An Inequality for Certain Functional of Multidimensional Probability Distributions

Hiroshi Murata and Hiroshi Tanaka

(Received September 10, 1973)

§ 1. Introduction and the results

Denote by \mathscr{P} the class of all probability distributions f in R^{d} such that $\int|x|^{2} f(d x)<\infty$ and $\int\left(x_{i}-\mu_{i}\right)^{2} f(d x)>0(1 \leqq i \leqq d)$, where $\mu=\left(\mu_{1}, \ldots, \mu_{d}\right)$ is the mean vector of f. For each $f \in \mathscr{P}$, denote by g_{f} the Gaussian distribution with the same mean vector and variance matrix as those of f. We introduce a functional e on \mathscr{P} by

$$
\mathfrak{e}[f]=\inf E\left\{|X-Y|^{2}\right\}, \quad f \in \mathscr{P},
$$

where the infimum is taken over all pairs of R^{d}-valued random variables X and Y defined on a probability space (Ω, \mathscr{F}, P) and distributed according to f and g_{f} respectively. We also write $\mathrm{e}[X]$ for $\mathrm{e}\left[f_{X}\right]$, where f_{X} is the probability distribution of a random variable X.

In the one dimensional case, the functional \mathfrak{e} was introduced and its basic properties were studied in [4] with an application to Kac's one-dimensional model of a Maxwellian gas. The purpose of this paper is to extend some results in [4] to the multi-dimensional case, that is, we will prove the following theorems.

Theorem 1. Let X and Y be random variables with probability distributions $f \in \mathscr{P}$ and g_{f} respectively, and assume that $\mathrm{e}[f]=E\left\{|X-Y|^{2}\right\}$. Then, X is equal to some Borel function of Y almost surely.

Theorem 2. Let X_{1} and X_{2} be independent random variables with probability distributions belonging to \mathscr{P}. Then,

$$
\mathfrak{e}\left[X_{1}+X_{2}\right]<\mathrm{e}\left[X_{1}\right]+\mathrm{e}\left[X_{2}\right]
$$

unless both X_{1} and X_{2} are Gaussian. In other words, the functional equation

$$
\mathfrak{e}\left[f_{1} * f_{2}\right]=\mathfrak{e}\left[f_{1}\right]+\mathfrak{e}\left[f_{2}\right], \quad f_{1}, f_{2} \in \mathscr{P}
$$

gives a characterization of Gaussian distributions.

§ 2. Proof of the theorems

The proof of Theorem 1 will be given in a series of lemmas. In what follows, $<\cdot, \cdot>$ denotes the usual inner product in R^{d}.

Lemma 1. From the same assumption as in Theorem 1, it follows that

$$
<X(\omega)-X\left(\omega^{\prime}\right), Y(\omega)-Y\left(\omega^{\prime}\right)>\geqq 0
$$

for almost all $\left(\omega, \omega^{\prime}\right)$ with respect to $P \otimes P$.
Proof. In proving this lemma, we may assume that the basic probability space (Ω, \mathscr{F}, P) is chosen as follows: Ω is the unit interval $[0,1), \mathscr{F}$ is the class of Borel sets of Ω and P is the Lebesgue measure in Ω. Suppose the conclusion of the lemma is false. Then, there exists $\varepsilon>0$ such that the set

$$
\tilde{A}=\left\{\left(\omega, \omega^{\prime}\right) \in \Omega \times \Omega:<X(\omega)-X\left(\omega^{\prime}\right), Y(\omega)-Y\left(\omega^{\prime}\right)><-\varepsilon\right\}
$$

has strictly positive $P \otimes P$-measure. Now for integers $n, N \geqq 1$ and for any lattice point $\mathbf{m}=\left(m_{1}, \ldots, m_{d}\right) \in Z^{d}$, we set

$$
\left.\begin{array}{c}
\Lambda_{\mathrm{m}}^{n}=\prod_{i=1}^{d}\left[m_{i} 2^{-n},\left(m_{i}+1\right) 2^{-n}\right) \\
X_{n}(\omega)=\mathbf{m} 2^{-n} \quad \text { for } \omega \in X^{-1}\left(\Lambda_{\mathrm{m}}^{n}\right) \\
Y_{n}(\omega)=\mathbf{m} 2^{-n} \quad \text { for } \omega \in Y^{-1}\left(\Lambda_{\mathrm{m}}^{n}\right)
\end{array}\right\} \begin{array}{r}
<X_{n}(\omega)-X_{n}\left(\omega^{\prime}\right), Y_{n}(\omega)-Y_{n}\left(\omega^{\prime}\right)><-\varepsilon \\
\tilde{A}_{n, N}=\left\{\left(\omega, \omega^{\prime}\right) \in \Omega \times \Omega: \begin{array}{l}
\\
\left|X_{n}(\omega)\right|,\left|X_{n}\left(\omega^{\prime}\right)\right|,\left|Y_{n}(\omega)\right|,\left|Y_{n}\left(\omega^{\prime}\right)\right|<N
\end{array}\right\} .
\end{array}
$$

Then, there exists N such that $P \otimes P\left(\tilde{A}_{n, N}\right)>0$ for all sufficiently large n. Fixing such an N, we choose an n so that $P \otimes P\left(\tilde{A}_{n, N}\right)>0$ and

$$
\begin{equation*}
2^{-n+3} N \sqrt{d}+2^{-2 n+2} d<\varepsilon \tag{2.1}
\end{equation*}
$$

Since

$$
\tilde{A}_{n, N}=\bigcup\left(X^{-1}\left(\Lambda_{\mathrm{m}_{1}}^{n}\right) \cap Y^{-1}\left(\Lambda_{\mathrm{m}_{2}}^{n}\right)\right) \times\left(X^{-1}\left(\Lambda_{\mathrm{m}_{1}^{\prime}}^{n}\right) \cap Y^{-1}\left(\Lambda_{\mathrm{m}_{2}}^{n}\right)\right)^{\ominus}
$$

where the union is taken over all quartets ($\mathbf{m}_{1}, \mathbf{m}_{1}^{\prime}, \mathbf{m}_{2}, \mathbf{m}_{2}^{\prime}$) satisfying

$$
\left\{\begin{array}{l}
<\mathbf{m}_{1} 2^{-n}-\mathbf{m}_{1}^{\prime} 2^{-n}, \mathbf{m}_{2} 2^{-n}-\mathbf{m}_{2}^{\prime} 2^{-n}><-\varepsilon \tag{2.2}\\
\left|\mathbf{m}_{1} 2^{-n}\right|,\left|\mathbf{m}_{1}^{\prime} 2^{-n}\right|,\left|\mathbf{m}_{2} 2^{-n}\right|,\left|\mathbf{m}_{2}^{\prime} 2^{-n}\right|<N
\end{array}\right.
$$

there exist $\mathbf{m}_{1}, \mathbf{m}_{1}^{\prime}, \mathbf{m}_{2}, \mathbf{m}_{2}^{\prime} \in Z^{d}$ (satisfying (2.2)) such that

$$
\begin{aligned}
& P(A)>0, A=X^{-1}\left(\Lambda_{\mathrm{m}_{1}}^{n}\right) \cap Y^{-1}\left(\Lambda_{\mathrm{m}_{2}}^{n}\right), \\
& P\left(A^{\prime}\right)>0, A^{\prime}=X^{-1}\left(\Lambda_{\mathrm{m}_{1}^{\prime}}^{n}\right) \cap Y^{-1}\left(\Lambda_{\mathrm{m}_{\mathbf{z}}^{\prime}}^{n}\right) .
\end{aligned}
$$

By (2.1) and (2.2), we see that

$$
\begin{equation*}
<x-x^{\prime}, y-y^{\prime}><0 \quad \text { for any } \quad x \in \Lambda_{\mathrm{m}_{1}}^{n}, x^{\prime} \in \Lambda_{\mathrm{m}_{1}^{\prime}}^{n}, y \in \Lambda_{\mathrm{m}_{2}}^{n}, y^{\prime} \in \Lambda_{\mathrm{m}_{2}}^{n} . \tag{2.3}
\end{equation*}
$$

Next, we take an irrational number λ and denote by T the (ergodic) Weyl automorphism $\omega \in \Omega \rightarrow \omega+\lambda(\bmod .1)$. Then there exists an integer k such that $P\left(A \cap T^{-k} A^{\prime}\right)>0$. We set $U=T^{k}, B=A \cap U^{-1} A^{\prime}, B^{\prime}=U B$. Since $B \cap B^{\prime}=\phi$ and $U: B \rightarrow B^{\prime}$ is measure-preserving, we can define a new random variable $X^{\#}$ with probability distribution f by

$$
X^{\sharp}(\omega)= \begin{cases}X(U(\omega)) & \text { for } \quad \omega \in B \\ X\left(U^{-1}(\omega)\right) & \text { for } \quad \omega \in B^{\prime} \\ X(\omega) & \text { for } \quad \omega \notin B \cup B^{\prime} .\end{cases}
$$

From (2.3), we see that for $\omega \in B$

$$
\begin{array}{r}
|X(U(\omega))-Y(\omega)|^{2}+|X(\omega)-Y(U(\omega))|^{2} \\
<|X(\omega)-Y(\omega)|^{2}+|X(U(\omega))-Y(U(\omega))|^{2},
\end{array}
$$

and this inequality combined with the fact that U is measure-preserving gives us $E\left\{\left|X^{\sharp}-Y\right|^{2}\right\}<E\left\{|X-Y|^{2}\right\}$. This is a contradiction, and the proof is finished.

Lemma 2. Let X and Y be R^{d}-valued random variables defined on a probability space (Ω, \mathscr{F}, P), and assume that Y has a non-degenerate Gaussian distribution g. If

$$
<X(\omega)-X\left(\omega^{\prime}\right), Y(\omega)-Y\left(\omega^{\prime}\right)>\geqq 0
$$

holds for almost all (ω, ω^{\prime}) with respect to $P \otimes P$, then there exist a regular conditional probability distribution $P_{y}(\cdot)$ of X given Y and a set $A\left(\subset R^{d}\right)$ of Lebesgue measure 0 such that $P_{y} \otimes P_{y^{\prime}}\left(\Gamma_{y, y^{\prime}}\right)=1$ holds for all $y, y^{\prime} \notin A$, where

$$
\Gamma_{y, y^{\prime}}=\left\{\left(x, x^{\prime}\right) \in R^{2 d}:<x-x^{\prime}, y-y^{\prime}>\geqq 0\right\} .
$$

Proof. Let Λ_{m}^{n} and Y_{n} be the same as in the proof of the preceding lemma, and let $P_{y}^{(n)}(\cdot)$ be a regular conditional probability distribution of X given Y_{n}; it is given by

$$
P_{y}^{(n)}(\Gamma)=P\left\{X^{-1}(\Gamma) \cap Y^{-1}\left(\Lambda_{\mathrm{m}}^{n}\right)\right\} / g\left(\Lambda_{\mathrm{m}}^{n}\right),
$$

for $\Gamma \in \mathscr{B}\left(R^{d}\right), y \in \Lambda_{\mathrm{m}}^{n}$. If we set

$$
\Psi_{n}(y)=\int_{R^{d}} \psi(x) P_{y}^{(n)}(d x)
$$

for a bounded continuous function ψ, then $\left\{\Psi_{n}(y), \mathscr{B}_{n}, g\right\}$ is a martingale, where \mathscr{B}_{n} is the σ-field generated by $\left\{\Lambda_{\mathrm{m}}^{n}, \mathbf{m} \in Z^{d}\right\}$. Therefore, by the convergence theorem of martingales the set

$$
B_{\psi}=\left\{y \in R^{d}: \lim _{n \rightarrow \infty} \Psi_{n}(y) \text { exists }\right\}
$$

has full g-measure. Take a coutable family $\left\{\psi_{k}\right\}_{k \geqq 1}$ which is dense in $C_{0}\left(R^{d}\right)$, the space of real valued continuous functions on R^{d} vanishing at infinity, and let B be the intersection of all $B_{\psi_{k}}, k \geqq 1$. Then $g(B)=1$. Moreover, it is easy to see that for each $y \in B$ the limit $L_{y}(\psi)$ of $\Psi_{n}(y)$ as $n \rightarrow \infty$ exists for any $\psi \in C_{0}$ $\left(R^{d}\right)$ and defines a unique measure $P_{y}(\cdot)$, that is,

$$
\lim _{n \rightarrow \infty} \int \psi(x) P_{y}^{(n)}(d x)=\int \psi(x) P_{y}(d x), \psi \in C_{0}\left(R^{d}\right)
$$

Now we define $P_{y}(\cdot)$ for $y \notin B$ to be an arbitrary probability measure on R^{d} and put $A=B^{c} \cup\left\{y: P_{y}\left(R^{d}\right) \neq 1\right\}$. We also redefine $P_{y}(\cdot)$ for y such that $P_{y}\left(R^{d}\right) \neq 1$ to be an arbitrary probability measure. Then $g(A)=0$ and $P_{y}(\cdot)$ is a regular conditional probability distribution of X given Y. To show that A and $\left\{P_{y}(\cdot)\right\}$ have the desired property, we first notice that

$$
<X(\omega)-X\left(\omega^{\prime}\right), Y_{n}(\omega)-Y_{n}\left(\omega^{\prime}\right)>\geqq-\sqrt{d 2^{-n+1}}\left|X(\omega)-X\left(\omega^{\prime}\right)\right|
$$

holds for almost all (ω, ω^{\prime}) with respect to $P \otimes P$ and hence

$$
\begin{equation*}
P_{y}^{(n)} \otimes P_{y^{\prime}}^{(n)}\left(\Gamma_{y, y^{\prime}}^{(n)}\right)=1 \tag{2.4}
\end{equation*}
$$

for almost all $\left(y, y^{\prime}\right)$ with respect to $g \otimes g$, where

$$
\Gamma_{y, y^{\prime}}^{(n)}=\left\{\left(x, x^{\prime}\right) \in R^{2 d}:<x-x^{\prime}, y-y^{\prime}>\geqq-\sqrt{d} 2^{-n+1}\left|x-x^{\prime}\right|\right\} .
$$

But, since $P_{y}^{(n)}(\cdot)$ is constant on each Λ_{m}^{n}, the equality (2.4) holds for all (y, y^{\prime}). Because $\Gamma_{y, y^{\prime}}^{(n)} \downarrow \Gamma_{y, y^{\prime}}$ as $n \uparrow \infty$, we have $P_{y}^{(n)} \otimes P_{y^{\prime}}^{(n)}\left(\Gamma_{y, y^{\prime}}^{(n)}\right)=1$ for $n \geqq n_{0}$; letting $n \uparrow \infty$ and using the facts that $P_{y}^{(n)}$ converges to P_{y} for $y \notin A$ and that $\Gamma_{y, y^{\prime}}^{\left(n_{0}\right)}$ is closed, we obtain $P_{y} \otimes P_{y^{\prime}}\left(\Gamma_{y, y^{\prime}}^{\left(n_{0}\right)}\right)=1$ for $y, y^{\prime} \notin A$. Since n_{0} is arbitrary, the lemma is proved.

By definition a set valued function $S: y \in R^{d} \rightarrow S(y) \subset R^{d}$ is said to be monotone, if there exists a set $A\left(\subset R^{d}\right)$ of Lebesgue measure 0 such that the inequality

$$
<x-x^{\prime}, y-y^{\prime}>\geqq 0 \quad \text { for } \quad x \in S(y), x^{\prime} \in S\left(y^{\prime}\right)
$$

holds whenever $y, y^{\prime} \notin A$.

Lemma 3. Let $S: y \in R^{d} \rightarrow S(y) \subset R^{d}$ be monotone. Then, $S(y)$ consists of a single point for almost all y.

Proof. First we consider the case $d=1$, and let $I(y)$ be the smallest closed interval containing $S(y)$. Then, the monotone property of S implies that $I(y)$ and $I\left(y^{\prime}\right)$ are non-overlapping if $y \neq y^{\prime}, y, y^{\prime} \notin A$ (a null set in the definition of monotonicity). Therefore, $I(y)$ consists of a single point for almost all y, and hence so does $S(y)$. Next, we consider the case $d>1$. Given $k(1 \leqq k \leqq d)$ and $z=\left(z_{1}, \ldots, z_{d-1}\right) \in R^{d-1}$, we define a set valued function S_{k}^{z} on R^{1} by

$$
S_{k}^{z}(\eta)=\left\{\begin{array}{c}
\xi \in R^{1}:\left(w_{1}, \ldots, w_{k-1}, \xi, w_{k}, \ldots, w_{d-1}\right) \in S(y) \\
\text { for some } w=\left(w_{1}, \ldots, w_{d-1}\right) \in R^{d-1}
\end{array}\right\}
$$

where $y=\left(z_{1}, \ldots, z_{k-1}, \eta, z_{k}, \ldots, z_{d-1}\right)$. We put

$$
\begin{gathered}
A_{k}^{z}=\left\{\eta \in R^{1}:\left(z_{1}, \ldots, z_{k-1}, \eta, z_{k}, \ldots, z_{d-1}\right) \in A\right\} \\
B_{k}=\left\{z \in R^{d-1}: A_{k}^{z} \text { is a null set }\right\} .
\end{gathered}
$$

Then, by Fubini's theorem B_{k}^{c} and A_{k}^{z} for each $z \in B_{k}$ are null sets, and from the monotone property of S it follows that S_{k}^{z} is monotone for each $z \in B_{k}$. So, the result for the case $d=1$ implies that, for each $z \in B_{k}, S_{k}^{z}(\eta)$ is a single point for almost all η. Let D_{k} be the set of all $y \in R^{d}$ such that the projection to the k-th coordinate reduces $S(y)$ to a single point, and put $D=\cap D_{k}$. Then, D^{c} is a null set, and $S(y)$ is a single point for each $y \in D$, as was to be proved.

The proof of Theorem 1 is now completed as follows. From the first two lemmas, it follows that there exist a null set A and a regular conditional probability distribution $P_{y}(\cdot)$ of X given Y with the property stated in Lemma 2. If we define $S(y), y \in R^{d}$, as the smallest closed set of full P_{y}-measure, then $S(y) \times S\left(y^{\prime}\right) \subset$ $\Gamma_{y, y^{\prime}}$ provided $y, y^{\prime} \notin A$, or what is the same, the mapping $S: y \in R^{d} \rightarrow S(y)$ is monotone. Therefore, by Lemma $3 S(y)$ is a single point for almost all y; this means that X is equal to some Borel function of Y almost surely.

We give the proof of Theorem 2. We remark that Theorem 1 implies the following: if $f \in \mathscr{P}$ and Y is g_{f}-distributed, then there exists some Borel function φ from R^{d} into itself such that $\mathrm{e}[f]=E\left\{|\varphi(Y)-Y|^{2}\right\}$, since there exists some pair of random variables (with distributions f and g_{f}) which gives the infimum value e[f]. Now we take independent Gaussian random variables Y_{1} and Y_{2} whose mean vectors and variance matrices are the same as those of X_{1} and X_{2} respectively. Then by the above remark, there exist Borel functions φ_{1} and φ_{2} such that $\mathrm{e}\left[X_{1}\right]=E\left\{\left|\varphi_{1}\left(Y_{1}\right)-Y_{1}\right|^{2}\right\}$ and $\mathrm{e}\left[X_{2}\right]=E\left\{\left|\varphi_{2}\left(Y_{2}\right)-Y_{2}\right|^{2}\right\}$. We have

$$
\begin{equation*}
\mathrm{e}\left[X_{1}\right]+\mathrm{e}\left[X_{2}\right]=E\left\{\left|\left(\varphi_{1}\left(Y_{1}\right)+\varphi_{2}\left(Y_{2}\right)\right)-\left(Y_{1}+Y_{2}\right)\right|^{2}\right\} . \tag{2.5}
\end{equation*}
$$

Since $\varphi_{1}\left(Y_{1}\right)+\varphi_{2}\left(Y_{2}\right)$ has the same distribution as that of $X_{1}+X_{2}$ and $Y_{1}+Y_{2}$ has the same mean vector and variance matrix as those of $X_{1}+X_{2}$, the right hand side of (2.5) (and hence $\mathrm{e}\left[X_{1}\right]+\mathrm{e}\left[X_{2}\right]$) dominates $\mathrm{e}\left[X_{1}+X_{2}\right]$. Next, we suppose that $\mathrm{e}\left[X_{1}\right]+\mathrm{e}\left[X_{2}\right]=\mathrm{e}\left[X_{1}+X_{2}\right]$. Then, by Theorem 1 there exists a Borel function φ such that

$$
\varphi_{1}\left(Y_{1}\right)+\varphi_{2}\left(Y_{2}\right)=\varphi\left(Y_{1}+Y_{2}\right) \quad \text { a.s. }
$$

This equation implies that φ_{1}, φ_{2} and φ must be linear and hence X_{1} and X_{2} must have Gaussian distributions.

§ 3. Applications

1. Let X_{1}, X_{2}, \ldots be R^{d}-valued independent random variables with common distribution $f(\in \mathscr{P})$ of mean vector 0 . Then, by the same arguments as in [4], we can prove that $\mathrm{e}\left[n^{-1 / 2}\left(X_{1}+\cdots+X_{n}\right)\right] \rightarrow 0$ as $n \rightarrow \infty$ and hence the probability distribution of $n^{-1 / 2}\left(X_{1}+\cdots+X_{n}\right)$ converges to g_{f} as $n \rightarrow \infty$; this is the wellknown central limit theorem.
2. Let X_{1} and X_{2} be real-valued independent random variables, and assume that

$$
\tilde{X}_{1}=X_{1} \cos \theta+X_{2} \sin \theta, \tilde{X}_{2}=-X_{1} \sin \theta+X_{2} \cos \theta
$$

are independent for some θ which is not an integral multiple of $\pi / 2$. Then, X_{1} and X_{2} are Gaussian. This is known as a theorem of M. Kac [3]. There are several proofs (for example, see [1], [2]); here we give a proof based upon Theorem 2 assuming that the probability distributions of X_{1} and X_{2} are in \mathscr{P}.

By Theorem 2, we have

$$
\left\{\begin{array}{l}
\mathrm{e}\left[\tilde{X}_{1}\right] \leqq \mathrm{e}\left[X_{1}\right] \cos ^{2} \theta+\mathrm{e}\left[X_{2}\right] \sin ^{2} \theta \tag{3.1}\\
\mathrm{e}\left[\tilde{X}_{2}\right] \leqq \mathrm{e}\left[X_{1}\right] \sin ^{2} \theta+\mathrm{e}\left[X_{2}\right] \cos ^{2} \theta
\end{array}\right.
$$

Let

$$
X=\binom{X_{1}}{X_{2}}, \quad A=\left(\begin{array}{rr}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right) .
$$

Then we can prove that $\mathrm{e}[A X]=\mathrm{e}[X], \mathrm{e}[A X]=\mathrm{e}\left[\tilde{X}_{1}\right]+\mathrm{e}\left[\tilde{X}_{2}\right]$ and $\mathrm{e}[X]=$ $\mathrm{e}\left[X_{1}\right]+\mathrm{e}\left[X_{2}\right]$; here we have used the orthogonality of the matrix A for the first equality and the independence of the components for the last two equalities. Therefore (3.1) holds with " $=$ ", and hence X_{1} and X_{2} are Gaussian by Theorem 2.

References

[1] W. Feller, An Introduction to Probability Theory and Its Applications, Vol. II, 2nd ed., John Wiley \& Sons, Inc., New York, 1971.
[2] Y. Itoh, The information theoretic proof of Kac's theorem, Proc. Japan Acad., 46 (1970), 283-286.
[3] M. Kac, On a characterization of the normal distribution, Amer. J. Math. 61 (1939), 726-728.
[4] H. Tanaka, An inequality for a functional of probability distributions and its application to Kac's one-dimensional model of a Maxwellian gas, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete. 27 (1973), 47-52.

> Department of Mathematics, Faculty of Science, Hiroshima University

