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Introduction

The principal oriented bordism module Ω*(G) for a finite group G is defined

to be the module of equivariant bordism classes of closed oriented principal

G-manifolds, and is a module over the oriented bordism ring Ω* of R. Thorn

(cf. [1]).

This module Ω*(G) and the unoriented one 9l*(G) are studied by several

authors. If G is a finite cyclic group, the Ω*-module structure of Ω*(G) is deter-

mined by P. E. Conner and E. E. Floyd [1, Ch. VII] for G=Zpk (p: odd prime),

and by K. Shibata [3, §§ 1-4] for G=Z2. Also it is proved by N. Hassani [2]

that there is an isomorphism Ω*(Zqr)^Ω*(Zq)®Ωβ*(Zr) of Ω*-modules if q

and r are relatively prime.

The main purpose of this note is to study the Ω*-module structure of Ω*(Z2k)

for fc>l. Also, we study the Pontrjagin products in Ω*(Z2k) and 9l*(Z2fc) for

fc>i;

In § 1, we are concerned with the unoriented bordism module

9tφ(Z2*) £ » * ® H Φ ( Z 2 k ; Z 2) (cf. [1, (19.3)]).

It is easy to see that this is a free ^-module with basis {[Γ, S 2 n + 1 ] , i[α, S 2 π ]

(Proposition 1.7), where (T, S2n+ί) is the Z2k-manifold with the diagonal action

T of expfa^/ 1 1 ! ^*" 1 ) and i(a, S2n) is the extension of the Z2-manifold (α, S2n)

with the antipodal action α. Also we study in Theorem 1.22 the product for-

mulae in 5R*(Z2k) using the results for 9l*(Z2) of F. Uchida [6].

In § 2, we are concerned with

β n ( Z 2 * ) £ ΣP+q=nHp(Z2k; flf) (cf. [1, Th. 14.2]).

Using the homomorphism r: Ω5|c(Z2k)->9l*(Z2k) obtained by ignoring orienta-

tions, and the results for Ω*(Z2) in [3], we prove in Theorem 2.18 that the Ω+-

module Ω*(Z2k) (fc>l) is a quotient module of the free Ω*-module

Ω*{{IT, S2n+1], iE2n+ίW(ω)\n^09 ω e π } } ,

where E2n+1W(co)eΩ*(Z2). Finally, we study in Theorem 2.22 the Pontrjagin

product in Ωί | ί(Z2k).
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Recently, E. R. Wheeler [8] has discussed the bordism module of closed

oriented (not necessarily principal) G-manifolds for a finite cyclic group G.

The author wishes to express his thanks to Professor M. Sugawara for making

useful suggestions, and also to Dr. K. Shibata and Dr. K. Komiya for their crit-

icisms.

§ 1. The unoriented bordism algebra 9l*(Z2fc)

For a given finite group G, an n-dimensional principal G-manifold (G, Bn)

is a pair of a compact n-manifold Bn and a free action of G on Bn as a group of

diffeomorphisms, and two closed principal G-manifolds (G, Mn) and (G, Nn) are

equivariantly bordant (G-bordant), if there is a principal G-manifold (G, Bn+ί)

with (G, Bn+1)=(G, MnϋNn). Denote the G-bordism class of (G, Mn) by

[G, M n ] , and the collection of all such classes by $ln(G). 9ln(G) is a module

with respect to the disjoint union, and the direct sum

(1.1) 9ί*(G) = Σ?=o9UG)

is the principal G-bordism module. For the unit group e,

is the usual bordism ring with respect to the multiplication induced by the car-

tesian product MxN9 and ϊί*(G) of (1.1) can be given a structure of (left) 9t*-

module by

[N][G, M ] = [ G , JVxM],

where G acts on N x M by g(x, y) =(x, gy) (cf. [1, §§ 2, 19]).

For an element [G, M] e 9ln(G\ let / : MJG-+BG be the classifying map of

the principal G-bundle M-+M/G. Then the element

, M] =f*(M/G) e Hn(BG; Z2) = Hn(G; Z2)

is defined, where MIGeHn(MjG\ Z2) means the fundamental class, and

(1.2) [1, (8.1)] μ: 9ln(G) > Hn(G; Z2) is epimorphic.

Let Z2k be the cyclic group of order 2*. For the non zero element cn e
Hn(Z2u;Z2)=Z29 we can take Cne9ln(Z2k) with μCn = cn by (1.2). Then, a

homomorphism of 91* -modules

h: 9l*®H*(Z2k; Z2)

is obtained by /i(l®cn) = Cn, and
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(1.3) [1, (19.3)] h is an isomorphism of 9l*-modules.

We denote a principal Z2/c-manifold (Z2k, M) and its orbit manifold MjZ2k

also by (T, M) and MjT9 respectively, using the action T: M-*M of the generator

of Z2k. Consider the extension

(1.4) i:9in(z2)—>5Rπ(Z2fc)

defined by i(A, M)—(Z2k9 {Z2kX M)j{iAx A)) where i: Z2czZ2k is the inclusion

and the action of Z2* is g\g9 x~]=\_g'g, x] (cf. [1, §20]).

We consider the principal Z2-manifold

(1.5) (a, Sn) (a is the antipodal action),

and the principal Z2k-manifolds

(T, S2«+ 1), T(zθ9...9 zn)=(TzO9...9 Tzn),
(1.6)

ί(fl, S2») = ( Γ x 1, (Z2* x S2»)l(ia x a)),

where T=exp(πΛ/ — l/2ft~x) is the generator of Z 2 k.

PROPOSITION 1.7. (i) 5ίt*(Z2k) (fe^ 1) is α free yi*-module with basis

{[T,S 2 » + 1 ] , i [ α , 5 2 Λ ] | n ^ 0 } .

(ii) /[β, S 2 w + 1 ] = 0 (/• fc>l.

PROOF, (i) is an immediate consequence of (1.3), since μ[_T9 5 2 w + 1 ] =c2n+ί9

i*μ[_a9 S 2 w ] = c 2 n .

(ii) The classifying map of the Z2k-bundle

i(a9 S2n+ί) > i(a, S2n+1)/(Tx 1) = S2n+ί/a

is given by the projection i: S2n+ί[a^S2n+1IT induced by i :Z 2 cZ 2 k, and

i*'H2n+1(S2n+ιla;Z2)^H2n+1(S2n+ίIT;Z2) (fc>l) is zero. Therefore, the

Stiefel-Whitney numbers of the above bundle are zero and we have i[a9 5
2 n + 1 ] = 0

by[l, Th. 17.2]. q.e.d.

Now, 9l^(Z2k) is an algebra over 9t* with respect to the Pontrjagin product

induced by the tensor product of principal Z2k-bundles. Explicitly, for principal

Z2k-manifolds (T l 9 Mx) and (T2, M2), the product is defined by

(1.8) (Tί9 M.XT^ M2) =(T, (M.xM^IT, x Γ2*),

where both Tx x 1 and 1 x T2 induce the same action T.

It is clear that the extension i of (1.4) and the augmentation

(1.9) ε*: <R*(Z2k) > 91*, ε^T, M]
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are homomorphisms of S^-algebras.
The product formulae in 9l*(Z2) are given by [6], [4], and we study those

in 9

LEMMA 1.10. For the manifolds 0/(1.6), we have

(i) LT,S^[T, S 2 » + 1 ] = 0 ,

(ii) (T, Si)(ί(a, S2")) = (Γx 1, (S1 xS2»)l(a x a)).

PROOF, (i) Consider the multiplication

m : S l χ S 2 n + l > S 2n + l ) m ( Z , ( 2 o , . . . j Z M ) ) = = ( Z Z o v . . , 2 Z | i )

and the map

/: SιxS2n+1 > SιxS2n+1, /(z, x)=(z, m(z9x)).

Then, / ( Γ x T - 1 ) = ( T x l ) / and / ( l x T ) = ( l x T ) / . Therefore, / induces an
equivariant diffeomorphism

/ : (T9 S^T, S2n+1)=(l x T, (S1 x S2n+1)/(Tx T"1)) > (1 x Γ, S1 x S2n+ί) .

This shows (i) since [1 x Γ, 5 1 x 5 2 π + 1] =0.
(ii) The desired result follows immediately from

((S1 x Z2k x S2n)/(Tx T~x x 1))/(1 x ia xa)= (S1 x S2n)/(a x a). q.e.d.

Let

(l.ii) Δ:yιn(z2k)—+yιn.2(z2u)

be the Smith homomorphism defined as follows (cf. [1, §26 and (34.7)]): For
a principal Z2k-manifold (Z2k9 M

n)9 we can take a differentiate equivariant map
φ: (Z2k,M

n)-*(T,S2N+ί) which is transverse regular on S2N~ι

9 since S2N+ί/T
isthe(2N + l>skeletonof £Z2fc, where(T, S 2"+ 1)istheone in (1.6) and 2JV+l>n.
Then,

A [ Z 2 k , Λf»] = [Z 2 k > φ-1(S2N-1)'] .

It is easy to see that J is a homomorphism of 9t*-modules, and

LEMMA 1.12. For the generators of Proposition 1.7, we have

LEMMA 1.13. A&T, S^iίa, S 2 M ] ) = [T, S 1 ] ! ^ , 5 2 n " 2 ] .

PROOF. Consider the diίferentiable map
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S1xS2nί^H S1 xS2n+ί -2U S2n+1,

where i0: S2n =0x S2nc:S2n+1 andm is the multiplication in the proof of Lemma

1.10. Since m(axa) = m and m(Txl) = Tm, the composition m(l x i0) induces

the differentiable equivariant map

(Γ, Si)(ί(a, S2»)) = ( Γ x 1, (S 1 x S2«)/(α x α)) > (Γ, S 2 " + 1 ) ,

by Lemma 1.10 (ii). It is clear that this map is transverse regular on 5 2 " " 1 and

the inverse image of S 2 "" 1 is (S1 xS2n~2)j{axά), and so we have the lemma.

q.e.d.

For 9t*(Z2), we can also define the Smith homomorphism

(1.14) A1:%l(Z2)—^9ln.1(Z2)

in the same way as (1.11) using the classifying space SN/a of Z 2 (cf. [1, (26.1)]).

It is clear that

(1.15) Axla9 S- ]=[α, S-"1] ,

and the following is proved in [6, Lemma 2.2 (b)]:

(1.16) βφJiflα, S x][a, S*])=0 / o r . m ^ l .

Now we prove the following theorem, which is an analogy of [6, Th 2.4].

THEOREM 1.17. For the elements of 9t*(Z2ic) in Proposition 1.7,

w/iere [P 2 j ' ]e 9t2; is the bordism class of the real projectiυe space P2j =S2j/a.

PROOF. We notice that ε*[Γ, S 2 n + 1 ] = [ 5 2 w + 1 / T ] = 0 since S2n+1/T is

the boundary of the associated disk bundle of the canonical S1-bundle S2n+1/T

-•S 2 / I + 1 / 5 1 Consider the element

of 5ί*(Z2 k)=Kerε s | ί. Then ^(^π) = Λ_i by Lemmas 1.12-13.

It is clear that y0 =0. If yn_ x =0, then ^(yn) =0 and we have

yn =x[Γ, S 1 ] for some xe 91*

by Proposition 1.7 and Lemma 1.12, since yn e 3iHc(Z2k). Mapping this equality

by the transfer

ί:
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(cf. [1, §20]), we have

by Lemma 1.10 (ii) and (1.8). Applying Aί of (1.14) and the augmentation

β* of (1.9) for k = ί9 we have χ = ε*Aί(tyn)=-[P2n] + lP2n]=0 by (1.15) and

(1.16), and so yn=0 as desired. q.e.d.

COROLLARY 1.18. [Γ, S 1 ] ^ , S2 w] - Σ j - o ^ l T , S 2 »- 2 ' + 1 ] f

where the elements alis^ίli (j^O) are defined by

(1.19) a0 = 1, Σ

PROOF. The right hand side of the desired equality is equal to

by the above theorem, and so to [T, S 1] ί [α, S2 π] by (1.19). q.e.d.

Let α/m, n)e 5Rm+n_J be the elements defined by

(1.20) [α, 5-][α, S-] = Σ^o«/w, n)[α, S ]̂ in Km+n(Z2).

(1.21) (cf. [6, Lemma 3.1], [4, Th. 4.1]) The above elements α^m, n)

are determined by the following relations:

(a) ΣjzιZ

^e91^, z0 = 1 and Zj=0ifi + l= 2s.

(b) αo(w, /f) =

(c) [H m J = Σ

where Hmn is Milnor's hypersurface in PmxPn.

The commutative algebra 9t*(Z2k) over 91* with the Pontrjagin product

defined by (1.8) is given by the following theorem.

THEOREM 1.22. 9t*(Z2k)(fc> 1) is a free ^-module with basis {[T, 5 2 n + 1 ] ,

i[μ, S 2 Λ] |n^0} of (1.6), and

[T, S2- /

[T, S 2 " + 1 Mα, S2"] = Σ/Σ s , r [P 2 s ]α 2 ί (2m-2s, 2n)α2 f_2 y)[T,

a2t-2j and α2/2m, 2n) αr^ ί/ie elements of (1.19-20).

PROOF. The first half is Proposition 1.7 (i). The equalities are seen by
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routine calculations, by Theorem 1.17, Lemma 1.10 (i), (1.20), Proposition 1.7

(ii), Corollary 1.18 and the fact that i is a homomorphism of 91*-algebras.

q.e.d.

§2. The oriented bordism algebra Ω*(Z2k) over Ω*

The principal oriented G-bordism module and the oriented bordism ring

Ω*(G) = Σϊ=oΩn(G) and Q* = Σ?-oQ.

are defined in the same way as 9t*(G) and 9t* in §1, provided that manifolds

are oriented and G-actions preserve the orientations (cf. [1, §§2, 19]). Ω*(G)

is a module over Ω#, and there are homomorphisms

(2.1) r: Ω*(G) > Stt^G), r: Ω* >9tφ9

obtained by ignoring the orientations. Also, the augmentation homomorphism

(2.2) ε*: Ω*(G) > Ω*, ε*[G, M] = IM/G] ,

defines the direct sum decomposition of Ω*-modules:

Ω*(G) = Kerε*.

Wall's results on Ω* can be stated as follows:

Let π denote the set of partitions ω—{au .., ar) with unequal parts aj9 none

of which is a power of 2, and set |ω| = r . Let ω Π ω', ωθω', cθj e π for ω, ω' e π

be the intersection, the symmetric difference and the partition obtained from

ω — {a!,..., ar) by omitting α,-, respectively. Then,

THEOREM 2.3. (C. T. C. Wall [7]) The oriented bordism ring Ω* is the

quotient ring of the integral polynomial ring

c;>0, ω e π ]

by the ideal generated by the elements

2g(ω)9 Σjg(aj)g(ωj) (|

g(ω)g(ω')- ΣJK^J Π ω ' ) j j

where h((au..., αΓ)) = / ι w . /ι4flr.

K. Shibata [3] studies the principal oriented Z2-bordism algebra Ω*(Z2)

( = UX(Z2)), together with the bordism algebra Ω*(Z2) ( — Ω*(Z2)) of orientation-

reversing principal Z2-manifolds. Let
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At: Ω~(Z2) > Ωm_X(Z2)9 E2»+2: Ω~(Z2) > Ω~+2n+2(Z2),
(2.4)

E2n+1 = AiE2n+2. Ω " ( Z 2 ) — » Ωm + 2 π + χ ( Z 2 )

be the Smith homomorphism defined in the same way as (1.14), and the homo-

morphism of Ω^-modules defined by

for [ i , M ] e β - ( Z 2 ) ,

where (α, S2n+2) is the one in (1.5) and the product is defined by (1.8). Then

(2.5) [3, p. 205] Em[a, S°] = [α, S*] for m > 0 .

For a partition ω=(α 1,..., αr)Gπ, let

(2.6) Xω=X2aι .χ2arem^K*9 W(ω)eΩ*(Z2)

be the bordism classes of the unoriented manifold M ω = M 2 f l l M2 α r in [7, §4]

and of the orientation bundle over Mω with the orientation-reversing transfor-

mation as a Z2-action. Consider the following elements of Ω*(Z2):

Λ(ω) = Σ j g ( j j

B(ω, ω') = ΣjKωj n ω')g{aJ)W{ωjeω')-g{ώ)W{ωt),

for ω, ω' e π, where h(ώ), g(ω) e β + are the elements in Theorem 2.3.

THEOREM 2.8. (K. Shibata [3, Th.4.5, Cor. 3.3 (6)]) The principal orien-

ted Z2-bordίsm module Ω*(Z2) is the quotient module of the free Ω*-module

Ω*{{0, S2«+ 1], E2n+ίW(ω)\n^09 ωeπ}}

by the submodule generated by the elements 2[α, S 2 n + 1 ] , 2E2n+ίW(ω)9

E2n+1A(ω)(\ω\^2)9 E2n+1B(ω9 ω'), where E2n+ί is the homomorphism of (2.4).

For our purpose, we use also the following

THEOREM 2.9. (cf. [1, Th. 14.2]) There is an isomorphism

θ: Ωn(Z2l)-^ ΣP+q=nHp(Z2l; Ωq) ( Z ^ l ) .

We see easily that this isomorphism θ is natural by the proof of [1, pp. 39-41],

and so we have the commutative diagram

(2.10)
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where r's are the homomorphisms of (2.1), the left i is the extension of (1.4), the

middle i is the one defined in the same way,

'2ι'•>

and i*'s are the induced homomorphisms of the inclusion i: Z2czZ2k. We

notice that

(2.11) Kerr = 2Ωπ(Z2 l)

by Rohlin's theorem (cf. [1, Th. 16.2]).

LEMMA 2.12. (i) /*: GnΛ • Gnk is isomorphic and i*Hnicz2k~iHntk.

(ii) rθ~ιi* is monomorphic on GnΛ and rθ~ιi*{HnΛ) = 0 if k>\ .

PROOF. Since Ω* is a direct sum of some copies of Z and Z 2 , we have

the lemma by the well known facts for H*(Z2ι\Z) and HH e(Z 2 i;Z 2) and by

5 U O . q.e.d.

LEMMA 2.13. (i) [Γ, S 2 w + 1 ] e Ω2n+ί(Z2k) (k^ 1) is of order 2k .

(ii) x[T, 52 r t + 1] = 0 if and only ίfxe2kΩ*,for xeΩ*.

PROOF, (i) It is clear that μ[T, S 2 n + 1 ] is a generator, where μ: Ω2n+ 1 (Z 2 k )

-*H2tt+1(Z2k'9 Z)=Z2k is the natural homomorphism defined in the same way

as (1.2) (cf. [1, §6]). Therefore we have the desired result by Theorem 2.9.

(ii) It is sufficient to prove xe2kΩ* if x[T, 5 2 n + 1 ] = 0 . By [1, §7], there

is a commutative diagram

Ωm®Ω2n+ί(Z2k) —Z-+ •/2n+l,mc:^m + 2w+l(^2k)

I I
^m®H2n+1(Z2k; Z) -*-> H2n+1(Z2k\ ΩJ

where fc's are the homomorphisms defined by the multiplications, and the lower

K is monomorphic. Therefore we have the desired result. q.e.d.

PROPOSITION 2.14. (i) The Ω^submodule ξ>k of Ωs|ς(Z2k) (fc^ 1), generated

by the elements [T, S 2 M + 1 ] (n^O), is the quotient module of the free Ω*-module

by the submodule generated by the elements 2fe[T, 5 2 w + 1 ] ( n ^

(ii) By the isomorphism θ in (2.10), § π ί = $ ί Π βπ(Z 2i) is mapped isomor-

phίcally onto Hnl.

(iii) i9)x cz2k~ιξ>k for the extension i in (2.10).
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PROOF, (i) Consider the Smith homomorphism

A:Ωn(Z2k) >Ωn.2(Z2k)

defined in the same way as (1.11). Then we have Δ[T, S 2 / + 1 ] =

in the same way as Lemma 1.12.

Assume that

Then the image of the left hand side of this equality by Λn is equal to xrt[Γ, S 1 ] ,

and so we have xn e 2kΩ* by Lemma 2.13 (ii). Therefore we have (i).

(ii) Consider a commutative diagram similar to (2.10) for the inclusion

j : Z2ιcZ2ι+ι. Then, we see that rθ~ιj* is monomorphic on Gnl and rθ'^j^H^

= 0 in the same way as Lemma 2.12 (ii). Then, we obtain

since we have7r[T, S 2 M + 1 ] = 0 in the same way as Proposition 1.7 (ii).

On the other hand, there is a group homomorphism

<P H

n,ι = ΣmH2m+i(Z2ι',Z)®Ωn_2m_1 >£Hfl9

defined by φ(d2m+1 <g>x) = x [ Γ , S 2 - + 1 ] ( x e Ω n _ 2 m _ 1 ) , where d2m+ί e

H2m+ί(Z2r9 Z)=Z2ι is the generator. It is clear by (i) that φ is isomorphic.

These show that θ{9)n^=Hnl as desired.

(iii) The desired result follows immediately from (ii) and Lemma 2.12 (i).

q.e.d.

Consider the £2*-submodule

(2.15) ©fc

generated by the elements iE2n+ίW(ώ) (n^O, ωeπ), and the elements

(2.16) Bntk(ω, ω') = ΣjK<»j n ω')g(aj)iE2*+1W(ωjθω')

-g(ω)iE2n+ίW(ω'),

of © f c(/c>l), where i: Ω*(Z2)^>Ώ*(Z2k) is the extension in (2.10) and the elements

are the ones in Theorem 2.8.

LEMMA 2.17. (i) (5Λ = i(δl9 i((51 Π SO = 0 ,

( i i ) A n , k ( ω ) = ί E 2 n + ί A ( ω ) , B M ( ω , ω') = i E 2 n + ι B ( ω , ω'\ for k>l,
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where § ! is the one in Proposition 2.14 and Λ(ω) and B(ω, ω') are the elements

of (2.7).

PROOF. Take gedδί and heξ>ι such that g=h. Then g — h is a linear

combination of the elements E2n+ίA(ώ) in Theorem 2.8, and so

by (2.7) and (2.5). Therefore ih = 0 and i((δί n § 0 = 0 for fc> 1, by Proposition

2.14 (iii) and Theorem 2.3. The first equality of (ii) follows in the same way.

q.e.d.

Now, we are ready to prove our main theorem.

THEOREM 2.18. The principal oriented Z2k-bordism module Ω*(Z2k)

(k>l) is the direct sum

where the submodule ξ>k is given by Proposition 2.14 (i) and (5fc (fc>l) of (2.15)

is the quotient module of the free Ω^module

Ω*{{iE2n+ίW(ω)\n^09 ωeπ}}

by the submodule generated by the elements 2iE2n+1W(ω) and Ank(ω) ( |ω |^2),

BΛιk(ω,ω')of(2Λ6).

PROOF. Since β ϊ H ( Z 2 ) = § 1 4 - ( 5 1 by Theorem 2.8, we see immediately that

by the right commutative square of (2.10), Lemma 2.12 (i) and Proposition 2.14 (ii).

Assume that

h + igi = 0 f o r heξ>k a n d g ί e ^ ί .

Then, since ί^spGθgί =pGθ(/i + i ^ 1 ) = 0 by Proposition 2.14 (ii), we have pGQgγ = 0

by Lemma 2.12 (i), where pG: Hnl®Gnl-+Gnl is the projection. Therefore, by

Proposition 2.14 (ii), there is an element hίeξ)1 such that fif!=/ii in Ω*(Z2).

Therefore, we have

1*0! = 0 and h = 0

by Lemma 2.17 (i). Also, by Theorem 2.8, gί — hx is a linear combination of the

elements

2E2n+ίW(ω), E2n+ίA(ω) ( |ω |^2), E2n+1B(ω, ω'),
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and so ίgί = Kg\ — hι) is a linear combination of their /-images. Therefore, we

have the theorem by Lemma 2.17 (ii). q.e.d.

In the rest of this note, we study the Pontrjagin product in Ω*(Z2k), which

is defined in the same way as (1.8) for 9t*(Z2k).

We consider the commutative diagram

(2.19) \r Jr

9lm(Z2)
E-^>' Km+2n+1(Z2)

where r's are the homomorphisms of algebras obtained by ignoring the orienta-

tions (cf. (2.1)), the upper E2n+ί is the one of (2.4) and the lower E2n+1 is

defined in the same way.

PROPOSITION 2.20. (i) rW{ω) = Xω[_a, 5°] + rg(ω)[_a9 S 1 ] ,

(ii)

where W(ω)eΩ*(Z2), Xω, a2je^ and g(ω)eΩ* are the elements of (2.6),

(1.20) and Theorem 2.3.

PROOF, (i) Since ε*W(ω)=Xω (ε# is the augmentation) by the definition

of W(ω), we have

r\V(ω) = Xa[a9 S°] + Σ;>o*/I>, Sη - [P^][α, S 0]) (xj e 91J

by Proposition 1.7. On the other hand, the orientation bundle W{ω)-+Mω

can be clssified by Sl^Sl/Z2 (cf. [7, p. 299]), and so A^rW(w)=0 for m ^ 2 ,

by the definition of Δi of (1.14). Also, ε*AίrW(ω) = rg(ω) by the definition of

g(ω) in [7, p. 309]. These facts, (1.15) and Proposition 1.16 show that Xj=0

(ii) The equality follows immediately from (i), (2.19), (2.5), Corollary 1.18

and (1.15). q.e.d.

LEMMA 2.21. The homomorphίsm r: Ω2l(Z2k) >$l2l(Z2k) of algebras

in (2.10) is monomorphίc.

PROOF. In the commutative diagram (2.10), rθ~ι\G2lfk is monomorphic

by Lemma 2.12. Any element of H2lik=ΣH2m+ί(Z2k; ί22ί-2m-i) 1S °f order

2, since 2ί22/-2m-i —® by Theorem 2.3. Therefore we have the lemma by (2.11).

q.e.d.

THEOREM 2.22. For the generators of the Ω*-module Ω*(Z2k) in Theorem

2,18, the Pontrjagin product is given as follows:
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(i) [T, S 2 M + 1 ][T, S 2 Λ + 1 ] = 0 .

(ii) The images of the products

[Γ, S2m+1]iE2n+1W(ω) and iE2m+1W(ω) iE2n+1W(ω')

by the monomorphism r of the above lemma are determined by the equalities

r[T, S 2 n + 1 ] = [T, S 2 w + 1 ] , riE2n+1W(ω) = Σ)t}>a2jrg(ω)i[_a, S 2 " " 2 ' * 2 ] ,

and the product formulae in 9l^(Z2k) of Theorem 1.22. In particular,

iE2n+ίW(ω)iE2n+1W(ω') =0.

PROOF. The desired results follow immediately from Propositions 2.20 (ii),

1.7 (ii) and the fact that 9l*(Z2) is the exterior algebra over 91* (cf. [5]).

q.e.d.
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