Reduction of Associate Classes for Block Designs and Related Combinatorial Arrangements

Sanpei Kageyama
(Received May 13, 1974)

Contents
0. Introduction and summary 528
Part I. Reductions for the number of associate classes for PBIB designs 530

1. Association schemes, PBIB designs and BIB designs 531
2. Necessary and sufficient conditions for reductions 535
3. PBIB designs validating necessary and sufficient conditions for reduc- tions 538
4. Relationship among coincidence numbers, latent roots and second kind parameters with respect to reductions 543
4.1. Reductions for PBIB designs of Kronecker product type 544
4.2. Reductions for general PBIB designs 546
5. Reductions for a certain PBIB design 555
6. Algebraic structures of PBIB designs obtained by generalization of Sillitto's product 557
Part II. Some types of reducible association schemes 565
7. Nested type of association schemes 565
8. Orthogonal Latin square type of association schemes 567
9. Factorial type of association schemes 570
10. Other types of association schemes 573
10.1. m-associate cyclical type of association schemes 573
10.2. Generalized right angular association scheme 573
10.3. Rectangular lattice type association scheme 576
10.4. Triangular type association scheme 578
11. Remarks 579
Part III. Combinatorial properties of a balanced or partially balanced block design 579
12. BB designs and PBB designs 580
13. Properties of BB designs and PBB designs 583
14. Construction of BB designs 585
15. Construction of PBB designs 593
16. μ-resolvability of BB designs and PBB designs 600
17. Reductions for the number of associate classes for PBB designs 603
18. Inequalities for incomplete block designs 608
Acknowledgments 615
References 616

0. Introduction and summary

The concept of the Kronecker product for matrices was first introduced to the experimental designs by Vartak [58]. He defined the Kronecker product of designs and the reduced designs, but did not discuss explicitly the association schemes (Bose and Shimamoto [10]) concerning those designs. When there exists an arrangement with the parameters of a partially balanced incomplete block (PBIB) design first introduced by Bose and Nair [9] and generalized by Nair and Rao [38], it is important to find the association scheme matching its design in relation to the problem of determining the uniqueness of the association scheme and also of characterizing association schemes.

An association scheme was originally studied in relation to the definition of a PBIB design which has been derived from describing relations among treatments in terms of the structure of treatment-block incidence of the design. Bose and Shimamoto [10] rephrased the definition of a PBIB design so as to stress that the relations among treatments are determined only by the parameters n_{i} and $p_{j k}^{i}$ $(i, j, k=1,2, \ldots, m)$. Bose and Mesner [8] studied the algebraic structure concerning an association scheme of a PBIB design. An association scheme, however, has been defined and characterized independently of treatment-block incidence of the design.

When the parameters $\lambda_{i}(i=1,2, \ldots, m)$ of a PBIB design are not all different, the m associate classes of the PBIB design based on an association scheme may not be all distinct. Two approaches will be considered for reductions of the number of associate classes. One (cf. [28;58]) consists in using the parameters λ_{i} and the second kind of parameters $p_{j k}^{i}$ of the PBIB design N being a standard approach generalized by Kageyama [28]. Another (cf. [23]) consists in using λ_{i} and the latent roots of the matrix $N N^{\prime}$. The former approach is much useful to the discussions, for reduction on associate classes of an association scheme, which will appear in this paper. To a group of PBIB designs of a certain Kronecker product type, we may be encouraged to apply the latter approach in preference to the former. The relationship between two approaches is studied in this paper. The theorems on the reductions give some criteria to determine whether PBIB designs with l associate classes of the various types are reducible to those with l_{1} distinct associate classes $\left(l_{1}<l\right)$ when their parameters $\lambda_{1}, \lambda_{2}, \ldots$, λ_{l} are not all different.

We, usually, deal with a PBIB design with equi-replications and equi-size blocks. From a practical point of view, however, it may not be possible to design the equi-size blocks accommodating the equi-replication of each treatment in all the blocks. For incomplete block designs in such a situation, a balanced block (BB) design was introduced by Rao [47]. A partially balanced block (PBB) design was essentially introduced by Kishen [32] and was explicitly defined by

Ishii and Ogawa [20]. From a combinatorial point of view of a BB design and a PBB design, the constructions and combinatorial properties are reported by several authors throughout the literatures $[3 ; 4 ; 20 ; 21 ; 32 ; 33 ; 43 ; 45]$. In addition to the discussion about reductions of the number of associate classes for a PBB design and a PBIB design, we shall deal with these combinatorial aspects of a BB design and a PBB design.

This paper consists of three parts. In Part I, the reductions of the number of associate classes for PBIB designs are treated. Section 1 gives definitions of an association scheme, a PBIB design and a BIB design, and describes some of their properties. Section 2 presents some necessary and sufficient conditions that a PBIB design with m associate classes is reducible to a PBIB design with m_{1} associate classes $\left(m_{1}<m\right)$. Section 3 contains three PBIB designs giving the validity of the necessary and sufficient condition in Section 2. Section 4 deals with the relation between generalized Vartak's and Kageyama's condition. The relation for a general PBIB design is studied through the properties of the latent roots of the matrix $\mathfrak{P}_{k}=\left\|p_{j k}^{i}\right\|(k=0,1, \ldots, m)$. Section 5 gives some necessary and sufficient conditions for PBIB designs of certain Kronecker product types to be reducible. By using generalized Vartak's and Kageyama's condition, Section 6 is devoted to clarify the algebraic structures of PBIB designs constructed by generalization of Sillitto's product, and contains Table useful to investigate the reducibility in an F_{3} type association scheme of $v\left(=v_{1} v_{2} v_{3}\right)$ treatments. An interesting association scheme will be presented.

In Part II, some series of association schemes reducible by combining some associate classes, and the reductions of two association schemes with four associate classes are discussed independently of treatment-block incidence of the design. Furthermore, we shall find a note concerning a series of not reducible association schemes. Sections 7 and 8 cover a series of reducible N_{m} type association schemes and a series of reducible orthogonal Latin square type association schemes, respectively. Section 9 treats a series of reducible F_{p} type association schemes and gives remarks on a series of C_{p} type association schemes being a special case of an F_{p} type association scheme. Section 10 deals with a series of reducible m-associate cyclical type of association schemes, and with a series of not reducible T_{m} type association schemes. We give properties of reduction for a generalized right angular association scheme and for a rectangular lattice type association scheme reducible to association schemes of two and three associate classes. These two association schemes may not correspond to any of the known association schemes. Section 11 gives remarks on the reductions of associate classes for association schemes and for PBIB designs based on certain association schemes.

In Part III, the constructions and combinatorial properties of BB designs and PBB designs are discussed. Section 12 presents another useful description for
the definitions of a BB design and a PBB design. Section 13 characterizes a BB design and a PBB design. Sections 14 and 15 deal with the constructions and some examples of BB designs and PBB designs. It is noted that the complements of a BB design and a PBB design are generally not a BB design and a PBB design, respectively. Section 16 treats the constructions and some examples of (μ_{1}, μ_{2}, \ldots, μ_{t})-resolvable BB designs and PBB designs. Section 17 deals with the reduction procedures of the number of associate classes for PBB designs based on the results in Parts I and II, and gives some examples. Section 18 contains inequalities to hold for a BB design and/or a PBB design. A general inequality for an equireplicate PBB design based on an association scheme with m associate classes is presented. The bound on the latent roots for the C-matrix of a PBB design is also given.

For convenience, the notations and symbols shown below are used throughout this paper. Unless stated otherwise, their meanings are as follows:
$I_{s} \quad: \quad$ The unit matrix of order s.
$E_{s \times t} \quad:$ An $s \times t$ matrix whose elements are all unity. As a special case, $E_{s \times s}$ is denoted by G_{s}.
$O_{i \times j} \quad: \quad$ An $i \times j$ matrix whose all elements are zero.
$A^{\prime} \quad: \quad$ Transpose of the matrix A.
$A \otimes B \quad: \quad$ Kronecker product of the matrices $A=\left\|a_{i j}\right\|$ and B, i.e., $A \otimes B=$ $\left\|a_{i j} B\right\|$.
$[A: B] \quad: \quad$ The juxtaposition of the matrices A and B.
$\operatorname{tr} A \quad: \quad$ The trace of the matrix A.
$A^{\#} \quad:$ The superscript ${ }^{\#}$ indicates that the matrix $A^{\#}$ is an idempotent matrix.
$z_{i j} \quad: \quad$ Latent roots of the matrix $\mathfrak{P}_{j}=\left\|p_{i j}^{k}\right\|(i, k=0,1, \ldots, m)$ consisting of parameters $p_{i j}^{k}$ in an association scheme with m associate classes.
$\varepsilon(x) \quad: \quad$ A function of x which assumes either the value zero or one according as x is zero or not.
$\binom{n}{m} \quad: \quad$ The binomial coefficient.
$\operatorname{diag}\left\{a_{1}, a_{2}, \ldots, a_{l}\right\}:$ An $l \times l$ diagonal matrix with the diagonal elements $a_{1}, a_{2}, \ldots, a_{l}$.
$\mathfrak{A}=\left[A_{i}^{\#} ; i=0,1, \ldots, m\right]$: An algebra generated by the linear closure of those commutative matrices indicated in the bracket [].

Part I. Reductions for the number of associate classes for PBIB designs

The Kronecker product of designs and the reduced designs were first defined by Vartak [58], who gave a necessary and sufficient condition that a PBIB design
with m associate classes is reducible to a PBIB design with $m-1$ associate classes, but his condition was incomplete. The association schemes concerning those designs were not considered explicitly. From this point of view, Kageyama [23;28;30] dealt with the reduction of associate classes for PBIB designs constructed by the combinations of Kronecker products of BIB designs and he also considered together the association schemes matching their designs and the necessary and sufficient conditions for reductions. His approach uses the numbers, λ_{i}, of blocks containing a pair of treatments and the latent roots ρ_{i} of the matrix $N N^{\prime}$ for an incidence matrix N of a PBIB design. The approach is different from generalized Vartak's approach using λ_{i} and $p_{j k}^{i}$ of a PBIB design. The problem considered in Parts I and II will be of both theoretical and practical importance with regard to constructing and analyzing certain PBIB designs.

1. Association schemes, PBIB designs and BIB designs

Given v treatments $1,2, \ldots, v$, a relation satisfying the following three conditions is said to be an association scheme with m associate classes [10]:
(a) Any two treatments are either 1st, 2nd,..., or m th associates, the relation of association being symmetric, i.e., if treatment α is i th associate of treatment β, then β is i th associate of treatment α.
(b) Each treatment has $n_{i} i$ th associates, the number n_{i} being independent of the treatment taken.
(c) If any two treatments α and β are i th associates, then the number of treatments which are j th associates of α and k th associates of β is $p_{j k}^{i}$ and is independent of the pair of i th associates α and β.

Remark. It is shown by Bose and Clatworthy [7] that for an association scheme with two associate classes ($m=2$), the condition (c) could be replaced by
(c) If any two treatments α and β are i th associates, then, the number, p_{11}^{i} for $i=1,2$ of treatments which are the first associates of α and the first associates of β is independent of the pair of i th associates α and β.

The numbers

$$
v, n_{i}, p_{j k}^{i} ; \quad i, j, k=1,2, \ldots, m
$$

are called the parameters of the association scheme; all must be nonnegative integers.

It is useful to make the convention that each treatment is the 0th associate of itself and of no other treatments. Then we must have

$$
n_{0}=1
$$

$$
\begin{aligned}
p_{i j}^{0}=p_{j i}^{0} & =0, & & \text { if } \quad i \neq j, \\
& =n_{j}, & & \text { if } i=j, \\
p_{k 0}^{i}=p_{0 k}^{i} & =0, & & \text { if } \quad i \neq k, \\
& =1, & & \text { if } \quad i=k .
\end{aligned}
$$

Hence the following relations among the parameters are easily shown:

$$
\begin{gathered}
v=\sum_{i=0}^{m} n_{i}, \quad p_{j k}^{i}=p_{k j}^{i}, \quad \sum_{k=0}^{m} p_{j k}^{i}=n_{j}, \\
n_{i} p_{j k}^{i}=n_{j} p_{i k}^{j}=n_{k} p_{i j}^{k} .
\end{gathered}
$$

Let the association matrices $A_{0}, A_{1}, \ldots, A_{m}$ as a matrix representation of the association scheme be

$$
A_{i}=\left\|a_{\alpha i}^{\beta}\right\|, \quad \alpha, \beta=1,2, \ldots, v ; \quad i=0,1, \ldots, m,
$$

where

$$
\begin{aligned}
a_{\alpha i}^{\beta} & =1, \text { if } \alpha \text { th and } \beta \text { th treatments are } i \text { th associates, } \\
& =0, \text { otherwise. }
\end{aligned}
$$

It will be clear that A_{0} is nothing but the unit matrix of order v. Then from the very definition of the association matrices, it follows that they are all symmetric, linearly independent,

$$
\begin{equation*}
\sum_{i=0}^{m} A_{i}=G_{v}, \quad A_{i} E_{v \times 1}=n_{i} E_{v \times 1} \quad \text { and } \quad A_{i} A_{j}=A_{j} A_{i}=\sum_{k=0}^{m} p_{i j}^{k} A_{k} \tag{1.1}
\end{equation*}
$$

Following Ogawa [40], if the association algebra generated by the matrices $A_{0}, A_{1}, \ldots, A_{m}$ may be denoted by \mathfrak{M}, which may be also expressed by indicating its ideal basis as $\mathfrak{A}=\left[A_{0}^{*}, A_{1}^{\#}, \ldots, A_{m}^{\sharp}\right]$ provided the mutually orthogonal idempotents of \mathfrak{A} are given by $A_{0}^{*}, A_{1}^{\#}, \ldots, A_{m}^{\#}$, then (1.1) defines the regular representation of the association algebra:

$$
(\mathfrak{A l}): A_{j} \longrightarrow \mathfrak{B}_{j}
$$

where $\mathfrak{P}_{j}=\left\|p_{i j}^{k}\right\|, j=0,1, \ldots, m$.
We can choose a nonsingular real matrix

$$
C=\left(\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
c_{10} & c_{11} & \ldots & c_{1 m} \\
\vdots & \vdots & & \vdots \\
c_{m 0} & c_{m 1} & \ldots & c_{m m}
\end{array}\right)
$$

which makes all \mathfrak{P}_{j} diagonal simultaneously, in such a way that

$$
C \mathfrak{P}_{j} C^{-1}=\left(\begin{array}{llll}
z_{0 j} & & \tag{1.2}\\
& z_{1 j} & & 0 \\
& & \ddots & \\
0 & & & z_{m j}
\end{array}\right), \quad j=0,1, \ldots, m
$$

where

$$
\begin{equation*}
z_{0 j}=n_{j}, \quad z_{00}=z_{10}=\cdots=z_{m 0}=1 \tag{1.3}
\end{equation*}
$$

Furthermore, it is known (cf. [8; 40]) that

$$
\begin{align*}
& \sum_{j=0}^{m} z_{0 j}=v ; \quad \sum_{j=0}^{m} z_{i j}=0, \quad i=1,2, \ldots, m, \tag{1.4}\\
& z_{u i} z_{u j}=\sum_{k=0}^{m} p_{i j}^{k} z_{u k}, \quad u=0,1, \ldots, m, \tag{1.5}
\end{align*}
$$

and let the matrix Z, whose $(j+1)$ st row is the diagonal elements of (1.2), be defined by

$$
Z=\left(\begin{array}{cccc}
z_{00} & z_{10} & \ldots & z_{m 0} \tag{1.6}\\
z_{01} & z_{11} & \ldots & z_{m 1} \\
\vdots & \vdots & & \vdots \\
z_{0 m} & z_{1 m} & \ldots & z_{m m}
\end{array}\right)
$$

with (1.3), (1.4) and (1.5), then the matrix Z of order $m+1$ is nonsingular. Furthermore, a relation between A_{i} and $A_{i}^{*}(i=0,1, \ldots, m)$ is given by

$$
\left(\begin{array}{c}
A_{0} \tag{1.7}\\
A_{1} \\
\vdots \\
\dot{A}_{m}
\end{array}\right)=\left[Z \otimes I_{v}\right]\left(\begin{array}{c}
A_{0}^{\#} \\
A_{1}^{\#} \\
\vdots \\
\dot{A}_{m}^{\#}
\end{array}\right) .
$$

If we have an association scheme with m associate classes, then we get a partially balanced incomplete block (PBIB) design [9;38] with b blocks, r replications, and block size k based on the association scheme, provided we can arrange the v treatments into b blocks such that
(i) each treatment occurs at most once in a block;
(ii) each block contains k distinct treatments;
(iii) each treatment occurs in exactly r blocks;
(iv) if two treatments α and β are i th associates, then they occur together in λ_{i} blocks (not all λ_{i} 's equal), the number λ_{i} being independent of the particular pair of i th associates α and $\beta(1 \leqq i \leqq m)$.

The numbers

$$
v, b, r, k, \lambda_{i} \quad(i=1,2, \ldots, m)
$$

are called the parameters of the design. The λ_{i} and $p_{j k}^{i}$ are called the coincidence numbers and the second kind of parameters of the design, respectively.

A balanced incomplete block (BIB) design [62] with parameters v, b, r, k and λ is an arrangement of v treatments into b blocks such that
(i) each treatment occurs at most once in a block;
(ii) each block contains k distinct treatments;
(iii) each treatment occurs in exactly r blocks;
(iv) every pair of treatments occur in exactly λ blocks.

Note that, though (i), (ii) and (iv) lead to (iii), we follow the traditional definition of a BIB design. Among parameters v, b, r, k and λ, the following relations hold:

$$
v r=b k, \quad \lambda(v-1)=r(k-1) \quad \text { and } \quad b \geqq v .
$$

The last inequality is due to Fisher [15]. Incidentally, note that $v r=b k$ and $\lambda(v-1)=r(k-1)$ lead to $b-2 r+\lambda=r(v-k)(v-k-1) / k(v-1) \geqq 0$, and that the equality $b-2 r+\lambda=0$ holds when and only when the parameters of the original BIB design satisfy $v=k+1$. The number, $b-2 r+\lambda$, is the coincidence number of the complement of a BIB design with parameters v, b, r, k and λ. On the other hand, from the known relations, i.e., $v r=b k, \sum_{i=1}^{m} n_{i}=v-1, \sum_{i=1}^{m} n_{i} \lambda_{i}=r(k-1)$, among the parameters of a PBIB design with m associate classes, we cannot derive the relation, $b-2 r+\lambda_{i} \geqq 0$ for all i. Hence, this inequality is a necessary condition for the existence of a PBIB design [35]. The numbers, $b-2 r+\lambda_{i}$, are the coincidence numbers of the complement of a PBIB design with parameters v, b, r, k and $\lambda_{i}(i=1,2, \ldots, m)$.

After numbering v treatments and b blocks in some way, we can define the incidence matrix of a PBIB design or a BIB design to be the matrix:

$$
N=\left\|n_{i j}\right\| ; \quad i=1,2, \ldots, v \quad \text { and } \quad j=1,2, \ldots, b
$$

where $n_{i j}=1$ or 0 according as the i th treatment occurs in the j th block or not. Then for the incidence matrix N of a PBIB design the following lemma is obtained (cf. [59]):

Lemma A. $N N^{\prime}$ belongs to the association algebra \mathfrak{A} and can be expressed as

$$
N N^{\prime}=\sum_{j=0}^{m} \lambda_{j} A_{j}=\sum_{i=0}^{m} \rho_{i} A_{i}^{\#},
$$

where the last member of the expression is the spectral expansion of $N N^{\prime}$ in \mathfrak{A}. The densities

$$
\begin{equation*}
\rho_{i}=\sum_{j=0}^{m} \lambda_{j} z_{i j}, \quad i=0,1, \ldots, m \tag{1.8}
\end{equation*}
$$

are the latent roots of $N N^{\prime}$. In particular,

$$
\rho_{0}=r k=\sum_{i=0}^{m} n_{i} \lambda_{i} .
$$

The ρ_{i} satisfy the inequalities

$$
\begin{equation*}
0 \leqq \rho_{i} \leqq r k, \quad i=0,1, \ldots, m \tag{1.9}
\end{equation*}
$$

The multiplicity of ρ_{i} is the $\operatorname{tr} A_{i}^{\sharp}$.
Finally, since a design uniquely determines its incidence matrix and vice versa, both a design and its incidence matrix may be denoted by the same symbol throughout this paper.

2. Necessary and sufficient conditions for reductions

When the coincidence numbers $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}$ of a PBIB design with m associate classes are not all different, the m associate classes of the PBIB design based on a certain association scheme may not be all distinct. Then when $\lambda_{1}=\lambda_{2}$ in a PBIB design with m associate classes, Vartak [58] gave a necessary and sufficient condition for the PBIB design to be reducible to a PBIB design with $m-1$ associate classes. Moreover, he stated that repeated applications of the result to any PBIB design will ultimately give a PBIB design whose associate classes are all distinct. As indicated in the next section, however, we have reducible PBIB designs to which Vartak's iterative procedure does not apply. Then we need to generalize Vartak's condition. The following lemmas useful later give criteria to determine whether a PBIB design with m associate classes is reducible to a PBIB design with fewer distinct associate classes, when $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}$ are not all different.

Lemma 2.1 (Kageyama [28]). Let a PBIB design N with m associate classes and with parameters

$$
v, b, r, k, \lambda_{i}, n_{i}, p_{j k}^{i}, \quad i, j, k=1,2, \ldots, m
$$

be such that $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}$ are not all different so that at least l of them are equal. Without loss of generality we can assume that $\lambda_{1}=\lambda_{2}=\cdots=\lambda_{l}$. In this case, the number of associate classes of the design N can be reduced from m to $m-l+1$ by combining its first l associate classes if and only if

$$
\begin{aligned}
& \left(\begin{array}{ccc}
\sum_{i, j=1}^{l} p_{i j}^{1}, & \sum_{i=1}^{l} p_{i, l+1}^{1}, \ldots, & \sum_{i=1}^{l} p_{i m}^{1} \\
\sum_{j=1}^{l} p_{l+1, j}^{1}, & p_{l+1, l+1}^{1}, \ldots, & p_{l+1, m}^{1} \\
\vdots & \vdots & \vdots \\
\sum_{j=1}^{l} p_{m j}^{1}, & p_{m, l+1}^{1}, \ldots, & p_{m m}^{1}
\end{array}\right) \\
& =\left(\begin{array}{cccc}
\sum_{i, j=1}^{l} p_{i j}^{2}, & \sum_{i=1}^{l} p_{i, l+1}^{2}, \ldots, & \sum_{i=1}^{l} p_{i m}^{2} \\
\sum_{j=1}^{l} p_{l+1, j}^{2}, & p_{l+1, l+1}^{2}, \ldots, & p_{l+1, m}^{2} \\
\vdots & \vdots & \vdots \\
\sum_{j=1}^{l} p_{m j}^{2}, & p_{m, l+1}^{2}, \ldots, & p_{m m}^{2}
\end{array}\right)=\cdots \\
& \cdots=\left(\begin{array}{ccc}
\sum_{i, j=1}^{l} p_{i j}^{l}, & \sum_{i=1}^{l} p_{i, l+1}^{l}, \ldots, & \sum_{i=1}^{l} p_{i m}^{l} \\
\sum_{j=1}^{l} p_{l+1, j}^{l}, & p_{l+1, l+1}^{l}, \ldots, & p_{l+1, m}^{l} \\
\vdots & \vdots & \vdots \\
\sum_{j=1}^{l} p_{m j}^{l}, & p_{m, l+1}^{l}, \ldots, & p_{m m}^{l}
\end{array}\right) .
\end{aligned}
$$

Furthermore, if (2.1) holds, then the parameters of the reduced PBIB design with $m-l+1$ associate classes are as follows:

$$
\begin{aligned}
& v^{\prime}=v, \quad b^{\prime}=b, \quad r^{\prime}=r, \quad k^{\prime}=k, \\
& \lambda_{1}^{\prime}=\lambda_{1}=\lambda_{2}=\cdots=\lambda_{l}, \lambda_{2}^{\prime}=\lambda_{l+1}, \ldots, \lambda_{m-l+1}^{\prime}=\lambda_{m}, \\
& n_{1}^{\prime}=n_{1}+n_{2}+\cdots+n_{l}, \quad n_{2}^{\prime}=n_{l+1}, \ldots, n_{m-l+1}^{\prime}=n_{m}, \\
&\left\|p_{u v}^{\prime}\right\|=\left(\begin{array}{ccc}
\sum_{i, j=1}^{l} p_{i j}^{t}, & \sum_{i=1}^{l} p_{i, l+1}^{t}, \ldots, & \sum_{i=1}^{l} p_{i m}^{t} \\
\sum_{j=1}^{l} p_{l+1, j}^{t}, & p_{l+1, l+1}^{t}, \ldots, & p_{l+1, m}^{t} \\
\vdots & \vdots & \vdots \\
\sum_{j=1}^{l} p_{m j}^{t}, & p_{m, l+1}^{t}, \ldots, & p_{m m}^{t}
\end{array}\right), \\
&\left\|p_{u v}^{\prime w}\right\|=\left(\begin{array}{ccc}
\sum_{i, j=1}^{l} p_{i j}^{w+l-1}, & \sum_{i=1}^{l} p_{i, l+1}^{w+l-1}, \ldots, & \sum_{i=1}^{l} p_{i m}^{w+l-1} \\
\sum_{j=1}^{l} p_{l+1, j}^{w+l-1}, & p_{l+1}^{w+l-1+1}+\ldots, & p_{l+1, m}^{w+l-1} \\
\vdots & \vdots & \vdots \\
\sum_{j=1}^{l} p_{m j}^{w+l-1}, & p_{m, l+1}^{w+l-1}, \ldots, & p_{m m}^{w+l-1}
\end{array}\right),
\end{aligned}
$$

where $t=1,2, \ldots$, or $l ; w=2,3, \ldots, m-l+1 ; u, v=1,2, \ldots, m-l+1$.
Lemma 2.2 (Kageyama [28]). Let a PBIB design N with m associate classes and with parameters

$$
v, b, r, k, \lambda_{i}, n_{i}, p_{j k}^{i}, \quad i, j, k=1,2, \ldots, m
$$

be such that $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}$ are not all different so that each of $l_{j} \lambda^{\prime} s(j=1,2, \ldots, t)$ is equal. Without loss of generality we can assume that for $1 \leqq \theta_{1}<\theta_{1}+l_{1} \leqq \theta_{2}$ $<\cdots<\theta_{t-1}+l_{t-1} \leqq \theta_{t} \leqq m$,

$$
\begin{align*}
& \lambda_{\theta_{1}}=\lambda_{\theta_{1}+1}=\cdots=\lambda_{\theta_{1}+l_{1}-1} \\
& \lambda_{\theta_{2}}=\lambda_{\theta_{2}+1}=\cdots=\lambda_{\theta_{2}+l_{2}-1} \tag{2.2}
\end{align*}
$$

$$
\lambda_{\theta_{t}}=\lambda_{\theta_{t}+1}=\cdots=\lambda_{\theta_{t}+l_{t}-1}
$$

In this case, the number of associate classes of the design N can be reduced from m to $m-\sum_{f=1}^{t} l_{f}+t$ by combining its l_{j} associate classes for each l_{j}, if and only if

$$
\begin{align*}
& \sum_{i=\theta_{p}}^{\theta_{p}+l_{p}-1} \sum_{\theta_{q}+l_{q}-1}^{\theta_{q}} p_{i j}^{\theta_{u}}=\sum_{i=\theta_{p}}^{\theta_{p}+l_{p}-1} \sum_{j=\theta_{q}}^{\theta_{q}+l_{q}-1} p_{i j}^{\theta_{u}+1}=\cdots \tag{i}\\
& \cdots=\sum_{i=\theta_{p}}^{\theta_{p}+l_{p}-1} \sum_{j=\theta_{q}}^{\theta_{q}+l_{q}-1} p_{i j}^{\theta_{i}+l_{u}-1}
\end{align*}
$$

for $u, p, q=1,2, \ldots, t$;
(ii)

$$
\begin{gathered}
\sum_{i=\theta_{j}}^{\theta_{j}+l_{j}-1} p_{i, q+a_{j-1}-j+1}^{\theta_{u}}=\sum_{i=\theta_{j}}^{\theta_{j}+l_{j}-1} p_{i, q+a_{j-1}-j+1}^{\theta_{u}+1}=\cdots \\
\cdots=\sum_{i=\theta_{j}}^{\theta_{j}+l_{j}-1} p_{i, q+a_{j-1}-j+1}^{\theta_{u}+l_{u}-1}
\end{gathered}
$$

$$
\begin{equation*}
\text { for } j, u=1,2, \ldots, t ; \theta_{j-1}-a_{j-2}+j-1 \leqq q \leqq \theta_{j}-a_{j-1}+j-2 \text {; } \tag{2.3}
\end{equation*}
$$

(iii)

$$
\begin{aligned}
& \sum_{i=\theta_{j}}^{\theta_{j}+l_{j}-1} p_{i, q+a_{t}-t}^{\theta_{i}+a_{i}}=\sum_{i=\theta_{j}}^{\theta_{j}+l_{j}-1} p_{i, q+a_{t}-t}^{\theta_{u}+1}=\cdots \\
& \quad \cdots=\sum_{i=\theta_{j}}^{\theta_{j}+l_{j}-1} p_{i, q+a_{t}}^{\theta_{y}+l_{j}-1} \\
& \quad \text { for } j, u=1,2, \ldots, t ; \theta_{t}-a_{t-1}+t \leqq q \leqq m-a_{t}+t ;
\end{aligned}
$$

(iv) $p_{\alpha \beta}^{\theta_{\mu}}=p_{\alpha \beta}^{\theta_{\mu}+1}=\cdots=p_{\alpha \beta}^{\theta_{\mu}+l_{u}-1}$ for $u=1,2, \ldots, t$,

$$
1 \leqq \alpha, \beta \notin \bigcup_{i=1}^{t}\left\{\theta_{i}, \theta_{i}+1, \ldots, \theta_{i}+l_{i}-1\right\} \leqq m
$$

where the notation $\alpha \notin \bigcup_{i=1}^{i}\left\{\theta_{i}, \theta_{i}+1\right\}$ means that an integer α does not belong to the set $\left\{\theta_{1}, \theta_{1}+1, \theta_{2}, \theta_{2}+1, \ldots, \theta_{t}, \theta_{t}+1\right\}$;
(v) the above conditions (i), (ii), (iii) and (iv) remain true under any permutation of two subscripts of $p_{j k}^{i}$, where $a_{s}=\sum_{f=1}^{s} l_{f}, s=j-2, j-1, t-1, t$.

Furthermore, if (2.3) holds, then the parameters of the reduced PBIB design with $m-\sum_{f=1}^{t} l_{f}+t$ associate classes are as follows:

$$
\begin{aligned}
& v^{\prime}=v, \quad b^{\prime}=b, \quad r^{\prime}=r, \quad k^{\prime}=k, \\
& \lambda_{\theta_{j}-a_{j-1}+j-1}^{\prime}=\lambda_{\theta_{j}}=\lambda_{\theta_{j}+1}=\cdots=\lambda_{\theta_{j}+l_{j}-1}, \\
& \lambda_{i}^{\prime}= \begin{cases}\lambda_{i+a_{j-1}-j+1} & \text { if } \quad \theta_{j-1}-a_{j-2}+j-1 \leqq i \leqq \theta_{j}-a_{j-1}+j-2, \\
\lambda_{i+a_{t}-t} & \text { if } \theta_{t}-a_{t-1}+t \leqq i \leqq m-a_{t}+t,\end{cases} \\
& n_{\theta_{j}-a_{j-1}+j-1}^{\prime}=n_{\theta_{j}}+n_{\theta_{j}+1}+\cdots+n_{\theta_{j}+l_{j}-1}, \\
& n_{i}^{\prime}= \begin{cases}n_{i+a_{j-1}-j+1} & \text { if } \quad \theta_{j-1}-a_{j-2}+j-1 \leqq i \leqq \theta_{j}-a_{j-1}+j-2, \\
n_{i+a_{t}-t} & \text { if } \\
\theta_{t}-a_{t-1}+t \leqq i \leqq m-a_{t}+t,\end{cases}
\end{aligned}
$$

for $j=1,2, \ldots, t . \quad\left\|p_{y z}^{\prime x}\right\|$ can be written in a form similar to that of Lemma 2.1 and hence omitted here.

Though Lemma 2.1 is a special case of Lemma 2.2 when $\theta_{1}=1, \theta_{2}=l+1$, $\theta_{3}=l+2, \ldots, \theta_{t}=l+t-1 ; l_{1}=l, l_{2}=1, \ldots, l_{t}=1$, it has been written especially because of its frequent use in the subsequent sections. We shall refer to the conditions in Lemmas 2.1 and 2.2 as generalized Vartak's condition.

3. PBIB designs validating necessary and sufficient conditions for reductions

Design (I). When N_{i} are BIB designs with parameters $v_{i}, b_{i}, r_{i}, k_{i}$ and λ_{i}, $i=1,2,3$, we consider the 7 -associate PBIB design $N=N_{1} \otimes N_{2} \otimes N_{3}$ based on an F_{3} type association scheme given in Kageyama [23] with the following parameters:

$$
\begin{array}{llll}
v^{\prime}=v_{1} v_{2} v_{3}, & b^{\prime}=b_{1} b_{2} b_{3}, & r^{\prime}=r_{1} r_{2} r_{3}, & k^{\prime}=k_{1} k_{2} k_{3}, \\
\lambda_{1}^{\prime}=r_{1} \lambda_{2} r_{3}, & \lambda_{2}^{\prime}=\lambda_{1} r_{2} r_{3}, & \lambda_{3}^{\prime}=\lambda_{1} \lambda_{2} r_{3}, & \lambda_{4}^{\prime}=r_{1} r_{2} \lambda_{3}, \\
\lambda_{5}^{\prime}=r_{1} \lambda_{2} \lambda_{3}, & \lambda_{6}^{\prime}=\lambda_{1} r_{2} \lambda_{3}, & \lambda_{7}^{\prime}=\lambda_{1} \lambda_{2} \lambda_{3}, & n_{1}=v_{2}-1,
\end{array}
$$

$$
\begin{aligned}
& n_{2}=v_{1}-1, \quad n_{3}=\left(v_{1}-1\right)\left(v_{2}-1\right), \quad n_{4}=v_{3}-1, \quad n_{5}=\left(v_{2}-1\right)\left(v_{3}-1\right), \\
& n_{6}=\left(v_{3}-1\right)\left(v_{1}-1\right), \quad n_{7}=\left(v_{1}-1\right)\left(v_{2}-1\right)\left(v_{3}-1\right), \\
& \left\|p_{i j}\right\|=\left(\begin{array}{ccccccc}
v_{2}-2 & 0 & 0 & 0 & 0 & 0 & 0 \\
& 0 & v_{1}-1 & 0 & 0 & 0 & 0 \\
& & \left(v_{1}-1\right)\left(v_{2}-2\right) & 0 & 0 & 0 & 0 \\
& & & 0 & v_{3}-1 & 0 & 0 \\
\text { Sym. } & & & \left(v_{3}-1\right)\left(v_{2}-2\right) & 0 & 0 \\
& & & & & 0 & \left(v_{1}-1\right)\left(v_{3}-1\right) \\
& & & & \\
& & & & \left(v_{1}-1\right)\left(v_{2}-2\right)\left(v_{3}-1\right)
\end{array}\right), \\
& \left\|p_{i j}^{2}\right\|=\left(\begin{array}{ccccccc}
0 & 0 & v_{2}-1 & 0 & 0 & 0 & 0 \\
v_{1}-2 & 0 & 0 & 0 & 0 & 0 \\
& & \left(v_{1}-2\right)\left(v_{2}-1\right) & 0 & 0 & 0 & 0 \\
& & 0 & 0 & v_{3}-1 & 0 \\
\text { Sym. } & & & 0 & 0 & \left(v_{2}-1\right)\left(v_{3}-1\right) \\
& & & & \left(v_{1}-2\right)\left(v_{3}-1\right) & 0 \\
& & & & & \left(v_{1}-2\right)\left(v_{2}-1\right)\left(v_{3}-1\right)
\end{array}\right), \\
& \left\|p_{i j}^{3}\right\|=\left(\begin{array}{ccccccc}
0 & 1 & v_{2}-2 & 0 & 0 & 0 & 0 \\
& 0 & v_{1}-2 & 0 & 0 & 0 & 0 \\
& & \left(v_{1}-2\right)\left(v_{2}-2\right) & 0 & 0 & 0 & 0 \\
& & 0 & 0 & 0 & v_{3}-1 \\
\text { Sym. } & & & 0 & v_{3}-1 & \left(v_{2}-2\right)\left(v_{3}-1\right) \\
& & & & 0 & \left(v_{1}-2\right)\left(v_{3}-1\right) \\
& & & & & & \left(v_{1}-2\right)\left(v_{2}-2\right)\left(v_{3}-1\right)
\end{array}\right), \\
& \left\|p_{i j}^{4}\right\|=\left(\begin{array}{ccccccc}
0 & 0 & 0 & 0 & v_{2}-1 & 0 & 0 \\
& 0 & 0 & 0 & 0 & v_{1}-1 & 0 \\
& & 0 & 0 & 0 & 0 & \left(v_{1}-1\right)\left(v_{2}-1\right)
\end{array}\right.
\end{aligned}
$$

$\left\|p_{i j}^{6}\right\|=\left(\begin{array}{ccccccc}0 & 0 & 0 & 0 & 0 & 0 & v_{2}-1 \\ & 0 & 0 & 1 & 0 & v_{1}-2 & 0 \\ & & 0 & 0 & v_{2}-1 & 0 & \left(v_{1}-2\right)\left(v_{2}-1\right) \\ & & & 0 & 0 & v_{3}-2 & 0 \\ & & & 0 & 0 & \left(v_{2}-1\right)\left(v_{3}-2\right) \\ \text { Sym. } & & & & \left(v_{1}-2\right)\left(v_{3}-2\right) & 0 \\ & & & & & & \left(v_{1}-2\right)\left(v_{2}-1\right)\left(v_{3}-2\right)\end{array}\right)$,
$\left\|p_{i j}\right\|=\left(\begin{array}{ccccccc}0 & 0 & 0 & 0 & 0 & 1 & v_{2}-2 \\ & 0 & 0 & 0 & 1 & 0 & v_{1}-2 \\ & & 0 & 1 & v_{2}-2 & v_{1}-2 & \left(v_{1}-2\right)\left(v_{2}-2\right) \\ & & & 0 & 0 & 0 & v_{3}-2 \\ & & & 0 & v_{3}-2 & \left(v_{2}-2\right)\left(v_{3}-2\right) \\ & & \text { Sym. } & & 0 & \left(v_{1}-2\right)\left(v_{3}-2\right) \\ & & & & & & \left(v_{1}-2\right)\left(v_{2}-2\right)\left(v_{3}-2\right)\end{array}\right)$,
where $v_{i} \geqq 2, i=1,2,3$.
In this design, it follows from the form of $\lambda_{i}^{\prime}(i=1,2, \ldots, 7)$ and Lemma 2.1 that by assuming a relation $\lambda_{i}^{\prime}=\lambda_{j}^{\prime}(i \neq j ;=1,2,4$ or $3,5,6)$ only, the design N is not reducible to a 6 -associate PBIB design. Thus, every combination of two associate classes in the sense of Vartak does not lead to a reduced PBIB design, so that Vartak's iterative procedure is impossible. Some other combinations of associate classes, however, lead to reduced PBIB designs under certain restrictions. It follows from Lemmas 2.1 and 2.2 that all the cases of reductions are as follows:
(i) When $\lambda_{1}^{\prime}=\lambda_{2}^{\prime}$ and $\lambda_{5}^{\prime}=\lambda_{6}^{\prime}$, if $v_{1}=v_{2}$, (ii) when $\lambda_{1}^{\prime}=\lambda_{4}^{\prime}$ and $\lambda_{3}^{\prime}=\lambda_{6}^{\prime}$, if v_{2} $=v_{3}$, or (iii) when $\lambda_{2}^{\prime}=\lambda_{4}^{\prime}$ and $\lambda_{3}^{\prime}=\lambda_{5}^{\prime}$, if $v_{3}=v_{1}$, then the design is reducible to 5-associate PBIB designs and vice versa. (iv) When $\lambda_{1}^{\prime}=\lambda_{2}^{\prime}=\lambda_{4}^{\prime}$ and $\lambda_{3}^{\prime}=\lambda_{5}^{\prime}=$ λ_{6}^{\prime}, if $v_{1}=v_{2}=v_{3}$, then the design is reducible to a 3 -associate PBIB design with the cubic association scheme [46] and vice versa.

Design (II). Consider a 5-associate PBIB design based on the hypercubic association scheme [34] (or the C_{5} type association scheme which will be described in Section 9) with the following parameters:

$$
\begin{aligned}
& v=s^{5}, \quad b, r, k, \lambda_{i}(i=1,2, \ldots, 5), \quad n_{1}=5(s-1), \\
& n_{2}=10(s-1)^{2}, \quad n_{3}=10(s-1)^{3}, \quad n_{4}=5(s-1)^{4}, \quad n_{5}=(s-1)^{5} \text {, }
\end{aligned}
$$

$$
\begin{aligned}
& \left\|p_{i j}^{2}\right\|=\left(\begin{array}{cccc}
2 & 3(s-1) & 0 & 0 \\
(s-2)^{2}+6(s-1) & 6(s-1)(s-2) & 3(s-1)^{2} & 0 \\
& 3(s-1)(s-2)^{2}+6(s-1)^{2} & 6(s-1)^{2}(s-2) & (s-1)^{3} \\
\text { Sym. } & & 3(s-1)^{2}(s-2)^{2}+2(s-1)^{3} \cdot 2(s-1)^{3}(s-2) \\
& & (s-1)^{3}(s-2)^{2} .
\end{array}\right),
\end{aligned}
$$

$$
\begin{aligned}
& \left\|p_{i j}^{4}\right\|=\left[\begin{array}{ccccc}
0 & 0 & 4 & 4(s-2) & s-1 \\
& 6 & 12(s-2) & 6(s-2)^{2}+4(s-1) & 4(s-1)(s-2) \\
& 12(s-2)^{2}+6(s-1) & 4(s-2)^{3}+12(s-1)(s-2) & 6(s-1)(s-2)^{2} \\
& \text { Sym. } & (s-2)^{4}+12(s-1)(s-2)^{2} & 4(s-1)(s-2)^{3} \\
& & & (s-1)(s-2)^{4}
\end{array}\right], \\
& \left\|p_{i j}^{s}\right\|=\left(\begin{array}{ccccc}
0 & 0 & 0 & 5 & 5(s-2) \\
& 0 & 10 & 20(s-2) & 10(s-2)^{2} \\
& & 30(s-2) & 30(s-2)^{2} & 10(s-2)^{3} \\
& \text { Sym. } & & 20(s-2)^{3} & 5(s-2)^{4} \\
& & & (s-2)^{5}
\end{array}\right],
\end{aligned}
$$

where $s \geqq 2$.
In this design, it follows from Lemmas 2.1 and 2.2 that this design is not reducible to a 4-associate PBIB design. Thus, every combination of two associate classes in the sense of Vartak does not lead to a reduced PBIB design, so that Vartak's iterative procedure is impossible. Some other combinations of associate classes, however, lead to reduced PBIB designs under certain restrictions. For example, it follows from Lemmas 2.1 and 2.2 that when (i) $\lambda_{1}=\dot{\lambda}_{3}=\lambda_{5}$, (ii) $\lambda_{1}=\lambda_{2}$ and $\lambda_{3}=\lambda_{4}$, (iii) $\lambda_{1}=\lambda_{3}$ and $\lambda_{2}=\lambda_{4}$, (iv) $\lambda_{1}=\lambda_{4}$ and $\lambda_{2}=\lambda_{3}$, or (v) $\lambda_{1}=\lambda_{5}$ and $\lambda_{2}=\lambda_{4}$, if $s=2$, then the design is reducible to 3-associate PBIB designs and vice versa. (vi) When $\lambda_{1}=\lambda_{4}$ and $\lambda_{2}=\lambda_{5}$, if $s=3$, then the design is reducible to a 3-associate PBIB design and vice versa. (vii) When $\lambda_{1}=\lambda_{2}=\lambda_{3}=\lambda_{4}$, if $s=2$, or (viii) when $\lambda_{2}=\lambda_{4}$ and $\lambda_{1}=\lambda_{3}=\lambda_{5}$, if $s=4$, then the design is reducible to 2associate PBIB designs and vice versa.

Design (III). Consider a 4-associate PBIB design based on the association scheme given by Adhikary [1] with the following parameters:

$$
\begin{aligned}
& v=m_{1}\left(m_{2}+1\right)\left(m_{3}+1\right), \quad b, r, k, \lambda_{i}(i=1,2,3,4), \\
& n_{1}=m_{2}, \quad n_{2}=m_{3}, \quad n_{3}=m_{2} m_{3}, \\
& n_{4}=\left(m_{1}-1\right)\left(m_{2}+1\right)\left(m_{3}+1\right), \\
& \left\|p_{i j}^{1}\right\|=\left(\begin{array}{cccc}
m_{2}-1 & 0 & 0 & 0 \\
& 0 & m_{3} & 0 \\
& & m_{3}\left(m_{2}-1\right) & 0 \\
& \text { Sym. } & & \left(m_{1}-1\right)\left(m_{2}+1\right)\left(m_{3}+1\right)
\end{array}\right),
\end{aligned}
$$

$$
\begin{aligned}
& \left\|p_{i j}^{2}\right\|=\left(\begin{array}{cccc}
0 & 0 & m_{2} & 0 \\
& m_{3}-1 & 0 & 0 \\
& & m_{2}\left(m_{3}-1\right) & 0 \\
\text { Sym. } & & \left(m_{1}-1\right)\left(m_{2}+1\right)\left(m_{3}+1\right)
\end{array}\right), \\
& \left\|p_{i j}^{\mathbf{3}}\right\|=\left(\begin{array}{cccc}
0 & 1 & m_{2}-1 & 0 \\
& 0 & m_{3}-1 & 0 \\
& \text { Sym. } & \left(m_{2}-1\right)\left(m_{3}-1\right) & 0 \\
& & & \left(m_{1}-1\right)\left(m_{2}+1\right)\left(m_{3}+1\right)
\end{array}\right) \\
& \left\|p_{i j}^{4}\right\|=\left(\begin{array}{cccc}
0 & 0 & 0 & m_{2} \\
& 0 & 0 & m_{3} \\
& \text { Sym. } & 0 & m_{2} m_{3} \\
& & & \left(m_{1}-2\right)\left(m_{2}+1\right)\left(m_{3}+1\right)
\end{array}\right),
\end{aligned}
$$

where $m_{1} \geqq 2$.
All the cases of reductions in this design are as follows:
(i) When $\lambda_{1}=\lambda_{2}$, if $m_{2}=m_{3}$, then the design is reducible to a 3-associate PBIB design and vice versa. (ii) When $\lambda_{1}=\lambda_{3}$, or (iii) when $\lambda_{2}=\lambda_{3}$, the design is reducible to 3-associate PBIB designs. When (iv) $\lambda_{1}=\lambda_{2}=\lambda_{3}$, (v) $\lambda_{1}=\lambda_{3}=\lambda_{4}$, or (vi) $\lambda_{2}=\lambda_{3}=\lambda_{4}$, the design is reducible to 2-associate PBIB designs.

This design has an interesting property, which is that Vartak's iterative procedure depends on the order of combining some associate classes. For example, in Case (v), though we cannot apply Vartak's procedure in combining the 4th associate class and another associate class, we can apply Vartak's iterative procedure in combining the 1st associate class and the 3rd associate class, and then combining the 4th associate class.

4. Relationship among coincidence numbers, latent roots and second kind parameters with respect to reductions

On the derivation of conditions for the reduction of associate classes for certain PBIB designs, Vartak's approach [58] (i.e., generalized Vartak's condition given in Section 2) uses the coincidence numbers and the second kind of parameters of the PBIB design N, while Kageyama's approach [23] uses the coincidence numbers and the latent roots of the matrix $N N^{\prime}$. As a necessary and sufficient condition for reductions in certain cases, Kageyama's condition is more practically
useful than generalized Vartak's one. If the two conditions are equivalent, then we may be encouraged to use Kageyama's condition in preference to Vartak's. For this reason, the relation between generalized Vartak's condition and Kageyama's one is generally studied through the properties of latent roots of the matrix $\mathfrak{P}_{k}=\left\|p_{j k}^{i}\right\|$ for $k=0,1, \ldots, m$.

4.1. Reductions for PBIB designs of Kronecker product type

Let N_{i} be BIB designs with parameters $v_{i}, b_{i}, r_{i}, k_{i}, \lambda_{i}$ and N_{i}^{*} be complementary BIB designs with parameters $v_{i}^{*}=v_{i}, b_{i}^{*}=b_{i}, r_{i}^{*}=b_{i}-r_{i}, k_{i}^{*}=v_{i}-k_{i}$ and $\lambda_{i}^{*}=b_{i}-2 r_{i}+\lambda_{i}$ of $N_{i}(i=1,2, \ldots, m)$. Consider the Kronecker product of these designs in the forms $N=N_{1} \otimes N_{2} \otimes \cdots \otimes N_{m}$ and $N=N_{1} \otimes N_{2}+N_{1}^{*} \otimes N_{2}^{*}$. Then the following theorems are obtained:

Theorem A (Kageyama [23]). Given the BIB designs N_{i} with parameters $v_{i}, b_{i}, r_{i}, k_{i}$ and $\lambda_{i}(i=1,2, \ldots, m)$, a necessary and sufficient condition for the Kronecker product PBIB design $N=N_{1} \otimes N_{2} \otimes \cdots \otimes N_{m}$, which has at most $2^{m}-1$ associate classes having the F_{m} type association scheme, to be reducible to a PBIB design with only m distinct associate classes having the hypercubic association scheme is that

$$
\begin{equation*}
v_{1}=v_{2}=\cdots=v_{m}, \quad k_{1}=k_{2}=\cdots=k_{m} . \tag{4.1}
\end{equation*}
$$

Theorem B (Kageyama [23]). Given the BIB designs N_{i} with parameters $v_{i}, b_{i}, r_{i}, k_{i}$ and $\lambda_{i}(i=1,2)$, a necessary and sufficient condition for a PBIB design which has at most three associate classes having the rectangular association scheme and which is constructed by the Kronecker product $N=N_{1} \otimes N_{2}+$ $N_{1}^{*} \otimes N_{2}^{*}$ to be reducible to a PBIB design with only two distinct associate classes having the L_{2} association scheme is that

$$
v_{1}=v_{2}, \quad b_{1}\left(r_{2}-\lambda_{2}\right)=b_{2}\left(r_{1}-\lambda_{1}\right), \quad b_{i} \neq 4\left(r_{i}-\lambda_{i}\right), \quad i=1,2 .
$$

In the derivation of Theorem A, condition (4.1) was obtained by equalizing all those among the latent roots of $N N^{\prime}$ and among all the coincidence numbers which may be equal to each other. On the other hand, the matrices $P_{i}=\left\|p_{j k}^{i}\right\|$ of the second kind of parameters of Kronecker product PBIB design $N=N_{1} \otimes$ $N_{2} \otimes \cdots \otimes N_{m}$ can be constructed by repeated applications of Theorem 4.2 of Vartak [58] (or by Theorem 2 of Surendran [54] or (9.2)).

In design N, when all those which may be equal to each other among all the coincidence numbers are set to be equal, a necessary and sufficient condition for the PBIB design N which has at most $2^{m}-1$ associate classes to be reducible to a PBIB design with only m distinct associate classes is given by Lemma 2.2.

Furthermore, from Lemma 2.2 and the method of constructing the matrices P_{i}, it follows that this necessary and sufficient condition is equivalent to $v_{1}=v_{2}=\cdots=$ v_{m}. Then from $v_{1}=v_{2}=\cdots=v_{m}$ and the fact that all those which may be equal to each other among all the coincidence numbers are set to be equal, it is clear that all those which may be equal to each other among the latent roots of the matrix $N N^{\prime}$ become equal. Therefore from Theorem A we have

Theorem 4.1. Vartak's and Kageyama's condition are equivalent for Kronecker product PBIB design $N=N_{1} \otimes N_{2} \otimes \cdots \otimes N_{m}$ which is reducible to a PBIB design with only m distinct associate classes.

As an illustration, leaving aside certain trivial or uninteresting cases, the case $m=3$ is considered. In design $N=N_{1} \otimes N_{2} \otimes N_{3}$ with parameters $v^{\prime}=v_{1} v_{2} v_{3}$, $b^{\prime}=b_{1} b_{2} b_{3}, r^{\prime}=r_{1} r_{2} r_{3}, k^{\prime}=k_{1} k_{2} k_{3}, \lambda_{1}^{\prime}=r_{1} \lambda_{2} r_{3}, \lambda_{2}^{\prime}=\lambda_{1} r_{2} r_{3}, \lambda_{3}^{\prime}=\lambda_{1} \lambda_{2} r_{3}, \lambda_{4}^{\prime}=$ $r_{1} r_{2} \lambda_{3}, \lambda_{5}^{\prime}=r_{1} \lambda_{2} \lambda_{3}, \lambda_{6}^{\prime}=\lambda_{1} r_{2} \lambda_{3}, \lambda_{7}^{\prime}=\lambda_{1} \lambda_{2} \lambda_{3}, \quad n_{1}=v_{2}-1, n_{2}=v_{1}-1, n_{3}=\left(v_{1}-\right.$ 1) $\left(v_{2}-1\right), \quad n_{4}=v_{3}-1, \quad n_{5}=\left(v_{2}-1\right)\left(v_{3}-1\right), \quad n_{6}=\left(v_{3}-1\right)\left(v_{1}-1\right)$ and $n_{7}=\left(v_{1}-\right.$ 1) $\left(v_{2}-1\right)\left(v_{3}-1\right)$, the relations obtained by equalizing all those among the latent roots of $N N^{\prime}$ and among all the coincidence numbers which may be equal to each other are as follows (cf. [23]):
(among the coincidence numbers)

$$
\begin{equation*}
r_{1} \lambda_{2}=r_{2} \lambda_{1}, \quad r_{2} \lambda_{3}=r_{3} \lambda_{2}, \quad r_{1} \lambda_{3}=r_{3} \lambda_{1} \tag{4.2}
\end{equation*}
$$

(among the latent roots)

$$
\begin{align*}
r_{1} k_{1}\left(r_{2}-\lambda_{2}\right) & =r_{2} k_{2}\left(r_{1}-\lambda_{1}\right), \quad r_{2} k_{2}\left(r_{3}-\lambda_{3}\right)=r_{3} k_{3}\left(r_{2}-\lambda_{2}\right), \tag{4.3}\\
& r_{1} k_{1}\left(r_{3}-\lambda_{3}\right)=r_{3} k_{3}\left(r_{1}-\lambda_{1}\right) .
\end{align*}
$$

The matrices $P_{i}=\left\|p_{j k}^{i}\right\|(i, j, k=1,2, \ldots, 7)$ are shown in Design (I) of Section 3. As shortly mentioned there, since under (4.2) we have distinct coincidence numbers $\lambda_{1}^{\prime}=\lambda_{2}^{\prime}=\lambda_{4}^{\prime}, \lambda_{3}^{\prime}=\lambda_{5}^{\prime}=\lambda_{6}^{\prime}$ and λ_{7}^{\prime}, from Lemma 2.2 a necessary and sufficient condition that the PBIB design N with at most seven associate classes is reducible to a PBIB design with only three distinct associate classes is that

$$
\begin{equation*}
\sum_{i, j=1,2,4} p_{i j}^{1}=\sum_{i, j} p_{i j}^{2}=\sum_{i, j} p_{i j}^{4}, \quad \sum_{i, j=1,2,4} p_{i j}^{3}=\sum_{i, j} p_{i j}^{5}=\sum_{i, j} p_{i j}^{6} \tag{a}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{\substack{i=1,2,4 \\ j=3 ; 5 ; 6}} p_{i j}^{1}=\sum_{i, j} p_{i j}^{2}=\sum_{i, j} p_{i j}^{4}, \quad \sum_{\substack{i=1,2,4 \\ j=3 ; 5 ; 6}} p_{i j}^{3}=\sum_{i, j} p_{i j}^{5}=\sum_{i, j} p_{i j}^{6} \tag{b}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{i=1,2,4} p_{i 7}^{1}=\sum_{i} p_{i 7}^{2}=\sum_{i} p_{i 7}^{4}, \quad \sum_{i=1,2,4} p_{i 7}^{3}=\sum_{i} p_{i 7}^{5}=\sum_{i} p_{i 7}^{6} \tag{c}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{i, j=3,5,6} p_{i j}^{1}=\sum_{i, j} p_{i j}^{2}=\sum_{i, j} p_{i j}^{4}, \quad \sum_{i, j=3,5,6} p_{i j}^{3}=\sum_{i, j} p_{i j}^{5}=\sum_{i, j} p_{i j}^{6}, \tag{d}
\end{equation*}
$$

(e)

$$
\begin{gather*}
\sum_{i=3,5,6} p_{i 7}^{1}=\sum_{i} p_{i 7}^{2}=\sum_{i} p_{i 7}^{4}, \quad \sum_{i=3,5,6} p_{i 7}^{3}=\sum_{i} p_{i 7}^{5}=\sum_{i} p_{i 7}^{6}, \\
p_{77}^{1}=p_{77}^{2}=p_{77}^{4}, \quad p_{77}^{3}=p_{77}^{5}=p_{77}^{6} . \tag{f}
\end{gather*}
$$

Substituting the elements of $P_{i}(i=1,2, \ldots, 7)$ into the above conditions (a) to (f), it is clear that conditions (a) to (f) are equivalent to a condition

$$
\begin{equation*}
v_{1}=v_{2}=v_{3} . \tag{4.4}
\end{equation*}
$$

Now if (4.2) and (4.3) are satisfied, then from the relations among the parameters of the BIB designs, i.e., $\lambda_{i}\left(v_{i}-1\right)=r_{i}\left(k_{i}-1\right), i=1,2,3$, we can obtain $v_{1}=v_{2}=v_{3}$ and $k_{1}=k_{2}=k_{3}$, and hence (4.4) holds. On the other hand, it follows from $\lambda_{i}\left(v_{i}-1\right)=r_{i}\left(k_{i}-1\right), i=1,2,3$ that if (4.2) and (4.4) are satisfied, then $r_{i} \lambda_{j}=r_{j} \lambda_{i}$ and $v_{i}=v_{j}$ lead to $r_{i} k_{i}\left(r_{j}-\lambda_{j}\right)=r_{j} k_{j}\left(r_{i}-\lambda_{i}\right)$ for $i, j(i \neq j)=1,2,3$ and hence (4.3) holds. Therefore generalized Vartak's condition obtained by using the coincidence numbers and the second kind of parameters of PBIB design N are equivalent to Kageyama's one obtained by using the coincidence numbers and the latent roots of the matrix $N N^{\prime}$ for PBIB design $N=N_{1} \otimes N_{2} \otimes N_{3}$.

In a similar way, from the derivation of Theorem B we have
Theorem 4.2. Vartak's and Kageyama's condition are equivalent for PBIB design $N=N_{1} \otimes N_{2}+N_{1}^{*} \otimes N_{2}^{*}$ which is reducible to a PBIB design with only two distinct associate classes.

4.2. Reductions for general PBIB designs

When there exists equality relation (2.2) among coincidence numbers λ_{i} of a PBIB design N with m associate classes, a necessary and sufficient condition for the PBIB design N to be reducible to a PBIB design with $m-\sum_{f=1}^{t} l_{f}+t$ associate classes is given by (2.3) in Lemma 2.2. Then it is clear that there are the equality relations among latent roots ρ_{i} of the matrix $N N^{\prime}$ corresponding to its coincidence numbers λ_{i}. Thus generalized Vartak's condition always leads to Kageyama's one. Therefore in the rest of this section, the converse of this fact will be discussed. That is, do the relations among coincidence numbers λ_{i} and among latent roots ρ_{i} (i.e., Kageyama's condition) lead to the relations among coincidence numbers λ_{i} and among the second kind of parameters like (2.3) (i.e., generalized Vartak's condition)?

Since it is sufficient to consider the form (2.2) as equality relations among coincidence numbers λ_{i}, the equality relations among latent roots ρ_{i} of the matrix $N N^{\prime}\left(=\sum_{j=0}^{m} \lambda_{j} A_{j}=\sum_{i=0}^{m} \rho_{i} A_{i}^{\#}\right.$ in Lemma A) corresponding to its coincidence numbers λ_{i} are also considered as the assumption. We now begin by separating this into
two cases (i.e., $t=1$ and $t \geqq 2$ in (2.2)).
Case I (type $t=1$ in (2.2)), i.e., the case of Lemma 2.1. The conditions to be assumed are $\lambda_{1}=\lambda_{2}=\cdots=\lambda_{l}$ and $\rho_{1}=\rho_{2}=\cdots=\rho_{l}$.
(i) Case $l=m$: In this case it suffices to assume $\lambda_{1}=\lambda_{2}=\cdots=\lambda_{m}$ only. For, this condition leads to $\rho_{1}=\rho_{2}=\cdots=\rho_{m}$ by (1.3), (1.4) and (1.8). From (1.3) and (1.4) we have

$$
\begin{equation*}
\sum_{j=1}^{m} z_{1 j}=\sum_{j=1}^{m} z_{2 j}=\cdots=\sum_{j=1}^{m} z_{m j} \tag{4.5}
\end{equation*}
$$

Furthermore, from (1.3) and (1.5) we have

$$
\begin{gathered}
\left(\sum_{j=1}^{m} z_{1 j}\right)\left(\sum_{j=1}^{m} z_{1 j}\right)=\sum_{i=1}^{m} n_{i}+\left(\sum_{i, j=1}^{m} p_{i j}^{1}\right) z_{11}+\left(\sum_{i, j} p_{i j}^{2}\right) z_{12}+\cdots+\left(\sum_{i, j} p_{i j}^{m}\right) z_{1 m}, \\
\left(\sum_{j=1}^{m} z_{2 j}\right)\left(\sum_{j=1}^{m} z_{2 j}\right)=\sum_{i=1}^{m} n_{i}+\left(\sum_{i, j=1}^{m} p_{i j}^{1}\right) z_{21}+\left(\sum_{i, j} p_{i j}^{2}\right) z_{22}+\cdots+\left(\sum_{i, j} p_{i j}^{m}\right) z_{2 m}, \\
\cdots \cdots
\end{gathered}, \begin{gathered}
\left(\sum_{j=1}^{m} z_{m j}\right)\left(\sum_{j=1}^{m} z_{m j}\right)=\sum_{i=1}^{m} n_{i}+\left(\sum_{i, j=1}^{m} p_{i j}^{1}\right) z_{m 1}+\left(\sum_{i, j}^{m} p_{i j}^{2}\right) z_{m 2}+\cdots+
\end{gathered}
$$

which from (4.5) lead to

$$
\begin{aligned}
& \left(z_{12}-z_{22}\right)\left(\sum_{i=1}^{m} p_{i j}^{2}-\sum_{i, j=1}^{m} p_{1 j}^{1}\right)+\left(z_{13}-z_{23}\right)\left(\sum_{i, j} p_{i j}^{3}-\sum_{i, j} p_{i j}^{1}\right)+\cdots \\
& \cdots+\left(z_{1 m}-z_{2 m}\right)\left(\sum_{i, j} p_{i j}^{m}-\sum_{i, j} p_{i j}^{1}\right)=0, \\
& \left(z_{12}-z_{32}\right)\left(\sum_{i, j=1}^{m} p_{i j}^{2}-\sum_{i, j=1}^{m} p_{i j}^{1}\right)+\left(z_{13}-z_{33}\right)\left(\sum_{i, j} p_{i j}^{3}-\sum_{i, j} p_{i j}^{1}\right)+\cdots \\
& \cdots+\left(z_{1 m}-z_{3 m}\right)\left(\sum_{i, j} p_{i j}^{m}-\sum_{i, j} p_{i j}^{1}\right)=0, \\
& \left(z_{12}-z_{m 2}\right)\left(\sum_{i, j=1}^{m} p_{i j}^{2}-\sum_{i, j=1}^{m} p_{i j}^{1}\right)+\left(z_{13}-z_{m 3}\right)\left(\sum_{i, j} p_{i j}^{3}-\sum_{i, j} p_{i j}^{1}\right)+\cdots \\
& \cdots+\left(z_{1 m}-z_{m m}\right)\left(\sum_{i, j} p_{i j}^{m}-\sum_{i, j} p_{i j}^{1}\right)=0 .
\end{aligned}
$$

Since the matrix Z is nonsingular as described in Section 1, it follows that the determinant

$$
\left|\begin{array}{cc}
z_{12}-z_{22}, & z_{13}-z_{23}, \ldots, z_{1 m}-z_{2 m} \\
z_{12}-z_{32}, & z_{13}-z_{33}, \ldots, z_{1 m}-z_{3 m} \\
\ldots \\
z_{12}-z_{m 2}, & z_{13}-z_{m 3}, \ldots, z_{1 m}-z_{m m}
\end{array}\right| \neq 0
$$

Therefore we obtain $\sum_{i, j=1}^{m} p_{i j}^{1}=\sum_{i, j=1}^{m} p_{i j}^{2}=\cdots=\sum_{i, j=1}^{m} p_{i j}^{m}$ which coincides with (2.1) in this case. That is, Kageyama's condition leads to generalized Vartak's one in this type. Note that if $\lambda_{1}=\lambda_{2}=\cdots=\lambda_{m}$ holds in a PBIB design with m associate classes, then the PBIB design reduces to a BIB design. This is well known.
(ii) Case $l=m-1: \quad \lambda_{1}=\lambda_{2}=\cdots=\lambda_{m-1} \quad(=\lambda$, say $) ; \quad \rho_{1}=\rho_{2}=\cdots=\rho_{m-1}$. From (1.3), (1.4) and (1.8) we have

$$
\begin{aligned}
& \rho_{1}=\lambda_{0}-\lambda-z_{1 m}\left(\lambda-\lambda_{m}\right), \\
& \rho_{2}=\lambda_{0}-\lambda-z_{2 m}\left(\lambda-\lambda_{m}\right),
\end{aligned}
$$

$$
\rho_{m-1}=\lambda_{0}-\lambda-z_{m-1, m}\left(\lambda-\lambda_{m}\right) .
$$

Hence from $\rho_{1}=\rho_{2}=\cdots=\rho_{m-1}$ and $\lambda-\lambda_{m} \neq 0$ we have

$$
\begin{align*}
& z_{1 m}=z_{2 m}=\cdots=z_{m-1, m}, \tag{4.6}\\
& \sum_{j=1}^{m-1} z_{1 j}=\sum_{j=1}^{m-1} z_{2 j}=\cdots=\sum_{j=1}^{m-1} z_{m-1, j} . \tag{4.7}
\end{align*}
$$

Furthermore, from (1.3) and (1.5) we have

$$
\begin{aligned}
& \left(\sum_{j=1}^{m-1} z_{1 j}\right)\left(\sum_{j=1}^{m-1} z_{1 j}\right)=\sum_{i=1}^{m-1} n_{i}+\left(\sum_{i, j=1}^{m-1} p_{i j}^{1}\right) z_{11}+\left(\sum_{i, j} p_{i j}^{2}\right) z_{12}+\cdots+\left(\sum_{i, j} p_{i j}^{m}\right) z_{1 m}, \\
& \left(\sum_{j=1}^{m-1} z_{2 j}\right)\left(\sum_{j=1}^{m-1} z_{2 j}\right)=\sum_{i=1}^{m-1} n_{i}+\left(\sum_{i, j=1}^{m-1} p_{i j}^{1}\right) z_{21}+\left(\sum_{i, j} p_{i j}^{2}\right) z_{22}+\cdots+\left(\sum_{i, j} p_{i j}^{m}\right) z_{2 m}, \\
& \left(\sum_{j=1}^{m-1} z_{m-1, j}\right)\left(\sum_{j=1}^{m-1} z_{m-1, j}\right)=\sum_{i=1}^{m-1} n_{i}+\left(\sum_{i, j=1}^{m-1} p_{i j}^{1}\right) z_{m-1,1}+\left(\sum_{i, j} p_{i j}^{2}\right) z_{m-1,2}+ \\
& \cdots+\left(\sum_{i, j} p_{i j}^{m}\right) z_{m-1, m},
\end{aligned}
$$

which from (4.6) and (4.7) lead to

$$
\begin{aligned}
& \left(z_{12}-z_{22}\right)\left(\sum_{i, j=1}^{m-1} p_{i j}^{2}-\sum_{i, j=1}^{m-1} p_{i j}^{1}\right)+\left(z_{13}-z_{23}\right)\left(\sum_{i, j} p_{i j}^{3}-\sum_{i, j} p_{i j}^{1}\right)+ \\
& \cdots+\left(z_{1, m-1}-z_{2, m-1}\right)\left(\sum_{i, j} p_{i j}^{m-1}-\sum_{i, j} p_{i j}^{1}\right)=0, \\
& \left(z_{12}-z_{32}\right)\left(\sum_{i, j=1}^{m-1} p_{i j}^{2}-\sum_{i, j=1}^{m-1} p_{i j}^{1}\right)+\left(z_{13}-z_{33}\right)\left(\sum_{i, j} p_{i j}^{3}-\sum_{i, j} p_{i j}^{1}\right)+ \\
& \cdots+\left(z_{1, m-1}-z_{3, m-1}\right)\left(\sum_{i, j} p_{i j}^{m-1}-\sum_{i, j} p_{i j}^{1}\right)=0, \\
& \left(z_{12}-z_{m-1,2}\right)\left(\sum_{i, j=1}^{m-1} p_{i j}^{2}-\sum_{i, j=1}^{m-1} p_{i j}^{1}\right)+\left(z_{13}-z_{m-1,3}\right)\left(\sum_{i, j} p_{i j}^{3}-\sum_{i, j} p_{i j}^{1}\right)+ \\
& \cdots+\left(z_{1, m-1}-z_{m-1, m-1}\right)\left(\sum_{i, j} p_{i j}^{m-1}-\sum_{i, j} p_{i j}^{1}\right)=0 .
\end{aligned}
$$

Since it follows from the property of the matrix Z that

$$
\left|\begin{array}{cl}
z_{12}-z_{22}, & z_{13}-z_{23}, \ldots, z_{1, m-1}-z_{2, m-1} \tag{4.8}\\
z_{12}-z_{32}, & z_{13}-z_{33}, \ldots, z_{1, m-1}-z_{3, m-1} \\
\ldots \\
z_{12}-z_{m-1,2}, & z_{13}-z_{m-1,3}, \ldots, z_{1, m-1}-z_{m-1, m-1}
\end{array}\right| \neq 0
$$

we obtain

$$
\begin{equation*}
\sum_{i, j=1}^{m-1} p_{i j}^{1}=\sum_{i, j=1}^{m-1} p_{i j}^{2}=\cdots=\sum_{i, j=1}^{m-1} p_{i j}^{m-1} . \tag{4.9}
\end{equation*}
$$

From (1.5) we have

$$
\begin{aligned}
& \left(\sum_{j=1}^{m-1} z_{1 j}\right) z_{1 m}=\left(\sum_{i=1}^{m-1} p_{i m}^{1}\right) z_{11}+\left(\sum_{i} p_{i m}^{2}\right) z_{12}+\cdots+\left(\sum_{i} p_{i m}^{m}\right) z_{1 m}, \\
& \left(\sum_{j=1}^{m-1} z_{2 j}\right) z_{2 m}=\left(\sum_{i=1}^{m-1} p_{i m}^{1}\right) z_{21}+\left(\sum_{i} p_{i m}^{2}\right) z_{22}+\cdots+\left(\sum_{i} p_{i m}^{m}\right) z_{2 m}, \\
& \left.\sum_{j=1}^{m-1} z_{m-1, j}\right) z_{m-1, m}=\left(\sum_{i=1}^{m-1} p_{i m}^{1}\right) z_{m-1,1}+\left(\sum_{i} p_{i m}^{2}\right) z_{m-1,2}+\cdots+\left(\sum_{i} p_{i m}^{m}\right) z_{m-1, m} .
\end{aligned}
$$

Hence from (4.6), (4.7) and (4.8) we similarly obtain

$$
\begin{equation*}
\sum_{i=1}^{m-1} p_{i m}^{1}=\sum_{i=1}^{m-1} p_{i m}^{2}=\cdots=\sum_{i=1}^{m-1} p_{i m}^{m-1} . \tag{4.10}
\end{equation*}
$$

From (1.3) and (1.5) we have

$$
\begin{aligned}
& z_{1 m} z_{1 m}-z_{2 m} z_{2 m}=\left(z_{11}-\right.\left.z_{21}\right) p_{m m}^{1}+\left(z_{12}-z_{22}\right) p_{m m}^{2}+ \\
& \cdots+\left(z_{1, m-1}-z_{2, m-1}\right) p_{m m}^{m-1} \\
& z_{1 m} z_{1 m}-z_{3 m} z_{3 m}=\left(z_{11}-\right.\left.z_{31}\right) p_{m m}^{1}+\left(z_{12}-z_{32}\right) p_{m m}^{2}+ \\
& \cdots+\left(z_{1, m-1}-z_{3, m-1}\right) p_{m m}^{m-1} \\
& \ldots \\
& z_{1 m} z_{1 m}-z_{m-1, m} z_{m-1, m}=\left(z_{11}-z_{m-1, m}\right) p_{m m}^{1}+\left(z_{12}-z_{m-1,2}\right) p_{m m}^{2}+ \\
& \cdots+\left(z_{1, m-1}-z_{m-1, m-1}\right) p_{m m}^{m-1}
\end{aligned}
$$

Hence from (4.6), (4.7) and (4.8) we similarly obtain

$$
\begin{equation*}
p_{m m}^{1}=p_{m m}^{2}=\cdots=p_{m m}^{m-1} \tag{4.11}
\end{equation*}
$$

Conditions (4.9), (4.10) and (4.11) coincide with (2.1) in this case. Therefore Kageyama's condition leads to generalized Vartak's one in this type.
(iii) Case $l=m-2: \lambda_{1}=\lambda_{2}=\cdots=\lambda_{m-2}$ ($=\lambda$, say); $\rho_{1}=\rho_{2}=\cdots=\rho_{m-2}$.

From (1.3), (1.4) and (1.8) we have

$$
\begin{aligned}
& \rho_{1}=\lambda_{0}-\lambda-z_{1, m-1}\left(\lambda-\lambda_{m-1}\right)-z_{1 m}\left(\lambda-\lambda_{m}\right), \\
& \rho_{2}=\lambda_{0}-\lambda-z_{2, m-1}\left(\lambda-\lambda_{m-1}\right)-z_{2 m}\left(\lambda-\lambda_{m}\right),
\end{aligned}
$$

$$
\rho_{m-2}=\lambda_{0}-\lambda-z_{m-2, m-1}\left(\lambda-\lambda_{m-1}\right)-z_{m-2, m}\left(\lambda-\lambda_{m}\right) .
$$

If we suppose a condition

$$
\begin{equation*}
z_{1, m-1}=z_{2, m-1}=\cdots=z_{m-2, m-1} \tag{4.12}
\end{equation*}
$$

then from $\rho_{1}=\rho_{2}=\cdots=\rho_{m-2}$ and $\lambda-\lambda_{i} \neq 0(i=m-1, m)$ we have

$$
\begin{gather*}
z_{1 m}=z_{2 m}=\cdots=z_{m-2, m} \tag{4.13}\\
\sum_{j=1}^{m-2} z_{1 j}=\sum_{j=1}^{m-2} z_{2 j}=\cdots=\sum_{j=1}^{m-2} z_{m-2, j} \tag{4.14}
\end{gather*}
$$

From (1.3) and (1.5) we have

$$
\left(\sum_{j=1}^{m-2} z_{1 j}\right)\left(\sum_{j=1}^{m-2} z_{1 j}\right)=\sum_{i=1}^{m-2} n_{i}+\left(\sum_{i, j=1}^{m-2} p_{i j}^{1}\right) z_{11}+\cdots+\left(\sum_{i, j=1}^{m-2} p_{i j}^{m}\right) z_{1 m}
$$

$$
\begin{aligned}
& \left(\sum_{j=1}^{m-2} z_{2 j}\right)\left(\sum_{j=1}^{m-2} z_{2 j}\right)=\sum_{i=1}^{m-2} n_{i}+\left(\sum_{i, j=1}^{m-2} p_{i j}^{1}\right) z_{21}+\cdots+\left(\sum_{i, j=1}^{m-2} p_{i j}^{m}\right) z_{2 m}, \\
& \left(\sum_{j=1}^{m-2} z_{m-2, j}\right)\left(\sum_{j=1}^{m-2} z_{m-2, j}\right)=\sum_{i=1}^{m-2} n_{i}+\left(\sum_{i, j=1}^{m-2} p_{i j}^{1}\right) z_{m-2,1}+\cdots+\left(\sum_{i, j=1}^{m-2} p_{i j}^{m}\right) z_{m-2, m},
\end{aligned}
$$

which from (4.12), (4.13) and (4.14) lead to

$$
\begin{aligned}
& \left(z_{12}-z_{22}\right)\left(\sum_{i, j=1}^{m-2} p_{i j}^{2}-\sum_{i, j=1}^{m-2} p_{i j}^{1}\right)+\left(z_{13}-z_{23}\right)\left(\sum_{i, j} p_{i j}^{3}-\sum_{i, j} p_{i j}^{1}\right)+ \\
& \cdots+\left(z_{1, m-2}-z_{2, m-2}\right)\left(\sum_{i, j} p_{i j}^{m-2}-\sum_{i, j} p_{i j}^{1}\right)=0, \\
& \left(z_{12}-z_{32}\right)\left(\sum_{i, j=1}^{m-2} p_{i j}^{2}-\sum_{i, j=1}^{m-2} p_{i j}^{1}\right)+\left(z_{13}-z_{33}\right)\left(\sum_{i, j} p_{i j}^{3}-\sum_{i, j} p_{i j}^{1}\right)+ \\
& \cdots+\left(z_{1, m-2}-z_{3, m-2}\right)\left(\sum_{i, j} p_{i j}^{m-2}-\sum_{i, j} p_{i j}^{1}\right)=0, \\
& \left.\left(z_{12}-z_{m-2,2}\right) \sum_{i, j=1}^{m-2} p_{i j}^{2}-\sum_{i, j=1}^{m-2} p_{i j}^{1}\right)+\left(z_{13}-z_{m-2,3}\right)\left(\sum_{i, j} p_{i j}^{3}-\sum_{i, j} p_{i j}^{1}\right)+ \\
& \cdots+\left(z_{1, m-2}-z_{m-2, m-2}\right)\left(\sum_{i, j} p_{i j}^{m-2}-\sum_{i, j} p_{i j}^{1}\right)=0 .
\end{aligned}
$$

Since it follows from the property of the matrix Z that under (4.12)

$$
\left|\begin{array}{c}
z_{12}-z_{22}, \quad z_{13}-z_{23}, \ldots, z_{1, m-2}-z_{2, m-2} \tag{4.15}\\
z_{12}-z_{32}, \quad z_{13}-z_{33}, \ldots, z_{1, m-2}-z_{3, m-2} \\
\ldots \\
z_{12}-z_{m-2,2}, \quad z_{13}-z_{m-2,3}, \ldots, z_{1, m-2}-z_{m-2, m-2}
\end{array}\right| \neq 0
$$

we obtain

$$
\begin{equation*}
\sum_{i, j=1}^{m-2} p_{i j}^{1}=\sum_{i, j=1}^{m-2} p_{i j}^{2}=\cdots=\sum_{i, j=1}^{m-2} p_{i j}^{m-2} . \tag{4.16}
\end{equation*}
$$

From (1.5) we have

$$
\begin{aligned}
& \left(\sum_{j=1}^{m-2} z_{1 j}\right) z_{1, m-1}=\left(\sum_{i=1}^{m-2} p_{i, m-1}^{1}\right) z_{11}+\cdots+\left(\sum_{i=1}^{m-2} p_{i, m-1}^{m}\right) z_{1 m} \\
& \left(\sum_{j=1}^{m-2} z_{2 j}\right) z_{2, m-1}=\left(\sum_{i=1}^{m-2} p_{i, m-1}^{1}\right) z_{21}+\cdots+\left(\sum_{i=1}^{m-2} p_{i, m-1}^{m}\right) z_{2 m}
\end{aligned}
$$

$$
\left(\sum_{j=1}^{m-2} z_{m-2, j}\right) z_{m-2, m-1}=\left(\sum_{i=1}^{m-2} p_{i, m-1}^{1}\right) z_{m-2,1}+\cdots+\left(\sum_{i=1}^{m-2} p_{i, m-1}^{m}\right) z_{m-2, m}
$$

Hence from (4.12), (4.13), (4.14) and (4.15) we similarly obtain

$$
\begin{equation*}
\sum_{i=1}^{m-2} p_{i, m-1}^{1}=\sum_{i=1}^{m-2} p_{i, m-1}^{2}=\cdots=\sum_{i=1}^{m-2} p_{i, m-1}^{m-2} . \tag{4.17}
\end{equation*}
$$

Similarly, from $\left(\sum_{j=1}^{m-2} z_{1 j}\right) z_{1 m}=\left(\sum_{j=1}^{m-2} z_{2 j}\right) z_{2 m}=\cdots=\left(\sum_{j=1}^{m-2} z_{m-2, j}\right) z_{m-2, m}$ we obtain

$$
\begin{equation*}
\sum_{i=1}^{m-2} p_{i m}^{1}=\sum_{i=1}^{m-2} p_{i m}^{2}=\cdots=\sum_{i=1}^{m-2} p_{i m}^{m-2} \tag{4.18}
\end{equation*}
$$

Further similarly, from $z_{1, m-1} z_{1, m-1}-z_{2, m-1} z_{2, m-1}=z_{1, m-1} z_{1, m-1}-z_{3, m-1} z_{3, m-1}$ $=\cdots=z_{1, m-1} z_{1, m-1}-z_{m-2, m-1} z_{m-2, m-1}=0, \quad z_{1, m-1} z_{1 m}-z_{2, m-1} z_{2 m}=z_{1, m-1} z_{1 m}$ $-z_{3, m-1} z_{3 m}=\cdots=z_{1, m-1} z_{1 m}-z_{m-2, m-1} z_{m-2, m}=0$ and $z_{1 m} z_{1 m}-z_{2 m} z_{2 m}=z_{1 m} z_{1 m}$ $-z_{3 m} z_{3 m}=\cdots=z_{1 m} z_{1 m}-z_{m-2, m} z_{m-2, m}=0$, we obtain respectively

$$
\begin{align*}
& p_{m-1, m-1}^{1}=p_{m-1, m-1}^{2}=\cdots=p_{m-1, m-1}^{m-2}, \\
& p_{m-1, m}^{1}=p_{m-1, m}^{2}=\cdots=p_{m-1, m}^{m-2}, \tag{4.19}\\
& p_{m m}^{1}=p_{m m}^{2}=\cdots=p_{m m}^{m-2} .
\end{align*}
$$

Conditions (4.16), (4.17), (4.18) and (4.19) coincide with (2.1) in this case. Therefore Kageyama's condition leads to generalized Vartak's one in this type provided that (4.12) holds. Note that, though (4.12) is a general assumption, there may be an association scheme satisfying (4.12).
(iv) Case $l=m-q(q \geqq 3): \lambda_{1}=\lambda_{2}=\cdots=\lambda_{m-q} ; \quad \rho_{1}=\rho_{2}=\cdots=\rho_{m-q}$. When a positive integer q is equal to 3 , if two conditions like (4.12) are assumed, then in a similar way as in Case (iii), we can get conditions like (2.1) corresponding to this case. In general, if $q-1$ conditions like (4.12) are assumed, then the required conditions like (2.1) can be similarly obtained.

Therefore, for the case in which $l=m-q(q \geqq 2)$, Kageyama's condition leads to generalized Vartak's one with some additional assumptions.

Case II (type $t \geqq 2$ in Lemma 2.2). The conditions to be assumed are

$$
\begin{align*}
& \lambda_{\theta_{1}}=\lambda_{\theta_{1}+1}=\cdots=\lambda_{\theta_{1}+l_{1}-1}, \quad \rho_{\theta_{1}}=\rho_{\theta_{1}+1}=\cdots=\rho_{\theta_{1}+l_{1}-1}, \\
& \lambda_{\theta_{2}}=\lambda_{\theta_{2}+1}=\cdots=\lambda_{\theta_{2}+l_{2}-1}, \quad \rho_{\theta_{2}}=\rho_{\theta_{2}+1}=\cdots=\rho_{\theta_{2}+l_{2}-1}, \tag{4.20}\\
& \lambda_{\theta_{t}}=\lambda_{\theta_{t}+1}=\cdots=\lambda_{\theta_{t}+l_{t}-1}, \quad \rho_{\theta_{t}}=\rho_{\theta_{t}+1}=\cdots=\rho_{\theta_{t}+l_{t}-1} .
\end{align*}
$$

Since the conditions of each row to hold in (4.20) are of the conditions of types in Case I, from the discussion of (iii) and (iv) in Case I, we can see that in type (4.20) if some conditions like (4.12) are further assumed, then a necessary and sufficient condition for the reduction of associate classes like (2.3) is obtained. Therefore in Case II Kageyama's condition leads to generalized Vartak's one with some additional assumptions like (4.12).

We shall conclude this section by giving an effective example. Consider a PBIB design with five associate classes satisfying the conditions such that $\lambda_{1}=$ λ_{2} ($=s_{1}$, say), $\lambda_{3}=\lambda_{4}$ ($=s_{2}$, say); $\rho_{1}=\rho_{2}, \rho_{3}=\rho_{4}$. From (1.3) and (1.8) we have

$$
\begin{aligned}
& \rho_{1}=\lambda_{0}+s_{1}\left(z_{11}+z_{12}\right)+s_{2}\left(z_{13}+z_{14}\right)+\lambda_{5} z_{15}, \\
& \rho_{2}=\lambda_{0}+s_{1}\left(z_{21}+z_{22}\right)+s_{2}\left(z_{23}+z_{24}\right)+\lambda_{5} z_{25}, \\
& \rho_{3}=\lambda_{0}+s_{1}\left(z_{31}+z_{32}\right)+s_{2}\left(z_{33}+z_{34}\right)+\lambda_{5} z_{35}, \\
& \rho_{4}=\lambda_{0}+s_{1}\left(z_{41}+z_{42}\right)+s_{2}\left(z_{43}+z_{44}\right)+\lambda_{5} z_{45} .
\end{aligned}
$$

If we impose a condition

$$
\begin{equation*}
z_{15}=z_{25}, \quad z_{35}=z_{45}, \tag{4.21}
\end{equation*}
$$

then from $\rho_{1}=\rho_{2}, \rho_{3}=\rho_{4}, s_{1} \neq s_{2}$ and (1.4) we have

$$
\begin{array}{ll}
z_{11}+z_{12}=z_{21}+z_{22}, & z_{31}+z_{32}=z_{41}+z_{42} \tag{4.22}\\
z_{13}+z_{14}=z_{23}+z_{24}, & z_{33}+z_{34}=z_{43}+z_{44} .
\end{array}
$$

From (1.3) and (1.5) we have

$$
\begin{aligned}
& \left(z_{11}+z_{12}\right)\left(z_{11}+z_{12}\right)=\sum_{i=1}^{2} n_{i}+\left(\sum_{i, j=1}^{2} p_{i j}^{1}\right) z_{11}+\cdots+\left(\sum_{i, j=1}^{2} p_{i j}^{5}\right) z_{15}, \\
& \left(z_{21}+z_{22}\right)\left(z_{21}+z_{22}\right)=\sum_{i=1}^{2} n_{i}+\left(\sum_{i, j}^{2} p_{i j}^{1}\right) z_{21}+\cdots+\left(\sum_{i, j=1}^{2} p_{i j}^{5}\right) z_{25}, \\
& \left(z_{31}+z_{32}\right)\left(z_{31}+z_{32}\right)=\sum_{i=1}^{2} n_{i}+\left(\sum_{i, j=1}^{2} p_{i j}^{1}\right) z_{31}+\cdots+\left(\sum_{i, j=1}^{2} p_{i j}^{5}\right) z_{35}, \\
& \left(z_{41}+z_{42}\right)\left(z_{41}+z_{42}\right)=\sum_{i=1}^{2} n_{i}+\left(\sum_{i, j}^{2} p_{i j}^{1}\right) z_{41}+\cdots+\left(\sum_{i, j=1}^{2} p_{i j}^{5}\right) z_{45},
\end{aligned}
$$

which from (4.21) and (4.22) lead to

$$
\left(z_{12}-z_{22}\right)\left(\sum_{i, j=1}^{2} p_{i j}^{2}-\sum_{i, j=1}^{2} p_{i j}^{1}\right)+\left(z_{14}-z_{24}\right)\left(\sum_{i, j=1}^{2} p_{i j}^{4}-\sum_{i, j=1}^{2} p_{i j}^{3}\right)=0
$$

$$
\left(z_{32}-z_{42}\right)\left(\sum_{i, j=1}^{2} p_{i j}^{2}-\sum_{i, j=1}^{2} p_{i j}^{1}\right)+\left(z_{34}-z_{44}\right)\left(\sum_{i, j=1}^{2} p_{i j}^{4}-\sum_{i, j=1}^{2} p_{i j}^{3}\right)=0 .
$$

If

$$
\left|\begin{array}{ll}
z_{12}-z_{22}, & z_{14}-z_{24} \tag{4.23}\\
z_{32}-z_{42}, & z_{34}-z_{44}
\end{array}\right| \neq 0
$$

can be further assumed, then we obtain

$$
\begin{equation*}
\sum_{i, j=1}^{2} p_{i j}^{1}=\sum_{i, j=1}^{2} p_{i j}^{2}, \quad \sum_{i, j=1}^{2} p_{i j}^{3}=\sum_{i, j=1}^{2} p_{i j}^{4} \tag{4.24}
\end{equation*}
$$

Similarly, from $\left(z_{13}+z_{14}\right)\left(z_{13}+z_{14}\right)=\left(z_{23}+z_{24}\right)\left(z_{23}+z_{24}\right), \quad\left(z_{33}+z_{34}\right)\left(z_{33}+\right.$ $\left.z_{34}\right)=\left(z_{43}+z_{44}\right)\left(z_{43}+z_{44}\right)$ and (4.23) we obtain

$$
\begin{equation*}
\sum_{i, j=3}^{4} p_{i j}^{1}=\sum_{i, j=3}^{4} p_{i j}^{2}, \quad \sum_{i, j=3}^{4} p_{i j}^{3}=\sum_{i, j=3}^{4} p_{i j}^{4} \tag{4.25}
\end{equation*}
$$

From $\left(z_{11}+z_{12}\right)\left(z_{13}+z_{14}\right)=\left(z_{21}+z_{22}\right)\left(z_{23}+z_{24}\right), \quad\left(z_{31}+z_{32}\right)\left(z_{33}+z_{34}\right)=\left(z_{41}+\right.$ $\left.z_{42}\right)\left(z_{43}+z_{44}\right)$ and (4.23) we similarly obtain

$$
\begin{equation*}
\sum_{\substack{i=1,2,2 \\ j=3,4}} p_{i j}^{1}=\sum_{\substack{i=1,2 \\ j=3 ; 4}} p_{i j}^{2}, \quad \sum_{\substack{i=1,2,2 \\ j=3,4}} p_{i j}^{3}=\sum_{\substack{i j=1,2 \\ j=3,4}} p_{i j}^{4} \tag{4.26}
\end{equation*}
$$

Furthermore, from $\left(z_{11}+z_{12}\right) z_{15}=\left(z_{21}+z_{22}\right) z_{25}, \quad\left(z_{31}+z_{32}\right) z_{35}=\left(z_{41}+z_{42}\right) z_{45}$; $\left(z_{13}+z_{14}\right) z_{15}=\left(z_{23}+z_{24}\right) z_{25}, \quad\left(z_{33}+z_{34}\right) z_{35}=\left(z_{43}+z_{44}\right) z_{45}$ and $z_{15} z_{15}=z_{25} z_{25}$, $z_{35} z_{35}=z_{45} z_{45}$, under (4.23) we obtain respectively

$$
\begin{align*}
\sum_{i=1}^{2} p_{i 5}^{1}=\sum_{i=1}^{2} p_{i 5}^{2}, & \sum_{i=1}^{2} p_{i 5}^{3}=\sum_{i=1}^{2} p_{i 5}^{4} \\
\sum_{i=3}^{4} p_{i 5}^{1}=\sum_{i=3}^{4} p_{i 5}^{2}, & \sum_{i=3}^{4} p_{i 5}^{3}=\sum_{i=3}^{4} p_{i 5}^{4} \tag{4.27}\\
p_{55}^{1}=p_{55}^{2}, & p_{55}^{3}=p_{55}^{4}
\end{align*}
$$

Conditions (4.24), (4.25), (4.26) and (4.27) coincide with (2.3) in this case. Therefore Kageyama's condition leads to generalized Vartak's one in this type provided that (4.21) and (4.23) hold. Note that these additional conditions (4.21) and (4.23) can be replaced by $z_{15}=z_{25}, z_{35}=z_{45}, z_{13}=z_{23}, z_{33}=z_{43}$ or $z_{15}=z_{25}=$ $z_{35}=z_{45}=z_{55}$.

At the conclusion of Section 4, it might be said that generalized Vartak's condition is easier to use than Kageyama's one, since checking the conditions on the $z_{i j}$'s requires some calculations.

5. Reductions for a certain PBIB design

Let N_{i} be BIB designs with parameters $v_{i}, b_{i}, r_{i}, k_{i}, \lambda_{i}$ and N_{i}^{*} be complementary BIB designs with parameters $v_{i}^{*}=v_{i}, b_{i}^{*}=b_{i}, r_{i}^{*}=b_{i}-r_{i}, k_{i}^{*}=v_{i}-k_{i}$, $\lambda_{i}^{*}=b_{i}-2 r_{i}+\lambda_{i}$ of $N_{i}(i=1,2, \ldots, m)$. Then Kageyama [23] gave a necessary and sufficient condition that a PBIB design $N_{\gamma}=N_{1} \otimes N_{2}+N_{1}^{*} \otimes N_{2}^{*}$ with at most three associate classes having an F_{2} type association scheme is reducible to a PBIB design with only two distinct associate classes having an L_{2} association scheme. Furthermore, Kageyama [30] showed necessary and sufficient conditions for PBIB designs $N_{\alpha}=N_{1} \otimes N_{2} \otimes N_{3}+N_{1}^{*} \otimes N_{2}^{*} \otimes N_{3}^{*}$ and $N_{\beta}=N_{1} \otimes N_{2} \otimes \cdots$ $\otimes N_{m}+N_{1}^{*} \otimes N_{2}^{*} \otimes \cdots \otimes N_{m}^{*}$ to be reducible. N_{α} is different from $N_{1} \otimes N_{2} \otimes N_{3}+$ $N_{1} \otimes N_{2}^{*} \otimes N_{3}^{*}+N_{1}^{*} \otimes N_{2} \otimes N_{3}^{*}+N_{1}^{*} \otimes N_{2}^{*} \otimes N_{3}$ constructed by Sillitto's product of N_{γ} and N_{3}, where N_{γ} is a BIB design provided $b_{i}=4\left(r_{i}-\lambda_{i}\right), i=1,2$ [50; 52]. A generalization of the Sillitto type of product will be treated in a subsequent section.

By use of Kageyama's condition, we have as a generalization of PBIB design N_{γ} the following

Theorem 5.1 (Kageyama [30]). Given the BIB designs N_{i} with parameters v, b_{i}, r_{i}, k and $\lambda_{i}(i=1,2, \ldots, m)$, necessary and sufficient condition for a PBIB design $N=N_{1} \otimes N_{2} \otimes \cdots \otimes N_{m}+N_{1}^{*} \otimes N_{2}^{*} \otimes \cdots \otimes N_{m}^{*}$ with at most $2^{m}-1$ associate classes having the F_{m} type association scheme to be reducible to a PBIB design with the hypercubic association scheme of m associate classes is that

$$
\begin{equation*}
b_{i}\left(r_{j}-\lambda_{j}\right)=b_{j}\left(r_{i}-\lambda_{i}\right) \tag{5.1}
\end{equation*}
$$

hold simultaneously for every $i, j(i \neq j)=1,2, \ldots, m$.
For Kageyama [30], we remark that necessary and sufficient conditions for two distinct PBIB design based on the same association scheme to be reducible are generally different.

Further, note that (5.1) can be replaced by $r_{i} \lambda_{j}=r_{j} \lambda_{i}$, because $b_{i}\left(r_{j}-\lambda_{j}\right)=$ $b_{j}\left(r_{i}-\lambda_{i}\right)$ is equivalent to $r_{i} \lambda_{j}=r_{j} \lambda_{i}$ under conditions $v_{i}=v_{j}$ and $k_{i}=k_{j}$. Since we can also see that $b_{i}\left(r_{j}-\lambda_{j}\right)=b_{j}\left(r_{i}-\lambda_{i}\right)$ is equivalent to $v_{i}=v_{j}$ under $r_{i} \lambda_{j}=r_{j} \lambda_{i}$ and $k_{i}=k_{j}$, as compared with Theorem 5.1 from a combinatorial point of view of the design we have

Corollary 5.2. Given the BIB designs N_{i} with parameters v_{i}, b_{i}, r_{i}, k and $\lambda_{i}(i=1,2,3)$ satisfying $r_{1} \lambda_{2}=r_{2} \lambda_{1}, r_{2} \lambda_{3}=r_{3} \lambda_{2}$ and $r_{1} \lambda_{3}=r_{3} \lambda_{1}$, a necessary and sufficient condition for a PBIB design $N=N_{1} \otimes N_{2} \otimes N_{3}+N_{1}^{*} \otimes N_{2}^{*} \otimes N_{3}^{*}$ with at most seven associate classes having the F_{3} type association scheme to be reducible to a PBIB design with only three distinct associate classes having the cubic association scheme is that

$$
v_{1}=v_{2}=v_{3} .
$$

We will deal with the problem in Section 7 of Kageyama [23], i.e., the derivation of a necessary and sufficient condition for a PBIB design with at most $2^{m}-1$ associate classes having the F_{m} type association scheme to be reducible to a PBIB design with m_{1} associate classes for a positive integer m_{1} such that $m<$ $m_{1}<2^{m}-1$. Here we shall consider the case $m=3$ concerning Corollary 5.2.

As shown in Kageyama [30], when N_{i} are BIB designs with parameters $v_{i}, b_{i}, r_{i}, k_{i}$ and $\lambda_{i}, i=1,2,3$, the parameters of PBIB design $N=N_{1} \otimes N_{2} \otimes N_{3}+$ $N_{1}^{*} \otimes N_{2}^{*} \otimes N_{3}^{*}$ based on the F_{3} type association scheme are given by

$$
\begin{align*}
v^{\prime} & =v_{1} v_{2} v_{3}, \quad b^{\prime}=b_{1} b_{2} b_{3}, \\
r^{\prime}= & r_{1} r_{2} r_{3}+\left(b_{1}-r_{1}\right)\left(b_{2}-r_{2}\right)\left(b_{3}-r_{3}\right), \\
k^{\prime}= & k_{1} k_{2} k_{3}+\left(v_{1}-k_{1}\right)\left(v_{2}-k_{2}\right)\left(v_{3}-k_{3}\right), \\
\lambda_{1}^{\prime}= & r_{1} \lambda_{2} r_{3}+\left(b_{1}-r_{1}\right)\left(b_{2}-2 r_{2}+\lambda_{2}\right)\left(b_{3}-r_{3}\right), \\
\lambda_{2}^{\prime}= & \lambda_{1} r_{2} r_{3}+\left(b_{1}-2 r_{1}+\lambda_{1}\right)\left(b_{2}-r_{2}\right)\left(b_{3}-r_{3}\right), \\
\lambda_{3}^{\prime}= & \lambda_{1} \lambda_{2} r_{3}+\left(b_{1}-2 r_{1}+\lambda_{1}\right)\left(b_{2}-2 r_{2}+\lambda_{2}\right)\left(b_{3}-r_{3}\right), \tag{5.2}\\
\lambda_{4}^{\prime}= & r_{1} r_{2} \lambda_{3}+\left(b_{1}-r_{1}\right)\left(b_{2}-r_{2}\right)\left(b_{3}-2 r_{3}+\lambda_{3}\right), \\
\lambda_{5}^{\prime}= & r_{1} \lambda_{2} \lambda_{3}+\left(b_{1}-r_{1}\right)\left(b_{2}-2 r_{2}+\lambda_{2}\right)\left(b_{3}-2 r_{3}+\lambda_{3}\right), \\
\lambda_{6}^{\prime}= & \lambda_{1} r_{2} \lambda_{3}+\left(b_{1}-2 r_{1}+\lambda_{1}\right)\left(b_{2}-r_{2}\right)\left(b_{3}-2 r_{3}+\lambda_{3}\right), \\
\lambda_{7}^{\prime}= & \lambda_{1} \lambda_{2} \lambda_{3}+\left(b_{1}-2 r_{1}+\lambda_{1}\right)\left(b_{2}-2 r_{2}+\lambda_{2}\right)\left(b_{3}-2 r_{3}+\lambda_{3}\right) \\
& +2\left(r_{1}-\lambda_{1}\right)\left(r_{2}-\lambda_{2}\right)\left(r_{3}-\lambda_{3}\right) .
\end{align*}
$$

It follows from (5.2) and some calculations that

$$
\begin{equation*}
\lambda_{1}^{\prime}=\lambda_{4}^{\prime} \quad \text { and } \quad \lambda_{3}^{\prime}=\lambda_{6}^{\prime} \tag{5.3}
\end{equation*}
$$

are equivalent to

$$
\begin{equation*}
b_{2}\left(r_{3}-\lambda_{3}\right)=b_{3}\left(r_{2}-\lambda_{2}\right), \tag{5.4}
\end{equation*}
$$

under

$$
\begin{equation*}
v_{2}=v_{3} \quad \text { and } \quad k_{2}=k_{3} . \tag{5.5}
\end{equation*}
$$

In a similar way, if (5.5) is replaced by $v_{1}=v_{2}$ and $k_{1}=k_{2}$, then (5.3) is replaced by $\lambda_{1}^{\prime}=\lambda_{2}^{\prime}$ and $\lambda_{5}^{\prime}=\lambda_{6}^{\prime}$, while (5.4) by $b_{1}\left(r_{2}-\lambda_{2}\right)=b_{2}\left(r_{1}-\lambda_{1}\right)$. Furthermore, if
(5.5) is replaced by $v_{1}=v_{3}$ and $k_{1}=k_{3}$, then (5.3) is replaced by $\lambda_{2}^{\prime}=\lambda_{4}^{\prime}$ and $\lambda_{3}^{\prime}=$ λ_{5}^{\prime}, while (5.4) by $b_{1}\left(r_{3}-\lambda_{3}\right)=b_{3}\left(r_{1}-\lambda_{1}\right)$. Therefore, since the properties for reductions of the F_{3} type association scheme are given in Design (I) of Section 3, we can establish

Theorem 5.3. Given the BIB designs N_{i} with parameters $v_{i}, b_{i}, r_{i}, k_{i}$ and $\lambda_{i}(i=1,2,3)$ satisfying

$$
\begin{equation*}
v_{2}=v_{3} \quad \text { and } \quad k_{2}=k_{3}, \tag{5.6}
\end{equation*}
$$

then a necessary and sufficient condition for a PBIB design $N=N_{1} \otimes N_{2} \otimes N_{3}+$ $N_{1}^{*} \otimes N_{2}^{*} \otimes N_{3}^{*}$ with at most seven associate classes having the F_{3} type association scheme to be reducible to a PBIB design with five associate classes having an association called a singular reduced F_{3} type association scheme [28] is that

$$
\begin{equation*}
b_{2}\left(r_{3}-\lambda_{3}\right)=b_{3}\left(r_{2}-\lambda_{2}\right), \tag{5.7}
\end{equation*}
$$

which is equivalent to

$$
\begin{equation*}
r_{2} \lambda_{3}=r_{3} \lambda_{2} \tag{5.8}
\end{equation*}
$$

Remark. If (5.6) is replaced by $v_{1}=v_{2}$ and $k_{1}=k_{2}$, then (5.7) is replaced by $b_{1}\left(r_{2}-\lambda_{2}\right)=b_{2}\left(r_{1}-\lambda_{1}\right)$, while (5.8) by $r_{1} \lambda_{2}=r_{2} \lambda_{1}$. Furthermore, if (5.6) is replaced by $v_{1}=v_{3}$ and $k_{1}=k_{3}$, then (5.7) is replaced by $b_{1}\left(r_{3}-\lambda_{3}\right)=b_{3}\left(r_{1}-\lambda_{1}\right)$, while (5.8) by $r_{1} \lambda_{3}=r_{3} \lambda_{1}$.

Generalizations of Corollary 5.2 and Theorem 5.3 are easily given and hence they are omitted here.

6. Algebraic structures of PBIB designs obtained by generalization of Sillitto's product

In the previous section, we dealt with necessary and sufficient conditions that the PBIB design given by the Kronecker product of BIB designs in the form $N=N_{1} \otimes N_{2} \otimes \cdots \otimes N_{n}+N_{1}^{*} \otimes N_{2}^{*} \otimes \cdots \otimes N_{n}^{*}$ is reducible to a PBIB design with fewer associate classes. In this section we shall deal with the generalization of the Sillitto type of product concerning the product type stated above. That is, for usual Sillitto's product $N^{(1)}=N_{1} \otimes N_{2}+N_{1}^{*} \otimes N_{2}^{*}$, we study the algebraic structures of $N^{(2)}=N^{(1)} \otimes N_{3}+N^{(1) *} \otimes N_{3}^{*}$ and in general $N^{(n)}=N^{(n-1)} \otimes N_{n+1}$ $+N^{(n-1) *} \otimes N_{n+1}^{*}$, where N_{i} 's are BIB designs. The approach used here is standard, being the use of generalized Vartak's condition.

Let N_{i} be BIB designs with parameters $v_{i}, b_{i}, r_{i}, k_{i}, \lambda_{i}(i=1,2, \ldots, n+1)$ and let the parameters of PBIB design $N^{(\alpha)}$ be denoted by $v^{(\alpha)}, b^{(\alpha)}, r^{(\alpha)}, k^{(\alpha)}, \lambda_{i}^{(\alpha)}$ and $n_{i}^{(\alpha)}$. Then it is known (cf. [23]) that the parameters of the PBIB design
$N^{(1)}=N_{1} \otimes N_{2}+N_{1}^{*} \otimes N_{2}^{*}$ based on a rectangular association scheme are as follows:

$$
\begin{align*}
& v^{(1)}=v_{1} v_{2}, \quad b^{(1)}=b_{1} b_{2}, \\
& r^{(1)}=r_{1} r_{2}+\left(b_{1}-r_{1}\right)\left(b_{2}-r_{2}\right), \\
& k^{(1)}=k_{1} k_{2}+\left(v_{1}-k_{1}\right)\left(v_{2}-k_{2}\right), \\
& \lambda_{1}^{(1)}=r_{1} \lambda_{2}+\left(b_{1}-r_{1}\right)\left(b_{2}-2 r_{2}+\lambda_{2}\right), \quad n_{1}^{(1)}=v_{2}-1, \tag{6.1}\\
& \lambda_{2}^{(1)}=r_{2} \lambda_{1}+\left(b_{2}-r_{2}\right)\left(b_{1}-2 r_{1}+\lambda_{1}\right), \quad n_{2}^{(1)}=v_{1}-1, \\
& \lambda_{3}^{(1)}=\lambda_{1} \lambda_{2}+\left(b_{1}-2 r_{1}+\lambda_{1}\right)\left(b_{2}-2 r_{2}+\lambda_{2}\right)+2\left(r_{1}-\lambda_{1}\right)\left(r_{2}-\lambda_{2}\right), \\
& \qquad
\end{align*}
$$

Furthermore, as indicated in Section $5, N^{(1)}$ is a BIB design when the parameters of the original BIB designs N_{i} satisfy $b_{i}=4\left(r_{i}-\lambda_{i}\right), i=1,2$. Since the algebraic structures of the PBIB design $N^{(1)}$ with at most three associate classes are discussed in Kageyama [23], we begin by considering the design $N^{(2)}=N^{(1)} \otimes$ $N_{3}+N^{(1) *} \otimes N_{3}^{*}$ as the Sillitto type of product of $N^{(1)}$ and N_{3}.

Before a further consideration, we prepare the following lemma which plays an important role in this section.

Lemma 6.1. Let M_{1} be a PBIB design with m associate classes and with parameters $v^{(1)}, b^{(1)}, r^{(1)}, k^{(1)}, \lambda_{i}^{(1)}, n_{i}^{(1)}, p_{j k}^{i(1)}, i, j, k=0,1, \ldots, m$, and let N_{2} be a BIB design with parameters $v_{2}, b_{2}, r_{2}, k_{2}$ and λ_{2}. Then $N=M_{1} \otimes N_{2}$ $+M_{1}^{*} \otimes N_{2}^{*}$ is a PBIB design with at most $2 m+1$ associate classes and with parameters

$$
\begin{aligned}
& v=v^{(1)} v_{2}, \quad b=b^{(1)} b_{2}, \\
& r=r^{(1)} r_{2}+\left(b^{(1)}-r^{(1)}\right)\left(b_{2}-r_{2}\right), \\
& k=k^{(1)} k_{2}+\left(v^{(1)}-k^{(1)}\right)\left(v_{2}-k_{2}\right), \\
& \lambda_{1}=r^{(1)} \lambda_{2}+\left(b^{(1)}-r^{(1)}\right)\left(b_{2}-2 r_{2}+\lambda_{2}\right), \quad n_{1}=v_{2}-1, \\
& \lambda_{2 i}=r_{2} \lambda_{i}^{(1)}+\left(b_{2}-r_{2}\right)\left(b^{(1)}-2 r^{(1)}+\lambda_{i}^{(1)}\right), \quad n_{2 i}=n_{i}^{(1)}, \\
& \lambda_{2 i+1}=\lambda_{i}^{(1)} \lambda_{2}+\left(b^{(1)}-2 r^{(1)}+\lambda_{i}^{(1)}\right)\left(b_{2}-2 r_{2}+\lambda_{2}\right) \\
& \quad+2\left(r^{(1)}-\lambda_{i}^{(1)}\right)\left(r_{2}-\lambda_{2}\right), \quad n_{2 i+1}=\left(v_{2}-1\right) n_{i}^{(1)},
\end{aligned}
$$

for $i=1,2, \ldots, m$. In addition, the following relations hold:

$$
\begin{aligned}
& \lambda_{1}=\lambda_{2 i} \text { if and only if } b^{(1)}\left(r_{2}-\lambda_{2}\right)=b_{2}\left(r^{(1)}-\lambda_{i}^{(1)}\right), \\
& \lambda_{1}=\lambda_{2 i+1} \text { if and only if }\left(r^{(1)}-\lambda_{i}^{(1)}\right) b_{2}=4\left(r^{(1)}-\lambda_{i}^{(1)}\right)\left(r_{2}-\lambda_{2}\right), \\
& \lambda_{2 i}=\lambda_{2 j+1} \text { if and only if } b_{2}\left(\lambda_{j}^{(1)}-\lambda_{i}^{(1)}\right)=\left(r_{2}-\lambda_{2}\right)\left[b^{(1)}-4\left(r^{(1)}-\lambda_{j}^{(1)}\right)\right], \\
& \lambda_{2 i}=\lambda_{2 j} \text { if and only if } \lambda_{i}^{(1)}=\lambda_{j}^{(1)}, \\
& \lambda_{2 i+1}=\lambda_{2 j+1} \text { if and only if }\left(\lambda_{i}^{(1)}-\lambda_{j}^{(1)}\right)\left[b_{2}-4\left(r_{2}-\lambda_{2}\right)\right]=0
\end{aligned}
$$

for all $i, j=1,2, \ldots, m$.
Since it is clear that in general the complement of a PBIB design M with parameters $v, b, r, k, \lambda_{i}, n_{i}$ and $p_{j k}^{i}$ (if the design exists, then $b+\lambda_{i} \geqq 2 r$ holds for all i) is also a PBIB design M^{*} with parameters $v^{*}=v, b^{*}=b, r^{*}=b-r, k^{*}=$ $v-k, \lambda_{i}^{*}=b-2 r+\lambda_{i}, n_{i}^{*}=n_{i}$ and $p_{j k}^{i *}=p_{j k}^{i}$ having the same association scheme as M, so that $N=M_{1} \otimes N_{2}+M_{1}^{*} \otimes N_{2}^{*}$ has the same association scheme as the design $M_{1} \otimes N_{2}$, the second kind of parameters $p_{j k}^{i}$ of N coincide with those of $M_{1} \otimes N_{2}$. The latter can be found in Vartak [58] and hence we omit describing them here.

The proof of Lemma 6.1 is easily given by enumeration from the structure of $N=M_{1} \otimes N_{2}+M_{1}^{*} \otimes N_{2}^{*}$ and the combinatorial properties of M_{1} and N_{2}, or with the help of association matrices for the purpose of the essential use of Lemma 5.1 due to Bose and Mesner [8]. The association matrices matching the design N can be also represented by the Kronecker products of those of designs M_{1} and N_{2}. Note that in Lemma 6.1 if M_{1} has an F_{n} type association scheme which will be given in Section 9, then N has an F_{n+1} type association scheme.

Since

$$
\left(N_{1} \otimes N_{2}+N_{1}^{*} \otimes N_{2}^{*}\right)^{*}=N_{1} \otimes N_{2}^{*}+N_{1}^{*} \otimes N_{2},
$$

we have

$$
\begin{align*}
N^{(2)}= & N^{(1)} \otimes N_{3}+N^{(1) *} \otimes N_{3}^{*} \tag{6.2}\\
= & N_{1} \otimes N_{2} \otimes N_{3}+N_{1}^{*} \otimes N_{2}^{*} \otimes N_{3}+N_{1} \otimes N_{2}^{*} \otimes N_{3}^{*} \tag{6.3}\\
& +N_{1}^{*} \otimes N_{2} \otimes N_{3}^{*} .
\end{align*}
$$

Remark. The complement of a design of the Sillitto type of product is easily made from a structural point of view, that is, it is essential to make the complement of the last BIB design only in each term consisting of Kronecker products of BIB designs. For example, the complement of $N^{(2)}$ is as follows:

$$
N^{(2) *}=N_{1} \otimes N_{2} \otimes\left(N_{3}\right)^{*}+N_{1}^{*} \otimes N_{2}^{*} \otimes\left(N_{3}\right)^{*}
$$

$$
\begin{aligned}
& +N_{1} \otimes N_{2}^{*} \otimes\left(N_{3}^{*}\right)^{*}+N_{1}^{*} \otimes N_{2} \otimes\left(N_{3}^{*}\right)^{*} \\
= & N_{1} \otimes N_{2} \otimes N_{3}^{*}+N_{1}^{*} \otimes N_{2}^{*} \otimes N_{3}^{*}+N_{1} \otimes N_{2}^{*} \otimes N_{3} \\
& +N_{1}^{*} \otimes N_{2} \otimes N_{3}
\end{aligned}
$$

It is convenient to consider $N^{(2)}$ in the original form (6.2) rather than in an expansion form (6.3) for the sake of the easy use of Lemma 6.1. Thus, from (6.1) and Lemma 6.1 we have

PROPOSITION. $\quad N^{(2)}=N^{(1)} \otimes N_{3}+N^{(1) *} \otimes N_{3}^{*}=N_{1} \otimes N_{2} \otimes N_{3}+N_{1}^{*} \otimes N_{2}^{*} \otimes$ $N_{3}+N_{1} \otimes N_{2}^{*} \otimes N_{3}^{*}+N_{1}^{*} \otimes N_{2} \otimes N_{3}^{*}$ is a PBIB design with at most seven associate classes having an F_{3} type association scheme and with parameters

$$
\begin{aligned}
v^{(2)}= & v_{1} v_{2} v_{3}, \quad b^{(2)}=b_{1} b_{2} b_{3} \\
r^{(2)}= & \left\{r_{1} r_{2}+\left(b_{1}-r_{1}\right)\left(b_{2}-r_{2}\right)\right\} r_{3}+\left(b_{1} r_{2}+b_{2} r_{1}-2 r_{1} r_{2}\right)\left(b_{3}-r_{3}\right) \\
k^{(2)}= & \left\{k_{1} k_{2}+\left(v_{1}-k_{1}\right)\left(v_{2}-k_{2}\right)\right\} k_{3}+\left(v_{1} k_{2}+v_{2} k_{1}-2 k_{1} k_{2}\right)\left(v_{3}-k_{3}\right), \\
\lambda_{1}^{(2)}= & b_{1} b_{2} \lambda_{3}+\left(b_{1} r_{2}+b_{2} r_{1}-2 r_{1} r_{2}\right)\left(b_{3}-2 r_{3}\right), \quad n_{1}^{(2)}=v_{3}-1 \\
\lambda_{2 i}^{(2)}= & \lambda_{i}^{(1)} b_{3}-\left(b_{1}-2 r_{1}\right)\left(b_{2}-2 r_{2}\right)\left(b_{3}-r_{3}\right), \quad n_{2 i}^{(2)}=n_{i}^{(1)} \\
\lambda_{2 i+1}^{(2)}= & b_{1} b_{2}\left(b_{3}-2 r_{3}+\lambda_{3}\right)+\lambda_{i}^{(1)}\left\{b_{3}-4\left(r_{3}-\lambda_{3}\right)\right\} \\
& -2\left\{r_{1} r_{2}+\left(b_{1}-r_{1}\right)\left(b_{2}-r_{2}\right)\right\}\left(b_{3}-3 r_{3}+2 \lambda_{3}\right), \\
& n_{2 i+1}^{(2)}=\left(v_{3}-1\right) n_{i}^{(1)}
\end{aligned}
$$

for $i=1,2,3$, where $\lambda_{i}^{(1)}$ and $n_{i}^{(1)}$ are given in (6.1). In addition, (i) when $b_{i}=4\left(r_{i}-\lambda_{i}\right), i=1,2,3, N^{(2)}$ is originally reducible to a BIB design. (ii) When $b_{i}=4\left(r_{i}-\lambda_{i}\right), i=1,2$ and $b_{3} \neq 4\left(r_{3}-\lambda_{3}\right), N^{(2)}$ is originally reducible to a PBIB design with at most three associate classes having a rectangular association scheme, and is further not reducible to a 2-associate PBIB design based on the L_{2} association scheme.

On the reduction of associate classes for $N^{(2)}$ as a PBIB design with seven associate classes having the F_{3} type association scheme (see Section 3 for matrix expressions $P_{i}=\left\|p_{j k}^{i}\right\|$ of the second kind of parameters), the representations corresponding to the places of letters $(A), \alpha,(B)$ and (C) in the following proposition are given in the table:

Proposition: When there exists the relation (A) of equality among the coincidence numbers $\lambda_{i}^{(2)}$, a necessary and sufficient condition that a PBIB design $N^{(2)}$ with at most seven associate classes having the F_{3} type association
scheme is reducible to a PBIB design with α associate classes is condition (B). Furthermore, relation (A) holds when the parameters of the original BIB designs satisfy condition (C).

Table

No.	relation (A) of $\lambda_{i}^{(2)}$	α	(B)	condition (C)
1	$4=5,6=7$	5		$b_{1}=4\left(r_{1}-\lambda_{1}\right)$
2	$4=6,5=7$	5		$b_{1}=4\left(r_{1}-\lambda_{1}\right)$
3	$2=3,6=7$	5		$b_{2}=4\left(r_{2}-\lambda_{2}\right)$
4	$2=6,3=7$	5		$b_{2}=4\left(r_{2}-\lambda_{2}\right)$
5	$1=3,5=7$	5		$b_{3}=4\left(r_{3}-\lambda_{3}\right)$
6	$1=5,3=7$	5		$b_{3}=4\left(r_{3}-\lambda_{3}\right)$
7	$1=2,5=6$	5	$v_{1}=v_{2}$	$b_{2}\left(r_{3}-\lambda_{3}\right)=b_{3}\left(r_{2}-\lambda_{2}\right)$
8	$2=4,3=5$	5	$v_{1}=v_{3}$	$b_{1}\left(r_{2}-\lambda_{2}\right)=b_{2}\left(r_{1}-\lambda_{1}\right)$
9	$1=4,3=6$	5	$v_{2}=v_{3}$	$b_{1}\left(r_{3}-\lambda_{3}\right)=b_{3}\left(r_{1}-\lambda_{1}\right)$
10	$1=5,2=6$	5	$v_{1}=v_{2}=2$	$b_{2}=4\left(r_{2}-\lambda_{2}\right), b_{3}=4\left(r_{3}-\lambda_{3}\right)$
11	$1=3,4=6$	5	$v_{2}=v_{3}=2$	$b_{1}=4\left(r_{1}-\lambda_{1}\right), b_{3}=4\left(r_{3}-\lambda_{3}\right)$
12	$2=3,4=5$	5	$v_{1}=v_{3}=2$	$b_{1}=4\left(r_{1}-\lambda_{1}\right), b_{2}=4\left(r_{2}-\lambda_{2}\right)$
13	$2=7,3=6$	5	$v_{2}=v_{3}=2$	$b_{2}=4\left(r_{2}-\lambda_{2}\right)$
14	$4=7,5=6$	5	$v_{1}=v_{2}=2$	$b_{1}=4\left(r_{1}-\lambda_{1}\right)$
15	$4=5=6=7$	4		$b_{1}=4\left(r_{1}-\lambda_{1}\right)$
16	$2=3=6=7$	4		$b_{2}=4\left(r_{2}-\lambda_{2}\right)$
17	$1=3=5=7$	4		$b_{3}=4\left(r_{3}-\lambda_{3}\right)$
18	$2=3,4=5,6=7$	4		$b_{1}=4\left(r_{1}-\lambda_{1}\right), b_{2}=4\left(r_{2}-\lambda_{2}\right)$
19	$2=3=4=5$	4	$v_{1}=v_{3}=2$	$b_{1}=4\left(r_{1}-\lambda_{1}\right), b_{2}=4\left(r_{2}-\lambda_{2}\right)$
20	$1=3=4=6$	4	$v_{2}=v_{3}=2$	$b_{1}=4\left(r_{1}-\lambda_{1}\right), b_{3}=4\left(r_{3}-\lambda_{3}\right)$
21	$1=2=5=6$	4	$v_{1}=v_{2}=2$	$b_{2}=4\left(r_{2}-\lambda_{2}\right), b_{3}=4\left(r_{3}-\lambda_{3}\right)$
22	$2=3,4=5=6=7$	3		$b_{1}=4\left(r_{1}-\lambda_{1}\right), b_{2}=4\left(r_{2}-\lambda_{2}\right)$
23	$4=5,2=3=6=7$	3		$b_{1}=4\left(r_{1}-\lambda_{1}\right), b_{2}=4\left(r_{2}-\lambda_{2}\right)$
24	$1=3,4=5=6=7$	3		$b_{1}=4\left(r_{1}-\lambda_{1}\right), b_{3}=4\left(r_{3}-\lambda_{3}\right)$
25	$4=6,1=3=5=7$	3		$b_{1}=4\left(r_{1}-\lambda_{1}\right), b_{3}=4\left(r_{3}-\lambda_{3}\right)$
26	$2=6,1=3=5=7$	3		$b_{2}=4\left(r_{2}-\lambda_{2}\right), b_{3}=4\left(r_{3}-\lambda_{3}\right)$
27	$1=2=3,5=6=7$	3		$b_{2}=4\left(r_{2}-\lambda_{2}\right), b_{3}=4\left(r_{3}-\lambda_{3}\right)$
28	$2=4=6,3=5=7$	3		$b_{1}=4\left(r_{1}-\lambda_{1}\right), b_{2}=4\left(r_{2}-\lambda_{2}\right)$
29	$1=4=5,3=6=7$	3		$b_{1}=4\left(r_{1}-\lambda_{1}\right), b_{3}=4\left(r_{3}-\lambda_{3}\right)$
30	$2=3=4=5,6=7$	3	$v_{1}=v_{3}$	$b_{1}=4\left(r_{1}-\lambda_{1}\right), b_{2}=4\left(r_{2}-\lambda_{2}\right)$
31	$2=4,1=3=5=7$	3	$v_{1}=v_{3}$	$b_{i}=4\left(r_{i}-\lambda_{i}\right), i=1,2,3$
32	$1=2,4=5=6=7$	3	$v_{1}=v_{2}$	$\begin{aligned} & b_{1}=4\left(r_{1}-\lambda_{1}\right), \\ & b_{2}\left(r_{3}-\lambda_{3}\right)=b_{3}\left(r_{2}-\lambda_{2}\right) \end{aligned}$
33	$3=7,1=2=5=6$	3	$v_{1}=v_{2}$	$b_{2}=4\left(r_{2}-\lambda_{2}\right), b_{3}=4\left(r_{3}-\lambda_{3}\right)$
34	$5=7,1=3=4=6$	3	$v_{2}=v_{3}$	$b_{1}=4\left(r_{1}-\lambda_{1}\right), b_{3}=4\left(r_{3}-\lambda_{3}\right)$
35	$1=2=4,3=5=6$	3	$v_{1}=v_{2}=v_{3}$	$\begin{aligned} & b_{1}\left(r_{3}-\lambda_{3}\right)=b_{3}\left(r_{1}-\lambda_{1}\right), \\ & b_{2}\left(r_{3}-\lambda_{3}\right)=b_{3}\left(r_{2}-\lambda_{2}\right) \end{aligned}$
36	$2=5=6,3=4=7$	3	$v_{1}=v_{2}=2$	$b_{1}=4\left(r_{1}-\lambda_{1}\right), b_{2}=4\left(r_{2}-\lambda_{2}\right)$
37	$1=3=6,2=5=7$	3	$v_{2}=v_{3}=2$	$b_{2}=4\left(r_{2}-\lambda_{2}\right), b_{3}=4\left(r_{3}-\lambda_{3}\right)$
38	$1=7,2=3=4=5$	3	$v_{1}=v_{3}=2$	$b_{i}=4\left(r_{i}-\lambda_{i}\right), i=1,2,3$
39	$1=4=7,3=5=6$	3	$v_{1}=2, v_{2}=v_{3}=4$	$b_{1}=4\left(r_{1}-\lambda_{1}\right), b_{3}=4\left(r_{3}-\lambda_{3}\right)$
40	$1=2=7,3=5=6$	3	$v_{1}=v_{2}=4, v_{3}=2$	$b_{2}=4\left(r_{2}-\lambda_{2}\right), b_{3}=4\left(r_{3}-\lambda_{3}\right)$
41	$2=3=4=5=6=7$	2		$b_{1}=4\left(r_{1}-\lambda_{1}\right), b_{2}=4\left(r_{2}-\lambda_{2}\right)$
42	$1=2=3=5=6=7$	2		$b_{2}=4\left(r_{2}-\lambda_{2}\right), b_{3}=4\left(r_{3}-\lambda_{3}\right)$
43	$1=3=4=5=6=7$	2		$b_{1}=4\left(r_{1}-\lambda_{1}\right), b_{3}=4\left(r_{3}-\lambda_{3}\right)$

(Continued)				
No.	relation (A) of $\lambda_{i}^{(2)}$	α	(B)	condition (C)
44	$1=2=3,4=5=6=7$	2		$b_{i}=4\left(r_{i}-\lambda_{i}\right), i=1,2,3$
45	$1=4=5,2=3=6=7$	2		$b_{i}=4\left(r_{i}-\lambda_{i}\right), i=1,2,3$
46	$1=2=3=4,5=6=7$	2	$v_{1} v_{2}=v_{3}$	$b_{i}=4\left(r_{i}-\lambda_{i}\right), i=1,2,3$
47	$1=2=4=5=6=7$	2	$v_{1}=v_{2}=2$	$b_{i}=4\left(r_{i}-\lambda_{i}\right), i=1,2,3$
48	$1=4=7,2=3=5=6$	2	$v_{1}=4, v_{2}=v_{3}=2$	$b_{i}=4\left(r_{i}-\lambda_{i}\right), i=1,2,3$

The numbers in the column of relation (A) denote suffices i of coincidence numbers $\lambda_{i}^{(2)}$ as follows; for example $4=5,6=7$ means the relation $\lambda_{4}^{(2)}=\lambda_{5}^{(2)}$ and $\lambda_{6}^{(2)}=\lambda_{7}^{(2)}$, and $2=3=6=7$ means the relation $\lambda_{2}^{(2)}=\lambda_{3}^{(2)}=\lambda_{6}^{(2)}=\lambda_{7}^{(2)}$, and so on. The blanks in column (B) mean that condition (B) is automatically satisfied under relation (A). Condition (B) can be easily checked by generalized Vartak's condition. Though generally $v_{i} \geqq 2$ in BIB designs $N_{i}, i=1,2$, 3 , we omit the cases in which $v_{1}=v_{2}=v_{3}=2$ and which is reducible to a BIB design in Table, since they are not interesting for us.

Note that under the same condition (C), by combining associate classes in some ways, $N^{(2)}$ is reducible to PBIB designs with fewer associate classes. Of course, there are many cases other than those given in Table concerning the reduction of associate classes. In particular, there are many combinations of $\lambda_{i}^{(2)}$ for the cases reducible to PBIB designs with two or three associate classes. Okuno and Okuno [41] have also studied PBIB designs based on the F_{3} type association scheme of $v=m_{1} m_{2} m_{3}$ treatments in some detail.

Further, note that the reduced design of No. 18 is a 4 -associate PBIB design based on a generalized right angular association scheme which will be indicated in Section 10, and that the reduced designs of Nos. 27 and 35 are, respectively, 3 -associate PBIB designs based on the F_{2} type association scheme and the C_{3} type association scheme which will be described in Section 9. There are some 2-associate PBIB designs based on the well known association schemes. For example, the reduced designs of Nos. 41, 42, 43, 44, 45 and 47 are 2-associate PBIB designs based on the N_{2} type association schemes which will be described in Section 7. The reduced design of No. 46 is a 2 -associate PBIB design based on the L_{2} association scheme provided $v_{1} v_{2}=v_{3} \neq 4$ from the uniqueness of the L_{2} association scheme [49]. The reduced design of No. 48 may be a 2 -associate PBIB design based on the following association scheme with parameters

$$
\begin{aligned}
v & =16, \quad n_{1}=5, \quad n_{2}=10 \\
\left\|p_{i j}^{1}\right\| & =\left(\begin{array}{ll}
0 & 4 \\
4 & 6
\end{array}\right), \quad\left\|p_{i j}^{2}\right\|=\left(\begin{array}{ll}
2 & 3 \\
3 & 6
\end{array}\right)
\end{aligned}
$$

for $i, j=1,2$. Suppose that there are treatments represented by 5 -tuples $\left(\alpha_{1}\right.$,
$\alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}$) where $\alpha_{i}=0$ or 1 for $i=1,2,3,4,5$ and 5 -tuple ($\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}$) is identified with its complement ($1-\alpha_{1}, 1-\alpha_{2}, 1-\alpha_{3}, 1-\alpha_{4}, 1-\alpha_{5}$). Among these 2^{4} treatments, an association is defined as follows. Two treatments $\left(\alpha_{1}\right.$, $\left.\alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}\right)$ and $\left(\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}, \beta_{5}\right)$ are i th associates if $\sum_{k=1}^{5} \varepsilon\left(\alpha_{k}-\beta_{k}\right)=i$. Each treatment is the 0 th associate of itself. In fact, we can see that this association satisfies three conditions (i.e., (a), (b) and (c)' in Section 1) of the association scheme with two associate classes. This association scheme was suggested by Enomoto [14].

As a generalization of the Sillitto type of product, we have

$$
\begin{aligned}
N^{(3)}= & N^{(2)} \otimes N_{4}+N^{(2)} * \otimes N_{4}^{*} \\
= & N_{1} \otimes N_{2} \otimes N_{3} \otimes N_{4}+N_{1}^{*} \otimes N_{2}^{*} \otimes N_{3} \otimes N_{4} \\
& +N_{1} \otimes N_{2}^{*} \otimes N_{3}^{*} \otimes N_{4}+N_{1}^{*} \otimes N_{2} \otimes N_{3}^{*} \otimes N_{4} \\
& +N_{1} \otimes N_{2} \otimes N_{3}^{*} \otimes N_{4}^{*}+N_{1}^{*} \otimes N_{2}^{*} \otimes N_{3}^{*} \otimes N_{4}^{*} \\
& +N_{1} \otimes N_{2}^{*} \otimes N_{3} \otimes N_{4}^{*}+N_{1}^{*} \otimes N_{2} \otimes N_{3} \otimes N_{4}^{*}
\end{aligned}
$$

and for $n \geqq 1$

$$
N^{(n)}=N^{(n-1)} \otimes N_{n+1}+N^{(n-1) *} \otimes N_{n+1}^{*}
$$

where $N^{(n-1) *}=N^{(n-2)} \otimes N_{n}^{*}+N^{(n-2) *} \otimes N_{n}, N^{(0)} \equiv N_{1}$ (i.e., $v^{(0)}=v_{1}, b^{(0)}=b_{1}$, $r^{(0)}=r_{1}, k^{(0)}=k_{1}, \lambda_{i}^{(0)}=\lambda_{1}$) and then $N^{(n)}$ is developed into 2^{n} terms each consisting of Kronecker products of $n+1$ BIB designs.

From Lemma 6.1 and a PBIB design $N^{(n-1)}$ in which an F_{n} type association scheme can be introduced, it follows that $N^{(n)}$ is a PBIB design with at most $2^{n+1}-1$ associate classes having the F_{n+1} type association scheme and with parameters

$$
\begin{aligned}
& v^{(n)}=v_{1} v_{2} \ldots v_{n+1} \\
& b^{(n)}=b_{1} b_{2} \ldots b_{n+1} \\
& r^{(n)}=r^{(n-1)} r_{n+1}+\left(b^{(n-1)}-r^{(n-1)}\right)\left(b_{n+1}-r_{n+1}\right), \\
& k^{(n)}=k^{(n-1)} k_{n+1}+\left(v^{(n-1)}-k^{(n-1)}\right)\left(v_{n+1}-k_{n+1}\right), \\
& \lambda_{1}^{(n)}=r^{(n-1)} \lambda_{n+1}+\left(b^{(n-1)}-r^{(n-1)}\right)\left(b_{n+1}-2 r_{n+1}+\lambda_{n+1}\right), \\
& \lambda_{2 i}^{(n)}=\lambda_{i}^{(n-1)} r_{n+1}+\left(b^{(n-1)}-2 r^{(n-1)}+\lambda_{i}^{(n-1)}\right)\left(b_{n+1}-r_{n+1}\right), \\
& \lambda_{2 i+1}^{(n)}=\lambda_{i}^{(n-1)} \lambda_{n+1}+\left(b^{(n-1)}-2 r^{(n-1)}+\lambda_{i}^{(n-1)}\right)\left(b_{n+1}-2 r_{n+1}+\lambda_{n+1}\right)
\end{aligned}
$$

$$
\begin{gathered}
+2\left(r^{(n-1)}-\lambda_{i}^{(n-1)}\right)\left(r_{n+1}-\lambda_{n+1}\right), \\
n_{1}^{(n)}=v_{n+1}-1, n_{2 i}^{(n)}=n_{i}^{(n-1)}, \quad n_{2 i+1}^{(n)}=\left(v_{n+1}-1\right) n_{i}^{(n-1)},
\end{gathered}
$$

for $i=1,2, \ldots, 2^{n}-1$. If the parameters of $N^{(n)}$ are represented by the parameters of $n+1$ BIB designs N_{1}, N_{2}, \ldots, and N_{n+1}, then their expressions are very complicated. The PBIB design $N^{(n)}$, therefore, remains to be discussed with the parameters of $N^{(n-1)}$ and N_{n+1}. The following relations among coincidence numbers $\lambda_{i}^{(n)}$ can be obtained:

$$
\begin{array}{lll}
\lambda_{1}^{(n)}=\lambda_{2 i}^{(n)} \quad \text { if and only if } & b_{n+1}\left(r^{(n-1)}-\lambda_{i}^{(n-1)}\right)=b^{(n-1)}\left(r_{n+1}-\lambda_{n+1}\right), \\
\lambda_{1}^{(n)}=\lambda_{2 i+1}^{(n)} \quad \text { if and only if } & \left(r^{(n-1)}-\lambda_{i}^{(n-1)}\right) b_{n+1} \\
& =4\left(r^{(n-1)}-\lambda_{i}^{(n-1)}\right)\left(r_{n+1}-\lambda_{n+1}\right), \\
& & =\left(r_{n+1}-\lambda_{n+1}\right)\left[b^{(n-1)}-4\left(r^{(n-1)}-\lambda_{j}^{(n-1)}\right)\right], \\
\lambda_{2 i}^{(n)}=\lambda_{2}^{(n)} \quad \text { if and only if } & \left(\lambda_{j}^{(n-1)}-\lambda_{i}^{(n-1)}\right) b_{n+1} \\
& & \\
\lambda_{2 i}^{(n)}=\lambda_{2}^{(n)} \quad \text { if and only if } & \lambda_{i}^{(n-1)}=\lambda_{j}^{(n-1)}, \text { and } \\
\lambda_{2 i+1}^{(n)}=\lambda_{2 j+1}^{(n)} \text { if and only if } & \left(\lambda_{i}^{(n-1)}-\lambda_{j}^{(n-1)}\right)\left[b_{n+1}-4\left(r_{n+1}-\lambda_{n+1}\right)\right]=0
\end{array}
$$

for all $i, j=1,2, \ldots, 2^{n}-1$.
Using these relations and an F_{n+1} type association scheme, we may be able to make statements on the reduction of associate classes for a PBIB design $N^{(n)}$ such as Table concerning those of a PBIB design $N^{(2)}$. Furthermore, they also depend on the algebraic structures of a design $N^{(n-1)}$. For example, (i) when $b_{i}=4\left(r_{i}-\lambda_{i}\right), i=1,2, \ldots, n+1, N^{(n)}$ is originally reducible to a BIB design, (ii) when $b_{i}=4\left(r_{i}-\lambda_{i}\right), i=1,2, \ldots, n$ and $b_{n+1} \neq 4\left(r_{n+1}-\lambda_{n+1}\right), N^{(n)}$ is originally reducible to a PBIB design with at most three associate classes having a rectangular association scheme, and (iii) when $b_{i}=4\left(r_{i}-\lambda_{i}\right), i=1,2, \ldots, n-1$ and $b_{j} \neq 4\left(r_{j}-\right.$ λ_{j}), $j=n, n+1, N^{(n)}$ is originally reducible to a PBIB design with at most seven associate classes having the F_{3} type association scheme, because $N^{(n-1)}$ is a PBIB design with at most three associate classes having an F_{2} type association scheme, and so on. Cases (ii) and (iii) are, respectively, included in the algebraic structures of PBIB designs $N^{(1)}=N_{1} \otimes N_{2}+N_{1}^{*} \otimes N_{2}^{*}$ and $N^{(2)}=N^{(1)} \otimes N_{3}+N^{(1) *} \otimes N_{3}^{*}$ as shown before.

The reducibility of associate classes for a PBIB design $N^{(n)}$ may be studied from exhaustive combinations of associate classes in the F_{n+1} type association scheme by Lemmas 2.1 and 2.2, similarly as for $N^{(2)}$, but they will not be carried out here.

Complementary remark. As a generalization of Lemma 6.1, when M_{1} and N_{2} are PBIB designs with s and t associate classes, respectively, we can give all the parameters of a PBIB design $N=M_{1} \otimes N_{2}+M_{1}^{*} \otimes N_{2}^{*}$ with at most $s+t+s t$ associate classes. However, they are omitted here.

Part II. Some types of reducible association schemes

We shall discuss some series of association schemes, each series of which is reducible to an association scheme of the same type with fewer associate classes by combining some prescribed associate classes. The discussion is independent of treatment-block incidence of the design and is useful to the reductions of the number of associate classes for an incomplete block design based on a certain association scheme as seen in Part I and, also, useful to the characterization of the association scheme.

7. Nested type of association schemes

Following Yamamoto, Fujii and Hamada [61], suppose that there are $v_{m}=s_{1} s_{2} \ldots s_{m}$ treatments $\phi\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\right)$ indexed by m-tuples $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\right)$ where $\alpha_{i}=1,2, \ldots, s_{i}(\geqq 2)$ for $i=1,2, \ldots, m$. Among these treatments, we can define the following association called here an N_{m} type association scheme (or an m-fold nested type association scheme) satisfying three conditions of the association scheme with m associate classes, which is also called a generalized group divisible association scheme with m associate classes by Raghavarao [42]:

Definition: Two treatments $\phi\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\right)$ and $\phi\left(\beta_{1}, \beta_{2}, \ldots, \beta_{m}\right)$ are i th associates if and only if $\alpha_{j}=\beta_{j}$ for all $j=1,2, \ldots, m-i$ and $\alpha_{m-i+1} \neq \beta_{m-i+1}$. Each treatment is the 0th associate of itself.

After numbering v_{m} treatments lexicographical order, we can express i th association matrices as

$$
\begin{equation*}
A_{i}=I_{v_{m-i}} \otimes\left(G_{s_{m-i+1}}-I_{s_{m-i+1}}\right) \otimes G_{s_{m-i+2}} \otimes \cdots \otimes G_{s_{m}} \tag{7.1}
\end{equation*}
$$

for $i=0,1, \ldots, m$, where $v_{j}=s_{1} s_{2} \ldots s_{j}$. Furthermore, the parameters of this association scheme are known to be

$$
\begin{aligned}
& v_{m}=s_{1} s_{2} \ldots s_{m} \\
& n_{i}=s_{m} s_{m-1} \ldots s_{m-i+2}\left(s_{m-i+1}-1\right),
\end{aligned}
$$

$$
P_{i}=\left\|p_{j k}^{i}\right\|=\left(\begin{array}{l:l}
O_{(i-1) \times(i-1)} & \mathbf{x}_{(i-1)} \tag{7.2}
\end{array} O_{(i-1) \times(m-i)},\right.
$$

for $i, j, k=1,2, \ldots, m$, where $\mathbf{x}_{(i-1)}$ is the $(i-1)$ st order column vector with elements $n_{1}, n_{2}, \ldots, n_{i-1} ; \mathbf{x}_{(i-1)}^{\prime}$ is the transpose of $\mathbf{x}_{(i-1)}$; and $D_{(m-i+1) \times(m-i+1)}$ is a diagonal matrix with diagonal elements $s_{m} s_{m-1} \ldots s_{m-i+2}\left(s_{m-i+1}-2\right), n_{i+1}$, n_{i+2}, \ldots, n_{m} (for $i=0$ the first element is put equal to n_{0}), respectively.

We shall now show that an N_{m} type association scheme is reducible to an N_{m-1} type association scheme for a positive integer $m \geqq 3$ (for brevity, this fact is denoted hereafter by $N_{m} \supseteq N_{m-1}, m \geqq 3$).

In the association matrices (7.1) of an N_{m} type association scheme of $v_{m}=$ $s_{1} s_{2} \ldots s_{m}$ treatments, for example, consider the following form:

$$
\begin{equation*}
A_{m-2}+A_{m-1}=I_{s_{1}} \otimes\left(G_{s_{2} s_{3}}-I_{s_{2} s_{3}}\right) \otimes G_{s_{4}} \otimes \cdots \otimes G_{s_{m}} \tag{7.3}
\end{equation*}
$$

Let $s_{1}=u_{1}, s_{2} s_{3}=u_{2}, s_{4}=u_{3}, \ldots$, and $s_{m}=u_{m-1}$. Then (7.1) and (7.3) imply that we can obtain the association matrices of an N_{m-1} type association scheme of $v_{m}=s_{1} s_{2} \ldots s_{m}=u_{1} u_{2} \ldots u_{m-1}$ treatments by combining ($m-2$) nd and ($m-1$)st associate classes in the N_{m} type association scheme. Furthermore, (7.2) yields

$$
\begin{aligned}
& P_{m-2}=\left(\begin{array}{ccccccc}
\\
& & & & n_{1} & 0 & 0 \\
& & & & n_{2} & 0 & 0 \\
& O_{(m-3) \times(m-3)} & \vdots & \vdots & \vdots \\
& & & & n_{m-3} & 0 & 0 \\
n_{1} & n_{2} & \ldots & n_{m-3} & a & 0 & 0 \\
0 & 0 & \ldots & 0 & 0 & n_{m-1} & 0 \\
0 & 0 & \ldots & 0 & 0 & 0 & n_{m}
\end{array}\right),
\end{aligned}
$$

where $a=s_{m} s_{m-1} \ldots s_{4}\left(s_{3}-2\right)$ and $b=s_{m} s_{m-1} \ldots s_{3}\left(s_{2}-2\right)$. In these matrices P_{m-2} and P_{m-1}, it is clear that the following relations hold:

$$
\begin{array}{ll}
\sum_{i, j=m-2}^{m-1} p_{i j}^{m-2}=\sum_{i, j=m-2}^{m-1} p_{i j}^{m-1} \\
\sum_{i=m-2}^{m-1} p_{i l}^{m-2}=\sum_{i=m-2}^{m-1} p_{i l}^{m-1} & \text { for } l=1,2, \ldots, m-3, m \\
p_{i j}^{m-2}=p_{i j}^{m-1} & \text { for } i, j=1,2, \ldots, m-3, m
\end{array}
$$

which are a necessary and sufficient condition (i.e., generalized Vartak's condition) for an N_{m} type association scheme to be reducible to an association scheme with $m-1$ associate classes. Hence it follows that $N_{m} \supseteq N_{m-1}, m \geqq 3$.

Incidentally, it is clear from (7.1) and (7.2) that this statement is also shown by combining other two consecutive associate classes. Moreover, it is useful to note that $N_{m} \supseteq N_{m-l+1}$ holds, by combining l consecutive associate classes in the N_{m} type association scheme for $l=2,3, \ldots, m-1$. This note is described in Raghavarao [42].

Remark. The N_{m} type association scheme was called a hierarchical group divisible association scheme with m associate classes (shortly, a HGD_{m} type association scheme) by Roy [48]. That is, the parameters of the HGD_{m} type association scheme expressed in a slightly different form can be identified with the parameters of the N_{m} type association scheme by renaming the different associates suitably.

8. Orthogonal Latin square type of association schemes

Following Yamamoto, Fujii and Hamada [61], suppose that there are $v=k^{2}$ treatments indexed by $1,2, \ldots, k^{2}$ and they are set forth in a square \mathfrak{B} so that the $\{(i-1) k+j\}$ th treatment lies in the j th column of the i th row. Suppose, further, there are $r-2$ mutually orthogonal Latin squares, $\mathfrak{B}_{3}, \mathfrak{B}_{4}, \ldots, \mathfrak{B}_{r}$, of order $k(r \leqq k+1)$. Among these treatments, an association called an $O L_{r}^{m}$ type association scheme (or an orthogonal Latin square type association scheme with m associate classes), satisfying three conditions of the association scheme with m associate classes, is defined as follows:

Definition: Two treatments α and β are 1st associates if they occur in the same row, 2nd associates if they occur in the same column, and i th associates if they correspond to the same letter of i th Latin square $\mathfrak{B}_{i}(i=3,4, \ldots, r)$. Otherwise they are $(r+1)$ st associates. Each treatment is the 0 th associate of itself. Note that if $r=k+1$, there is no pair of treatments which are neither $1 \mathrm{st}, 2 \mathrm{nd}, \ldots$, nor r th associates. The number of associate classes is therefore $m=\min (r+1$, $k+1)$.

Then we have the following association matrices:

$$
\begin{gather*}
A_{0}=I_{v}, \quad A_{i}=F_{i} F_{i}^{\prime}-I_{v}, \quad i=1,2, \ldots, r, \tag{8.1}\\
A_{r+1}=G_{v}-\sum_{i=0}^{r} A_{i},
\end{gather*}
$$

where A_{0}, A_{i} and A_{r+1} are 0 th, i th and, if $r \leqq k,(r+1)$ st association matrices, respectively. Furthermore, F_{1} is a $v \times k$ incidence matrix for treatments vs. rows, F_{2} is a $v \times k$ incidence matrix for treatments vs. columns and F_{i} are $v \times k$ incidence matrices for treatments vs. letters of the i th Latin squares $(i=3,4, \ldots, r)$ which satisfy the following relations:

$$
\begin{aligned}
& F_{1}=I_{k} \otimes E_{k \times 1}, \quad F_{2}=E_{k \times 1} \otimes I_{k}, \\
& F_{i}^{\prime} F_{i}=k I_{k} \quad(i=1,2, \ldots, r), \\
& F_{i}^{\prime} F_{j}=G_{k} \quad(i \neq j ; i, j=1,2, \ldots, r) .
\end{aligned}
$$

The parameters of this association scheme are known to be

$$
\begin{aligned}
& v=k^{2}, \quad n_{0}=1, \quad n_{1}=n_{2}=\cdots=n_{r}=k-1, \\
& \text { if } \quad r \leqq \dot{k}, \quad n_{r+1}=(k-1)(k-r+1),
\end{aligned}
$$

$$
\begin{equation*}
P_{i}=\left\|p_{j_{1} j_{2}}^{i}\right\| \tag{8.2}
\end{equation*}
$$

$$
=\left(\begin{array}{l:c:c}
G_{i-1}-I_{i-1} & 0_{(i-1) \times 1} & E_{(i-1) \times(r-i)}
\end{array}\right)(k-r+1) E_{(i-1) \times 1}, 0_{1 \times(r-i+1)} .
$$

of order $r+1$, for $i=1,2, \ldots, r$;

$$
P_{r+1}=\left\|p_{j_{1} j_{2}}^{r+1}\right\|=\left(\begin{array}{c:c:c}
G_{r-1}-I_{r-1} & E_{(r-1) \times 1} & (k-r) E_{r \times 1} \\
\hdashline E_{1 \times(r-1)} & 0 & \\
\hdashline(k-r) E_{1 \times r} & (k-r)^{2}+r-2
\end{array}\right)
$$

of order $r+1$, for $j_{1}, j_{2}=1,2, \ldots, r+1$; if $r=k+1$,

$$
\begin{equation*}
P_{i}=\left\|p_{j_{1} j_{2}}^{i}\right\| \tag{8.3}
\end{equation*}
$$

$$
=\left(\begin{array}{l:l:l}
G_{i-1}-I_{i-1} & 0_{(i-1) \times 1} & E_{(i-1) \times(r-i-1)}
\end{array} E_{(i-1) \times 1}, 0_{1 \times(r-i)},\right.
$$

of order r, for $i, j_{1}, j_{2}=1,2, \ldots, r$.
We shall now show that $O L_{r}^{m} \supseteq O L_{r}^{m-1}$ for a positive integer $m \geqq 4$ and, in particular, $m \geqq 3$ when $r=k+1$. This is shown by separating into two cases.

Case (I) when $r \leqq k$. Then $m=r+1$. It follows from (8.2) that

$$
\begin{aligned}
& \sum_{i, j=m-1}^{m} p_{i j}^{m-1}=\sum_{i, j=m-1}^{m} p_{i j}^{m}, \\
& \sum_{i=m-1}^{m} p_{i l}^{m-1}=\sum_{i=m-1}^{m} p_{i l}^{m} \quad \text { for } l=1,2, \ldots, m-2, \\
& p_{i j}^{m-1}=p_{i j}^{m} \quad \text { for } i, j=1,2, \ldots, m-2,
\end{aligned}
$$

which are a necessary and sufficient condition (i.e., generalized Vartak's condition) for an $O L_{r}^{m}$ type association scheme with $m=r+1$ associate classes to be reducible to an association scheme with $m-1$ associate classes. Furthermore, since we have from (8.1)

$$
A_{m-1}+A_{m}=G_{v}-\sum_{i=0}^{m-2} A_{i},
$$

it is clear from the combination of $(m-1)$ st and m th associate classes that $O L_{r}^{m} \supseteq$ $O L_{r}^{m-1}$ for $m \geqq 4$ when $r \leqq k$.

Note that when $m=3$, i.e., $r=2$, an $O L_{r}^{3}$ type association scheme is reducible to an L_{r} type association scheme [10] with two associate classes by combining 1 st and 2 nd associate classes.

Case (II) when $r=k+1$, i.e., the case in which there exists a complete set of mutually orthogonal Latin squares of order k. Then $m=r$. From (8.3) and the same argument as in Case (I), by combining ($m-1$)st and m th associate classes we can show that $O L_{r}^{m} \supseteq O L_{r}^{m-1}$ when $r=k+1$. In this case, $r=k+1$ and $k \geqq 2$ lead to $m \geqq 3$.

Remark. It is known (cf. [61]) that for $r \leqq k, O L_{r}^{m} \supseteq L_{r}$ holds by combining 1st, $2 \mathrm{nd}, \ldots$, and $m-1=r$ th associate classes.

9. Factorial type of association schemes

Following Yamamoto, Fujii and Hamada [61], suppose that there are $v_{p}=$ $s_{1} s_{2} \ldots s_{p}$ treatments $\phi\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{p}\right)$ indexed by p-tuples $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{p}\right)$ where $\alpha_{i}=1,2, \ldots, s_{i}(\geqq 2)$ for $i=1,2, \ldots, p$. Among these treatments, we can define the following association called an F_{p} type association scheme satisfying three conditions of an association scheme with $2^{p}-1$ associate classes, which is also called an extended group divisible association by Hinkelmann [16] and Hinkelmann and Kempthorne [17]:

Definition: Two treatments $\phi\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{p}\right)$ and $\phi\left(\beta_{1}, \beta_{2}, \ldots, \beta_{p}\right)$ are $\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{p}\right)$ th associates if $\left[\varepsilon\left(\alpha_{1}-\beta_{1}\right), \varepsilon\left(\alpha_{2}-\beta_{2}\right), \ldots, \varepsilon\left(\alpha_{p}-\beta_{p}\right)\right]=\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{p}\right)$. Each treatment is the $(0,0, \ldots, 0)$ th associate of itself.

After numbering v_{p} treatments lexicographical order, we can express (ε_{1}, $\varepsilon_{2}, \ldots, \varepsilon_{p}$)th association matrices as

$$
\begin{equation*}
A_{\varepsilon_{1} \varepsilon_{2} \cdots \varepsilon_{p}}=A_{\varepsilon_{1}} \otimes A_{\varepsilon_{2}} \otimes \cdots \otimes A_{\varepsilon_{p}}, \tag{9.1}
\end{equation*}
$$

where

$$
\begin{aligned}
& A_{\varepsilon_{i}}=\left(1-\varepsilon_{i}\right) I_{s_{i}}+\varepsilon_{i}\left(G_{s_{i}}-I_{s_{i}}\right) \\
& \varepsilon_{i}=0 \quad \text { or } \quad 1, \quad i=1,2, \ldots, p,
\end{aligned}
$$

i.e., $A_{\varepsilon_{i}}$ are the association matrices of an association scheme with one associate class (e.g., a BIB design). Similarly, we can give the matrix representation of parameters $p_{j k}^{i}$ as follows:

$$
\begin{equation*}
P_{\varepsilon_{1} \varepsilon_{2} \cdots \varepsilon_{p}}=\left\|p_{l_{1} \varepsilon_{2} \varepsilon_{2} \cdots \varepsilon_{p}}\right\|=P_{\varepsilon_{1}}^{(1)} \otimes P_{\varepsilon_{2}}^{(2)} \otimes \cdots \otimes P_{\varepsilon_{p}}^{(p)} \tag{9.2}
\end{equation*}
$$

for $l_{1}, l_{2}=0,1, \ldots, 2^{p}-1$, where

$$
\begin{aligned}
& P_{\varepsilon_{i}}^{(i)}=\left(1-\varepsilon_{i}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & s_{i}-1
\end{array}\right)+\varepsilon_{i}\left(\begin{array}{cc}
0 & 1 \\
1 & s_{i}-2
\end{array}\right), \\
& \varepsilon_{i}=0 \quad \text { or } 1, \quad i=1,2, \ldots, p,
\end{aligned}
$$

i.e., $P_{0}^{(i)}$ and $P_{1}^{(i)}$ are the matrix representations of parameters $p_{j k}^{i}$ of an association scheme with one associate class (e.g., a BIB design).

Consider first an F_{3} type association scheme of $v_{3}=s_{1} s_{2} s_{3}$ treatments. Then, letting $s_{1}=u_{1}$ and $s_{2} s_{3}=u_{2}$, we have from (9.1) and $v_{3}=s_{1} s_{2} s_{3}=u_{1} u_{2}$

$$
\begin{align*}
& A_{000}=I_{s_{1} s_{2} s_{3}}=I_{u_{1} u_{2}} \\
& A_{001}+A_{010}+A_{011}=I_{s_{1}} \otimes\left(G_{s_{2} s_{3}}-I_{s_{2} s_{3}}\right)=I_{u_{1}} \otimes\left(G_{u_{2}}-I_{u_{2}}\right), \tag{9.3}
\end{align*}
$$

$$
\begin{aligned}
& A_{100}=\left(G_{s_{1}}-I_{s_{1}}\right) \otimes I_{s_{2} s_{3}}=\left(G_{u_{1}}-I_{u_{1}}\right) \otimes I_{u_{2}} \\
& \begin{aligned}
A_{101}+A_{110}+A_{111} & =\left(G_{s_{1}}-I_{s_{1}}\right) \otimes\left(G_{s_{2} s_{3}}-I_{s_{2} s_{3}}\right) \\
& =\left(G_{u_{1}}-I_{u_{1}}\right) \otimes\left(G_{u_{2}}-I_{u_{2}}\right) .
\end{aligned}
\end{aligned}
$$

It is clear that the matrices in (9.3) are the association matrices of an F_{2} type association scheme of $u_{1} u_{2}$ treatments. Furthermore, we can show that by combining $(0,0,1)$ th, $(0,1,0)$ th and $(0,1,1)$ th associate classes, and combining $(1,0,1)$ th, $(1,1,0)$ th and $(1,1,1)$ th associate classes, a necessary and sufficient condition for an F_{3} type association scheme with seven associate classes to be reducible to an F_{2} type association scheme with three associate classes is satisfied. It holds that $F_{3} \supseteq F_{2}$.

Moreover, it follows from the definition of the association and Lemma 2.1 that an F_{2} type association scheme (or a rectangular association scheme) of $s_{1} s_{2}$ treatments is (i) automatically reducible to an N_{2} type association scheme (i.e., $F_{2} \supseteq N_{2}$) and is (ii) also reducible to an L_{2} association scheme with two associate classes provided $s_{1}=s_{2}$ (i.e., $F_{2} \supseteq L_{2}$, if $s_{1}=s_{2}$). Since these reduced association schemes are different from a series of F_{p} type association schemes in the strict sense, we will consider an F_{p} type association scheme for $p \geqq 2$.

Next, we shall show that $F_{p} \supseteq F_{p-1}$ for a positive integer $p \geqq 3$.
In the association matrices (9.1) of an F_{p} type association scheme, consider the following form:

$$
\begin{align*}
& A_{\varepsilon_{1} \varepsilon_{2} \cdots \varepsilon_{p-2} 01}+A_{\varepsilon_{1} \varepsilon_{2} \cdots \varepsilon_{p-2} 10}+A_{\varepsilon_{1} \varepsilon_{2} \cdots \varepsilon_{p-211}} \tag{9.4}\\
& \quad=A_{\varepsilon_{1}} \otimes A_{\varepsilon_{2}} \otimes \cdots \otimes A_{\varepsilon_{p-2}} \otimes\left(G_{s_{p-1} s_{p}}-I_{s_{p-1} s_{p}}\right)
\end{align*}
$$

for all 2^{p-2} possible combinations of $\varepsilon_{1}, \varepsilon_{2}, \ldots$, and ε_{p-2}. Let $s_{1}=u_{1}, s_{2}=$ $u_{2}, \ldots, s_{p-2}=u_{p-2}$ and $s_{p-1} s_{p}=u_{p-1}$. Then (9.1) and (9.4) imply that we can obtain the association matrices of an F_{p-1} type association scheme of $v_{p}=s_{1} s_{2} \ldots$ $s_{p}=u_{1} u_{2} \ldots u_{p-1}$ treatments by combining three associate classes, $\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{p-2}\right.$, $0,1)$ th, $\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{p-2}, 1,0\right)$ th and $\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{p-2}, 1,1\right)$ th, in the F_{p} type association scheme for all 2^{p-2} possible combinations of $\varepsilon_{1}, \varepsilon_{2}, \ldots$, and ε_{p-2}. Furthermore, we have from (9.2)

$$
\begin{align*}
& P_{\varepsilon_{1} \varepsilon_{2} \cdots \varepsilon_{p-2} 01}=P_{\varepsilon_{1}}^{(1)} \otimes P_{\varepsilon_{2}}^{(2)} \otimes \cdots \otimes P_{\varepsilon_{p-2}}^{(p-2)} \otimes P_{0}^{(p-1)} \otimes P_{1}^{(p)}, \\
& P_{\varepsilon_{1} \varepsilon_{2} \cdots \varepsilon_{p-210}}=P_{\varepsilon_{1}}^{(1)} \otimes P_{\varepsilon_{2}}^{(2)} \otimes \cdots \otimes P_{\varepsilon_{p-2}}^{(p-2)} \otimes P_{1}^{(p-1)} \otimes P_{0}^{(p)}, \tag{9.5}\\
& P_{\varepsilon_{1} \varepsilon_{2} \cdots \varepsilon_{p-211}}=P_{\varepsilon_{1}}^{(1)} \otimes P_{\varepsilon_{2}}^{(2)} \otimes \cdots \otimes P_{\varepsilon_{p-2}}^{(p-2)} \otimes P_{1}^{(p-1)} \otimes P_{1}^{(p)} .
\end{align*}
$$

Since

$$
\begin{aligned}
& P_{o}^{(p-1)} \otimes P_{1}^{(p)}=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
1 & v_{p}-2 & 0 & 0 \\
0 & 0 & 0 & v_{p-1}-1 \\
0 & 0 & v_{p-1}-1 & \left(v_{p-1}-1\right)\left(v_{p}-2\right)
\end{array}\right), \\
& P_{1}^{(p-1)} \otimes P_{0}^{(p)}=\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & v_{p}-1 \\
1 & 0 & v_{p-1}-2 & 0 \\
0 & v_{p}-1 & 0 & \left(v_{p-1}-2\right)\left(v_{p}-1\right)
\end{array}\right) \\
& P_{1}^{(p-1)} \otimes P_{1}^{(p)}=\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & v_{p}-2 \\
0 & 1 & 0 & v_{p-1}-2 \\
1 & v_{p}-2 & v_{p-1}-2 & \left(v_{p-1}-2\right)\left(v_{p}-2\right)
\end{array}\right),
\end{aligned}
$$

it is clear that the following relations hold:

$$
\begin{align*}
& \sum_{i, j=1}^{3} p_{i j}^{0,1}=\sum_{i, j=1}^{3} p_{i j}^{10}=\sum_{i, j=1}^{3} p_{i j}^{1{ }_{1}}, \\
& \sum_{i=1}^{3} p_{i 0}^{01}=\sum_{i=1}^{3} p_{i 0}^{10}=\sum_{i=1}^{3} p_{i 0}^{11^{1}} \tag{9.6}\\
& p_{00}^{01}=p_{00}^{10}=p_{00}^{11} .
\end{align*}
$$

Therefore, from (9.6) and a part of the same matrix representation $P_{\varepsilon_{1}}^{(1)} \otimes P_{\varepsilon_{2}}^{(2)} \otimes$ $\cdots \otimes P_{\varepsilon_{p-2}}^{(p-2)}$ in (9.5), it follows that an F_{p} type association scheme is reducible to an F_{p-1} type association scheme by combining three associate classes, $\left(\varepsilon_{1}, \varepsilon_{2}, \ldots\right.$, $\left.\varepsilon_{p-2}, 0,1\right)$ th, $\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{p-2}, 1,0\right)$ th and $\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{p-2}, 1,1\right)$ th, for all 2^{p-2} possible combinations of $\varepsilon_{1}, \varepsilon_{2} \ldots$, and ε_{p-2}, i.e., $F_{p} \supseteq F_{p-1}$ for $p \geqq 3$.

Remark. As a special case of an F_{p} type association scheme, we have a hypercubic type of association schemes (cf. [34; 46; 61]). That is, suppose that there are $v_{p}=s^{p}$ treatments $\phi\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{p}\right)$ indexed by p-tuples ($\alpha_{1}, \alpha_{2}, \ldots, \alpha_{p}$), $\left(\alpha_{i}=1,2, \ldots, s ; i=1,2, \ldots, p\right)$. Among these treatments, an association called a C_{p} type association scheme (or a p-dimensional hypercubic association scheme) is defined as follows:

Definition: Two treatments $\phi\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{p}\right)$ and $\phi\left(\beta_{1}, \beta_{2}, \ldots, \beta_{p}\right)$ are i th
associates if and only if $\sum_{k=1}^{p} \varepsilon\left(\alpha_{k}-\beta_{k}\right)=i$. Each treatment is the 0 th associate of itself.

Then it follows from the definition of the association that $F_{p} \supseteq C_{p}$ provided $s_{1}=s_{2}=\cdots=s_{p}$ ($=s$, say). In this case, the association matrices of a C_{p} type association scheme of $v=s^{p}$ treatments can be expressed as follows:

$$
\begin{gathered}
\stackrel{p}{C}_{i}=\sum_{\varepsilon_{1}+\varepsilon_{2}+\cdots+\varepsilon_{p}=i} A_{\varepsilon_{1}} \otimes A_{\varepsilon_{2}} \otimes \cdots \otimes A_{\varepsilon_{p}}, \\
i=0,1,2, \ldots, p,
\end{gathered}
$$

where $A_{\varepsilon_{i}}$ are given in (9.1).
If a C_{p} type association scheme of $v=s^{p}$ treatments is reducible to a C_{l} type association scheme of $v=t^{l}$ treatments for $l<p$, then we have first $s^{p}=t^{l}$ and then $s=n^{l_{1}}$ and $t=n^{p_{1}}$ for a positive integer n, where $(p, l)=\alpha, p=p_{1} \alpha, l=l_{1} \alpha$ and $\left(p_{1}, l_{1}\right)=1$. Thus, the association matrices $\stackrel{(p)}{C}_{i}$ and $\stackrel{()}{C}{ }_{i}$ are, respectively, Kronecker product representations of the matrices of order $s=n^{l_{1}}$ and $t=n^{p_{1}}$. These patterns of association matrices may imply that a C_{p} type association scheme is not reducible to a C_{l} type association scheme for $p>l \geqq 2$ (for brevity, $C_{p} \not ⿻ C_{l}$). Practically, we can show that $C_{3} \not \ddagger C_{2} ; C_{4} \ddagger C_{3}, C_{2} ; C_{5} \neq C_{4}, C_{3}, C_{2}$ and $C_{p_{1}} \ddagger$ $C_{p_{2}}$ for many other prescribed integers p_{1} and p_{2} such that $p_{1}>p_{2} \geqq 2$. Incidentally, it is conjectured [28] that a necessary and sufficient condition for a C_{p} type association scheme of $v=s^{p}$ treatments to be reducible is that $s=2,3$ or 4. Indeed, this conjecture holds for $p=3,4$ and 5.

10. Other types of association schemes

We shall deal with the known types of two association schemes with four associate classes and of two instructive association schemes with m associate classes.
10.1. An m-associate cyclical type of association schemes defined by Nandi and Adhikary [39], which is a generalization of a cyclic type association scheme with two associate classes defined by Bose and Shimamoto [10]. For the definition of this association scheme refer to Nandi and Adhikary [39] for details. Since this association scheme includes an N_{m} type association scheme as a special case, it is clear from an argument in the N_{m} type association scheme of Section 7 that an m-associate cyclical type of association schemes is reducible to an ($m-1$)associate cyclical type of association schemes, after renumbering the associates.
10.2. A generalized right angular association scheme with four associate classes of $v=p l s$ treatments introduced by Tharthare [57], which leads to a right
angular association scheme [56] provided $p=2$. That is, suppose that there are $v=p l s$ treatments denoted by (α, β, γ) for $\alpha=1,2, \ldots, l ; \beta=1,2, \ldots, p ; \gamma=1,2, \ldots, s$. For the treatment $(\alpha, \beta, \gamma), 1$ st associates of it are those that differ in the third position; 2nd associates are those that differ in the second position while being the same or different in the third position; 3rd associates are those that have the same second position, a different first position, and the same or different third position; the others are 4th associates. Each treatment is the 0th associate of itself. The parameters of this association scheme are as follows:

$$
\begin{aligned}
& v=p l s, \quad n_{1}=s-1, \quad n_{2}=s(p-1), \\
& n_{3}=s(l-1), \quad n_{4}=s(l-1)(p-1), \\
& \left\|p_{i j}\right\|=\left(\begin{array}{cccc}
s-2 & 0 & 0 & 0 \\
& s(p-1) & 0 & 0 \\
\text { Sym. } & s(l-1) & 0 \\
& & & s(l-1)(p-1)
\end{array}\right), \\
& \left\|p_{i j}^{2}\right\|=\left(\begin{array}{cccc}
0 & s-1 & 0 & 0 \\
& s(p-2) & 0 & 0 \\
& \text { Sym. } & 0 & s(l-1) \\
& & & s(l-1)(p-2)
\end{array}\right), \\
& \left\|p_{i j}^{\mathbf{3}}\right\|=\left(\begin{array}{cccc}
0 & 0 & s-1 & 0 \\
& 0 & 0 & s(p-1) \\
& \text { Sym. } & s(l-2) & 0 \\
& & & s(p-1)(l-2)
\end{array}\right), \\
& \left\|p_{i j}^{4}\right\|=\left(\begin{array}{cccc}
0 & 0 & 0 & s-1 \\
& 0 & s & s(p-2) \\
& \text { Sym. } & 0 & s(l-2) \\
& & & s(l-2)(p-2)
\end{array}\right),
\end{aligned}
$$

for $l, p, s \geqq 2$.
It is useful to note that as shown in Section 6, an F_{3} type association scheme is reducible to the generalized right angular association scheme by combining
three pairs of associate classes, the 2 nd and 3 rd, the 4 th and 5 th, and the 6 th and 7th, referring to the matrix representations of the $p_{j k}^{i}$'s of Design (I) in Section 3. It follows from Lemmas 2.1 and 2.2 and the structure of an N_{m} type association scheme for $m=2$ and 3 that all the cases of reductions are as follows:
(1) By combining 2nd and 4th associate classes, or combining 3rd and 4th associate classes, it is reducible to an N_{3} type association scheme.
(2) By combining 2nd and 3rd associate classes, it is reducible to an association scheme with three associate classes if and only if $l=p$.
(3) By combining 2nd, 3rd and 4th associate classes, or combining two pairs of associate classes, the 1 st and 2 nd , and the 3 rd and 4 th , or similarly combining the 1 st and 3 rd , and the 2 nd and 4 th, it is reducible to an N_{2} type association scheme.
(4) By combining 1st and 4th associate classes, and combining 2 nd and 3 rd associate classes, it is reducible to an N_{2} type association scheme if and only if $l=p=2$.

Note that the above cases (1) and (3) are stated in Tharthare [57] by the form of a generalized right angular design. The reduced association scheme in Case (2) may correspond to the association scheme matching a 3-associate PBIB design given by Nair [36] as follows:

Let $v=p^{2} s$. Assume them to be arranged as a three-dimensional lattice of points, p along x - and y-axes and s along z-axis. If the blocks are formed consisting of all treatments represented by points lying in planes parallel to the $x z$ or $y z$ coordinate planes, we get a PBIB design with three associate classes. Its parameters are given by

$$
\begin{aligned}
& v=p^{2} s, \quad k=p s, \quad r=2, \quad b=2 p \\
& \lambda_{1}=2, \quad \lambda_{2}=1, \quad \lambda_{3}=0, \\
& n_{1}=s-1, \quad n_{2}=2 s(p-1), \\
& \| n_{3}=s(p-1)^{2}, \\
& \left\|p_{i j}\right\|=\left(\begin{array}{ccc}
s-2 & 0 & 0 \\
0 & 2 s(p-1) & 0 \\
0 & 0 & s(p-1)^{2}
\end{array}\right) \\
& \left\|p_{i j}^{2}\right\|=\left(\begin{array}{ccc}
0 & s-1 & 0 \\
s-1 & s(p-2) & s(p-1) \\
0 & s(p-1) & s(p-1)(p-2)
\end{array}\right)
\end{aligned}
$$

$$
\left\|p_{i j}^{3}\right\|=\left(\begin{array}{ccc}
0 & 0 & s-1 \\
0 & 2 s & 2 s(p-2) \\
s-1 & 2 s(p-2) & s(p-2)^{2}
\end{array}\right)
$$

The parameters of this association scheme coincide with those of the reduced association schemes of Nos. 30, 33 and 34 in Table, after renaming the associates.
10.3. A rectangular lattice type association scheme with four associate classes of $v=s(s-1)$ treatments, which, though inherent in Nair's definition [37] as a simple rectangular lattice design, was explicitly introduced by Ishii and Ogawa [20] as an association scheme as follows:

Suppose that there are $v=s(s-1)$ treatments represented by the ordered pairs of two integers out of the set $(1,2, \ldots, s)$. That is, the $s(s-1)$ positions excluding the principal diagonal of an $s \times s$ square are filled by different treatments. Among these treatments, the association is defined as follows:

Definition: For a treatment in (i, j) cell, 1st associates of it are the treatments in the i th row or in the j th column, 2nd associates are the treatments in the i th column or in the j th row (excluding the treatment in (j, i) cell). The 3rd associates are the treatments in the rows and columns excluding the i, j th rows and columns, 4th associate is the treatment in the (j, i) cell. Each treatment is the 0th associate of itself.

The parameters of this association scheme are given by

$$
\begin{aligned}
& v=s(s-1), \quad n_{1}=2(s-2), \\
& n_{2}=2(s-2), \\
& n_{3}=(s-2)(s-3), \quad n_{4}=1, \\
& \left\|p_{i j}^{1}\right\|=\left(\begin{array}{cccc}
s-3 & 1 & s-3 & 0 \\
& s-3 & s-3 & 1 \\
\text { Sym. } & (s-3)(s-4) & 0 \\
& & & 0
\end{array}\right), \\
& \left\|p_{i j}^{2}\right\|=\left(\begin{array}{cccc}
1 & s-3 & s-3 & 1 \\
& 1 & s-3 & 0 \\
& \operatorname{Sym} . & (s-3)(s-4) & 0 \\
& & & 0
\end{array}\right),
\end{aligned}
$$

$$
\begin{aligned}
& \left\|p_{i j}^{3}\right\|=\left(\begin{array}{cccc}
2 & 2 & 2(s-4) & 0 \\
& 2 & 2(s-4) & 0 \\
& \text { Sym. } & (s-4)(s-5) & 1 \\
& & & 0
\end{array}\right), \\
& \left\|p_{i j}^{4}\right\|=\left(\begin{array}{cccc}
0 & 2(s-2) & 0 & 0 \\
& 0 & 0 & 0 \\
& \operatorname{Sym} . & (s-2)(s-3) & 0 \\
& & & 0
\end{array}\right),
\end{aligned}
$$

for $s \geqq 4$.
It follows from Lemmas 2.1 and 2.2 that all the cases of reductions are as follows:
(1) By combining 1st and 2nd associate classes, it is reducible to an association scheme of three associate classes.
(2) By combining 1st, 2nd and 3rd associate classes, it is reducible to an association scheme of two associate classes.
(3) By combining 1st and 2nd associate classes, and combining 3rd and 4th associate classes, it is reducible to an N_{2} type association scheme if and only if $s=4$.

Remark. The reduced association schemes in the above cases (1) and (2) may not correspond to any of the known association schemes. Association schemes of Cases (2) and (3) can be also derived from further reductions of the reduced association scheme of Case (1). Incidentally, by renaming the associates, the parameters of the reduced association schemes in Cases (1) and (2) are respectively

$$
\begin{aligned}
& v=s(s-1), \quad n_{1}=4(s-2), \quad n_{2}=(s-2)(s-3), \quad n_{3}=1, \\
& \left\|p_{i j}^{1}\right\|=\left(\begin{array}{ccc}
2(s-2) & 2(s-3) & 1 \\
2(s-3) & (s-3)(s-4) & 0 \\
1 & 0 & 0
\end{array}\right), \\
& \left\|p_{i j}^{2}\right\|=\left(\begin{array}{ccc}
8 & 4(s-4) & 0 \\
4(s-4) & (s-4)(s-5) & 1 \\
0 & 1 & 0
\end{array}\right),
\end{aligned}
$$

$$
\begin{aligned}
& \left\|p_{i j}^{3}\right\|=\left(\begin{array}{ccc}
4(s-2) & 0 & 0 \\
0 & (s-2)(s-3) & 0 \\
0 & 0 & 0
\end{array}\right) \\
& v=s(s-1), \quad n_{1}=(s-2)(s+1), \\
& n_{2}=1 \\
& \left\|p_{i j}^{1}\right\|=\left(\begin{array}{cc}
s^{2}-s-4 & 1 \\
1 & 0
\end{array}\right), \quad\left\|p_{i j}^{2}\right\|=\left(\begin{array}{cc}
s^{2}-s-2 & 0 \\
0 & 0
\end{array}\right) .
\end{aligned}
$$

From the octahedron in the following figure, we get a design (cf. [10]) by considering the faces as blocks and points as treatments, having the blocks, $(1,2,3),(1,2,6),(1,3,5),(1,5,6),(2,3,4),(2,4,6),(3,4,5)$ and $(4,5,6)$.

Through the treatment-block incidence of this design, we obtain a PBIB design with the following parameters:

$$
\begin{aligned}
& v=6, \quad b=8, \quad r=4, \quad k=3 \\
& \lambda_{1}=2, \quad \lambda_{2}=0 \\
& n_{1}=4, \quad n_{2}=1, \\
& \left\|p_{i j}\right\|=\left(\begin{array}{ll}
2 & 1 \\
1 & 0
\end{array}\right), \quad\left\|p_{i j}^{2}\right\|=\left(\begin{array}{ll}
4 & 0 \\
0 & 0
\end{array}\right) .
\end{aligned}
$$

This corresponds to a special case of the above case (2) when $s=3$.
10.4. As another familiar association, there is $a T_{m}$ type association scheme
block (BB) design having respect to a PBB design in a combinatorial sense.

12. BB designs and PBB designs

Consider v treatments arranged in b blocks in a block design with incidence matrix $N=\left\|n_{i j}\right\|$, where $n_{i j}$ denotes the number of experimental units in the j th block getting the i th treatment. If $n_{i j}=1$ or 0 , the design is called a binary design; we deal with only binary designs in Part III. The i th treatment is replicated r_{i} times $(i=1,2, \ldots, v)$ and the j th block is of size $k_{j}(j=1,2, \ldots, b)$. Let T_{i} be the total yield for the i th treatment and B_{j} that for the j th block $(i=1,2, \ldots, v$; $j=1,2, \ldots, b)$. On writing $T^{\prime}=\left(T_{1}, \ldots, T_{v}\right)$ and $B^{\prime}=\left(B_{1}, \ldots, B_{b}\right)$ in matrix notation, the normal equations (cf. $[12 ; 31]$) for estimating the vector of treatment effects t can be written under the usual assumptions as

$$
Q=C \hat{t},
$$

where \hat{t} is the estimate of t,

$$
Q=T-N \operatorname{diag}\left\{k_{1}^{-1}, \ldots, k_{b}^{-1}\right\} B
$$

and

$$
\begin{equation*}
C=\operatorname{diag}\left\{r_{1}, \ldots, r_{v}\right\}-N \operatorname{diag}\left\{k_{1}^{-1}, \ldots, k_{b}^{-1}\right\} N^{\prime} . \tag{12.1}
\end{equation*}
$$

The matrix C defined in (12.1) is well known as the C-matrix of the incomplete block design and is very useful in the theory of incomplete block designs.

Since each row (or column) of C adds up to zero, the rank of C is at most $v-1$, and $\left(v^{-\frac{1}{2}}, v^{-\frac{1}{2}}, \ldots, v^{-\frac{1}{2}}\right)$ is the latent vector corresponding to the zero root. If the rank of C is $v-1$, the design is said to be connected (cf. Bose [6]). Throughout Part III we shall deal with only connected designs.

Definition (cf. Rao [47]): A block design is said to be balanced if every elementary contrast is estimated with the same variance.

Rao [47] has shown that a necessary and sufficient condition for a block design to be balanced is that the C-matrix has $v-1$ equal latent roots other than zero. In this case, since

$$
C=L^{\prime}\left(\begin{array}{llll}
\rho & & & 0 \\
& \rho & & \\
0 & \ddots & \\
& & & 0
\end{array}\right) L
$$

for an orthogonal matrix
of $v_{m}=\binom{s}{m}$ treatments (or a triangular type association scheme with m associate classes). Suppose that there are $v_{m}=\binom{s}{m}$ treatments $\phi\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\right)$ indexed by the subsets of m integers $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\right)$ out of the set of s integers $(1,2, \ldots, s)$. Among these treatments, the association is defined as follows:

Definition: Two treatments $\phi\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\right)$ and $\phi\left(\beta_{1}, \beta_{2}, \ldots, \beta_{m}\right)$ are i th associates if their indices $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\right)$ and $\left(\beta_{1}, \beta_{2}, \ldots, \beta_{m}\right)$ have $m-i$ integers in common. Each treatment is the 0th associate of itself.

Since this association scheme is well-defined for a positive integer m such that $2 \leqq m \leqq s / 2$, we can show that

$$
\binom{s}{m} \neq\binom{ s}{l} \quad \text { for } \quad l<m
$$

under this restriction. It follows therefore that $T_{m} \notin T_{l}$ for positive integers m and l such that $m>l \geqq 2$.

11. Remarks

As mentioned in Sections 7, 8, 9 and 10, we can discuss without difficult the reductions of the number of associate classes by use of Lemmas 2.1 and 2.2 provided that the integral values of parameters $p_{j k}^{i}$ in an association scheme are explicitly known or the patterns of $p_{j k}^{i}$ are concretely known. Then, when there are association schemes described in this part, the reducibilities of the number of associate classes for PBIB designs based on the association schemes have only to check the coincidence numbers λ_{i} of the PBIB designs from Lemmas 2.1 and 2.2. For example, though we have $F_{3} \supseteq F_{2}$ as shown in Section 9, the PBIB design (I) with the F_{3} type association scheme in Section 3 is not reducible to a PBIB design with the F_{2} type association scheme, since relations $\lambda_{1}^{\prime}=\lambda_{2}^{\prime}=\lambda_{3}^{\prime}$ and $\lambda_{5}^{\prime}=\lambda_{6}^{\prime}=\lambda_{7}^{\prime}$ do not hold.

Part III. Combinatorial properties of a balanced or partially balanced block design

We dealt with incomplete block designs with the equi-replications and the equal block sizes in Part I. From a practical point of view, it may not be possible to design equi-size blocks accommodating the equi-replications of each treatment in all the blocks. We shall, here, deal with the block designs with unequal block sizes and/or different replications. Before considering a partially balanced block (PBB) design generalized a PBIB design in a sense, we shall discuss a balanced

$$
L=\left[\begin{array}{l}
L_{v-1} \\
v^{-\frac{1}{2}} E_{1 \times v}
\end{array}\right],
$$

we can write as

$$
\begin{equation*}
C=\rho\left(I_{v}-\frac{1}{v} G_{v}\right), \tag{12.2}
\end{equation*}
$$

where $\rho=(n-b) /(v-1)$ and $n=\sum_{i=1}^{v} r_{i}=\sum_{j=1}^{b} k_{j}$.
Thus, a balanced block (BB) design is given by an incidence matrix N satisfying

$$
\begin{equation*}
\operatorname{diag}\left\{r_{1}, r_{2}, \ldots, r_{v}\right\}-N \operatorname{diag}\left\{k_{1}^{-1}, k_{2}^{-1}, \ldots, k_{b}^{-1}\right\} N^{\prime}=\rho\left(I_{v}-\frac{1}{v} G_{v}\right), \tag{12.3}
\end{equation*}
$$

where $\rho=\left(\sum_{i=1}^{v} r_{i}-b\right) /(v-1)$.
Note that a BIB design is a special case of BB designs.
Following Ishii and Ogawa [20], suppose that the association matrices A_{0}, A_{1}, \ldots, A_{m} are defined as mentioned in Section 1. Furthermore, $A_{i}^{\#}, i=0,1, \ldots, m$, $\operatorname{rank} A_{i}^{\#}=\alpha_{i}$ are the mutually orthogonal idempotents of the association algebra $\mathfrak{M r}$.

Definition: A block design is said to be partially balanced with m associate classes if the $C=D_{r}-N D_{k}^{-1} N^{\prime}$ matrix of the design has the latent roots $0, \rho_{1}, \rho_{2}, \ldots$, ρ_{m} with multiplicities $1, \alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}$ and the linear space spanned by the latent vectors corresponding to a root ρ_{i} is equal to the linear space spanned by the column vectors of $A_{i}^{*}, i=1,2, \ldots, m$ (by a suitable change of order of ρ_{i}), where $D_{r}=\operatorname{diag}\left\{r_{1}, r_{2}, \ldots, r_{v}\right\}$ and $D_{k}^{-1}=\operatorname{diag}\left\{k_{1}^{-1}, k_{2}^{-1}, \ldots, k_{b}^{-1}\right\}$ in (12.1).

In this case there exists an orthogonal matrix L such that

$$
\begin{aligned}
& \left.\left.C=L^{\prime}\left(\begin{array}{cccccc}
\rho_{1} & & & & & \\
& \ddots & \\
& \rho_{1}
\end{array}\right\} \begin{array}{llll}
\alpha_{1} & & & 0 \\
& & \ddots & \\
& & & \\
& & & \rho_{m} \\
0 & & & \ddots \\
\\
& & & \\
\rho_{m}
\end{array}\right\} \alpha_{m}\right) L, \\
& L=\left[L_{1}: L_{2}: \cdots: L_{m}: v^{-\frac{1}{2}} E_{v \times 1}\right]^{\prime},
\end{aligned}
$$

where L_{i} are of order $v \times \alpha_{i}$ and each column of L_{i} is the independent latent vectors
corresponding to $\rho_{i}, i=1,2, \ldots, m$,

$$
L_{i}^{\prime} L_{i}=I_{\alpha_{i}}
$$

and $L_{i} L_{i}^{\prime}$ are the projection operators to the linear space spanned by L_{i}. Then

$$
L_{i} L_{i}^{\prime}=A_{i}^{\#} .
$$

Hence

$$
\begin{align*}
C & =\rho_{1} L_{1} L_{1}^{\prime}+\rho_{2} L_{2} L_{2}^{\prime}+\cdots+\rho_{m} L_{m} L_{m}^{\prime} \tag{12.4}\\
& =\rho_{1} A_{1}^{\#}+\rho_{2} A_{2}^{\#}+\cdots+\rho_{m} A_{m}^{\#} .
\end{align*}
$$

Thus, a partially balanced block (PBB) design with m associate classes is given by an incidence matrix N satisfying

$$
\begin{align*}
C & =\operatorname{diag}\left\{r_{1}, r_{2}, \ldots, r_{v}\right\}-N \operatorname{diag}\left\{k_{1}^{-1}, k_{2}^{-1}, \ldots, k_{b}^{-1}\right\} N^{\prime} \tag{12.5}\\
& =\rho_{1} A_{1}^{\sharp}+\rho_{2} A_{2}^{\sharp}+\cdots+\rho_{m} A_{m}^{\sharp} .
\end{align*}
$$

Furthermore, from relation (1.7), (12.4) can be written as

$$
\begin{align*}
C & =\operatorname{diag}\left\{r_{1}, r_{2}, \ldots, r_{v}\right\}-N \operatorname{diag}\left\{k_{1}^{-1}, k_{2}^{-1}, \ldots, k_{b}^{-1}\right\} N^{\prime} \tag{12.6}\\
& =a_{0} A_{0}+a_{1} A_{1}+\cdots+a_{m} A_{m},
\end{align*}
$$

where

$$
\begin{equation*}
a_{0}=\left(\sum_{i=1}^{v} r_{i}-b\right) / v \tag{12.7}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{i} \leqq 0, \quad i=1,2, \ldots, m \tag{12.8}
\end{equation*}
$$

For, from a comparison of diagonal elements in both sides of (12.6) we have (12.7). Furthermore, from a comparison of off-diagonal elements and $a_{\alpha i}^{\beta}=1$ or 0 , we have (12.8).
Explicitly,

$$
\rho_{i}=a_{0}+a_{1} z_{i 1}+a_{2} z_{i 2}+\cdots+a_{m} z_{i m}, \quad i=0,1,2, \ldots, m
$$

with $\rho_{0}=0$, or

$$
a_{i}=\rho_{1} z^{i 1}+\rho_{2} z^{i 2}+\cdots+\rho_{m} z^{i m}, \quad i=0,1, \ldots, m
$$

where $\left\|z^{i j}\right\|=Z^{-1}$ for $Z=\left\|z_{i j}\right\|$ in (1.6).

For a PBIB design N with m associate classes we have from Lemma A

$$
N N^{\prime}=r k A_{0}^{\#}+\rho_{1} A_{1}^{\#}+\cdots+\rho_{m} A_{m}^{\#}
$$

and

$$
I_{v}=A_{0}^{\#}+A_{1}^{\#}+\cdots+A_{m}^{\#} .
$$

Then

$$
\begin{aligned}
C & =r I_{v}-\frac{1}{k} N N^{\prime} \\
& =\left(r-\frac{\rho_{1}}{k}\right) A_{1}^{\sharp}+\cdots+\left(r-\frac{\rho_{m}}{k}\right) A_{m}^{\sharp} .
\end{aligned}
$$

Thus, a PBIB design is a special case of PBB designs.
Finally, though the incomplete block designs satisfying $1 \leqq r_{i} \leqq b$ and $1 \leqq$ $k_{j} \leqq v$ are generally considered, we will not deal with the three cases in which $r_{i}=$ $b, r_{i}=1$ and $k_{j}=1$ for all $i=1,2, \ldots, v ; j=1,2, \ldots, b$ throughout Part III.

13. Properties of BB designs and PBB designs

From a structural point of view in a BB design or a PBB design we have the followings:

Theorem 13.1. A BB design with a constant block size is a BIB design.
Proof. In this case, for a BB design $N=\left\|n_{i j}\right\|$ we have from (12.3)

$$
\begin{aligned}
& \operatorname{diag}\left\{r_{1}, r_{2}, \ldots, r_{v}\right\}-\frac{1}{k} N N^{\prime} \\
& \quad=\frac{b k-b}{v-1}\left(I_{v}-\frac{1}{v} G_{v}\right)
\end{aligned}
$$

Hence from comparisons of diagonal elements or off-diagonal elements in the above both sides

$$
r_{i}-\frac{r_{i}}{k}=\frac{b k-b}{v-1}\left(1-\frac{1}{v}\right), \quad i=1,2, \ldots, v
$$

and

$$
-\frac{1}{k} \sum_{l=1}^{b} n_{i l} n_{j l}=-\frac{b k-b}{v(v-1)},
$$

for all $i, j(i \neq j)=1,2, \ldots, v$, which lead respectively to

$$
\begin{equation*}
r_{i}=\frac{b(v-1) k(k-1)}{v(v-1)}, \quad i=1,2, \ldots, v \tag{13.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{l=1}^{b} n_{i l} n_{j l}=\frac{b k(k-1)}{v(v-1)} \tag{13.2}
\end{equation*}
$$

for all $i, j(i \neq j)=1,2, \ldots, v$. Therefore, from Section 1 (13.1) and (13.2) imply that a BB design N with a constant block size, k, is a BIB design. This result was essentially derived in Ishii [19] and Rao [47].

Theorem 13.2. A PBB design with a constant block size based on an association scheme of m associate classes is a PBIB design based on the same association scheme.

Proof. As shown in Section 12, for a PBB design $N=\left\|n_{i j}\right\|$ in this case, we have

$$
\begin{align*}
& \operatorname{diag}\left\{r_{1}, r_{2}, \ldots, r_{v}\right\}-\frac{1}{k} N N^{\prime} \tag{13.3}\\
& \quad=a_{0} A_{0}+a_{1} A_{1}+\cdots+a_{m} A_{m}
\end{align*}
$$

Hence from a property of the association matrices described in Section 1 we obtain after a comparison of diagonal elements in (13.3)

$$
r_{i}-\frac{r_{i}}{k}=a_{0} \quad \text { for all } i=1,2, \ldots, v,
$$

which imply that the replication of each treatment is a constant. Furthermore, from a comparison of off-diagonal elements in (13.3) we obtain

$$
\sum_{l=1}^{b} n_{i l} n_{j l}=-k a_{p}, \quad \text { for all } \quad i, j(i \neq j)=1,2, \ldots, v
$$

provided the i th and j th treatments are p th associates $(p=1,2, \ldots, m)$. Setting $\lambda_{p}=-k a_{p}$ shows that a PBB design N with a constant block size, k, based on an association scheme of m associate classes is a PBIB design based on the same association scheme having the coincidence numbers $\lambda_{p}(p=1,2, \ldots, m)$.

As another property in a BB design, Bhaskararao [4] showed that an equireplicate BB design with $b=v$ is a symmetrical BIB design. The proposition to hold for a PBB design corresponding to Bhaskararao's result does not hold. In fact, there exists a PBB design with $v=b=6, r=3, k_{j}=2,3$ or 6 based on the F_{2}
type association scheme of $v=2 \times 3$ treatments which will be seen in Example 18.6.

14. Construction of BB designs

We begin by describing trivial methods of constructing a BB design.
Theorem 14.1.* If N_{i} are BB designs with a common treatment number for $i=1,2, \ldots, l$, then juxtaposition of its designs

$$
N=\left[N_{1}: N_{2}: \cdots: N_{l}\right]
$$

is a $\mathbf{B B}$ design.
Proof is given by the fact that the C-matrix of N is equal to the sum of C matrices of $N_{i}, i=1,2, \ldots, l$. Simple examples are made when N_{i} are BIB designs with a common treatment number and different block sizes. Furthermore, in this case cyclic solutions of BB designs N are obtainable through more than one initial block (i.e., difference set). For example, juxtaposition [$N_{1}: N_{1}^{*}$] of a BIB design N_{1}, with parameters v, b, r, k, λ and $v \neq 2 k$, generated by some initial blocks and its complement N_{1}^{*}. For difference sets generating BIB designs with the parameters of practically useful range, we refer to Takeuchi [55], Sillitto [53], Clatworthy and Lewyckyj [13] and Kageyama [25].

Corollary 14.2. When N is a BB design,

$$
\left[N: I_{v}\right] \quad \text { and } \quad\left[N: E_{v \times 1}\right]
$$

are BB designs.
Corollary 14.3. When N and N_{1} are BB designs in $N=\left[N_{1}: N_{2}\right], N_{2}$ is $a \mathbf{B B}$ design provided N_{2} is connected.

Theorem 14.4 (cf. [20]). Suppose that there are l PBB designs $N_{t}(t=$ $1,2, \ldots, l$) based on the same association scheme of m associate classes, whose C-matrices are given as

$$
\begin{aligned}
& C_{1}=\rho_{1}^{(1)} A_{1}^{\#}+\rho_{2}^{(1)} A_{2}^{\#}+\cdots+\rho_{m}^{(1)} A_{m}^{\#}, \\
& C_{2}=\rho_{1}^{(2)} A_{1}^{\#}+\rho_{2}^{(2)} A_{2}^{\#}+\cdots+\rho_{m}^{(2)} A_{m}^{\#},
\end{aligned}
$$

[^0]$$
C_{l}=\rho_{1}^{(l)} A_{1}^{\#}+\rho_{2}^{(l)} A_{2}^{\#}+\cdots+\rho_{m}^{(l)} A_{m}^{\#} .
$$

If

$$
\begin{equation*}
\rho=\rho_{i}^{(1)}+\rho_{i}^{(2)}+\cdots+\rho_{i}^{(l)} \quad \text { for all } i=1,2, \ldots, m, \tag{14.1}
\end{equation*}
$$

then juxtaposition of its PBB designs $N=\left[N_{1}: N_{2}: \cdots: N_{l}\right]$ is a BB design.
Proof is similar to that of Theorem 14.1 and hence omitted here. An example of this theorem is shown in Ishii and Ogawa [20] by use of PBB designs based on an N_{2} type association scheme.

Corollary 14.5. When N_{t} in Theorem 14.4 are PBIB designs with replications $r^{(t)}$, block sizes $k^{(t)}$ and coincidence numbers $\lambda_{i}^{(t)}$ for $t=1,2, \ldots, l ; i=1$, $2, \ldots, m$, condition (14.1) can be replaced by a condition such that

$$
\begin{equation*}
\frac{\lambda_{i}^{(1)}}{k^{(1)}}+\frac{\lambda_{i}^{(2)}}{k^{(2)}}+\cdots+\frac{\lambda_{i}^{(l)}}{k^{(l)}}=\text { constant } \tag{14.2}
\end{equation*}
$$

for all $i=1,2, \ldots, m$.
Proof. First, we shall show that condition (14.1) is equivalent to

$$
\begin{equation*}
\frac{\rho_{i}^{[1]}}{k^{(1)}}+\frac{\rho_{i}^{[2]}}{k^{(2)}}+\cdots+\frac{\rho_{i}^{[l]}}{k^{(l)}}=\text { constant }(=\alpha, \text { say }) \tag{14.3}
\end{equation*}
$$

for all $i=1,2, \ldots, m$, where $\rho_{i}^{[t]}$ are latent roots of $N_{t} N_{t}^{\prime}$ for PBIB designs N_{t} for $t=1,2, \ldots, l ; i=1,2, \ldots, m$.

From Lemma A in Section 1, we have

$$
N_{t} N_{t}^{\prime}=r^{(t)} k^{(t)} A_{0}^{\#}+\rho_{1}^{[t]} A_{1}^{\#}+\cdots+\rho_{m}^{[t]} A_{m}^{\#} .
$$

Then the C-matrices of N_{t} are

$$
\begin{aligned}
C_{t} & =r^{(t)} I_{v}-\frac{1}{k^{(t)}} N_{t} N_{t}^{\prime} \\
& =\sum_{i=1}^{m}\left(r^{(t)}-\frac{\rho_{i}^{[t]}}{k^{(t)}}\right) A_{i}^{\#},
\end{aligned}
$$

for $t=1,2, \ldots, l$. Hence, the above implies that (14.1) is equivalent to (14.3).
Next, we shall show that condition (14.2) is equivalent to condition (14.3). From Lemma A we have

$$
\rho_{i}^{[t]}=\sum_{j=0}^{m} \lambda_{j}^{(t)} z_{i j}, \quad t=1,2, \ldots, l ; i=0,1, \ldots, m
$$

As a matrix notation, we obtain

$$
\left[\frac{\rho_{0}^{[t]}}{k^{(t)}}, \frac{\rho_{1}^{[t]}}{k^{(t)}}, \ldots, \frac{\rho_{m}^{[t]}}{k^{(t)}}\right]=\left[\frac{r^{(t)}}{k^{(t)}}, \frac{\lambda_{1}^{(t)}}{k^{(t)}}, \ldots, \frac{\lambda_{m}^{(t)}}{k^{(t)}}\right] Z
$$

where $Z=\left\|z_{i j}\right\|$ is given in (1.6). Then we can have

$$
\begin{align*}
& {\left[\sum_{t=1}^{l} \frac{\rho_{0}^{[t]}}{k^{(t)}}, \sum_{t=1}^{l} \frac{\rho_{1}^{[t]}}{k^{(t)}}, \ldots, \sum_{t=1}^{l} \frac{\rho_{m}^{[t]}}{k^{(t)}}\right]} \tag{14.4}\\
& \quad=\left[\sum_{t=1}^{l} \frac{r^{(t)}}{k^{(t)}}, \sum_{i=1}^{l} \frac{\lambda_{1}^{(t)}}{k^{(t)}}, \ldots, \sum_{t=1}^{l} \frac{\lambda_{m}^{(t)}}{k^{(t)}}\right] Z .
\end{align*}
$$

Hence it clearly follows from (1.4) that condition (14.2) implies condition (14.3). Conversely, assume that condition (14.3) holds. Then, letting $\beta=\sum_{t=1}^{l} r^{(t)} / k^{(t)}$ and $x_{i}=\sum_{t=1}^{l} \lambda_{i}^{(t)} / k^{(t)}$, we have from (14.4)

$$
\begin{gathered}
z_{11} x_{1}+z_{12} x_{2}+\cdots+z_{1 m} x_{m}=\alpha-\beta \\
z_{21} x_{1}+z_{22} x_{2}+\cdots+z_{2 m} x_{m}=\alpha-\beta \\
\cdots \\
z_{m 1} x_{1}+z_{m 2} x_{2}+\cdots+z_{m m} x_{m}=\alpha-\beta
\end{gathered}
$$

In this case, it is sufficient to show that $x_{1}=x_{2}=\cdots=x_{m}$ and hence (14.2) holds. From (1.4) we now obtain

$$
\begin{align*}
& \left(z_{12}-z_{22}\right)\left(x_{2}-x_{1}\right)+\left(z_{13}-z_{23}\right)\left(x_{3}-x_{1}\right)+\cdots+\left(z_{1 m}-z_{2 m}\right)\left(x_{m}-x_{1}\right)=0, \\
& \left(z_{12}-z_{32}\right)\left(x_{2}-x_{1}\right)+\left(z_{13}-z_{33}\right)\left(x_{3}-x_{1}\right)+\cdots+\left(z_{1 m}-z_{3 m}\right)\left(x_{m}-x_{1}\right)=0, \tag{14.5}
\end{align*}
$$

$$
\left(z_{12}-z_{m 2}\right)\left(x_{2}-x_{1}\right)+\left(z_{13}-z_{m 3}\right)\left(x_{3}-x_{1}\right)+\cdots+\left(z_{1 m}-z_{m m}\right)\left(x_{m}-x_{1}\right)=0
$$

Since the matrix Z is nonsingular as seen in Section 1, it follows that the determinant

$$
\left|\begin{array}{ccc}
z_{12}-z_{22}, & z_{13}-z_{23}, \ldots, & z_{1 m}-z_{2 m} \\
z_{12}-z_{32}, & z_{13}-z_{33}, \ldots, & z_{1 m}-z_{3 m} \\
\ldots \\
z_{12}-z_{m 2}, & z_{13}-z_{m 3}, \ldots, & z_{1 m}-z_{m m}
\end{array}\right| \neq 0
$$

Therefore from (14.5) we obtain

$$
x_{1}=x_{2}=\cdots=x_{m}
$$

Thus, we have the required result.
Note that in Corollary 14.5 condition (14.2) can be replaced by condition (14.3).

Corollary 14.6. Suppose that there exists an association scheme of m associate classes with parameters $v, n_{i}, p_{j k}^{i}$, whose association matrices are A_{0}, A_{1}, \ldots, and A_{m}. If

$$
\frac{p_{i i}^{l}}{n_{i}}+\frac{p_{j j}^{l}}{n_{j}}=\text { constant for all } l=1,2, \ldots, m
$$

then $\left[A_{i}: A_{j}\right]$ is a $\mathbf{B B}$ design.
For, the association matrices are symmetrical PBIB designs with the same association scheme and hence from (1.1) we obtain the result.

Remark. Considering a mixed type of a linear combination and juxtaposition of association matrices, Kageyama [29] has constructed a series of BIB designs under some restrictions. The method used in them may lead to the various BB designs under some restrictions, but they are omitted here.

THEOREM 14.7. If $b=(v+1) / 2$, then the following matrix is a BB design with parameters $v^{\prime}=v+2, b^{\prime}=b+v+1, r_{i}^{\prime}=v+1$ or $b+1, k_{j}^{\prime}=2$ or $v+1(i=$ $\left.1,2, \ldots, v^{\prime} ; j=1,2, \ldots, b^{\prime}\right)$:

$$
N=\left(\begin{array}{c:c:l}
E_{1 \times b} & 0_{1 \times v} & 1 \\
\hdashline 0_{1 \times b} & E_{1 \times v} & 1 \\
\hdashline E_{v \times b} & I_{v} & 0_{v \times 1}
\end{array}\right) .
$$

For, we have the C-matrix of N as

$$
C=\left(\begin{array}{cccc}
\frac{b v}{v+1}+\frac{1}{2}, & -\frac{1}{2}, & -\frac{b}{v+1}, \cdots, & -\frac{b}{v+1} \\
-\frac{1}{2}, & \frac{v}{2}+\frac{1}{2}, & -\frac{1}{2}, \cdots, & -\frac{1}{2} \\
-\frac{b}{v+1}, & -\frac{1}{2}, & \\
\vdots & \vdots & \left(b+\frac{1}{2}\right) I_{v}-\frac{b}{v+1} G_{v} \\
-\frac{b}{v+1}, & -\frac{1}{2}, &
\end{array}\right)
$$

Theorem 14.8. If there are a BIB design N_{1} with parameters v, b, r, k, λ and a BB design N_{2} with parameters $v, b^{\prime}, r_{i}, k_{j}, n=\sum_{i=1}^{v} r_{i}=\sum_{j=1}^{b^{\prime}} k_{j}$ for positive integers l and m such that

$$
\frac{m}{l}=\frac{v(v-1)(r-\lambda)}{\left(n-b^{\prime}\right)(k+1)},
$$

then there exists a BB design N with parameters $v^{*}=v+1, b^{*}=l b+m b^{\prime}, r_{i^{\prime}}^{*}=$ $l b$ or $l r+m r_{i}, k_{j}^{*}=k+1$ or k_{j} :

$$
N=\left(\begin{array}{c:c:c:c:c:c}
E_{1 \times b} & \cdots & E_{1 \times b} & 0_{1 \times b^{\prime}} & \cdots & 0_{1 \times b^{\prime}} \\
\hdashline \underbrace{}_{l} & \cdots & N_{1} & N_{2} & \cdots & N_{2}
\end{array}\right) .
$$

Proof. The C-matrix of N is given by

$$
C=\left(\begin{array}{cc}
l b-\frac{l b}{k+1}, & -\frac{l r}{k+1}, \ldots,-\frac{l r}{k+1} \\
-\frac{l r}{k+1}, & \\
\vdots & \operatorname{lr} I_{v}-\frac{l}{k+1} N_{1} N_{1}^{\prime}+m\left(D_{r_{2}}-N_{2} D_{k_{2}}^{-1} N_{2}^{\prime}\right) \\
-\frac{l r}{k+1}, &
\end{array}\right)
$$

where $D_{r_{2}}=\operatorname{diag}\left\{r_{1}, r_{2}, \ldots, r_{v}\right\}$ and $D_{k_{2}}^{-1}=\operatorname{diag}\left\{k_{1}^{-1}, k_{2}^{-1}, \ldots, k_{b^{1}}^{-1}\right\}$. Then N is a BB design, if and only if

$$
\begin{equation*}
-\frac{l r}{k+1}=-\frac{l \lambda}{k+1}-\frac{m \rho}{v} \tag{14.6}
\end{equation*}
$$

and

$$
\begin{equation*}
l b-\frac{l b}{k+1}=l r-\frac{l r}{k+1}+m \rho\left(1-\frac{1}{v}\right), \tag{14.7}
\end{equation*}
$$

where $\rho=\left(n-b^{\prime}\right) /(v-1)$.
Since l and m should be chosen so that both the above equations are satisfied simultaneously, we have

$$
m / l=v(v-1)(r-\lambda) /\left(n-b^{\prime}\right)(k+1)
$$

which is actually derived from (14.6), but it satisfies (14.7). Hence the theorem follows.

Note that when N_{2} is a BIB design, Theorem 14.8 leads to the result of the binary type of Theorem 2.1 in Kulshreshtha, Dey and Saha [33]. When $l=m=1$, we have

Corollary 14.9. If there are a BIB design N_{1} with parameters v, b, r, k, λ and $a \mathbf{B B}$ design N_{2} with parameters $v, b^{\prime}, r_{i}, k_{j}, n=\sum_{i=1}^{v} r_{i}=\sum_{j=1}^{b^{\prime}} k_{j}$ such that

$$
\begin{equation*}
n-b^{\prime}=v(v-1)(r-\lambda) /(k+1) \tag{14.8}
\end{equation*}
$$

then the following matrix is a BB design with parameters $v^{*}=v+1, b^{*}=b+b^{\prime}$, $r_{i^{\prime}}^{*}=b$ or $r+r_{i}, k_{j^{\prime}}^{*}=k_{j}$ or $k+1$:

$$
\left(\begin{array}{c:c}
E_{1 \times b} & 0_{1 \times b^{\prime}} \\
\hdashline N_{1} & N_{2}
\end{array}\right)
$$

Example 14.1. Consider a BIB design with parameters $v=5, b=10, r=4$, $k=2, \lambda=1$ of the unreduced type and the following BB design with $v=5, b^{\prime}=12$ and $n=32$:

	1	2	3	4	5	6	7	8	9	10	11	12	r_{i}
1	1	1	1	1	0	0	1	1	0	0	0	1	7
2	1	0	0	0	1	1	0	0	1	1	1	1	7
3	0	1	0	0	1	1	1	1	1	0	0	0	6
4	0	0	1	0	1	1	1	1	0	1	0	0	6
5	0	0	0	1	1	1	1	1	0	0	1	0	6
k_{j}	2	2	2	2	4	4	4	4	2	2	2	2	32

Then these two designs satisfy condition (14.8) and hence Corollary 14.9 yields a BB design with parameters $v=6, b=22, r_{i}=10$ or $11, k_{j}=2,3$ or $4(i=1,2, \ldots, 6$; $j=1,2, \ldots, 22$).

Corollary 14.10. If there exists a BB design N with parameters v, b, r_{i}, k_{j} and $n=\sum_{i=1}^{v} r_{i}=\sum_{j=1}^{b} k_{j}$ such that $v(v-1)=2(n-b)$, then the following matrix is a BB design with parameters $v^{\prime}=v+1, b^{\prime}=v+b, r_{0}=v, r_{i}+1, k_{0}=2, k_{j}$ for $i=1,2, \ldots, v ; j=1,2, \ldots, b$:

$$
\left(\begin{array}{c:c}
E_{1 \times v} & 0_{1 \times b} \\
\hdashline I_{v} & N
\end{array}\right)
$$

Note that when N is a BIB design, Corollary 14.10 leads to the result of John [21].

Example 14.2. Consider a BB design with parameters $v=5, b=6$ and $n=16$ satisfying $v(v-1)=2(n-b)$, which is constructed by the first six columns (blocks) in the BB design of Example 14.1, i.e.,

	1	2	3	4	5	6	r_{i}
1	1	1	1	1	0	0	4
2	1	0	0	0	1	1	3
3	0	1	0	0	1	1	3
4	0	0	1	0	1	1	3
5	0	0	0	1	1	1	3
k_{j}	2	2	2	2	4	4	16

Then Corollary 14.10 yields a BB design with parameters $v=6, b=11, r_{i}=4$ or $5, k_{j}=2$ or $4(i=1,2, \ldots, 6 ; j=1,2, \ldots, 11)$.

Note that Theorem 14.8, Corollaries 14.9 and 14.10 imply the method of constructing a BB design with $v+1$ treatments from a BB design with v treatments. If we have I_{v} or $E_{v \times b}$ as a BIB design N_{1} in Theorem 14.8, then it seems that a BB design with v treatments can be extended to a BB design with $v+1$ treatments when and only when Theorem 14.8, Corollaries 14.9 or 14.10 hold.

Pairwise balanced designs of index λ, introduced by Bose and Shrikhande [11] for constructing counterexamples to Euler's conjecture, may lead to BB designs, which are constructed by the juxtaposition of BIB designs with a common treatment number and different block sizes, and which are obtained by omitting some treatments in BIB designs. However, the BB designs so obtained may be included in Theorem 14.1.

Note that the complement of a BB design is generally not a BB design and that Corollary 14.10 also implies a method of constructing a BIB design with $v^{\prime}=v+1$ and $k^{\prime}=2$ of the unreduced type from a BIB design with $v^{*}=v$ and $k^{*}=2$ of the unreduced type. Incidentally, from Theorems 13.1 and 14.8 the following BIB design is constructed. That is, if there are two BIB designs, respectively, with parameters v, b, r, k, λ and with parameters $v, b^{\prime}, r^{\prime}, k^{\prime}=$ $k+1, \lambda^{\prime}$, then for positive integers l and m such that $(r-\lambda) / \lambda^{\prime}=m / l$, there exists a BIB design with parameters $v^{*}=v+1, b^{*}=l b+m b^{\prime}, r^{*}=l b, k^{*}=k+1$ and $\lambda^{*}=l r$.

Finally, we will review the construction of a BB design from a structural point of view. As stated in Section 12, a block design is balanced, if and only if C is
of the form

$$
C=(x-y) I_{v}+y G_{v},
$$

where x and y are two constants. Then from (12.3) a BB design $N=\left\|n_{i j}\right\|$ with parameters v, b, r_{i} and k_{j} is given if

$$
\begin{equation*}
r_{i}-\left(\frac{n_{i 1}}{k_{1}}+\frac{n_{i 2}}{k_{2}}+\cdots+\frac{n_{i b}}{k_{b}}\right)=\text { constant } \tag{14.9}
\end{equation*}
$$

for all $i=1,2, \ldots, v$ and

$$
\begin{equation*}
\frac{n_{i 1} n_{j 1}}{k_{1}}+\frac{n_{i 2} n_{j 2}}{k_{2}}+\cdots+\frac{n_{i b} n_{j b}}{k_{b}}=\text { constant } \tag{14.10}
\end{equation*}
$$

for all $i, j(i \neq j)=1,2, \ldots, v$. Empirically, if condition (14.10) is satisfied, then condition (14.9) is often satisfied automatically.

Consider an equireplicate BB design N with l kinds of block sizes. By permuting the blocks, we can write N as

$$
N=\left[N_{1}: N_{2}: \cdots: N_{l}\right],
$$

where the blocks of N_{p} are of size $k_{p}(p=1,2, \ldots, l)$. Denote by $\lambda_{i j}^{(p)}$ the number of blocks containing the i th and j th treatments together in N_{p} and $\lambda_{i i}^{(p)}=r_{i}^{(p)}$ for $p=1,2, \ldots, l$. Then from (14.9) and (14.10) there exists an equireplicate BB design N, if and only if

$$
\frac{\lambda_{i j}^{(1)}}{k_{1}}+\frac{\lambda_{i j}^{(2)}}{k_{2}}+\cdots+\frac{\lambda_{i j}^{(l)}}{k_{l}}=\text { constant },
$$

and

$$
r=r_{i}^{(1)}+r_{i}^{(2)}+\cdots+r_{i}^{(l)}
$$

for all $i, j=1,2, \ldots, v$. Furthermore, in a similar way, there exists a BB design N with l kinds of block sizes, if and only if

$$
\begin{aligned}
& r_{i}^{(1)}\left(1-\frac{1}{k_{1}}\right)+r_{i}^{(2)}\left(1-\frac{1}{k_{2}}\right)+\cdots+r_{i}^{(l)}\left(1-\frac{1}{k_{l}}\right) \\
& \quad=\text { constant }
\end{aligned}
$$

for all $i=1,2, \ldots, v$, and

$$
\frac{\lambda_{i j}^{(1)}}{k_{1}}+\frac{\lambda_{i j}^{(2)}}{k_{2}}+\cdots+\frac{\lambda_{i j}^{(l)}}{k_{l}}=\text { constant }
$$

for all $i, j(i \neq j)=1,2, \ldots, v$. These necessary and sufficient conditions are useful when we want to construct BB designs by trial and error.

15. Construction of PBB designs

Similarly to Section 14, we can consider the construction of PBB designs.
Theorem 15.1. If there are $l \mathbf{P B B}$ design N_{i} with the same association scheme for $i=1,2, \ldots, l$, then juxtaposition of its designs

$$
N=\left[N_{1}: N_{2}: \cdots: N_{l}\right]
$$

is a PBB design with the same association scheme as N_{i}.
Proof is given by (12.5) and the fact that the C-matrix of N is equal to the sum of C-matrices of $N_{i}, i=1,2, \ldots, l$. Simple examples are given when $N_{i}(i=$ $1,2, \ldots, l)$ are PBIB designs, based on the same association scheme, with a common treatment number and different block sizes. Furthermore, in this case cyclic solutions of PBB designs N are obtainable through more than one initial block (i.e., difference set). For example, juxtaposition [$N_{1}: N_{1}^{*}$] of a PBIB design N_{1}, with parameters v, b, r, k, λ_{i} and $v \neq 2 k$, generated by some initial blocks and its complement N_{1}^{*}, since an association scheme of the complementary PBIB design is the same as that of the original PBIB design.

Note that symmetrical unequal-block arrangements with two unequal block sizes, introduced by Kishen [32] and their constructions and analysis have been thoroughly investigated by Raghavarao [44], are essentially included in the type of Theorem 15.1. Further, note [44] that no symmetrical unequal block arrangement with two unequal block sizes is balanced.

Corollary 15.2. If there exists an association scheme of m associate classes with association matrices $A_{0}, A_{1}, \ldots, A_{m}$, then

$$
\left[A_{i}: A_{j}\right]
$$

is a PBB design with the same association scheme.
Proof is included in that of Corollary 14.6.
Remark. Considering a mixed type of a linear combination and juxtaposition of association matrices, Kageyama [29] gave a remark on the construction of PBIB designs under some restrictions. The approach used in them may lead to some PBB designs under conditions, but they are omitted here.

Corollary 15.3. If there exists a PBB design N based on an association scheme of m associate classes, then

$$
\left[N: I_{v}\right] \quad \text { and } \quad\left[N: E_{v \times 1}\right]
$$

are PBB designs based on the same association scheme.
For, since the C-matrix of $E_{v \times 1}$ is

$$
I_{v}-\frac{1}{v} E_{v \times 1} E_{1 \times v}=A_{1}^{\#}+A_{2}^{\#}+\cdots+A_{m}^{\#},
$$

from Theorem 15.1 we have the required result.
Note that if N is a disconnected PBB design, then from Corollary 15.3 we can have a connected PBB design $\left[N: E_{v \times 1}\right]$ and hence we may treat disconnected PBB designs.

Corollary 15.4. When N and N_{1} are PBB designs with the same association scheme in $N=\left[N_{1}: N_{2}\right], N_{2}$ is a PBB design with the same association scheme provided N_{2} is connected.

When there are two PBB designs N_{i} with $D_{r^{(i)}}=\operatorname{diag}\left\{r_{1}^{(i)}, r_{2}^{(i)}, \ldots, r_{v_{i}}^{(i)}\right\}$ and $D_{k^{(i)}}=\operatorname{diag}\left\{k_{1}^{(i)}, k_{2}^{(i)}, \ldots, k_{b_{i}}^{(i)}\right\}$ for $i=1,2$, the C-matrix of $N=N_{1} \otimes N_{2}$ is as follows:

$$
\begin{align*}
C & =D_{r^{(1)}} \otimes D_{r^{(2)}}-\left(N_{1} \otimes N_{2}\right)\left(D_{k^{(1)}} \otimes D_{\left.k^{(2)}\right)}\right)^{-1}\left(N_{1} \otimes N_{2}\right)^{\prime} \\
& \left.=D_{r^{(1)}} \otimes D_{r^{(2)}}-N_{1} D_{k}^{-1}\right)^{1} N_{1}^{\prime} \otimes N_{2} D_{k^{(2)}}^{-1} N_{2}^{\prime} \\
& =D_{r^{(1)}} \otimes D_{r^{(2)}}-\left(D_{r^{(1)}}-C_{1}\right) \otimes\left(D_{r^{(2)}}-C_{2}\right) \\
& =D_{r^{(1)}} \otimes C_{2}+C_{1} \otimes D_{r^{(2)}}-C_{1} \otimes C_{2}, \tag{15.1}
\end{align*}
$$

where C_{i} are C-matrices of $N_{i}, i=1,2$. Then we have
Theorem 15.5. If there are equireplicate PBB designs $N_{i}(i=1,2)$ with parameters $v^{(i)}, b^{(i)}, r^{(i)}, k_{j}^{(i)}\left(j=1,2, \ldots, b^{(i)}\right)$ having association schemes of s and t associate classes, respectively, then

$$
N=N_{1} \otimes N_{2} \quad\left(\text { or } N_{2} \otimes N_{1}\right)
$$

is an equireplicate PBB design with at most $s t+s+t$ associate classes.
Proof. Denote the association matrices and the corresponding mutually orthogonal idempotents of association schemes of s and t associate classes, respectively, by $B_{0}, B_{1}, \ldots, B_{s} ; B_{0}^{\#}, B_{1}^{\ddagger}, \ldots, B_{s}^{\#}$ and $A_{0}, A_{1}, \ldots, A_{t} ; A_{0}^{\#}, A_{1}^{\#}, \ldots, A_{i}^{\#}$. Since we can now write C-matrices of $N_{i}(i=1,2)$ as

$$
\begin{aligned}
& C_{1}=\rho_{1}^{(1)} B_{1}^{\#}+\rho_{2}^{(1)} B_{2}^{\#}+\cdots+\rho_{s}^{(1)} B_{s}^{\#}, \\
& C_{2}=\rho_{1}^{(2)} A_{1}^{\#}+\rho_{2}^{(2)} A_{2}^{\#}+\cdots+\rho_{t}^{(2)} A_{t}^{\#},
\end{aligned}
$$

from (15.1) the C-matrix of N is

$$
\begin{aligned}
& C=r^{(1)}\left(B_{0}^{\#}+B_{1}^{\#}+\cdots+B_{s}^{\#}\right) \otimes\left(\rho_{1}^{(2)} A_{1}^{\#}+\cdots+\rho_{t}^{(2)} A_{i}^{\#}\right) \\
& +r^{(2)}\left(\rho_{1}^{(1)} B_{1}^{\#}+\cdots+\rho_{s}^{(1)} B_{s}^{\sharp}\right) \otimes\left(A_{0}^{\#}+A_{1}^{\#}+\cdots+A_{t}^{\#}\right) \\
& -\left(\rho_{1}^{(1)} B_{1}^{\ddagger}+\cdots+\rho_{s}^{(1)} B_{s}^{\#}\right) \otimes\left(\rho_{1}^{(2)} A_{1}^{\#}+\cdots+\rho_{t}^{(2)} A_{t}^{\#}\right) \\
& =r^{(1)} \sum_{j=1}^{t} \rho_{j}^{(2)}\left(B_{0}^{\sharp} \otimes A_{j}^{\sharp}\right)+r^{(2)} \sum_{i=1}^{s} \rho_{i}^{(1)}\left(B_{i}^{\ddagger} \otimes A_{0}^{\sharp}\right) \\
& +\sum_{i=1}^{s} \sum_{j=1}^{t}\left(r^{(1)} \rho_{j}^{(2)}+r^{(2)} \rho_{i}^{(1)}-\rho_{i}^{(1)} \rho_{j}^{(2)}\right)\left(B_{i}^{\sharp} \otimes A_{j}^{\sharp}\right) .
\end{aligned}
$$

Furthermore, it is easily shown that the association matrices of design N are given by $B_{i} \otimes A_{j}$ for $i=0,1, \ldots, s ; j=0,1, \ldots, t$ and that

$$
\begin{aligned}
\left(B_{i_{1}}^{\#} \otimes A_{j_{1}}^{\#}\right)\left(B_{i_{2}}^{\#} \otimes A_{j_{2}}^{\#}\right) & =B_{i_{1}}^{\#} \otimes A_{j_{1}}^{\#}, \quad \text { if } i_{1}=i_{2} \text { and } j_{1}=j_{2}, \\
& =0_{v^{(1)} v^{(2)} \times v^{(1)} v^{(2)},}, \text { otherwise } .
\end{aligned}
$$

Therefore, definition (12.5) implies the result. The case of $N_{2} \otimes N_{1}$ is also shown similarly.

Corollary 15.6. If there exists an equireplicate PBB design N based on an association scheme with m associate classes of v treatments, then for a positive integer $l \geqq 1$,

$$
E_{v \times l} \otimes N \quad\left(\text { or } N \otimes E_{v \times l}\right)
$$

is an equireplicate PBB design with at most $m^{2}+2 m$ associate classes.
Pairwise balanced designs introduced by Bose and Shrikhande may lead to PBB designs. For example, if there exists a PBIB design N with parameters $v=m n, b, r, k, \lambda_{1}=0$ and $\lambda_{2}=1$, based on an N_{2} type association scheme of $v=m n$ treatments, then, by adding m new sets corresponding to the groups of the association scheme, we obtain a pairwise balanced design of index unity provided $k \neq n$, i.e.,

$$
\left[N: I_{m} \otimes E_{n \times 1}\right]
$$

which is a special case of Theorem 15.1 and hence this design is a PBB design.
It is useful to note that the complement of a PBB design is generally not a PBB design, though an association scheme remains invariant by the complement. However, the complement of a PBB design may become a PBB design. For example, the PBB design of Example 17.1 which will be given in Section 17 has this property.

Some examples of a PBB design are seen in [18; 19; 20]. In particular, Ishii [18] has given a numerical example with an analysis of a PBB design based on a rectangular lattice type association scheme with association matrices A_{0}, A_{1}, A_{2}, A_{3} and A_{4}. That is the case in which $s=4$ in Section 10, and hence $v=12$, whose incidence matrix is given by

	1	2	3	4	5	6	7	8	9	10	11	r_{i}
1	1	1	1	0	0	0	0	0	0	0	0	3
2	1	0	0	1	1	0	0	0	0	0	0	3
3	1	0	0	0	0	1	1	1	0	0	0	4
4	1	1	1	0	0	0	0	0	0	0	0	3
5	1	0	0	0	0	0	1	0	1	1	0	4
6	1	0	0	1	1	0	0	0	0	0	0	3
7	1	0	0	1	1	0	0	0	0	0	0	3
8	1	0	0	0	0	0	0	1	1	0	1	4
9	1	1	1	0	0	0	0	0	0	0	0	3
10	1	0	0	0	0	1	0	0	0	1	1	4
11	1	0	0	1	1	0	0	0	0	0	0	3
12	1	1	1	0	0	0	0	0	0	0	0	3
k_{j}	12	4	4	4	4	2	2	2	2	2	2	40

$$
\begin{aligned}
C & =\frac{29}{12} A_{0}-\frac{1}{12}\left(A_{1}+A_{2}\right)-\frac{7}{12}\left(A_{3}+A_{4}\right) \\
& =3 A_{1}^{\sharp}+3 A_{2}^{\sharp}+A_{3}^{\sharp}+3 A_{4}^{\sharp},
\end{aligned}
$$

where

$$
\begin{aligned}
& A_{0}^{\#}=\frac{1}{12} G_{12}, \quad A_{1}^{\#}=\frac{1}{4}\left(A_{0}-A_{3}+A_{4}\right), \\
& A_{2}^{\#}=\frac{1}{8}\left(2 A_{0}-A_{1}+A_{2}-2 A_{4}\right), \\
& A_{3}^{*}=\frac{1}{12}\left(2 A_{0}-A_{1}-A_{2}+2 A_{3}+2 A_{4}\right), \\
& A_{4}^{*}=\frac{1}{8}\left(2 A_{0}+A_{1}-A_{2}-2 A_{4}\right) .
\end{aligned}
$$

As other simple examples we present

Example 15.1. A PBB design based on an N_{3} type association scheme of $v=s_{1} s_{2} s_{3}$ treatments defined in Section 7.

$$
\begin{aligned}
& A_{0}=I_{v}, \quad A_{1}=I_{s_{1} s_{2}} \otimes\left(G_{s_{3}}-I_{s_{3}}\right), \quad A_{2}=I_{s_{1}} \otimes\left(G_{s_{2}}-I_{s_{2}}\right) \otimes G_{s_{3}}, \\
& A_{3}=\left(G_{s_{1}}-I_{s_{1}}\right) \otimes G_{s_{2} s_{3}}, \\
& A_{0}^{*}=\frac{1}{v} G_{v}, \quad A_{1}^{\#}=\frac{1}{v}\left\{\left(s_{1}-1\right)\left(A_{0}+A_{1}+A_{2}\right)-A_{3}\right\}, \\
& A_{2}^{\#}=\frac{s_{2}-1}{s_{2} s_{3}} A_{0}+\frac{s_{2}-1}{s_{2} s_{3}} A_{1}-\frac{1}{s_{2} s_{3}} A_{2}, \\
& A_{3}^{*}=\frac{s_{3}-1}{s_{3}} A_{0}-\frac{1}{s_{3}} A_{1} .
\end{aligned}
$$

Consider a design whose incidence matrix N is given by

$$
N=\left[I_{s_{1}} \otimes E_{s_{2} s_{3} \times 1}: E_{v \times 1}\right] .
$$

Then

$$
\begin{aligned}
C & =2 I_{v}-N \operatorname{diag}\{\underbrace{\frac{1}{s_{2} s_{3}}, \ldots, \frac{1}{s_{2} s_{3}}}_{s_{1} \text { times }}, \frac{1}{v}\} N^{\prime} \\
& =\left(2-\frac{s_{1}+1}{v}\right) A_{0}-\frac{s_{1}+1}{v}\left(A_{1}+A_{2}\right)-\frac{1}{v} A_{3} \\
& =A_{1}^{\sharp}+2\left(A_{2}^{\sharp}+A_{3}^{\sharp}\right) .
\end{aligned}
$$

Thus, the design N is an equireplicate PBB design with unequal block sizes.
Example 15.2. A PBB design based on an F_{3} type association scheme of $v=v_{1} v_{2} v_{3}$ treatments provided $v_{1}=2$, defined in Section 9 .

$$
\begin{aligned}
& A_{000}=I_{v}, \quad A_{001}=I_{v_{1} v_{2}} \otimes\left(G_{v_{3}}-I_{v_{3}}\right), \\
& A_{010}=I_{v_{1}} \otimes\left(G_{v_{2}}-I_{v_{2}}\right) \otimes I_{v_{3}}, \\
& A_{011}=I_{v_{1}} \otimes\left(G_{v_{2}}-I_{v_{2}}\right) \otimes\left(G_{v_{3}}-I_{v_{3}}\right), \\
& A_{100}=\left(G_{v_{1}}-I_{v_{1}}\right) \otimes I_{v_{2} v_{3}}, \\
& A_{101}=\left(G_{v_{1}}-I_{v_{1}}\right) \otimes I_{v_{2}} \otimes\left(G_{v_{3}}-I_{v_{3}}\right), \\
& A_{110}=\left(G_{v_{1}}-I_{v_{1}}\right) \otimes\left(G_{v_{2}}-I_{v_{2}}\right) \otimes I_{v_{3}},
\end{aligned}
$$

$$
\begin{aligned}
& A_{111}=\left(G_{v_{1}}-I_{v_{1}}\right) \otimes\left(G_{v_{2}}-I_{v_{2}}\right) \otimes\left(G_{v_{3}}-I_{v_{3}}\right), \\
& A_{000}^{*}= \frac{1}{v} G_{v}, \\
& A_{001}^{*}= \frac{1}{v}\left\{\left(v_{3}-1\right)\left(A_{000}+A_{010}+A_{100}+A_{110}\right)-A_{001}-A_{011}\right. \\
&\left.-A_{101}-A_{111}\right\}, \\
& A_{010}^{*}= \frac{1}{v}\left\{\left(v_{2}-1\right)\left(A_{000}+A_{001}+A_{100}+A_{101}\right)-A_{010}-A_{011}\right. \\
&\left.-A_{110}-A_{111}\right\}, \\
& A_{011}^{*}= \frac{1}{v}\left\{\left(v_{2}-1\right)\left(v_{3}-1\right)\left(A_{000}+A_{100}\right)-\left(v_{2}-1\right)\left(A_{001}+A_{101}\right)\right. \\
&\left.-\left(v_{3}-1\right)\left(A_{010}+A_{110}\right)+A_{011}+A_{111}\right\}, \\
& A_{100}^{*}= \frac{1}{v}\left\{\left(v_{1}-1\right)\left(A_{000}+A_{001}+A_{010}+A_{011}\right)-A_{100}-A_{101}\right. \\
&\left.-A_{110}-A_{111}\right\}, \\
& A_{101}^{*}= \frac{1}{v}\left\{\left(v_{1}-1\right)\left(v_{3}-1\right)\left(A_{000}+A_{010}\right)-\left(v_{1}-1\right)\left(A_{001}+A_{011}\right)\right. \\
&\left.-\left(v_{3}-1\right)\left(A_{100}+A_{110}\right)+A_{101}+A_{111}\right\}, \\
& A_{110}^{*}= \frac{1}{v}\left\{\left(v_{1}-1\right)\left(v_{2}-1\right)\left(A_{000}+A_{001}\right)-\left(v_{1}-1\right)\left(A_{010}+A_{011}\right)\right. \\
&\left.-\left(v_{2}-1\right)\left(A_{100}+A_{101}\right)+A_{110}+A_{111}\right\}, \\
& A_{111}^{*}= \frac{1}{v}\left\{\left(v_{1}-1\right)\left(v_{2}-1\right)\left(v_{3}-1\right) A_{000}-\left(v_{1}-1\right)\left(v_{2}-1\right) A_{001}\right. \\
&-\left(v_{1}-1\right)\left(v_{3}-1\right) A_{010}+\left(v_{1}-1\right) A_{011}-\left(v_{2}-1\right)\left(v_{3}-1\right) A_{100} \\
&+\left.+\left(v_{2}-1\right) A_{101}+\left(v_{3}-1\right) A_{110}-A_{111}\right\} . \\
&
\end{aligned}
$$

Consider a design whose incidence matrix N is given by

$$
\begin{aligned}
& N=\left[I_{v_{1}} \otimes E_{v_{2} v_{3} \times 1}: E_{v_{1} \times 1} \otimes I_{v_{2} v_{3}}\right] . \\
& C=2 I_{v}-N \operatorname{diag}\{\underbrace{\frac{1}{v_{2} v_{3}}, \ldots, \frac{1}{v_{2} v_{3}}}_{v_{1} \text { times }}, \frac{1}{2}, \ldots, \frac{1}{2}\} N^{\prime}
\end{aligned}
$$

$$
=\left(\frac{3}{2}-\frac{1}{v_{2} v_{3}}\right) A_{000}-\frac{1}{v_{2} v_{3}}\left(A_{001}+A_{010}+A_{011}\right)-\frac{1}{2} A_{100} .
$$

From (12.7) we have

$$
\left(\sum_{i=1}^{v} r_{i}-b\right) / v=\left(3 / 2-1 / v_{2} v_{3}\right)
$$

which leads to $v_{1}=2$. In this case

$$
C=A_{001}^{*}+A_{010}^{*}+A_{011}^{*}+A_{100}^{\#}+2\left(A_{101}^{*}+A_{100}^{*}+A_{111}^{*}\right) .
$$

Thus, the design N is an equireplicate PBB design with unequal block sizes provided $v_{1}=2$.

Example 15.3. A PBB design with parameters $v=5, b=6, r=3, k_{j}=2$ or 5 based on the cyclic type association scheme with two associate classes of five treatments, whose incidence matrix is given by

	1	2	3	4	5	6	r_{i}
1	1	1	0	0	1	0	3
2	1	0	1	0	0	1	3
3	1	1	0	1	0	0	3
4	1	0	1	0	1	0	3
5	1	0	0	1	0	1	3
k_{j}	5	2	2	2	2	2	15

For this cyclic type association we have, for example,

$$
\begin{aligned}
& A_{0}=I_{5}, \quad A_{1}=\left(\begin{array}{ccccc}
0 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 \\
1 & 0 & 0 & 1 & 0
\end{array}\right), \quad A_{2}=\left(\begin{array}{ccccc}
0 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0
\end{array}\right), \\
& A_{0}^{\#}=\frac{1}{5}\left(A_{0}+A_{1}+A_{2}\right), \\
& A_{1}^{\#}=\frac{2}{5} A_{0}+\frac{1}{2}\left(\frac{1}{\sqrt{5}}-\frac{1}{5}\right) A_{1}-\frac{1}{2}\left(-\frac{1}{\sqrt{5}}+\frac{1}{5}\right) A_{2}, \\
& A_{2}^{\#}=\frac{2}{5} A_{0}-\frac{1}{2}\left(\frac{1}{\sqrt{5}}+\frac{1}{5}\right) A_{1}+\frac{1}{2}\left(\frac{1}{\sqrt{5}}-\frac{1}{5}\right) A_{2} .
\end{aligned}
$$

Then

$$
\begin{aligned}
C & =\frac{9}{5} A_{0}-\frac{1}{5} A_{1}-\frac{7}{10} A_{2} \\
& =\left(\frac{9+\sqrt{5}}{4}\right) A_{1}^{\sharp}+\left(\frac{9-\sqrt{5}}{4}\right) A_{2}^{\sharp} .
\end{aligned}
$$

Examples of PBB designs based on association schemes of the other types are easily given by Corollary 15.3 provided there are PBIB designs based on the association schemes of the other types. Furthermore, since we may consider a BB design as a PBB design with one associate class, if there exists a BB design with v treatments, then the $\mathbf{B B}$ design may be considered as a trivial example of a PBB design based on a certain association scheme of v treatments.

Finally, we will review the construction of a PBB design from a structural point of view. As indicated in Sections 1 and 12, a PBB design with m associate classes, whose association matrices are $A_{0}, A_{1}, \ldots, A_{m}$, is given by an incidence matrix $N=\left\|n_{i j}\right\|$ such that

$$
\begin{align*}
C & =\operatorname{diag}\left\{r_{1}, \ldots, r_{v}\right\}-N \operatorname{diag}\left\{k_{1}^{-1}, \ldots, k_{b}^{-1}\right\} N^{\prime} \\
& =a_{0} A_{0}+a_{1} A_{1}+\cdots+a_{m} A_{m}, \\
a_{0} & +a_{1} n_{1}+\cdots+a_{m} n_{m}=0, \tag{15.2}\\
a_{0} & =\left(\sum_{i=1}^{v} r_{i}-b\right) / v, \quad \text { and } \\
a_{i} & \leqq 0, \quad i=1,2, \ldots, m .
\end{align*}
$$

As an element-wise representation, we have that

$$
\begin{equation*}
\frac{n_{i 1}}{k_{1}}+\frac{n_{i 2}}{k_{2}}+\cdots+\frac{n_{i b}}{k_{b}}=r_{i}-a_{0} \tag{15.3}
\end{equation*}
$$

for all $i=1,2, \ldots, v$, and

$$
\begin{equation*}
\frac{n_{p 1} n_{q 1}}{k_{1}}+\frac{n_{p 2} n_{q 2}}{k_{2}}+\cdots+\frac{n_{p b} n_{q b}}{k_{b}}=-a_{i} \tag{15.4}
\end{equation*}
$$

for all $p, q(p \neq q)=1,2, \ldots, v$, provided the p th and q th treatments are i th associates. Conditions (15.3) and (15.4) with (15.2) are very useful when we want to construct PBB designs by trial and error.

16. μ-resolvability of BB designs and PBB designs

It may be known that the resolvable solutions of a BIB design or a PBIB
design are useful to the analysis of incomplete block designs and to constructions of other combinatorial arrangements. In a similar sense, it is conceivable that if the concept similar to the resolvability of a BIB design introduced by Bose [5] is defined in an incomplete block design with unequal block sizes, then such a resolvable solution generating the block design may be useful. In this section we shall consider the only combinatorial aspects of incomplete block designs with the concept of resolvability.

Definition: A block design is called ($\mu_{1}, \mu_{2}, \ldots, \mu_{t}$)-resolvable if the blocks can be separated into $t(\geqq 2)$ sets of $m_{i}(\geqq 1)$ blocks such that the set consisting of m_{i} blocks contains every treatment exactly μ_{i} times ($i=1,2, \ldots, t$).

For a ($\mu_{1}, \mu_{2}, \ldots, \mu_{t}$)-resolvable block design, we necessarily have

$$
\begin{aligned}
& b=m_{1}+m_{2}+\cdots+m_{t}, \\
& r=\mu_{1}+\mu_{2}+\cdots+\mu_{t},
\end{aligned}
$$

and hence the block design is equireplicate. When $\mu_{1}=\mu_{2}=\cdots=\mu_{t}$ ($=\mu$, say), it is called μ-resolvable for $\mu \geqq 1$ and hence $r=\mu t$ which is a necessary condition for the existence of a μ-resolvable incomplete block design. In this case, if the block design has equal block sizes, then it corresponds to the definition of μ resolvability of a BIB design introduced by Shrikhande and Raghavarao [51]. A 1-resolvable block design may be simply called resolvable.

First, we will treat the resolvability of a BB design. Some examples are given as follows.

Example 16.1. A 3-resolvable BB design with parameters $v=5, b=15$, $r=9, k_{j}=2,3$ or $4, \mu=3$ and $m_{1}=m_{2}=m_{3}=5$, whose incidence matrix is given by

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	r_{i}
1	0	0	1	1	1	1	1	0	1	0	1	1	1	0	0	9
2	1	1	1	0	0	0	0	1	1	1	1	1	1	0	0	9
3	1	1	1	0	0	1	1	0	1	0	0	0	1	1	1	9
4	1	1	0	1	0	1	1	1	0	0	1	1	0	1	0	9
5	1	1	0	0	1	1	1	0	0	1	1	1	0	0	1	9
k_{j}	4	4	3	2	2	4	4	2	3	2	4	4	3	2	2	45

$$
C=\frac{15}{2}\left(I_{5}-\frac{1}{5} G_{5}\right) .
$$

Example 16.2 (cf. [20]). A (4, 2, 2)-resolvable BB design with parameters $v=6, b=18, r=8, k_{j}=2$ or $4, \mu_{1}=4, \mu_{2}=\mu_{3}=2$ and $m_{1}=m_{2}=m_{3}=6$, whose incidence matrix is given by

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	r_{i}
1	0	0	1	1	1	1	1	1	0	0	0	0	1	1	0	0	0	0	8
2	1	1	0	0	1	1	1	0	1	0	0	0	0	0	1	1	0	0	8
3	1	1	1	1	0	0	0	1	1	0	0	0	0	0	0	0	1	1	8
4	1	1	1	1	0	0	0	0	0	1	1	0	1	0	1	0	0	0	8
5	1	1	0	0	1	1	0	0	0	1	0	1	0	1	0	0	1	0	8
6	0	0	1	1	1	1	0	0	0	0	1	1	0	0	0	1	0	1	8
k_{j}	4	4	4	4	4	4	2	2	2	2	2	2	2	2	2	2	2	2	48

$C=6\left(I_{6}-\frac{1}{6} G_{6}\right)$.
Combining the 2 nd and 3 rd sets leads to a 4 -resolvable BB design with $m_{1}=6$ and $m_{2}=12$.

Concerning the construction of these block designs, we have
Theorem 16.1. When there are two resolvable BIB designs $N_{i}(i=1,2)$ with a common treatment number and different block sizes, the matrix

$$
\left[N_{1}: N_{2}\right]
$$

is a resolvable $\mathbf{B B}$ design.
Theorem 16.2. When there exists a resolvable BIB design N, the matrices

$$
\left[N: I_{v}\right] \text { and }\left[N: E_{v \times l}\right] \text { for } l \geqq 1
$$

are resolvable $\mathbf{B B}$ designs.
Note that a slight modification of these Theorems leads to μ-resolvable BB designs for $\mu \geqq 1$, and that even if BIB designs in Theorems 16.1 and 16.2 are replaced by BB designs, the two Theorems remain valid. Since there are practically μ-resolvable solutions of many BIB designs (cf. [24;26;51]), we can obtain many μ-resolvable BB designs for $\mu \geqq 1$. Furthermore, Theorem 14.1 leads to ($\mu_{1}, \mu_{2}, \ldots, \mu_{t}$)-resolvable BB designs.

Next, we will treat the resolvability of PBB designs. Some examples are given as follows.

Example 16.3. A PBB design in Example 15.1 is a resolvable design with
parameters $v=s_{1} s_{2} s_{3}, b=s_{1}+1, r=2, k_{j}=s_{2} s_{3}$ or $s_{1} s_{2} s_{3}, \mu=1, m_{1}=s_{1}$ and $m_{2}=1$.
Example 16.4. A PBB design in Example 15.2 is a resolvable design with parameters $v=2 v_{2} v_{3}, b=v_{2} v_{3}+2, r=2, k_{j}=v_{2} v_{3}$ or $2, \mu=1, m_{1}=2$ and $m_{2}=$ $v_{2} v_{3}$.

Further examples will be seen in the subsequent sections. Corresponding to Theorems 16.1, 16.2 and the remarks pointed out there, methods of constructing $\left(\mu_{1}, \mu_{2}, \ldots, \mu_{t}\right)$-resolvable PBB designs are given after a slight modification of Theorems 16.1 and 16.2 by referring to Section 15 .

It should be noted that as mentioned in Section 15, if there exists a resolvable PBIB design with parameters $v=m n, b, r, k, \lambda_{1}=0$ and $\lambda_{2}=1$, based on an N_{2} type association scheme, then, by adding m new sets corresponding to the groups of the association scheme, we can get a resolvable PBB design provided $k \neq n$. This idea may be useful to constructions of these μ-resolvable PBB designs.

17. Reductions for the number of associate classes for PBB designs

Discussions concerning the reductions of the number of associate classes for a PBIB design based on a certain association scheme have appeared in Parts I and II. In this section, we shall deal with the reductions of the number of associate classes for a PBB design based on an association scheme.

In a PBB design N with m associate classes, where

$$
\begin{aligned}
C & =D_{r}-N D_{k}^{-1} N^{\prime} \\
& =\rho_{1} A_{1}^{\#}+\rho_{2} A_{2}^{\#}+\cdots+\rho_{m} A_{m}^{\#},
\end{aligned}
$$

if some ρ_{i} 's coincide, then C may be written as, for example,

$$
\begin{equation*}
C=\rho_{1} A_{1}^{\#}+\cdots+\rho_{l}\left(A_{l}^{\#}+A_{l+1}^{\#}+\cdots+A_{m}^{\#}\right) . \tag{17.1}
\end{equation*}
$$

In this case, the PBB design may be considered as m_{1} associate classes for a positive integer m_{1} such that $l \leqq m_{1} \leqq m$. However, (17.1) does not express completely a criterion to determine which associate classes should be combined. An answer about those criteria will be given.

As already shown in Section 12, when there exists a PBB design N with m associate classes with association matrices $A_{0}, A_{1}, \ldots, A_{m}$, we can write the C matrix of N as

$$
\begin{align*}
C & =D_{r}-N D_{k}^{-1} N^{\prime} \\
& =\rho_{1} A_{1}^{\#}+\rho_{2} A_{2}^{\#}+\cdots+\rho_{m} A_{m}^{\#} \tag{17.2}\\
& =a_{0} A_{0}+a_{1} A_{1}+\cdots+a_{m} A_{m}, \tag{17.3}
\end{align*}
$$

where $a_{0}=\left(\sum_{i=1}^{v} r_{i}-b\right) / v, a_{i} \leqq 0(i=1,2, \ldots, m)$ and $a_{0}+a_{1} n_{1}+\cdots+a_{m} n_{m}=0$. In this case, for the reductions of associate classes we have

Criterion: Combine first those associate classes such that the corresponding coefficients a_{i} in (17.3) have the same value. The subsequent procedures are all the same as those for a PBIB design with m associate classes. Thus, these a_{i} and coincidence numbers λ_{i} of a PBIB design play the almost same role for reductions. Finally, combine the mutually orthogonal idempotents A_{i}^{\sharp} suitably.

Remark. (i) When the a_{i} 's are all distinct, even if an association scheme itself is reducible, the PBB design based on the association scheme is not reducible. (ii) In (17.2), the suffices j of ρ_{j} in the equality relations among coefficients ρ_{j} may mean the numbers j of combining which mutually orthogonal idempotents $A_{j}^{\#}$ corresponding to combinations of associate classes. However, the suffices in equality relations among coefficients ρ_{j} in (17.2) do not always coincide with those of a_{i} in (17.3).

Some examples explain this criterion for reductions.
Example 17.1 (cf. [19]). Consider a resolvable PBB design with parameters $v=6, b=5, r=2, k_{j}=2$ or 3 , based on the F_{2} type association scheme of $v=2 \times 3$ treatments, whose incidence matrix is given by

$$
\begin{aligned}
& A_{00}=I_{6}, \quad A_{01}=I_{2} \otimes\left(G_{3}-I_{3}\right), \quad A_{10}=\left(G_{2}-I_{2}\right) \otimes I_{3}, \\
& A_{11}=\left(G_{2}-I_{2}\right) \otimes\left(G_{3}-I_{3}\right), \\
& A_{00}^{*}=\frac{1}{6}\left(A_{00}+A_{01}+A_{10}+A_{11}\right) \text {, } \\
& A_{01}^{*}=\frac{1}{6}\left(2 A_{00}-A_{01}+2 A_{10}-A_{11}\right),
\end{aligned}
$$

$$
\begin{aligned}
& A_{10}^{\#}=\frac{1}{6}\left(A_{00}+A_{01}-A_{10}-A_{11}\right), \\
& A_{11}^{\#}=\frac{1}{6}\left(2 A_{00}-A_{01}-2 A_{10}+A_{11}\right) .
\end{aligned}
$$

Then

$$
\begin{aligned}
C & =A_{01}^{*}+A_{10}^{*}+2 A_{11}^{*} \\
& =\frac{7}{6} A_{00}-\frac{1}{3} A_{01}-\frac{1}{2} A_{10} .
\end{aligned}
$$

Since $a_{1}=-\frac{1}{3} \neq a_{2}=-\frac{1}{2}$, this design is not reducible, though $\rho_{1}=\rho_{2}=1$.
Example 17.2. Consider a resolvable PBB design with parameters $v=6$, $b=3, r=2, k_{j}=3$ or 6 , based on the F_{2} type association scheme of $v=2 \times 3$ treatments, whose incidence matrix is given by

	1	2	3	r_{i}
1	1	0	1	2
2	1	0	1	2
3	1	0	1	2
4	0	1	1	2
5	0	1	1	2
6	0	1	1	2
k_{j}	3	3	6	12

Then

$$
\begin{align*}
C & =2 A_{01}^{*}+A_{10}^{*}+2 A_{11}^{\#} \tag{17.4}\\
& =\frac{3}{2} A_{00}-\frac{1}{2} A_{01}-\frac{1}{6} A_{10}-\frac{1}{6} A_{11} .
\end{align*}
$$

Since $a_{2}=a_{3}=-\frac{1}{6}$, by combining 2nd and 3rd associate classes, the PBB design based on the F_{2} type association scheme is reducible to a PBB design based on an N_{2} type association scheme by referring to Section 9. Furthermore, $\rho_{1}=\rho_{3}=2$ implies a combination $A_{01}^{*}+A_{11}^{*}$ of mutually orthogonal idempotents. That is, for an N_{2} type association scheme of $v=2 \times 3$ treatments with association matrices B_{0}, B_{1} and B_{2},

$$
\begin{aligned}
& B_{0}=I_{6}, \quad B_{1}=I_{2} \otimes\left(G_{3}-I_{3}\right), \\
& B_{2}=\left(G_{2}-I_{2}\right) \otimes G_{3}, \\
& B_{0}^{\sharp}=\frac{1}{6} G_{6}, \quad B_{1}^{\sharp}=\frac{1}{6}\left(B_{0}+B_{1}-B_{2}\right), \\
& B_{2}^{*}=\frac{1}{3}\left(2 B_{0}-B_{1}\right) .
\end{aligned}
$$

Then letting $B_{0}=A_{00}, B_{1}=A_{01}$ and $B_{2}=A_{10}+A_{11}$, we have

$$
B_{0}^{\#}=A_{00}^{\#}, \quad B_{11}^{\#}=A_{10}^{\#}, \quad B_{2}^{\#}=A_{01}^{\#}+A_{11}^{\#} .
$$

In this case (17.4) becomes

$$
\begin{aligned}
C & =B_{1}^{\sharp}+2 B_{2}^{\sharp} \\
& =\frac{3}{2} B_{0}-\frac{1}{2} B_{1}-\frac{1}{6} B_{2}
\end{aligned}
$$

which imply that the original PBB design is reducible to a PBB design based on an N_{2} type association scheme.

Remark. For a resolvable PBB design based on the F_{2} type association scheme of $v=2 \times 3$ treatments whose incidence matrix is given by

	1	2	3	4	r_{i}		
1	1	0	0	1	2		
2	0	1	0	1	2		
3	0	0	1	1	2		
4	1	0	0	1	2		
5	0	1	0	1	2		
6	0	0	1	1	2		
k_{j}	2	2	2	6	12	\quad	$\quad=\frac{4}{3} A_{00}-\frac{1}{6} A_{01}-\frac{2}{3} A_{10}-\frac{1}{6} A_{11}^{*}+2 A_{10}^{\#}+2 A_{11}^{\#}$,
:---							

since it follows that $a_{1}=a_{3}=-\frac{1}{6}$ and $\rho_{2}=\rho_{3}=2$, we can make an argument similar to Example 17.2.

Example 17.3. Similarly to Example 15.1, consider a PBB design based on the N_{3} type association scheme of $v=s_{1} s_{2} s_{3}$ treatments whose incidence matrix is given by

$$
\left[I_{s_{1}} \otimes E_{s_{2} s_{3} \times 1}: E_{v \times 1}\right]
$$

Then

$$
\begin{aligned}
C & =A_{1}^{\#}+2 A_{2}^{\#}+2 A_{3}^{\#} \\
& =\left(2-\frac{s_{1}+1}{s_{1} s_{2} s_{3}}\right) A_{0}-\frac{s_{1}+1}{s_{1} s_{2} s_{3}}\left(A_{1}+A_{2}\right)-\frac{1}{s_{1} s_{2} s_{3}} A_{3} .
\end{aligned}
$$

Let $s_{1}=u_{1}$ and $s_{2} s_{3}=u_{2}$. From $a_{1}=a_{2}=-\left(s_{1}+1\right) / v$ and an argument in Section 7, by combining 1st and 2nd associate classes the PBB design based on the N_{3} type association scheme is reducible to a PBB design based on an N_{2} type association scheme of $v=s_{1} s_{2} s_{3}=u_{1} u_{2}$ treatments with association matrices B_{0}, B_{1} and B_{2}. Furthermore, $\rho_{2}=\rho_{3}=2$ implies a combination $A_{2}^{\#}+A_{3}^{\#}$ of mutually orthogonal idempotents. That is, the correspondence is as follows:

$$
\begin{aligned}
& B_{0}=A_{0}, \quad B_{1}=I_{u_{1}} \otimes\left(G_{u_{2}}-I_{u_{2}}\right)=A_{1}+A_{2}, \quad B_{2}=A_{3}, \\
& B_{0}^{\#}=A_{0}^{\#}, \quad B_{1}^{\#}=\left(I_{u_{1}}-\frac{1}{u_{1}} G_{u_{1}}\right) \otimes \frac{1}{u_{2}} G_{u_{2}}=A_{1}^{\#} \quad \text { and } \\
& B_{2}^{\#}=I_{u_{1}} \otimes\left(I_{u_{2}}-\frac{1}{u_{2}} G_{u_{2}}\right)=A_{2}^{\#}+A_{3}^{\#} .
\end{aligned}
$$

Example 17.4. Similarly to Example 15.2, consider a PBB design based on the F_{3} type association scheme of $v=2 v_{2} v_{3}$ treatments whose incidence matrix is given by

$$
\left[I_{2} \otimes E_{v_{2} v_{3} \times 1}: E_{2 \times 1} \otimes I_{v_{2} v_{3}}\right]
$$

Then

$$
\begin{aligned}
C & =A_{001}^{*}+A_{010}^{*}+A_{011}^{*}+A_{100}^{*}+2\left(A_{101}^{*}+A_{110}^{*}+A_{111}^{*}\right) \\
& =\left(\frac{3}{2}-\frac{1}{v_{2} v_{3}}\right) A_{000}-\frac{1}{v_{2} v_{3}}\left(A_{001}+A_{010}+A_{011}\right)-\frac{1}{2} A_{100} .
\end{aligned}
$$

Let $u=v_{2} v_{3}$. From an argument in Section 6 and $a_{1}=a_{2}=a_{3}=-1 / v_{2} v_{3}, a_{5}=$ $a_{6}=a_{7}=0$, by combining 1st, 2nd and 3rd associate classes, and combining 5th, 6th and 7th associate classes, the PBB design based on the F_{3} type association scheme is reducible to a PBB design based on an F_{2} type association scheme of $v=2 u$ treatments. Furthermore, $\rho_{1}=\rho_{2}=\rho_{3}=1$ and $\rho_{5}=\rho_{6}=\rho_{7}=2$ imply combinations $A_{001}^{*}+A_{010}^{*}+A_{011}^{*}$ and $A_{101}^{*}+A_{10}^{*}+A_{111}^{*}$ of mutually orthogonal idempotents.

Finally, note that from sub-Section 10.3 and a PBB design based on the rectangular lattice type association scheme of 4×3 treatments given in Section 15, we can make an argument similar to the above Examples.

18. Inequalities for incomplete block designs

Since a BB design with the equal block size is a BIB design (Theorem 13.1), we shall deal with a BB design with unequal block sizes in this section. An inequality, $b \geqq v$, obtained for a BIB design by Fisher [15] holds for an equireplicate BB design with unequal block sizes. This result was first presented by Atiqullah [3] and a simple proof was given by Raghavarao [43]. Bhaskararao [4] proved that the equality sign in $b \geqq v$ holds when and only when the design is a symmetrical BIB design. Raghavarao (cf. [43;45]) also showed that for a μ-resolvable equireplicate BB design an inequality $b \geqq v+t-1$ holds, which is also given for a μ-resolvable BIB design by Kageyama [26]. The last inequality above is an important necessary condition for the existence of a μ-resolvable BB design.

If the restriction of an equi-replication in a BB design is violated, then these arguments are not valid as will now be shown by the following examples of un-equal-replicate BB designs.

Example 18.1. A BB design with parameters $v=5, b=6, r_{i}=3$ or $4, k_{j}=2$ or 4 given in Example 14.2. In this design, $v=5<b=6$.

Example 18.2. A BB design with parameters $v=3, b=3, r_{i}=1$ or $2, k_{j}=1$ or 3, whose incidence matrix is given by

	1	2	3	r_{i}
1	1	0	0	1
2	1	1	0	2
3	1	0	1	2

Example 18.3. A BB design with parameters $v=4, b=3, r_{i}=1$ or $2, k_{j}=1$ or 4 , whose incidence matrix is given by

	1	2	3	r_{i}
1	1	0	0	1
2	1	0	0	1
3	1	1	0	2
4	1	0	1	2
k_{j}	4	1	1	6

$$
C=I_{4}-\frac{1}{4} G_{4} .
$$

On the other hand, for a PBB design the inequality $b \geqq v$ does not necessarily hold as will be seen from the following examples.

Example 18.4. A resolvable equireplicate $\mathbf{P B B}$ design with parameters $v=6$, $b=5, r=2, k_{j}=2$ or 3 given in Example 17.1 does not satisfy the inequality $b \geqq v$.

Example 18.5. An unequal-replicate PBB design with parameters $v=6$, $b=5, r_{i}=2$ or $3, k_{j}=1,3$ or 6 , based on the N_{2} type association scheme of $v=2 \times 3$ treatments, whose incidence matrix is given by

	1	2	3	4	5	r_{i}
1	1	0	1	0	1	3
2	1	0	0	1	1	3
3	1	0	0	0	1	2
4	0	1	0	0	1	2
5	0	1	0	0	1	2
6	0	1	0	0	1	2
k_{j}	3	3	1	1	6	14

where $B_{i}^{\ddagger}(i=1,2)$ are mutually orthogonal idempotents described in Example 17.2 for an N_{2} type association scheme.

Example 18.6. A resolvable PBB design with parameters $v=6, b=6, r=3$, $k_{j}=2,3$ or 6 constructed from Corollary 14.2 and Example 18.4, whose incidence matrix is given by

	1	2	3	4	5	6	r_{i}
1	1	1	0	1	0	0	3
2	1	1	0	0	1	0	3
3	1	1	0	0	0	1	3
4	1	0	1	1	0	0	3
5	1	0	1	0	1	0	3
6	1	0	1	0	0	1	3
k_{j}	6	3	3	2	2	2	18
$C=2 A_{01}^{*}+2 A_{10}^{*}+3 A_{11}^{*}$.							

Since an unequal-replicate PBB design with unequal block sizes satisfying $b>v$ can be easily constructed, it is omitted here. Note that for a symmetrical unequal-block arrangement of two block sizes, which is a special case of PBB designs as mentioned in Section 15, the inequality $b>v$ holds (cf. [44]).

In a μ-resolvable equireplicate BB design, when $\mu=1$ we can easily get examples of resolvable equireplicate BB designs satisfying $b \geqq v+r-1$ from Theorems 16.1 and 16.2. In particular, as a resolvable equireplicate BB design satisfying $b=v+r-1$, we have, for example, the designs constructed by adding a block consisting of all elements unity to the blocks of an affine resolvable BIB design (cf. [5; 26]). When $\mu \geqq 2$, the inequality $b \geqq v+t-1$ holds and we can construct μ-resolvable BB designs satisfying $b>v+t-1$ from remarks in Section 16. We can also construct μ-resolvable BB designs ($\mu \geqq 2$) satisfying $b=v+t$, but we have failed to construct a μ-resolvable BB design with unequal block sizes satisfying $b=v+t-1$ for a positive integer $\mu \geqq 2$.

Kageyama [22; 27] has shown that for a resolvable BIB design with parameters $v=m k, b, r, k$ and λ, if $b>v+r-1$, then $b \geqq 2 v+r-2$. For almost all the resolvable equireplicate $\mathbf{B B}$ designs which can be constructed by the methods described in Part III, if $b>v+r-1$, then $b \geqq 2 v+r-2$ holds. We, however, cannot improve the inequality $b \geqq v+r-1$. In fact, there exists the following resolvable equireplicate BB design with unequal block sizes:

As a bound of replication numbers, r_{i}, in an unequal-replicate BB design and PBB design with unequal block sizes, we can obtain in both designs

$$
\begin{equation*}
\min _{1 \leqq i \leqq v} r_{i} \geqq \frac{\sum_{i=1}^{v} r_{i}-b}{v}+\frac{1}{k_{\max }} \tag{18.1}
\end{equation*}
$$

and

$$
\begin{equation*}
r_{i} \geqq \frac{1}{v}+\frac{n_{i 1}}{k_{1}}+\cdots+\frac{n_{i b}}{k_{b}} \tag{18.2}
\end{equation*}
$$

for all $i=1,2, \ldots, v$, where $k_{\max }=\max _{1 \leq i \leq b} k_{i}$ and $\left(n_{i 1}, \ldots, n_{i b}\right)$ is the i th row of an incidence matrix $N=\left\|n_{i j}\right\|$ of order $v \times b$ of a design.

Examples 18.2 and 18.3 attain the equality sign in (18.1). Though the righthand side of (18.2) depends on the suffix $i, i=1,2, \ldots, v$, that of (18.1) does not. In this point, the bound (18.1) is more suitable than (18.2). The bound (18.2), however, may be useful to construct a design by trial and error.

Remark. In a PBB design, (15.2) and (15.3) together imply (18.1) and (18.2). In a BB design, (12.3) and (14.9) together imply (18.1) and (18.2).

Finally, in particular, we shall consider inequalities to hold for the equireplicate PBB design based on an N_{2} type association scheme of $v=m n$ treatments. As shown in Section 7, $v(=m n)$ treatments are divided into m groups of n elements each, such that any two treatments in the same group are 1st associates and two treatments in different groups are 2nd associates. Then it is known (cf. [40]) that

$$
\begin{aligned}
& n_{1}=n-1, \quad n_{2}=n(m-1), \\
& A_{0}=I_{v}, \quad A_{1}=I_{m} \otimes G_{n}-I_{v}, \quad A_{2}=G_{v}-A_{0}-A_{1}, \\
& A_{0}^{\#}=\frac{1}{v}\left(A_{0}+A_{1}+A_{2}\right), \operatorname{tr} A_{0}^{\sharp}=1, \\
& A_{1}^{\sharp}=\frac{1}{v}\left\{(m-1)\left(A_{0}+A_{1}\right)-A_{2}\right\}, \operatorname{tr} A_{1}^{\sharp}=m-1, \\
& A_{2}^{\#}=\frac{1}{n}\left\{(n-1) A_{0}-A_{1}\right\}, \operatorname{tr} A_{2}^{\#}=m(n-1), \\
& A_{0}^{\#}+A_{1}^{\sharp}+A_{2}^{\sharp}=I_{v}, \\
& z_{01}=n_{1}=n-1, \quad z_{11}=n-1, \quad z_{21}=-1, \\
& z_{02}=n_{2}=n(m-1), \quad z_{12}=-n, \quad z_{22}=0 .
\end{aligned}
$$

Let N be the equireplicate PBB design with parameters $v, b, r, k_{j}(j=1$, $2, \ldots, b)$ based on an N_{2} type association scheme of $v=m n$ treatments. Then from (12.5), (12.6) and (18.3) we can write the C-matrix of N as

$$
\begin{align*}
C & =r I_{v}-N D_{k}^{-1} N^{\prime} \\
& =\rho_{1} A_{1}^{\#}+\rho_{2} A_{2}^{\#} \tag{18.4}\\
& =\{(v r-b) / v\} A_{0}+a_{1} A_{1}+a_{2} A_{2}, \tag{18.5}
\end{align*}
$$

where $D_{k}^{-1}=\operatorname{diag}\left\{k_{1}^{-1}, k_{2}^{-1}, \ldots, k_{b}^{-1}\right\}$ and $a_{i} \leqq 0(i=1,2) . \quad$ From (18.3) and (18.4) we obtain

$$
\begin{align*}
N D_{k}^{-1} N^{\prime} & =r A_{0}^{\#}+\left(r-\rho_{1}\right) A_{1}^{\#}+\left(r-\rho_{2}\right) A_{2}^{\#} \tag{18.6}\\
& \left(=\frac{\rho_{1}}{v} G_{v}+\left(r-\rho_{2}\right) I_{v}+\frac{\rho_{2}-\rho_{1}}{n}\left(I_{m} \otimes G_{n}\right)\right) .
\end{align*}
$$

Then its determinant is

$$
\begin{equation*}
\left|N D_{k}^{-1} N^{\prime}\right|=r\left(r-\rho_{1}\right)^{m-1}\left(r-\rho_{2}\right)^{m(n-1)} . \tag{18.7}
\end{equation*}
$$

Now for $D_{\sqrt{k}}^{-\frac{1}{k}}=\operatorname{diag}\left\{k_{1}^{-\frac{1}{2}}, k_{2}^{-\frac{1}{2}}, \ldots, k_{b}^{-\frac{1}{2}}\right\}$, since

$$
\begin{equation*}
N D_{k}^{-1} N^{\prime}=\left(N D_{\sqrt{k}}^{-\frac{1}{k}}\right)\left(N D_{\sqrt{k}}^{-\frac{1}{k}}\right)^{\prime}, \tag{18.8}
\end{equation*}
$$

which is a positive semi-definite matrix, we have

$$
\begin{equation*}
r-\rho_{i} \geqq 0, \quad i=1,2 . \tag{18.9}
\end{equation*}
$$

From (18.6), if $r-\rho_{1}=0$ and $r-\rho_{2}=0$ hold simultaneously, then the PBB design is reducible to a complete block design (i.e., $N=E_{v \times b}$) and vice versa. We shall therefore confine ourselves to the case in which $r-\rho_{1}=0$ and $r-\rho_{2}=0$ do not hold simultaneously. In this case, since we have from (18.8)

$$
\begin{equation*}
\operatorname{rank} N D_{k}^{-1} N^{\prime}=\operatorname{rank} N D_{\sqrt{k}}^{-\frac{1}{k}}=\operatorname{rank} N \leqq b \tag{18.10}
\end{equation*}
$$

we obtain from (18.3), (18.6), (18.7) and (18.9) the following
Theorem 18.1. For an equireplicate PBB design with parameters v, b, r, $k_{j}(j=1,2, \ldots, b)$ based on the N_{2} type association scheme of $v=m n$ treatments having (18.3) and (18.4), it holds that
(i) if $r-\rho_{1}>0$ and $r-\rho_{2}=0$, then $b \geqq m$;
(ii) if $r-\rho_{1}=0$ and $r-\rho_{2}>0$, then $b \geqq v-m+1$;
(iii) if $r-\rho_{1}>0$ and $r-\rho_{2}>0$, then $b \geqq v$.

If the design N is μ-resolvable, that is, the blocks can be separated into t sets of m_{i} blocks such that the set consisting of m_{i} blocks contains every treatment exactly μ times ($i=1,2, \ldots, t$), then

$$
\operatorname{rank} N D_{k}^{-1} N^{\prime}=\operatorname{rank} N D_{\sqrt{k}}^{-\frac{1}{k}}=\operatorname{rank} N \leqq b-t+1
$$

since in N the sum of the columns corresponding to each set must give a column consisting of μ 's. Thus not more than $b-t+1$ column vectors are independent.

Hence we have
Corollary 18.2. For a μ-resolvable equireplicate PBB design $(\mu \geqq 1)$ with parameters $v, b, r=\mu t, k_{j}(j=1,2, \ldots, b)$ based on the N_{2} type association scheme of $v=m n$ treatments having (18.3) and (18.4), it holds that
(i) if $r-\rho_{1}>0$ and $r-\rho_{2}=0$, then $b \geqq m+t-1$;
(ii) if $r-\rho_{1}=0$ and $r-\rho_{2}>0$, then $b \geqq v-m+t$;
(iii) if $r-\rho_{1}>0$ and $r-\rho_{2}>0$, then $b \geqq v+t-1$.

Remark. From Section 12, (18.3), (18.4) and (18.5) we have

$$
\begin{aligned}
& r=b / v-a_{1}(n-1)-a_{2} n(m-1) \\
& r-\rho_{1}=b / v-a_{1}(n-1)+a_{2} n \\
& r-\rho_{2}=b / v+a_{1}
\end{aligned}
$$

which lead to

$$
\rho_{1}=-a_{2} v \quad \text { and } \quad \rho_{1}-\rho_{2}=n\left(a_{1}-a_{2}\right) .
$$

Conditions (i), (ii) and (iii) in Corollary 18.2, respectively, may correspond to those of Singular, Semi-regular and Regular group divisible 2-associate PBIB designs (cf. [10; 45]).

Furthermore, the above argument can be easily applied to an equireplicate PBB design N with parameters $v, b, r, k_{j}(j=1,2, \ldots, b)$ based on an association scheme of m associate classes. By definition, we can write the C-matrix of N as

$$
\begin{align*}
C & =r I_{v}-N D_{k}^{-1} N^{\prime} \tag{18.11}\\
& =\rho_{1} A_{1}^{\sharp}+\rho_{2} A_{2}^{\sharp}+\cdots+\rho_{m} A_{m}^{\#},
\end{align*}
$$

which leads to

$$
\begin{equation*}
N D_{k}^{-1} N^{\prime}=r A_{0}^{\#}+\left(r-\rho_{1}\right) A_{1}^{\#}+\cdots+\left(r-\rho_{m}\right) A_{m}^{\#} . \tag{18.12}
\end{equation*}
$$

Then its determinant is

$$
\left|N D_{k}^{-1} N^{\prime}\right|=r\left(r-\rho_{1}\right)^{\alpha_{1}} \ldots\left(r-\rho_{m}\right)^{\alpha_{m}},
$$

where $\alpha_{i}=\operatorname{tr} A_{i}^{\#}, i=1,2, \ldots, m$. Therefore from (18.10) we have
Theorem 18.3. For an equireplicate PBB design with parameters v, b, r, $k_{j}(j=1,2, \ldots, b)$ based on an association scheme of m associate classes having
(18.11), the following inequality holds:

$$
b \geqq v-\sum_{i} \alpha_{i}
$$

where $\alpha_{i}=\operatorname{tr} A_{i}^{*}$ and the summation extends over all the integers i satisfying $r-$ $\rho_{i}=0, i=1,2, \ldots, m$. Furthermore, for a μ-resolvable equireplicate PBB design it holds that

$$
b \geqq v+t-\sum_{i} \alpha_{i}-1 .
$$

Remark. (i) From (18.11), if $r-\rho_{i}=0, i=1,2, \ldots, m$, hold simultaneously, then the PBB design is reducible to a complete block design (i.e., $N=E_{v \times b}$) and vice versa. (ii) If $r \neq \rho_{i}$ for all $i=1,2, \ldots, m$, then $b \geqq v$ holds. (iii) The first inequality in Theorem 18.3 may correspond to an inequality for a PBIB design obtained by Yamamoto and Fujii [59].

Moreover, from (18.8) and (18.12) we have
Theorem 18.4. For an equireplicate $\mathbf{P B B}$ design with parameters v, b, r, $k_{j}(j=1,2, \ldots, b)$ based on an association scheme of m associate classes having (18.11) in which $v>b$, it holds that

$$
r\left(r-\rho_{1}\right)^{\alpha_{1}} \ldots\left(r-\rho_{m}\right)^{\alpha_{m}}=0,
$$

so that r is equal to one of the ρ_{i} 's. Furthermore, when $v=b$, it is necessary that

$$
k_{1} k_{2} \ldots k_{b} r\left(r-\rho_{1}\right)^{\alpha_{1}} \ldots\left(r-\rho_{m}\right)^{\alpha_{m}}
$$

is a perfect square.
Concerning the above arguments, as a bound on the latent roots of the C matrix for a PBB design, we have

Theorem 18.5. For a PBB design N with parameters $v, b, r_{i}, k_{j}(i=1$, $2, \ldots, v ; j=1,2, \ldots, b)$ based on an association scheme of m associate classes, where

$$
\begin{aligned}
C & =D_{r}-N D_{k}^{-1} N^{\prime} \\
& =\rho_{1} A_{1}^{\#}+\rho_{2} A_{2}^{\#}+\cdots+\rho_{m} A_{m}^{\#},
\end{aligned}
$$

the following inequality holds:

$$
0<\rho_{l} \leqq \min _{1 \leqq i \leqq v} r_{i}, \quad l=1,2, \ldots, m .
$$

Proof. It is known (cf. [19]) that the C-matrix of the incomplete block
design is positive semi-definite. Hence we obtain $\rho_{l} \geqq 0$ for $l=0,1, \ldots, m$. From the definition of a PBB design $\rho_{0}=0$ and $\rho_{l}>0$ for $l=1,2, \ldots, m$. On the other hand, since C is a positive semi-definite matrix and $D_{r}^{-1}=\operatorname{diag}\left\{r_{1}^{-1}, r_{2}^{-1}, \ldots, r_{v}^{-1}\right\}$ is a positive definite matrix, we have from Corollary 2.2.1 in Anderson and Gupta [2]

$$
\begin{array}{r}
\frac{\rho_{l}}{\max _{1 \leqq i \leqq v} r_{i}} \leqq \operatorname{ch}_{l}\left(C D_{r}^{-1}\right) \leqq \frac{\rho_{l}}{\min _{1 \leqq i \leqq v} r_{i}} \\
l=0,1, \ldots, v-1
\end{array}
$$

where $c h_{l}\left(C D_{r}^{-1}\right)$ for any $l(0 \leqq l \leqq v-1)$ are the latent roots of $C D_{r}^{-1}$, which imply

$$
\frac{\rho_{l}}{\min _{1 \leqq i \leqq v} r_{i}} \leqq \frac{\left(\max _{1 \leqq i \leqq v} r_{i}\right) \operatorname{ch}_{l}\left(C D_{r}^{-1}\right)}{\min _{1 \leqq i \leqq v} r_{i}} \leqq \frac{\max _{1 \leqq i \leqq v} r_{i}}{\min _{1 \leqq i \leqq v} r_{i}} \leqq 1,
$$

since it is known (cf. [60]) that $0 \leqq c h_{l}\left(C D_{r}^{-1}\right) \leqq 1$ for $l=0,1, \ldots, v-1$. Hence we obtain

$$
\rho_{l} \leqq \min _{1 \leqq i \leqq v} r_{i}, \quad l=0,1, \ldots, m \quad(\leqq v-1)
$$

Thus, we have the required result.
Some Examples in this paper attain the upper bound on the latent roots ρ_{l} in Theorem 18.5. For an equireplicate PBB design with replication number r, Theorem 18.5 leads to

$$
\begin{equation*}
0<\rho_{l} \leqq r, \quad l=1,2, \ldots, m \tag{18.13}
\end{equation*}
$$

which can be also derived from (18.8) and (18.12).
Note that when an equireplicate PBB design is a PBIB design, (18.13) leads to (1.9).

Acknowledgments

This work was partially supported by the Sakko-kai Foundation. The problem considered in Section 6 was kindly suggested by a referee of the previous paper [30]. I wish to express my thanks to Prof. Sumiyasu Yamamoto, Hiroshima University, and Prof. Goro Ishii, Osaka City University, for their valuable suggestions. I also wish to thank Prof. Masashi Okamoto, Osaka University, for his critical reading.

References

[1] Adhikary, B. (1966). Some types of m-associate PBIB association schemes. Calcutta Statist. Assoc. Bull. 15 47-74.
[2] Anderson, T. W. and Gupta, S. D. (1963). Some inequalities on characteristic roots of matrices. Biometrika 50 522-524.
[3] Atiqullah, M. (1961). On a property of balanced designs. Biometrika 48 215-218.
[4] Bhaskararao, M. (1966). A note on equireplicate balanced designs with $b=v$. Calcutta Statist. Assoc. Bull. 15 43-44.
[5] Bose, R. C. (1942) . A note on the resolvability of balanced incomplete block designs. Sankhyā 6 105-110.
[6] Bose, R. C. (1950). Least Squares Aspects of Analysis of Variance. Institute of Statistics, University of North Carolina.
[7] Bose, R. C. and Clatworthy, W. H. (1955). Some classes of partially balanced designs. Ann. Math. Statist. 26 212-232.
[8] Bose, R. C. and Mesner, D. M. (1959). On linear associative algebras corresponding to association schemes of partially balanced designs. Ann. Math. Statist. 30 21-38.
[9] Bose, R. C. and Nair, K. R. (1939). Partially balanced incomplete block designs. Sankhyā 4337-372.
[10] Bose, R. C. and Shimamoto, T. (1952). Classification and analysis of partially balanced incomplete block designs with two associate classes. J. Amer. Statist. Assoc. 47 151-184.
[11] Bose, R. C. and Shrikhande, S. S. (1960). On the construction of sets of pairwise orthogonal Latin squares and the falsity of a conjecture of Euler. Trans. Amer. Math. Soc. 95 191-209.
[12] Chakrabarti, M. C. (1962). Mathematics of Design and Analysis of Experiments. Asia Publishing House, Bombay.
[13] Clatworthy, W. H. and Lewyckyj, R. J. (1968). Comments on Takeuchi's table of difference sets generating balanced incomplete block designs. Rev. Inst. Internat. Statist. 36 12-18.
[14] Enomoto, H. (1974). Personal communication.
[15] Fisher, R. A. (1940). An examination of the different possible solutions of a problem in incomplete blocks. Ann. Eugen. 10 52-75.
[16] Hinkelmann, K. (1964). Extended group divisible partially balanced incomplete block designs. Ann. Math. Statist. 35 681-695.
[17] Hinkelmann, K. and Kempthorne, O. (1963). Two classes of group divisible partial diallel crosses. Biometrika 50 281-291.
[18] Ishii, G. (1963). On the analysis of PBBD and BBD (in Japanese). Seminar Reports of Osaka Statistical Association 7 221-232.
[19] Ishii, G. (1972). The Design of Experiments: Theory of Allcations (in Japanese). Baihūkan.
[20] Ishii, G. and Ogawa, J. (1965). On the analysis of balanced and partially balanced block designs. Osaka City Univ. Business Review 81 1-31.
[21] John, P. W. M. (1964). Balanced designs with unequal numbers of replicates. Ann. Math. Statist. 35 897-899.
[22] Kageyama, S. (1971). An improved inequality for balanced incomplete block designs. Ann. Math. Statist. 42 1448-1449.
[23] Kageyama, S. (1972). On the reduction of associate classes for certain PBIB designs. Ann. Math. Statist. 43 1528-1540.
[24] Kageyama, S. (1972). A survey of resolvable solutions of balanced incomplete block designs. Internat. Statist. Rev. 40 269-273.
[25] Kageyama, S. (1972). Note on Takeuchi's table of difference sets generating balanced incomplete block designs. Internat. Statist. Rev. 40 275-276.
[26] Kageyama, S. (1973). On μ-resolvable and affine μ-resolvable balanced incomplete block designs. Ann. Statist. 1 195-203.
[27] Kageyama, S. (1973). On the inequality for BIBDs with special parameters. Ann. Statist. 1 204-207.
[28] Kageyama, S. (1974). Note on the reduction of associate classes for PBIB designs. Ann. Inst. Statist. Math. 26 163-170.
[29] Kageyama, S. (1974). On the incomplete block designs derivable from the association schemes. J. Combinatorial Theory (A) 17 269-272.
[30] Kageyama, S. (1974). On the reduction of associate classes for the PBIB design of a certain generalized type. Ann. Statist. 2, No. 6.
[31] Kempthorne, O. (1952). The Design and Analysis of Experiments. Wiley, New York.
[32] Kishen, K. (1940-1941). Symmetrical unequal block arrangements. Sankhyā 5 329344.
[33] Kulshreshtha, A. C., Dey, A. and Saha, G. M. (1972). Balanced designs with unequal replications and unequal block sizes. Ann. Math. Statist. 43 1342-1345.
[34] Kusumoto, K. (1965). Hypercubic designs. Wakayama Medical Reports 9 123-132.
[35] Nair, C. R. (1964). The impossibility of certain PBIB designs. Calcutta Statist. Assoc. Bull. 13 87-88.
[36] Nair, K. R. (1950). Partially balanced incomplete block designs involving only two replication. Calcutta Statist. Assoc. Bull. 3 83-86.
[37] Nair, K. R. (1951). Rectangular lattices and partially balanced incomplete block designs. Biometrics 7 145-154.
[38] Nair, K. R. and Rao, C. R. (1942). A note on partially balanced incomplete block designs. Science and Culture 7 568-569.
[39] Nandi, H. K. and Adhikary, B. (1965). m-associate cyclical association schemes. Essays in Probability and Statistics, S. N. Roy memorial volume, Univ. of North Carolina.
[40] Ogawa, J. (1961). On a unified method of deriving necessary conditions for existence of symmetrical partially balanced incomplete block designs of certain types. Bull. Inst. Internat. Statist. 38 43-57.
[41] Okuno, C. and Okuno, T. (1961). On the construction of a class of partially balanced incomplete block designs by calculus of blocks. Rep. Stat. Appl. Res., JUSE 8 113-139.
[42] Raghavarao, D. (1960). A generalization of group divisible designs. Ann. Math. Statist. 31 756-771.
[43] Raghavarao, D. (1962). On balanced unequal block designs. Biometrika 49 561562.
[44] Raghavarao, D. (1962). Symmetrical unequal block arrangements with two unequal block sizes. Ann. Math. Statist. 33 620-633.
[45] Raghavarao, D. (1971). Constructions and Combinatorial Problems in Design of Experiments. Wiley, New York.
[46] Raghavarao, D. and Chandrasekharao, K. (1964). Cubic designs. Ann. Math. Statist. 35 389-397.
[47] Rao, V. R. (1958). A note on balanced designs. Ann. Math. Statist. 29 290-294.
[48] Roy, P. M. (1962). On the properties and construction of HGD designs with m-associate classes. Calcutta Statist. Assoc. Bull. 11 10-38.
[49] Shrikhande, S. S. (1959b). The uniqueness of the L_{2} association scheme. Ann. Math. Statist. 30 781-798.
[50] Shrikhande, S. S. (1962). On a two-parameter family of balanced incomplete block designs. Sankhyā 24 33-40.
[51] Shrikhande, S. S. and Raghavarao, D. (1963). Affine α-resolvable incomplete block designs. Contributions to Statistics. Presented to Prof. P. C. Mahalanobis on the occasion of his 70th birthday. Pergamon Press, pp. 471-480.
[52] Sillitto, G. P. (1957). An extension property of a class of balanced incomplete block designs. Biometrika 44 278-279.
[53] Sillitto, G. P. (1964). Note on Takeuchi's table of difference sets generating balanced incomplete block designs. Rev. Inst. Internat. Statist. 32251.
[54] Surendran, P. U. (1968). Association matrices and the Kronecker product of designs. Ann. Math. Statist. 39 676-680.
[55] Takeuchi, K. (1962). A table of difference sets generating balanced incomplete block designs. Rev. Inst. Internat. Statist. 30 361-366.
[56] Tharthare, S. K. (1963). Right angular designs. Ann. Math. Statist. 34 1057-1067.
[57] Tharthare, S. K. (1965). Generalized right angular designs. Ann. Math. Statist. 36 1535-1553.
[58] Vartak, M. N. (1955). On an application of Kronecker product of matrices to statistical designs. Ann. Math. Statist. 26 420-438.
[59] Yamamoto, S. and Fujii, Y. (1963). Analysis of partially balanced incomplete block designs. J. Sci. Hiroshima Univ. Ser. A-I 27 119-135.
[60] Yamamoto, S. and Fujikoshi, Y. (1968). Two-way classification designs with unequal cell frequencies. J. Sci. Hiroshima Univ. Ser. A-I 32 357-370
[61] Yamamoto, S., Fujii, Y. and Hamada, N. (1965). Composition of some series of association algebras. J. Sci. Hiroshima Univ. Ser. A-I 29 181-215.
[62] Yates, F. (1936). Incomplete randomized blocks. Ann. Eugen. 7 121-140.

> Department of Applied Mathematics,
> Faculty of Engineering Science, Osaka University, Toyonaka, Osaka

[^0]: *) After writing this paper we came to know that Theorem 14.1 was shown in a different expression by A. Hedayat and W.T. Federer (Pairwise and variance balanced incomplete block designs. To appear in Ann. Inst. Statist. Math.).

