r} C$ and its degree by

$$
{\underset{*}{r}}_{r} C=\sum_{\substack{r_{1}+\underset{i}{2}+r_{n}=r}} \frac{r!}{r_{1}!\cdots r_{n}!} m_{1}^{r_{1} \cdots m_{n}^{r_{n}}} d\left(C_{1}^{r_{1}}, \ldots, C_{n}^{r_{n}}\right) \cdot X
$$

and

Obviously these definitions do not depend on the expression $\sum_{i=1}^{n} m_{i} C_{i}$ of C. Then from the above notice, we obtain

$$
\begin{equation*}
\operatorname{deg}\left({ }_{*}^{r} C\right)=\sum_{\substack{r_{1}+\ldots+r_{n}=r \\ g e n u s \\ \text { of } c_{i} \geq r_{i} \geq 0}} \frac{r!}{r_{1}!\ldots r_{n}!} m_{1}^{r_{1}} \ldots m_{n}^{r_{n}} d\left(C_{1}^{r_{1}}, \ldots, C_{n}^{r_{n}}\right) . \tag{1}
\end{equation*}
$$

According to K . Toki, we define the l-number of a positive 1 -cycle C by
$l(C)=\operatorname{deg}\left({ }_{*}^{r} C\right) / r!$. Moreover for a 1 -cycle C on X, we define the homomorphism ϕ_{C} from \hat{X} to X by $\phi_{C}(\hat{x})=S\left(C \cdot\left(\left.P\right|_{\{\hat{x}\} \times X}\right)\right)$ for any $\hat{x} \in \hat{X}$, where P is the Poincaré divisor on $\hat{X} \times X$, and S means the sum on X.

From now on we denote by C a positive 1 -cycle on X, which we write $\sum_{i=1}^{n} C_{i}$ (C_{i} 's may not be distinct.), and we assume that C_{i} contains the origin, for each i. Let C_{i}^{*} be a non-singular model of C_{i} and J_{i} the Jacobian variety of it. Let φ_{i} denote the canonical inclusion map of C_{i}^{*} into J_{i}, and we may assume that for each $i, \varphi_{i}\left(C_{i}^{*}\right)$ contains the origin. Then there exists a canonical homomorphism h_{i} such that

Therefore we obtain the commutative diagram:

where H and $m^{(n)}$ mean the morphism $h_{1} \circ p_{1}+\cdots+h_{n} \circ p_{n}$ and the addition morphism respectively. Moreover let Θ_{i} be a canonical divisor on J_{i} corresponding to $\varphi_{i}\left(C_{i}^{*}\right)$ for each $i=1, \ldots, n$. Then we obtain

Proposition 4. $\phi_{C}=H \circ\left(\phi_{\Theta_{1}^{-1}}^{-1} \times \cdots \times \phi_{\theta_{n}}^{-1}\right) \circ \hat{H}$, i.e., $\phi_{C}=\phi_{H^{*} \theta}$, where $\Theta=\sum_{i=1}^{n} J_{1} \times \cdots \times J_{i-1} \times \Theta_{i} \times J_{i+1} \times \cdots \times J_{n}$.

Proof. Obviously $\widehat{m^{(n)}}=\Delta_{\hat{X}}: \widehat{X} \hookrightarrow \widehat{\widehat{X} \times \cdots \times \hat{X}}$; the diagnoal map. Therefore by the diagram (2),

$$
H=m^{(n)} \circ\left(h_{1} \times \cdots \times h_{n}\right)
$$

and

$$
\begin{aligned}
\hat{H} & =\left(\hat{h}_{1} \times \cdots \times \hat{h}_{n}\right) \circ \widehat{m^{(n)}} \\
& =\left(\hat{\varphi}_{1}^{-1} \times \cdots \times \hat{\varphi}_{n}^{-1}\right) \circ\left(\hat{f}_{1} \times \cdots \times \hat{f}_{n}\right) \circ \Delta_{\hat{X}} \\
& =\left(\phi_{\theta_{1}} \times \cdots \times \phi_{\Theta_{n}}\right) \circ\left(\hat{f}_{1} \times \cdots \times \hat{f}_{n}\right) \circ \Delta_{\hat{X}} .
\end{aligned}
$$

Hence

$$
H \circ\left(\phi_{\Theta_{1}^{-1}}^{-1} \times \cdots \times \phi_{\theta_{n}}^{-1}\right) \circ \hat{H}=H \circ\left(\hat{f}_{1} \times \cdots \times \hat{f}_{n}\right) \circ \Delta_{\hat{x}}=\phi_{c} .
$$

q.e.d.

Main theorem. Let X be an abelian variety of dimension r. Then for any positive 1 -cycle $C=\sum_{i=1}^{n} C_{i}$ on $X, \operatorname{deg}\left(\phi_{C}\right)=l(C)^{2}$.

Proof. Under the same notations as above, we have only to consider the case where H is surjective. Let K be the connected component at 0 of (ker $H)_{\text {red }}$, and we put $Y=$ the quotient variety $J_{1} \times \cdots \times J_{n} / K$. Let π be the canonical surjection from $J_{1} \times \cdots \times J_{n}$ to Y. Then there exists an isogeny \bar{H} satisfying the commutative diagram

and dualizing this diagram, we have

Therefore from these diagrams and Proposition 4,

$$
\begin{equation*}
\phi_{C}=\bar{H} \circ \pi \circ\left(\phi_{\Theta_{1}}^{-1} \times \cdots \times \phi_{\Theta_{n}}^{-1}\right) \circ \hat{\pi} \circ \hat{\bar{H}}=\bar{H} \circ \phi_{\hat{\pi}^{*} \Theta^{\circ}} \hat{\bar{H}} \tag{3}
\end{equation*}
$$

While, by Proposition 1, $\operatorname{deg}\left(\phi_{\Theta \mid \hat{Y}}\right)=\operatorname{deg}\left(\phi_{\Theta \mid K}\right)$. From the Riemann-Roch theorem on K, we have $\left.\operatorname{deg}\left(\phi_{\Theta \mid K}\right)=\left\{K \cdot \Theta^{g_{1}+\cdots+g_{n}-r}\right) /\left(g_{1}+\cdots+g_{n}-r\right)!\right\}^{2}$, where g_{i} is the genus of C_{i} for each i. On the other hand, by Proposition 3,

$$
\begin{aligned}
\left(K \cdot \Theta^{g_{1}+\cdots+g_{n}-r}\right) & =\sum_{\substack{s_{1}+\cdots+s_{n}=g_{1}+\cdots+g_{n}-r \\
0 \leq s_{i} \leq g_{i}}} \frac{\left(g_{1}+\cdots+g_{n}-r\right)!}{s_{1}!\cdots s_{n}!}\left(K \cdot \Theta_{1}^{s_{1}} \times \cdots \times \Theta_{n}^{s_{n}}\right) \\
& =\sum_{\substack{s_{1}+\cdots+s_{n}=g_{1}+\cdots+g_{n}-r \\
0 \leq s_{i} \leq g_{i}}}\left(g_{1}+\cdots+g_{n}-r\right)!\left(K \cdot W_{1}^{g_{1}-s_{1}} \times \cdots \times W_{n}^{g_{n}-s_{n}}\right), \\
& =\left(g_{1}+\cdots+g_{n}-r\right)!\sum_{\substack{r_{1}+\cdots+r_{n}=r \\
0 \leq r_{i} \leq g_{i}}}\left(K \cdot W_{1}^{r_{1}} \times \cdots \times W_{n}^{r_{n}}\right),
\end{aligned}
$$

where $\quad r_{i}=g_{i}-s_{i}$. Therefore

$$
\operatorname{deg}\left(\phi_{\Theta \mid \hat{Y}}\right)=\left\{\sum_{\substack{r_{1}+\ldots+r_{n}=\boldsymbol{r} \\ 0 \leq r_{i} \leq g_{i}}}\left(K \cdot W_{1}^{r_{1}} \times \cdots \times W_{n}^{r_{n}}\right)\right\}^{2}
$$

and from the equality (3),

$$
\begin{align*}
\operatorname{deg} \phi_{C} & =(\operatorname{deg} \bar{H})^{2} \cdot \operatorname{deg}\left(\phi_{\theta \mid \hat{Y}}\right) \tag{4}\\
& =\left\{\sum_{\substack{r_{1}+r_{i}+r_{n}=r \\
0 \leq r_{i} \leq g_{i}}} \operatorname{deg} \bar{H} \cdot\left(K \cdot W_{1}^{r_{1}} \times \cdots \times W_{n}^{r_{n}}\right)\right\}^{2} .
\end{align*}
$$

On the other hand, we have the commutative diagram

Therefore

$$
\begin{aligned}
& d\left(C_{1}^{r_{1}}, \ldots, C_{n}^{r_{n}}\right)=\operatorname{deg} F^{\left(r_{1}, \ldots, r_{n}\right)} \\
& \quad=\operatorname{deg} \bar{H} \cdot \operatorname{deg}\left(\varphi_{1}^{\left(r_{1}\right)} \times \cdots \times \varphi_{n}^{\left(r_{n}\right)}: C_{1}^{r_{1}} \times \cdots \times C_{n}^{r_{n}}\right. \\
& \left.\quad \longrightarrow W_{1}^{r_{1}} \times \cdots \times W_{n}^{r_{n}}\right) \cdot \operatorname{deg}\left(\left.\pi\right|_{W_{1}^{r_{1}} \times \cdots \times W_{n}^{r_{n}}}\right) .
\end{aligned}
$$

Applying Proposition 2, we obtain

$$
d\left(C_{1}^{r_{1}}, \ldots, C_{n}^{r_{n}}\right)=\operatorname{deg} \bar{H} \cdot\left(r_{1}!\ldots r_{n}!\right)\left(K \cdot W_{1} \times \cdots \times W_{n}\right)
$$

Therefore from (4) and (1), we obtain

$$
\operatorname{deg} \phi_{C}=\left\{\frac{\operatorname{deg}\left({ }_{r}^{*} C\right)}{r!}\right\}^{2}=l(C)^{2}
$$

q.e.d.

References

[1] S. Lang, Abelian varieties, Interscience-Wiley, New York, 1959.
[2] T. Matsusaka, On a characterization of a Jacobian variety, Mem. Coll. Sci. Univ. Kyoto, Ser. A, 32 (1959), 1-18.
[3] D. Mumford, Abelian varieties, Tata institute of Fundamental Reseach, Bombay, Oxford Univ. Press, 1970.
[4] M. Nishi, Some results on abelian varieties, Natur. Sci. Rep. Ochanomizu Univ., 9 (1958), 1-12.
[5] M. Nishi, The Frobenius theorem and duality theorem on an abelian variety, Mem. Coll. Sci. Univ. Kyoto, Ser. A, 32 (1959), 333-350.
[6] K. Toki, Certain numerical values of curves on abelian varieties, Sci. Rep. Yokohama National Univ., Ser. I, 17 (1970), 1-25.

> Department of Mathematics, Faculty of Science and Engineering, Chuo University

