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Let (M,g) be an n-dimensional Riemannian manifold with fundamental
metric tensor g (n>2) and R be the curvature tensor of type (0,4). Let Cand C,
be the Weyl conformal curvature tensor of type (0,4) and the so-called Weyl
3-index tensor, respectively. As usual, a Riemannian manifold is said to be
flat or of constant curvature according as the sectional curvature is identically
zero or constant, and to be conformally flat if it is locally conformally diffeomor-
phic to a Euclidean space. A well-known theorem due to H. Weyl says that
(M, g) is conformally flat if and only if C=0 for n>3 and C,=0 for n=3. The
tensors R and C are typical examples of curvature structures of order two.

On the other hand, researches on curvature structures of higher order, e.g.
the g-th Gauss-Kronecker curvature tensor R4, have been developed by many
people. Especially, J. A. Thorpe [7] has considered the 2g-th sectional curvature
¥24» Which is defined for each even positive integer 2q <n, and studied relationships
between curvature properties and topological structures of the manifold. The
sectional curvature y,, is a curvature function corresponding to R?on the Grass-
mann bundle of 2g-planes tangent to the manifold, and coincides with the usual
sectional curvature if g=1. The higher order sectional curvatures are weaker
invariants of Riemannian structure than the usual sectional curvature.

Very recently, R. S. Kulkarni [4] has introduced an interesting double form
conw for a double form w, such as con R=C as a special case ®=R. He also
proved that con w has the same algebraic properties as the tensor C. It seems
natural to seek for generalizations of classical results (conformal invariants, the
theorem of Weyl etc.) on a conformal change of metric to the case of higher order,
by making use of the Gauss-Kronecker curvature tensors. This is the purpose
of the present work.

Section 1 is devoted to preliminary remarks. We shall recall definitions and
fundamental formulas related to curvature structures from a view-point of double
forms. In Section 2, we shall define a double form con,w as a generalization
of the Weyl 3-index tensor C, and obtain a new differential identity in Proposi-
tion 1. In Proposition 2, we shall give the conformal transformation formulas
of con R? and con, R4.

In this paper, a Riemannian manifold is said to be g-flat or of g-constant
curvature according as the 2q-th sectional curvature y,, is identically zero or con-
stant, and to be g-conformally flat if conR?=0 for n>4g—1 and cony, R2=0
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for n=4g—1. In Section 4, we shall be concerned with relationships among
these notions of higher order. The results in Theorems 1 and 2 are illustrated
in the following diagram associated with a sequence of the Gauss-Kronecker

curvature tensors {R*} (k'—‘l"-" q =[n+ 1]) :

4
1-flat ce > k-flat > oo > g-flat
' )
1-const. curvature « « -« -« k-const. curvature «« -« .- g-const. curvature

1-conformally flat —--- — k-conformally flat —--. — g-conformally flat,

where an arrow means implication from one to the next. (As for relations of
another type for constancy of higher order sectional curvatures, see [5] and
[7].) Furthermore, in Theorem 3 we shall state the conformal dependence of
the g-conformally flat metric on the g-flat metric. Theorem 3 is a generalization
of the theorem of Weyl. Examples of manifolds with or without some flatness
will be presented in Section 5.

We shall assume, throughout this paper, that all manifolds and all objects
are of differentiability class C*. For terminologies and notations, we generally
follow [4] and [7].

The author would like to thank Professor Y. Tashiro for his valuable com-
ments in preparing this paper.

1. Preliminaries

In this section, let us recall main facts on the calculus of double forms due to
A. Gray [2], R. S. Kulkarni [4] and O. Kowalski [3], for later use.
Let (M, g) be an n-dimensional smooth Riemannian manifold, (M) the ring
of smooth functions on M, and X(M) the Lie algebra of vector fields on M.
For simplicity, we denote the space of sections of a bundle by the same notation
as the bundle space. Let A*P be the bundle of p-forms and
A*¥ = Y A*rp

Osp=n
the bundle of differential forms on M. We put
DPa = A*¥PR A*4

and

where the tensor products are taken over F(M). We call an element w of Dr-1
a double form of type (p,q) on M. It is an F(M)-multilinear map
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w: X(MY x X(M)1— F(M),

which is skew-symmetric in the first p variables and also in the last g variables.
We shall use the notation

D(X1X5...X,@Y1V2.4. V)

to denote the value of w in the vector fields x,,..., x, and y,,..., y,. For con-
venience, we identify A*P with DP:© unless stated otherwise. Furthermore, we
call w a curvature structure of order p if p=q and we have

(X1 Xp @Y1 Yp) = O(¥1...Y,@%1... %)

for all xy,..., Xp, Y15..., ¥, € ¥(M), and denote the set of curvature structures of
order p by €¢. The metric tensor field g is a curvature structure of order one.
We put

C= Y GCr,

Ospsn

As de Rham has noted, it is possible to define the exterior product w A 6 of
two double forms w € D?+1 and 0 € D" by the formula

@A O)(X1-- Xpsr® 1Y)

1.1 = €,€,00(X 1)+ X (@
( ) pes,%:,') o'eShZ(q,s) (ad4 ( p(1) (1O Ya(1) yv(q))

X 0(Xpp+ 1) Xp(p+ry®Vaig+ 1) Yoig+s)
fOr X sy Xpups Viseees Vg s € X(M). Here, Sh(p, r) denotes the set of all (p, r)-
shuffles;
Sh(p,r) ={pe€Spsr;p(1) < --- < p(p) and p(p+1) < - <p(p+n)},

where S, , is the symmetric group of degree p+r. It is not difficult to show that
the multiplication A is associative and that we have

OAO =(—1)PHehAw

for we®DP:2 and e D"s. Thus, D forms a graded associative ring and in
particular € is a commutative subring of .

Let w* denote the k-th exterior power of w e €?. Then, by the formula (1.1)
we have

O* (X1 X @Y1 Vi)

1
(1.2) =(p!)2k , az SPSaQ)(xp(l)...xp(p)®ya(1).-.ya.(p))

eSpk

coe (X o= 1)+ 13 Xp(pky DV 5 p(k— 1) + 13+ Vo (pk))
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for any vector fields Xy,..., Xy, V1,...» Yo The inner product on the bundle
AP of p-vectors is defined by the formula

<Xy A AXp YA AY,> =det] <x;, p;>|

for any decomposable p-vectors x; A---Ax, and y; A--- Ay, Putting w=g in
(1.2), we see that it can be rewritten as follows;

1
(1.3) <X A AXp YPiAAY,> =Fg1’(x1...xp®yl...yp) .

Now, we introduce three basic operations on D.
(I) The first Bianchi sum S is a map of DP:? into DrP*t1.9-1 defined as
follows. For we ®?4, we put Sw=0 if ¢=0, and put

pt1 .
So(Xy...Xp4 1@ Y100 Vg-1) =j;l(—I)Jw(xl...jtj...xp+1®xjy1...yq_1)

if =1, where xy,..., X,11, Y15.-» Y4—1 € X¥(M) and the symbol ~ denotes omission.
(II) The second Bianchi sum D is a map of DP-2 into DP*1:? defined as
follows. For we DP9, we put

p+1 .
Doxxy..Xp41 ® Y1...Yy) = j;l(—l)J(ijw)(xl...xj...xl,H ® yi---Yg)>

where p denotes the covariant differentiation with respect to the metric g. We
remark that D coincides with —d on D?:9, where d is the exterior differential

operator.
(III) The contraction c is a map of DP:4 into DP~1.4971 defined as follows.
For we D74 with p=0 or g =0, we put co=0. If both p and g=1, then we put

C(Xy... Xy 1 @ Yy.eVgo1) = kgl o(eXy.. Xy 1 ® €Yy..-Vg-1)s

where {e,,..., e,} is a locally defined orthonormal frame field with respect to g.
We shall say w to be effective if co=0. Let EP-9 denote the set of effective ele-
ments of DP9,

Concerning these operators, the following propositions are well-known (cf.

[4,§1,82].

PROPOSITION A. Let we D2 and 0 D™5. Then we have

(a) Sc=c¢cS on D,
(b) S(wA0) =CwA0+(—1)P 0 ASO,
(c) D(wAB) =DwoAO+(—1)Pw ADE.

ProrosiTION B.
(a) For any weDP:1, we have
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(gAw) =gAco+(n—p—go.

(b) Multiplication with g is injective on Y, D4,

ptq<n
We notice that as a special case of (c) in Proposition A we have
(1.4) D(fw) = —df Ao+fDw

for any fe (M) and any w € D?-4, and also that the property (b) in Proposition
B means a cancellation law with respect to g in D, that is,

gAw =0 implies w=0
if 0e DP9, p+g<n. We define
€, =Cn kernelS, €, =€ n kernelD and €, =C;, n C,.

Then, from the identities (b) and (c) in Proposition A it follows that both €,
and €, are subrings of €. We shall call an element of €; or €, the curvature
structure satisfying the first or the second Bianchi identity, respectively.

Let us put

(1.5) 8 =c¢D+Dec.

Then the explicit expression of the map §: DP-4—>Dr-4~1 is given by

(1L6)  B0(x1 Xy ® YiowYomi) = = 3 (Pae®(Fre X, ® €1-e-Yg-1)

for any we P-4 (g=1). This formula implies
1.7) Sct+cd=0.

Now, let us define the inner product wl_v € D97t of a double form we
D4 (g=1) with a vector field v by the equation

(0L 0)(X1.. %, @ Y1-eVg—1) = O(X1...X, @ V1...Y4—10)

for any vector fields x,,..., X,, 1,..., ¥4—1- Then, from the formula (1.1) we
obtain the following identity due to O. Kowalski (cf. [3, Prop. 2]):

(1.8) WA Lv=00A@L)+(—D(0Lv)AO
for e ®?+ 2 and e D5, From (1.8) we have inductively
(1.9 of L v=ko* ! A (0L v)

for any curvature structure o of order p=1 and any positive integer k.
Let G, denote the Grassmann bundle of p-planes tangent to the manifold
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M. For a curvature structure we €P, we define the curvature function K,:
G,—R associated with o by

O(X1...X,@X;...X,)
%3 A= A2

(1.10) K, (o) =

for any p-plane o at each point m € M, where {x;,..., x,} is a base of 6. The value
K (o) is independent of the choice of {x,..., x,}. This curvature function K|,
generically determines  in the sense that, for two w, 0 € €%, the equality K ,=
K, implies w=0 (cf. [4, Prop. 2.1]). In particular, by (1.3) and (1.10) we have
for any we f

(1.11) K, =const.x ifand only if o = p—K!gP.

2. Generalizations of Weyl’s tensors

First of all, let us recall classical facts about the Weyl conformal curvature
tensor C and the Weyl 3-index tensor C,, which are basic for this paper (for the
details, see [1, §28]).

Let R,, be the curvature operator given by the formula

ny = [Vm Vy] - V[x,y]

for any two vector fields x and y. The curvature tensor R of type (0, 4) is defined
by the formula

R(xy ® uv) = <R u,v>

for any vector fields x, y, u, v, and it is an element of €3. The Weyl conformal
curvature tensor C is a double form of type (2, 2) given by

c2R 2

e 1
(2.1) C=R=—79 AR+ 3=y a=1)? -

It is an effective element of €% and vanishes identically if n=3. The tensor C,
is defined by the formula

Co = (n—2)D0,
where we have put
_ 1 ¢2R
22 =2 R 3—=1"

By the well-known identity (cf. [1, Eq. (28.16)])
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_n-3
(2.3) Sc_mco,
the tensor C, vanishes identically if C=0 and n>3, but it does not vanish, in
general, if n=3.
Let

g=e*g (peFM))

be an another metric conformally equivalent to g. As usual, we indicate by a bar
overhead the corresponding geometric objects with respect to the metric g.
Then, we know the transformation formulas

(2.4) C = e2¢C
and
(2.5) Co =Co+(n—2)C L grad .

Now, the process (2.1) deriving C from R has been generalized to a map on
D by Kulkarni (cf. [4, §2]), as follows. Let p+g+1=<n and h=min (p, q).
Then, the conformal map con is by definition a map of Dr*1.4*1 into itself such
that
(2.6) conw=w+ 3 ,(_'I D'g'Ac’w
=t I (n—p=q+Jj)

for any double form w e Dr*1.9t1, We remark that conw depends only on the
conformal class of the metric g. The following proposition due to Kulkarni
(cf. [4, § 2, §3]) shows that the formal algebraic identities for the tensor C actually
hold good for the double form con w, and it plays an important role in this paper.

ProrosiTiION C. Let p+q+1=<n and weDrtl.a+l,
(a) The map con is a projection of DPt1:.9tl opto EPt1.a*t1,
(b) There are unique elements o€ D71 and fe EP+t1:9+1 sych that

@.7) o =pB+g A a.

Moreover, f=con w.
(¢) If n=p+q+1, then conw=0.
(d) If Gw=0, then S-conw=0.

Following O. Kowalski, we call the correspondence w o given by the for-
mula (2.7) the deviation map, and we denote the element a by devw. From
(2.6) and (2.7), it follows that the explicit expression of the map dev: Dr+l.a+1
Dr:4 js given by
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h+1 ¢ __ r—1,4r—1 r
(2.8) devor="y CDIg A
=1 r!jg)(n-p—qﬂ)

From the property (b) in Proposition C, we see that
2.9) conw =0 ifandonlyif w=g A devo.
Also, we notice that

0 =devR.

As a generalization of the Weyl 3-index tensor C,, we define a map con,:
Drti.ati L, Prtlda for p+g+1<n by

con, = D-dev.
The main purpose of this section is to prove
PrOPOSITION 1. Let p+g+1<n and weDP+1-9t1,  Then we have
d-conw = (n—p—q—1)(cony, w+dev-Dw).

CorOLLARY 1. Let p+q+1<n and weDrtL.atl If o satisfies the
second Bianchi identity, then we have

(2.10) §-conw = (n—p—g—1)con,w .
Moreover, suppose that conw=0. Then we have cony,w=0.

The formula (2.10) is a generalization of the identity (2.3). In fact, by
putting w =R we get (2.3), because we have

Co =(n—2)congR.
To prove Proposition 1, we shall need three lemmas. First, we have
LeEmMMA 1. For any w € DP4, we have
3gr A ©) =(—=1)y(g" A dw—rg™! A Do) (r=1).
ProoF. By the formula (a) in Proposition B, we get inductively
9" A w)=g" A cotr(n—p—g—r+1)g"! A @

for any w e DP-1 and any positive integerr. Since Dg"=0, by making use of (c)
in Proposition A, (a) in Proposition B and the above identity, we have

eD(g" A ©) = (=1yclg" A Dw)
=(_1)’{g' A C‘D0)+r(n—p_q_r)gr-1 A DO)}
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and
D.c(g" A @) =D{g" A co+r(n—p—q—r+1)g" ! A w}
=(=1{g9" A Dco—r(n—p—q—r+1)g"! A Dw}.
Therefore, we have Lemma 1 from the definition of §. g.e.d.

Next, we have
LEMMA 2. S-cr=7}r_l{p-cr+1 +(=1ye*-D}  (r20).

Proor. Since we have
S.Cr — (C'D+D'C)’C' = C'D'C'+D'C'+1 "
it suffices to verify the following relation:

1

2.11) c-D-c’=—r+1

{rD.cr+l +(_ 1)r+lcr+1.D} .

We prove this by induction with respect to r. If r=0, then (2.11) is trivial.
From the relation (1.7) it follows

d-c+c¢6 = Dc2+2¢Dc+c2D =0,
from which we obtain

(2.12) c-D-c=—%(D-cz+c2-D).

Accordingly, (2.11) is true when r=1. Suppose that we get (2.11) for r=0,
1,...,t, where t=1. Then we have

c'D-cttl = _t-: 7 {tD-c'+2+(— 1)'+1c’-(c-D-c)} s

which implies by (2.12)

(2.13) c-D-cttl = ——t-%{tD-c'+2+£:2—l)t(c’-D-cz+c‘+2'D)} .

On the other hand, by (2.11) for r=t—1 we get
¢:D-ct*1 = (¢:D-ct1)c?
= —{G—DD-c*2+ (= )'et-D-c?} ,

from which we obtain
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ct.D.cz = (_ 1)!+1{tc.D.ct+l +(t_1)D.ct+2} .

Substituting this into (2.13), we find that (2.11) is true when r=t+1. q.e.d.
Combining Lemma 1 with Lemma 2, we have

LEMMA 3. For any o€ DP-1 and any positive integer r, we have

1 - 1
r r —_ r r+1 r—-1 r r r+1.,
3(g" Ac'w) =27 1D(g Actlw)+rD(gr 1 Ac w)+r 19 Ac Dw .

PROOF OF PROPOSITION 1. Apply § on both the sides of (2.6), and use Lemma
3. Then, since c**2w =0, we obtain

: —(1-_1 . 1 (1 1 ) 200) 4 o.e
Sconw—(l n-—p-—q)D ey ) By D(g Ac?w)+
(=D* (1 1
+—=3 e — )D(g"/\c"“w)
h!JIJO(n—p—q+J')\h+1 n=p=qth
+c-Da)———1——g/\62-Dw+ 1 g2
2(n—p—q) 3Wn—p—q)(n—p—q+1)
3. (_1)h+1 h+1 h+2.
Ac>*Dw—-+ gt Ac Dw,

(h+D)! [T (n=p=g-+))

where the last term vanishes if p>g, but it remains if p<gq. In both the cases,
we can verify that the sum of the first two lines in the right-hand side of the above
equation is equal to

(n—p—q—1)Ddevow,
and the sum of the last two lines is equal to
(n—p—q—1)dev-Dw,

respectively. Thus, we have Proposition 1. q.e.d.

3. Conformal change of a metric

In the following, we shall apply the maps con and con, on the g-th Gauss-
Kronecker curvature tensor R? and generalize classical results on the conformal
change of the metric:

3. g=e*g (peFM)).

In this section, we consider the transformation formulas of con R4 and cony R4



On Conformal Invariants of Higher Order 53

under (3.1).
We need some initial preparations due to Kulkarni (for the details, see [4,
§6]). For a vector field x, we put

S, = Vi—Vx-

Then, considered as a derivation on the tensor algebra over (M, g), S, is de-
termined as follows:

(a) S.f=0 forany fe@M),
3.2) (b) S,y =(xd)y+(ydp)x—<x,y> grad ¢ for any yeX¥(M),
(c) (5.0)y = —-0(S.,y) for any Qe A*L.
It follows from (3.2) that if we DP9, ue A? and ve A7 then
3.3) S,0)(u®v)=—u(Su®v)—w(u ® S,v).
Furthermore, it is known (cf. [4, § 6, Lemma 2]) that
(3.4) :gi(— 1S, (X1 %) Xpsy) = O
for all x,,..., x,, € X(M), where x,...%;...x,,, denotes of course the p-vector

xl/\.../\)’cj/\.../\xp+1_
Owing these considerations, we have

LEMMA 4. Suppose that we DP:1(q=1) satisfies the first Bianchi identity.
Then we have

Dw = Do+(q—1Ddp Aw+(—1)4(g Aw) L grad¢.

Proor. From the definitions of D and S,, we get

{(D=D)o}(x1.- Xps 1 ® Pyov.¥g) =:§i(—l)f(ijw)(xl...xj...po ® yi-r-¥)

p+1 .

= —JZ‘,I(—l)lco(xl...jtj...x,,,rl ® ij(yl...yq)),

by making use of the equations (3.3) and (3.4). Since we have by (b) in (3.2)
q
Se(¥1--¥9) = AXjh)ys--. Y+ X (=D @)X y1. Pue-- Vg
k=1
q
- kgl(_ l)k_l <XJ, yk>Gyl'“.9k“'yqa

being G =grad ¢, it follows
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{(D-_D)w}(xl"'xp+1 ® Yi---Yg)

P+1 .
=—q .21(_I)J(xj¢)w(x1"'xj"'xp+1 ® yi---¥y)

= 3 (D O S, (- D01 Ry @ 1 i b)

+ jg kgq',l(—l)f"‘"1 <Xj > O(Xy... 8o Xpr1 @ Gy DoY) -
On the right-hand side of the above equation, we have

the first sum =q(d¢ A 0)(x...Xp11 ® y1.-.3,) (by (1.1)),

{ }in the second sum=Cw(x;...X,4 1 ®Y1... Pp---Vo)s

the third sum =(—1){g A(@L G)}(X..-X,4 1 ®Y1---Yy)s
respectively. Since the second sum vanishes by the assumption Sw =0, we find

Dw—Dw = qdp A o+(—=1)1g A (0 L G)
=(@-Ddp AN o+(-DI(gA0)L G (by (1.8)),

because of the identity gL G =d¢. q.e.d.

It is well-known (cf. [1, Eq. (28.5)]) that the curvature tensors R and R are
related by the formula

(3.5 R =e2%{R+g A x(¢)},
where k(¢) is an element of €} defined for any ¢ € F(M) by

kK(P)(x®y)=<yp.G, y>— <G, x> <G, y> +—é~<G, G><x,y>

for any vector fields x and y. By straightforward calculations, we can obtain
the identity
(3.6) Dx(¢) = {R+g A x(¢)} L grad¢.

It follows from (3.5) that the g-th Gauss-Kronecker curvature tensors R? and
R4 are related by

(3.7 Re = e?1{Ri+g A n($)},
where 5(¢) is an element of €%4-! defined for any ¢ € F(M) by

(3.8) @)= 3 (DR Ag™ (Y .
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By making use of the equations (1.9), (3.6) and (3.8), we can obtain the following
identity due to Kowalski (cf. [3, p. 342]):

(39 Dn(¢) = {R+g A k(¢$)}7 L grad¢.

Now, let us give the transformation formulas of con R? and cony R? under
the conformal change (3.1) of the metric g. We notice that both con R4 and
con, R? are defined for the Riemannian manifold (M, g) of dimension n=4q—1.

ProPOSITION 2. Under the conformal change (3.1) of metric, we have

(3.10) con R4 = e24% con R4
and
(3.11) cony R, = €2~ D%{con, R?+(con R?) L_ grad ¢} .

The formula (3.10) was first due to Kulkarni (cf. [4, Prop. 8.1]). The for-
mulas (3.10) and (3.11) are generalizations of the formulas (2.4) and (2.5) respec-
tively.

Proor or ProprosiTION 2. By the remark following the definition (2.6) of
conw we have

con R4 = conR4.
Hence we get by (3.7)
con R4 = e24%{con R4+con(g A 1(¢))},

and moreover con(g A n(¢))=0 by the property (b) in Proposition C. Thus,
we have (3.10). Next, from the definition of the map dev, it follows that

5 A devRe = Re—con Re
= e249g A {devRe+n($)} (by (3.7), (3.10)).

Substitute (3.1) into the left-hand side of the above equation, and then apply the
cancellation law with respect to g. Then we have

3.12) devR? = e2(a~1)¢{dev R1+n(¢)} .

Further, apply the second Bianchi map D on both the sides of (3.12). Then,
from the equation (1.4) we obtain

cony R? = —d(e2(a=19) A {dev R?+7(¢)}

+ e2=1¢ D{dev R1+n(¢)}.
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Since both dev R? and 5(¢) satisfy the first Bianchi identity, we can apply Lemma
4 on the second term in the right-hand side of the above equation, and we obtain

oy Re = e24=)¢] D{dev Re-+n($)} ~[g A {dev RI+n(#)}] L G|
= ¢2(@~d{con, R1+(R?7—g A devR9) L G} (by (3.9)
= e2(a~D%{con, R1+(con R9) L G}.
Thus, we have (3.11). q.e.d.

Since we get

(3.13) conR? =0 for n=4q-1
by the property (c) in Proposition C, we have

COROLLARY 2. Let n=4q—1. Then, under the conformal change (3.1)
of metric, we have

(3.14) ‘cony R4 = e2(4~Dé con, RY.

The formula (3.10) says that con R¢? is a conformal invariant for Riemannian
manifolds of dimension n=4q —1, but it is a trivial one by (3.13) when n=4q—1.
The formula (3.14) shows that conyR? is a conformal invariant for (4q—1)-
dimensional Riemannian manifolds.

All the results obtained in Sections 2 and 3 are generalizations of the cor-
responding classical ones, except for the theorem of Weyl which will be considered
in the next section.

4. g-conformal flatness

The object of this section is to define the concept of g-conformal flatness
for Riemannian manifold (M, g) of dimension n=4qg—1, and to obtain several
basic theorems.

The 2g-th sectional curvature y,, of Thorpe [7] is given by

yzq(a)=—(—_i)q—— > e, R(e,1\e. 2 ®€,1V8u2))
24{(29)1} -, w8y L1 €:(1)€0(2) ¥ €p(1)€p(2)

1eS2q
“*R(ex(20-1)€e20) ® €u24-1)€u29))

for any 2g-plane o € G,,, where {e,..., e;,} is an orthonormal base of 6. In the
case g =1, y, is the usual sectional curvature. By putting @ =R in (1.2), we find
that the above formula can be rewritten as

Y24(0) = (T;aszqR‘l(el...ezq Rey...ep,) .
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Hence, 7,, is equal to the curvature function K,: G,,—~R associated with the
curvature structure

—2)4
4.1 w={72"pq
@D 29!
DEerFINITION 1. A Riemannian manifold (M, g) of dimension n>=2q is said
to be g-flat or of g-constant curvature, according as the 2g-th sectional curvature
Y24 is identically zero or constant. The metric g is called g-flat if (M, g) is g-flat.

LEMMA 5. A Riemannian manifold (M, g) is of q-constant curvature K,,
if and only if

4.2) Ri={E D, g2

In particular, (M, g) is q-flat if and only if R1=0.

Proor. Since R7e €34, we have Lemma 5 by the equations (1.11) and (4.1).
q.e.d.

DEFINITION 2. Let n=4g—1. An n-dimensional Riemannian manifold
is said to be g-conformally flat if

conR?1 =0 for n>4qg—1
and

congR1 =0 for n=4qg-1.

Owing to the formulas (3.10) and (3.14), it is of conformal nature whether a
given manifold is g-conformally flat or not. Also, we remark that Corollary 1
implies cony R7=0 for g-conformally flat Riemannian manifolds of dimension
n>4q—1.

LEMMA 6. Let n=2p+1 (p=1). For a curvature structure w on (M, g)
such that

w=g A0, where 0et},
we have con w=con, @ =0.
Proor. By the property (b) in Proposition C, we have
conw =0 and devw =0.
The assumption D=0 implies

congw = Ddevw = 0.



58 Toshio Nasu

Thus, we have Lemma 6. q.e.d.

THEOREM 1. (i) If n=2(q+1), an n-dimensional q-flat Riemannian ma-
nifold is (q+1)-flat;

(ii) If n=4q+3, an n-dimensional g-conformally flat Riemannian mani-
fold is (q+1)-conformally flat.

Proor. (i) is an immediate consequence of Lemma 5. Since n>4g—1,
the g-conformal flatness in (ii) means con R9=0 by Definition 2. Hence, by
(2.9) we have

4.3) R? =g A devR9,

and also by Corollary 1 we get

4.4) cong R4 = D-devR? =0.

Multiplying R to both the sides of the equation (4.3), we obtain
Rt =g A (R A devR9),

where R Adev R1? is an element of €%4+1 because of the equation (4.4). Hence,
we have con R?*! =cony R?*1 =0 by Lemma 6. Thus, the manifold is (q+1)-
conformally flat by Definition 2. q.e.d.

It follows from Definition 1 that a g-flat Riemannian manifold is of g-constant
curvature. Moreover, we have

THEOREM 2. Let n24q—1 and q=p=1. Then, an n-dimensional Riema-
nnian manifold of p-constant curvature is g-conformally flat.

PROOF. Let us assume y,,=const.x,,. Then, from (4.2) we obtain
Rq =g /\ e,

where we have put

Since 0 € €39~ 1, the manifold is g-conformally flat by Lemma 6 and Definition 2.
q.e.d.

The diagram in the introduction is obtained by Theorems 1 and 2.
Corresponding to the theorem of Weyl, we have

THEOREM 3. Let n=4q—1. Then, an n-dimensional Riemannian manifold
(M, g) is g-conformally flat if the metric g is conformally related to some q-flat
metric on M. Conversely, if (M, g) is g-conformally flat and, in an open subset
U of M, there exists a solution ¢ of the differential equation
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4.5) n(¢p)+devRe =0,

where n(¢) is the element of €241 given by (3.8), then the metric g=e?%g is
g-flat in U.

ProoF. Suppose that the metric g is conformally related to some g-flat
metric g by (3.1). Then we have

conR? = conyR? =0,

because the tensor R? vanishes identically on M by Lemma 5. On account of the
transformation formulas (3.10) and (3.14), we have from the above equations

conR1 =0 for n>4q-1
and
conyR1 =0 for n=4q-1.

Thus, (M, g) is g-conformally flat by Definition 2.
Conversely, if the equation (4.5) admits a solution ¢ in U, then we put
g =e2%g. By (3.12) and (4.5) we find dev R4=0 in U, from which we have

(4.6) R2 =conR¢

in U by (2.7). Since we have assumed that (M, g) is g-conformally flat, by the
equation (3.13) and Definition 2 we get

conR41 =0 for n=>4q9-1,

which implies R2=0 by (3.10) and (4.6). Thus, the metric g is g-flat by Lemma 5.
q.e.d.

ReMARK. In the classical case g =1, J.A. Schouten has proved by making use
of the identity (2.3) that the differential equation (4.5) admits a solution ¢ on a
neighborhood at each point of M, if the manifold (M, g) is 1-conformally flat
(cf. [1, p. 92]). In the case g=2, (4.5)is a system of non-linear partial differential
equations of second order with coefficients in F(M). Though we have obtained
(2.10) as a generalization of the identity (2.3), the present author does not yet
know whether (4.5) still admits a solution ¢ or not.

5. Examples

We assume, throughout this section, that (M, g) is a product Riemannian
manifold of two Riemannian manifolds (M,, g,) (a=1, 2).
In the paper [6, Th. 2], we have obtained
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ProrosiTiON 3. Let (M, g) be a product Riemannian manifold of (M,,
gy and (M,,g,) with constant sectional curvatures k% and k', respectively.
Suppose that both M, and M, are of dimension =2q(q=1). Then, (M,g)
is g-conformally flat if and only if

6.1) Ky+k% =0.
As a corollary to Proposition 3, we have the following example.

ExampLE 1. Under the assumptions of Proposition 3, (M, g) is g-con-
formally flat if and only if (M, g) is conformally flat. 1In fact, (5.1) is a sufficient
condition for (M, g) to be 1-conformally flat.

ExampLE 2 (cf. [7, Example b]). Let (M,,g,) be an arbitrary manifold of
dimension n, <2q, and (M,, g,) be a flat manifold of dimension n,=4q—n,—1.
Then the g-th Gauss-Kronecker curvature tensor R4 of (M, g) vanishes identically.
Hence, (M, g) is g-flat by Lemma 5. Accordingly, (M, g) is g-conformally flat
by Theorem 2. Thus, the restriction for dimension is essential in Proposition 3.

ExampLE 3. Let (M,, g,) be the Euclidean unit (2q+ 1)-sphere and (M,,
g,) be a Euclidean space of dimension n,>2(q+1). Then, the product Rieman-
nian manifold (M, g) of these two manifolds is not g-conformally flat by Proposi-
tion 3. However, as seen in Example 2, (M, g) is (q + 1)-conformally flat. Thus,

3

the notion ‘‘(q+ 1)-conformal flatness” is really weaker than the notion ‘‘g-
conformal flatness” for Riemannian manifolds of sufficiently high dimension.
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