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Let (M, g) be an n-dimensional Riemannian manifold with fundamental
metric tensor g (n>2) and R be the curvature tensor of type (0,4). Let C and Co

be the Weyl conformal curvature tensor of type (0,4) and the so-called Weyl
3-index tensor, respectively. As usual, a Riemannian manifold is said to be
flat or of constant curvature according as the sectional curvature is identically
zero or constant, and to be conformally flat if it is locally conformally diffeomor-
phic to a Euclidean space. A well-known theorem due to H. Weyl says that
(M, g) is conformally flat if and only if C =0 for n > 3 and Co =0 for n =3. The
tensors R and C are typical examples of curvature structures of order two.

On the other hand, researches on curvature structures of higher order, e.g.
the q-th Gauss-Kronecker curvature tensor Rq, have been developed by many
people. Especially, J. A. Thorpe [7] has considered the 2q-th sectional curvature
y2q, which is defined for each even positive integer 2q ̂  n, and studied relationships
between curvature properties and topological structures of the manifold. The
sectional curvature y2q is a curvature function corresponding to Rq on the Grass-
mann bundle of 2g-planes tangent to the manifold, and coincides with the usual
sectional curvature if q = l. The higher order sectional curvatures are weaker
invariants of Riemannian structure than the usual sectional curvature.

Very recently, R. S. Kulkarni [4] has introduced an interesting double form
conω for a double form ω, such as con,R = C as a special case ω=R. He also
proved that conω has the same algebraic properties as the tensor C. It seems
natural to seek for generalizations of classical results (conformal invariants, the
theorem of Weyl etc.) on a conformal change of metric to the case of higher order,
by making use of the Gauss-Kronecker curvature tensors. This is the purpose
of the present work.

Section 1 is devoted to preliminary remarks. We shall recall definitions and
fundamental formulas related to curvature structures from a view-point of double
forms. In Section 2, we shall define a double form con0 ω as a generalization
of the Weyl 3-index tensor Co and obtain a new differential identity in Proposi-
tion 1. In Proposition 2, we shall give the conformal transformation formulas
of conjR^ and con0R

q.
In this paper, a Riemannian manifold is said to be q-flat or of q-constant

curvature according as the 2q-th sectional curvature y2q is identically zero or con-
stant, and to be q-conformally flat if con#4=0 for n>4q-l a n d c o n 0 i ^ = 0
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for n=4q — l. In Section 4, we shall be concerned with relationships among
these notions of higher order. The results in Theorems 1 and 2 are illustrated
in the following diagram associated with a sequence of the Gauss-Kronecker

curvature tensors {Rk} (fc = l,..., g=

1-flat > - - > /c-flat > • ςr-flat
I I ' I

1-const, curvature fc-const. curvature g-const. curvature
I I i

1-conformally flat -> > /c-conformally flat -> > g-conformally flat,
where an arrow means implication from one to the next. (As for relations of
another type for constancy of higher order sectional curvatures, see [5] and
[7].) Furthermore, in Theorem 3 we shall state the conformal dependence of
the g-conformally flat metric on the g-flat metric. Theorem 3 is a generalization
of the theorem of Weyl. Examples of manifolds with or without some flatness
will be presented in Section 5.

We shall assume, throughout this paper, that all manifolds and all objects
are of differentiability class C00. For terminologies and notations, we generally
follow [4] and [7].

The author would like to thank Professor Y. Tashiro for his valuable com-
ments in preparing this paper.

1. Preliminaries

In this section, let us recall main facts on the calculus of double forms due to
A. Gray [2], R. S. Kulkarni [4] and O. Kowalski [3], for later use.

Let (M, g) be an w-dimensional smooth Riemannian manifold, ^(M) the ring
of smooth functions on M, and X(M) the Lie algebra of vector fields on M.
For simplicity, we denote the space of sections of a bundle by the same notation
as the bundle space. Let Λ*P be the bundle of p-forms and

Λ* =

the bundle of differential forms on M. We put

and

'£=Λ*®Λ*=

where the tensor products are taken over S(M). We call an element ω of T)p'q

a double form of type (p, q) on M. It is an g(M)-multilinear map
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ω:

which is skew-symmetric in the first p variables and also in the last q variables.

We shall use the notation

to denote the value of ω in the vector fields x 1 ? . . . , xp and yί9...9 yr F o r con-

venience, we identify Λ*p with T>Pi0 unless stated otherwise. Furthermore, we

call ω a curvature structure of order p if p = q and we have

ω(xί...xp®yί...yp) = ω(yί...yp<g>xί...xp)

for all xl5..., xp9 yl5..., ype3E(M), and denote the set of curvature structures of

order p by ϋp. The metric tensor field g is a curvature structure of order one.

We put

(£= Σ C

As de Rham has noted, it is possible to define the exterior product ω Λ θ of

two double forms ω e T)p>q and 0 6 £>r>s by the formula

(1.1) = Σ ^ Σ β
PeSh(p,r) σeSh(q,s)

X

for *!,..., x p + r, j l v . . , j ; e + s 6 3E(M). Here, Sh(p,r) denotes the set of all (p, r)-

shuffles;

Sh(p,r) = {peSp+r;p(l)< - < p(p) and p(p+l) < ••• < p(p + r)},

where S p + r is the symmetric group of degree p + r. It is not difficult to show that

the multiplication Λ is associative and that we have

for ωeT>p'q and θeT)r>s. Thus, D forms a graded associative ring and in

particular (£ is a commutative subring of £>.

Let ωk denote the fc-th exterior power of ω e G>. Then, by the formula (1.1)

we have

ωk(x1...xpk®y1...ypk)

= Σ β

... Cύ(Xp{p(k- !)+!}•• *p(pfc)® yσ{p(k- 1)+ 1}
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for any vector fields x l 5 . . . , xpk, yί9..., ypk. The inner product on the bundle

Λp of p-vectors is defined by the formula

<x1A~Άxp9y1A = det || < x h

for any decomposable p-vectors xλ A ••• Λ xp and JΊ Λ ••• Λ yp. Putting ω=g in

(1.2), we see that it can be rewritten as follows;

(1.3) <Xί A — Axp, J i Λ — Ayp> =-ly

Now, we introduce three basic operations on D.

(I) The first Bianchί sum S is a map of ©*•« into

follows. For ω e T)p>q, we put S ω = 0 if q =0, and put

4-I defined as

p + l

(5ω(x1...xp+1®y1...yq-ί) = Σ ( -

if ^f^lj where xl9..., xp+1, > Ί , . J J^-i e 3E(M) and the symbol Λ denotes omission.

(II) The second Bίanchi sum D is a map of £>p»* into T ) P + 1 » 9 defined as

follows. For ω e T)p'q, we put

Dω(x1...xp+1®y1...yq) =
p+ί

Σ

where p denotes the covariant differentiation with respect to the metric g. We

remark that D coincides with —d on T)p>°, where d is the exterior differential

operator.

(Ill) The contraction c is a map of Dp'« into T)p~1'q~ί defined as follows.

For ω e T>p'q with p =0 or q =0, we put cω=0. If both p and q ̂  1, then we put

where {eu..., en} is a locally defined orthonormal frame field with respect to g.

We shall say ω to be effective if cω=0. Let E ^ denote the set of effective ele-

ments of T)p>q.

Concerning these operators, the following propositions are well-known (cf.

[4, §1, §2]).

PROPOSITION A. Let ω e T)p>q and Θ e T>ΓjS. Then we have

(a) © c = c © on X),

(b) S(ωΛfl) = SωΛ0 + (-l) p + «ωΛ©0,

(c) D(ωAθ) =DωAθ + (-ϊ)pωADΘ.

PROPOSITION B.

(a) For any 3, we have
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C(Q Λω) = g Acω + (n — p — q)ω.

(b) Multiplication with g is injective on Σ £ p > ί .
p+q<n

We notice that as a special case of (c) in Proposition A we have

(1.4) D(fω) = - df A ω +fDω
for any fe ΉiM) and any ω e T)p'q, and also that the property (b) in Proposition

B means a cancellation law with respect to g in £>, that is,

g A ω = 0 implies ω = 0

if ωeT)p>q

9 p + q<n. We define

e x = G Π kernels, (£2 = £ n kernel/) and K 0 = G 1 n £ 2 .

Then, from the identities (b) and (c) in Proposition A it follows that both CEX

and (£2 are subrings of (£. We shall call an element of G^ or (£2 the curvature

structure satisfying the first or the second Bianchi identity, respectively.

Let us put

(1.5) δ=

Then the explicit expression of the map b*: T>p>Q^>T)P>ίι-1 is given by

(1.6) p V ^

for any ω e £>Pί9 (q ^ 1). This formula implies

(1.7) δ

Now, let us define the inner product ωl_v e T ) p ' r l of a double form ωe

£)p.3 (q ^ i) with a vector field υ by the equation

(ωl_ v)(x1...xp®yί...yq_1) = ωOq. .Xp ® JV-OV-iu)

for any vector fields x1?..., xp9 yί9..., yq-ι Then, from the formula (1.1) we

obtain the following identity due to O. Kowalski (cf. [3, Prop. 2]):

(1.8) (ω Λ θ) L v = ω A (0 L v) + (- l) s(ω |_ υ) A θ

for ωeT)p>q and θeT)r's. From (1.8) we have inductively

(1.9) ωk L v = fcco*"1 Λ (ω L ϋ)

for any curvature structure ω of order p ^ 1 and any positive integer k.

Let Gp denote the Grassmann bundle of p-planes tangent to the manifold
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M. For a curvature structure ωe(£>, we define the curvature function Kω:

Gp-»R associated with ω by

_

for any p-plane σ at each point meM, where {x lv.., xp} is a base of σ. The value

Kω(σ) is independent of the choice of {x lv.., xp}. This curvature function Kω

generically determines ω in the sense that, for two ω, 0eG?, the equality Kω =

Kθ implies ω = θ (cf. [4, Prop. 2.1]). In particular, by (1.3) and (1.10) we have

for any

(1.11) K ω = c o n s t , K if a n d o n l y i f ω = - ^ - g p .

2. Generalizations of Weyl's tensors

First of all, let us recall classical facts about the Weyl conformal curvature

tensor C and the Weyl 3-index tensor Co, which are basic for this paper (for the

details, see [1, §28]).

Let Rxy be the curvature operator given by the formula

Rxy = LVx, Vy] ~ F[*,,]

for any two vector fields x and y. The curvature tensor R of type (0,4) is defined

by the formula

R(xy ® uv) = <Rxyu,υ>

for any vector fields x, y, u, υ, and it is an element of (£§. The Weyl conformal

curvature tensor C is a double form of type (2,2) given by

(2.1) C - * -

It is an effective element of Gf and vanishes identically if n = 3 . The tensor Co

is defined by the formula

C0=(n-2)DΘ,

where we have put

By the well-known identity (cf. [1, Eq. (28.16)])
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(2.3) Sc = ^C0,

the tensor Co vanishes identically if C=0 and n>3, but it does not vanish, in
general, if n = 3.

Let

g=e2*g (φe%(M))

be an another metric conformally equivalent to g. As usual, we indicate by a bar
overhead the corresponding geometric objects with respect to the metric g.
Then, we know the transformation formulas

(2.4) C = e2*C

and

(2.5) Co = Co + (n - 2)C L grad φ.

Now, the process (2.1) deriving C from R has been generalized to a map on
© by Kulkarni (cf. [4, §2]), as follows. Let p + q + l^n and h=min(p, q).
Then, the conformal map con is by definition a map of T}p+ί>q+1 into itself such
that

(2.6) conω = ω + Σ ( W Λ c ' ω
r = 1 rlfl(n-p-q+j)

for any double form ωeT)p+1>q+1. We remark that conω depends only on the
conformal class of the metric g. The following proposition due to Kulkarni
(cf. [4, § 2, § 3]) shows that the formal algebraic identities for the tensor C actually
hold good for the double form con ω, and it plays an important role in this paper.

PROPOSITION C. Let p + q + l^n and ωeT)p+ί>(l+ί.
(a) The map con is a projection of ©*+i.«+i onto EP+1>*+1.

(b) There are unique elements αeDp '« and βeEp+ί>*+1 such that

(2.7) ω

Moreover, /?=conω.
(c) // n=p + q + l9 then conω=0.
(d) // Sω=0, then S conω=0.

Following O. Kowalski, we call the correspondence ω i-»α given by the for-
mula (2.7) the deviation map, and we denote the element α by devω. From
(2.6) and (2.7), it follows that the explicit expression of the map dev:
ΐ)p'q is given by
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h+l (_ ]\r-lnr-ί

(2.8) d e v ω = _
r = 1 r\n(n-p-q+j)

From the property (b) in Proposition C, we see that

(2.9) conω = 0 if and only if ω = g A devω.

Also, we notice that

θ = dev#.

As a generalization of the Weyl 3-index tensor Co, we define a map con0:

con0 = D dev.

The main purpose of this section is to prove

PROPOSITION 1. Let p + q + l<n and ωeT)p+ί'q+ί. Then we have

δ = (n — p—q — l)(con0 ω + dev Dω).

COROLLARY 1. Let p+q + l<n and ω e ϊ p + 1 ' ί + 1 . // ω satisfies the
second Bianchi identity, then we have

(2.10) £ conω = (n—p — q— l)con0ω .

Moreover, suppose that conω=0. Then we have con0ω=0.

The formula (2.10) is a generalization of the identity (2.3). In fact, by
putting ω=Rwe get (2.3), because we have

Co = ( n - 2 ) c o n 0 £ .

To prove Proposition 1, we shall need three lemmas. First, we have

LEMMA 1. For any ωe'£p>q, we have

b*(gr A ω) = (-l)r(gr Λ Sco-rg^1 Λ Dώ) (r ^ 1).

PROOF. By the formula (a) in Proposition B, we get inductively

c(gr A ω) = gr A cω + rin — p-q-r+Vjg1'1 A ω

for any ωeT)p'q and any positive integer r. Since Dgr=0, by making use of (c)
in Proposition A, (a) in Proposition B and the above identity, we have

c D(gr Aώ)= (-l)Γc(0 r Λ Dώ)

A cDω + r(n-p-q-r)gr-γ A Dώ)
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and

D-c(gr A ώ) = D{gr A cω + r(n-p-q-r+l)gr-1 A ω}

= (-l)r{gr A D cω-rin-p-q-r + Vg1"1 A Dω}.

Therefore, we have Lemma 1 from the definition of S. q.e.d.

Next, we have

LEMMA 2. S'cr = -^-j{D'cr+1 + (-Ί)rcr+1-D} 0 ^ 0 ) .

PROOF. Since we have

S-cr = (cD + D-c)'Cr = c D C + D cr+ί,

it suffices to verify the following relation:

(2.11) cD'Cr = -y-j{rD'Cr+1+(-iγ+1cr+1 D} .

We prove this by induction with respect to r. If r = 0 , then (2.11) is trivial.

From the relation (1.7) it follows

δ-c + c B = D c2 + 2cD'C + c2'D = 0,

from which we obtain

(2.12) C'D'C=--~-(Dc2 + c2 D).

Accordingly, (2.11) is true when r = l. Suppose that we get (2.11) for r = 0 ,

1,..., t, where ί ^ l . Then we have

c D-ct+1 = - ^

which implies by (2.12)

(2.13) cΦ'Ct+1=-j^

On the other hand, by (2.11) for r = t— 1 we get

from which we obtain
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c'-D'c2 = (-l)t+1{tc D'Ct+1 +(t-l)D ct+2} .

Substituting this into (2.13), we find that (2.11) is true when r = ί + l . q.e.d.

Combining Lemma 1 with Lemma 2, we have

LEMMA 3. For any ωeΐ)p*q and any positive integer r, we have

S(grAcrω) = j^D(gr Acr+1ω) + rD(g'-1 Λcrω)+yt-jgrΛcr+1-Dω .

PROOF OF PROPOSITION 1. Apply S on both the sides of (2.6), and use Lemma

3. Then, since c Λ + 2 ω=0, we obtain

=(Ί ί )D cω (4- l-—-j)D(gAc2ω) +
\ n-p-q) n-p — q\ 2 n—p — q+U

τgΛc2 Dω+^ — τgΛcDω+TT7 ^ rτ\9
2(n-p-qy V.(n-p-q)(n-p-q+l)υ

~' + Y-^ gh+ί Λch+2-Dω,

j=o

where the last term vanishes if p^q, but it remains if p<q. In both the cases,

we can verify that the sum of the first two lines in the right-hand side of the above

equation is equal to

(n — p — q — l)Z) dev ω,

and the sum of the last two lines is equal to

(n — p — q — 1) dev Dω,

respectively. Thus, we have Proposition 1. q.e.d.

3. Conformal change of a metric

In the following, we shall apply the maps con and con0 on the q-th Gauss-

Kronecker curvature tensor Rq and generalize classical results on the conformal

change of the metric:

(3.1) g=e>*g (φ

In this section, we consider the transformation formulas of con Rq and con0 R
q
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under (3.1).
We need some initial preparations due to Kulkarni (for the details, see [4,

§ 6]). For a vector field x, we put

Then, considered as a derivation on the tensor algebra over (M, #), Sx is de-
termined as follows:

(a) SJ = 0 for any /eg(M),

(3.2) (b) Sxy = (xφ)y + (yφ)x -<x,y> grad φ for any y e X(M),

(c) (Sxθ)y = - θ(Sxy) for any θeΛ*1.

It follows from (3.2) that if ω e D ' *, u eΛ* and t eΛ* then

(3.3) (Sxω)(u ® i?) = -ω(Sxιι ® ί;)-ω(w ® S î;).

Furthermore, it is known (cf. [4, § 6, Lemma 2]) that

(3.4) PΣi(-l)JSXJ(x1...*J...xp+1) = 0

for all Λ; l v.., xp+ι eX(M), where xί...$j...xp+ί denotes of course the p-vector

Xι Λ ••• Λ£/Λ ••• ΛXp+i

Owing these considerations, we have

LEMMA 4. Suppose that ωeT)p'q (q^.1) satisfies the first Bianchi identity.
Then we have

Dω = Dω + (q-l)dφ Aω + (-iy(g Λω) L gradφ.

PROOF. From the definitions of D and Sx, we get

_ P+l

{(D-D)ω}(Xl...xp+ί ® yi...yq) =^Σ (-ίy(SXJωχXl...*j...x,+1 ® yi...yq)

P+l

= -Σ(-tya>(xi-*j-x,+ ι®SXJ(yi...yj),

by making use of the equations (3.3) and (3.4). Since we have by (b) in (3.2)

k=

being G=gradφ, it follows
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{(D-D)ω}(x1...xp+ί®yί...yq)

p+ί

j=ί

q p+ί

k=ί k j=l

P+ί q

j=ί k=ί J

On the right-hand side of the above equation, we have

the first sum=q(dφ Aω)(xi...xp+ί ® yi ..yq) (by (1.1)),

{ } in the second sum = Sω(x1...xp+1®j>1...j>fc...<yφ),

the third sum=(-l)«{flfΛ(ωLG)}(jc1...xJ>+1®3;1...j;β),

respectively. Since the second sum vanishes by the assumption Sω=0, we find

Dω-Dω = qdφ Λ ω + (-\)qg Λ (ω L G)

= (q-l)dφ Λ ω + (-Ί)q(g Λ ω) L G (by (1.8)),

because of the identity g\_G=dφ. q. e. d.

It is well-known (cf. [1, Eq. (28.5)]) that the curvature tensors R and R are

related by the formula

(3.5) R=e2Φ{R + g Λκ(φ)},

where κ(φ) is an element of (£} defined for any φ e ι$(M) by

κ(φ)(x®y)= <VXG, y>- <G, x> <G, y> +_L<G, G> <x, j >

for any vector fields x and y. By straightforward calculations, we can obtain

the identity

(3.6) Dκ(φ) = {R + g Λ *(<£)} L grad^.

It follows from (3.5) that the ^-th Gauss-Kronecker curvature tensors Rq and

Rq are related by

(3.7) K*=e2**{R* + g Λη(φ)}9

where η(φ) is an element of C ^ " 1 defined for any φ e δ(M) by

(3.8) η(φ) = Σ (ϊ)Rq-r Λg'-'Λ κ(φy.
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By making use of the equations (1.9), (3.6) and (3.8), we can obtain the following

identity due to Kowalski (cf. [3, p. 342]):

(3.9) Dη(φ) = {R + g Λ κ(φ)}q |_ grad<£.

Now, let us give the transformation formulas of con Rq and con0 R
q under

the conformal change (3.1) of the metric g. We notice that both conjR* and

con0R
q are defined for the Riemannian manifold (M, g) of dimension n^4q — l.

PROPOSITION 2. Under the conformal change (3.1) of metric, we have

(3.10) cόn£« = e2q*conRq

and

(3.11) con0Rq = e2<<q-ί^{con0R
q + (conRq) L

The formula (3.10) was first due to Kulkarni (cf. [4, Prop. 8.1]). The for-

mulas (3.10) and (3.11) are generalizations of the formulas (2.4) and (2.5) respec-

tively.

PROOF OF PROPOSITION 2. By the remark following the definition (2.6) of

con ω we have

ccmRq = conRq.

Hence we get by (3.7)

= e2qφ{conRq + con(g Λ

and moreover con(# Λ η(φ))=O by the property (b) in Proposition C. Thus,

we have (3.10). Next, from the definition of the map dev, it follows that

g Λ devRq = Rq-conRq

= e2qΦg Λ {devΛ« + ιj(φ)} (by (3.7), (3.10)).

Substitute (3.1) into the left-hand side of the above equation, and then apply the

cancellation law with respect to g. Then we have

(3.12)

Further, apply the second Bianchi map D on both the sides of (3.12). Then,

from the equation (1.4) we obtain

cόn0R
q = -dfc 2**- 1)*) Λ
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Since both devjR* and η(φ) satisfy the first Bianchi identity, we can apply Lemma

4 on the second term in the right-hand side of the above equation, and we obtain

-ίg Λ { d e v ^ + ̂ ) } ] L

Λ dev#«) L G} (by (3.9))

) L G}.

Thus, we have (3.11). q.e.d.

Since we get

(3.13) con R« = 0 for n = 4q -1

by the property (c) in Proposition C, we have

COROLLARY 2. Let n=4q — l. Then, under the conformal change (3.1)

of metric, we have

(3.14)

The formula (3.10) says that con 2^ is a conformal invariant for Riemannian

manifolds of dimension n^4g — 1 , but it is a trivial one by (3.13) when n=4q — l.

The formula (3.14) shows that c o n 0 i ^ is a conformal invariant for (4q — l)-

dimensional Riemannian manifolds.

All the results obtained in Sections 2 and 3 are generalizations of the cor-

responding classical ones, except for the theorem of Weyl which will be considered

in the next section.

4. q-conformal flatness

The object of this section is to define the concept of g-conformal flatness

for Riemannian manifold (M, g) of dimension n^4q — l, and to obtain several

basic theorems.

The 2g-th sectional curvature γ2q of Thorpe [7] is given by

y2q(°)=:

 24{(2q)l} x

for any 2^-plane σeG2q9 where {el9..., e2q} is an orthonormal base of σ. In the

case q = l,y2is the usual sectional curvature. By putting ω=R in (1.2), we find

that the above formula can be rewritten as

^ ^ . . . e 2 , ® et...e2q) .
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Hence, y2q is equal to the curvature function Kω: G2g-»R associated with the
curvature structure

(4.1) ω = W Λ 9

DEFINITION 1. A Riemannian manifold (M, g) of dimension n^/lq is said
to be q-flat or of q-constant curvature, according as the 2q-th sectional curvature
γ2q is identically zero or constant. The metric g is called q-flat if (M, g) is g-flat.

LEMMA 5. A Riemannian manifold (M, g) is of q-constant curvature κ2q

if and only if

(4.2) R*=ίlLpLK2qg2*m

In particular, (M, g) is q-flat if and only if Rq=0.

PROOF. Since Rq e &%q, we have Lemma 5 by the equations (1.11) and (4.1).
q.e.d.

DEFINITION 2. Let n^4q — 1. An n-dimensional Riemannian manifold
is said to be q-conformally flat if

con Rq = 0 for n > Aq — 1

and

con0 R
q = 0 for n = 4q -1.

Owing to the formulas (3.10) and (3.14), it is of conformal nature whether a
given manifold is g-conformally flat or not. Also, we remark that Corollary 1
implies con 0 R 9 =0 for g-conformally flat Riemannian manifolds of dimension
n>4q-l.

LEMMA 6. Let n^:2p + l (p^.1). For a curvature structure ω on (M,g)
such that

ω = g Λ 0, where θ e (£ζ ,

we have conω=con 0ω=0.

PROOF. By the property (b) in Proposition C, we have

con ω = 0 and dev ω = θ.

The assumption DΘ=0 implies

con0ω = D devω = 0.
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Thus, we have Lemma 6. q.e.d.

THEOREM 1. (i) // n^2(q + l)9 an n-dimensional q-flat Riemannίan ma-

nifold is (q + l)-flat;

(ii) Ifn^4q + 39 an n-dimensional q-conformally flat Riemannian mani-

fold is (q + l)-conformally flat.

PROOF, (i) is an immediate consequence of Lemma 5. Since n>4q — l,

the g-conformal flatness in (ii) means con#*=0 by Definition 2. Hence, by

(2.9) we have

(4.3) Rq=gΛdevRq,

and also by Corollary 1 we get

(4.4) con0 R
q = D dev Rq = 0.

Multiplying R to both the sides of the equation (4.3), we obtain

= g Λ CR Λ

where RΛdevRq is an element of ( £ ^ + 1 because of the equation (4.4). Hence,

we have conRq+1 =con0R
q+ί =0 by Lemma 6. Thus, the manifold is (g + 1)-

conformally flat by Definition 2. q.e.d.

It follows from Definition 1 that a g-flat Riemannian manifold is of g-constant

curvature. Moreover, we have

THEOREM 2. Let n^4q — l and q^p^l. Then, an n-dimensional Riema-

nnian manifold of p-constant curvature is q-conformally flat.

PROOF. Let us assume y2 p=const. κlp. Then, from (4.2) we obtain

Rq=g Λθ9

where we have put

Since θ e &2q~ί> the manifold is g-conformally flat by Lemma 6 and Definition 2.

q.e.d.

The diagram in the introduction is obtained by Theorems 1 and 2.

Corresponding to the theorem of Weyl, we have

THEOREM 3. Let n^.4q — 1. Then, an n-dimensional Riemannian manifold

(M,g) is q-conformally flat if the metric g is conformally related to some q-flat

metric on M. Conversely, if(M, g) is q-conformally flat and, in an open subset

U of M, there exists a solution φ of the differential equation
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(4.5) η(φ) + devRq = 0 ,

where η(φ) is the element of CJ*"1 given by (3.8), then the metric g=e2φg is

q-flat in U.

PROOF. Suppose that the metric g is conformally related to some g-fϊat

metric g by (3.1). Then we have

conR* = con0R
q = 0 ,

because the tensor Rq vanishes identically on M by Lemma 5. On account of the

transformation formulas (3.10) and (3.14), we have from the above equations

conR* = 0 for n > 4q-l

and

con0 R« = 0 for n = 4q -1.

Thus, (M, g) is g-conformally flat by Definition 2.

Conversely, if the equation (4.5) admits a solution φ in U, then we put

g =e2φg. By (3.12) and (4.5) we find devRq =0 in U, from which we have

(4.6) Rq =~conR«

in U by (2.7). Since we have assumed that (M, g) is g-conformally flat, by the

equation (3.13) and Definition 2 we get

c o n l ^ = 0 for n^4q-l,

which implies Rq =0 by (3.10) and (4.6). Thus, the metric g is g-flat by Lemma 5.

q.e.d.

REMARK. In the classical case q = l, J.A. Schouten has proved by making use

of the identity (2.3) that the differential equation (4.5) admits a solution φ on a

neighborhood at each point of M, if the manifold (M, g) is 1-conformally flat

(cf. [1, p. 92]). In the case q ̂ 2 , (4.5) is a system of non-linear partial differential

equations of second order with coefficients in ^(M). Though we have obtained

(2.10) as a generalization of the identity (2.3), the present author does not yet

know whether (4.5) still admits a solution φ or not.

5. Examples

We assume, throughout this section, that (M, g) is a product Riemannian

manifold of two Riemannian manifolds (Mα, ga) (a = 1,2).

In the paper [6, Th. 2], we have obtained



60 Toshio NASU

PROPOSITION3. Let (M,g) be a product Riemannian manifold of (M l 5

gγ) and (M2,g2) with constant sectional curvatures κ2 and κ"2, respectively.
Suppose that both Mί and M2 are of dimension ̂ 2q(q^l). Then, (M,g)
is q-conformally flat if and only if

(5.1) κ'2 + κ'ί = 0 .

As a corollary to Proposition 3, we have the following example.

EXAMPLE 1. Under the assumptions of Proposition 3, (M, g) is ^-con-
formally flat if and only if (M, g) is conformally flat. In fact, (5.1) is a sufficient
condition for (M, g) to be 1-conformally flat.

EXAMPLE 2 (cf. [7, Example bj). Let (Mί,g1) be an arbitrary manifold of
dimension nt<2q, and (M2,g2) be a flat manifold of dimension n2^4q — nί — l.
Then the q-th Gauss-Kronecker curvature tensor Rq of (M, g) vanishes identically.
Hence, (M,g) is g-flat by Lemma 5. Accordingly, (M,g) is g-conformally flat
by Theorem 2. Thus, the restriction for dimension is essential in Proposition 3.

EXAMPLE 3. Let (M^g^) be the Euclidean unit (2q + l)-sphere and (M2,
g2) be a Euclidean space of dimension n2^2(q + l). Then, the product Rieman-
nian manifold (M, g) of these two manifolds is not ^-conformally flat by Proposi-
tion 3. However, as seen in Example 2, (M, g) is (q + l)-conformally flat. Thus,
the notion "(g + l)-conformal flatness" is really weaker than the notion "q-
conformal flatness" for Riemannian manifolds of sufficiently high dimension.
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