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Introduction

E. J. Taft [6] has introduced the concept of coreflexive coalgebras. Finite-
dimensional coalgebras are coreflexive and the coalgebra of divided powers is
coreflexive. The latter is a cocommutative coconnected coalgebra and its space
of primitive elements is 1-dimensional. Taft has shown that if a cocommutative
coconnected coalgebra is coreflexive, then the space of primitive elements is
finite-dimensional. In this paper we show the converse of this result.

To this end, following D. E. Radford’s idea in discussing coreflexivity in
[3], we introduce a topology in the dual algebra of a coalgebra and give a neces-
sary and sufficient condition for a coalgebra to be coreflexive.

Throughout this paper we employ the notations and terminology used in
[4] and [6]. All vector spaces are over a fixed field k. For a vector space V
and a subspace X of V

Xt ={*eV*: <v*¥, X> =0}
and for a subspace Y of V'*
Yt ={veV: <Y, v> =0}.

The author wishes to thank Professor S. Tog6 for his helpful suggestions
and comments.

1. The following lemma was indicated in [4], p. 240.

LemMma 1. Let {C,, 0%} be an inductive system with a directed set M. If
every C, has a coalgebra structure and every o is a coalgebra map, then C=
lim C, has a coalgebra structure such that every canonical map o*: C,—»C is a
coalgebra map.

Furthermore, the dual algebra C* is isomorphic to lim C¥ as algebras by
the canonical map.

Proor. We denote by 4, and ¢, the coalgebra structure of C,. Since o
is a coalgebra map the maps 4, induce a map 4': C—lim (C,®C,) such that
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C— 1im (C,®C,)

¢, — C,®C,

"

is a commutative diagram. Further, we have a map 6 induced by ¢*®c*: C,®
C,—CQ®C such that a diagram

lim (C,®C,) —2—» CQC

camx /cr“®a"

C.®C,

commutes. Put 4=604'. Then the following diagram commutes:

C—4 ,CRC
T e
c, —C,®C,

Similarly, we have a map ¢ such that a diagram

CR ——‘——)’k
N
Cu

commutes. It is then easily verified that (C, 4, ¢) is a coalgebra.
Let ¢:C*—limC} be the canonical linear isomorphism. Then for c¥*,
d* e C*, we have

o,p(c*d*) = (a¥)*(c*d*) = (a¥)*(c*)(c")*(d*)
= 6,4(c*)0,(d*),
o, = (o*)*e = ec* =¢,,
where o, denotes the projection of lim C} to Cj. q.e.d.

Let A be an algebra and let R be the Jacobson radical of 4. If a7 denotes
the canonical map of A/R™ to A/R", then {A/R", o} and {(4/R")°*, (a%)°*}
are projective systems and {(4/R")°, (62)°} is an inductive system.

LeMMA 2. Let m,: A>A/R" be the canonical map, and let y be a map
induced by (n,)°: (A/R")°—>A° such that a diagram

lim (4/R")° —¥—s 4°

[ (nn)°

(4/Rm°
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commutes. Then Y is a coalgebra isomorphism.

Proor. We denote the coalgebra structures of lim (4/R")°, A° and (4/R")°
by {4, ¢}, {4, &} and {4,,¢,} respectively. First we show that } is a coalgebra
map. If a®elim (4/R")°, then 6"(a?)=a® for some n and ae(4/R")°. We have

AY(a®) = Apo™(ap) = 4(m,)°(a})
= ((n)° ®(m,)°)4,(a7)
= (Y ®Y)o"Q@c"4,(a})
= (Y ®Y)40"(ay)
= (Y @y¥)4(a®),

&p(a®) = &po™(ap) = &mn,)%ay)
= &,(ay) = e0™(ay)
= ¢(a%).

Since (m,)° is injective, Y is injective. Finally, we show that ¥ is surjective.
Let a®e€ A° and let a be a cofinite ideal contained in Kera®. Then for some
n>0R"<aand so at =(R")L. We take an ae(4/R")° such that (z,)°(ad)=a®.
Then a®=y6"(a%). This completes the proof.

ReMARK. By the last part of the above proof, it is clear that if 4 is a proper
algebra then N ,5oR"={0}. This is an extended result of Theorem 2.5 (b) in

[t
By Lemma 1, ¢: (lim(A4/R™)%)*—1lim (4/R")°* is an algebra isomorphism.
Let A be a map induced by A ,,y~ such that a diagram
lim A/R" —4— lim (4/R")*
proj.l l proj.

A/ERII _ (A/g{n)o*

Ame
commutes. We denote by & the composite map
lim A/ R — lim (4/R")0*
—2s (lim (A/97)0)* 205 0%,
LemMMA 3. The diagram

A Y HN A%*

T ]

lim A/ R
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commutes, where 1 denotes the canonical map.

Proor. For ae A and a® € A° we have
<®n(a),a’> = <Y~ )*¢ 1 An(a), a®>
= <¢~1An(a), y~1(a®)> .
Since Yy~ 1(a®)=0"(a?) for some a? € (4/R")°,
<®n(a),a’> = <(6"*¢p 1 An(a), al >
= <(4,4mmm,(a), a)>

<ap, m(a)> = <(m,)%(ap), a>

= <yo™(al),a> = <a®,a>
= <A (a),a’>. q.e.d.

2, Let A be an algebra. Then IT[A]={a: a is a cofinite ideal of A}#¢g
and is a filter base, and so we can define a uniform topology on A. With this
topology A is a topological algebra. If A4 is proper then it is a Hausdorff space.
We denote the closure of a subset X of 4 by X. We can prove the following lem-
ma by a way similar to Lemma 2.

LeEMMA 4. Let A be a proper algebra. Then lim (A/R")° is isomorphic to
A° as coalgebras.

Let C be a coalgebra and let R be its coradical. Then C* is a proper algebra
and R* is the Jacobson radical of C* ([1], Theorem 2.5). We introduce into
C* the linear weak topology determined by a dual pair <C, C*>. If X is a sub-
space of C*, then the linear weak closure of X is X1 and clearly X< XL, In
particular, if C is a coreflexive coalgebra then X =X11, With this topology C*
is again a topological algebra. We define C,= A""1R, n>0, as usual.

Let ¢,: C,—»C be the inclusion map. Then we have the maps ¥ and A
induced respectively by (¢,)*?: (C,)*°—>C*° and A¢, : C,—»C%° such that a dia-
gram

C A ) ILI}C:O v !C*O

o [
Cp —i=— CX°

Acn

commutes. Then the following lemma is easily verified.

LemMA 5. A diagram
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C Ac C*0
A
;.\ v
N
lim C3°

commautes.

THEOREM 6. Let C be a coalgebra. Then C is coreflexive if and only if

(i) all C, are coreflexive and (ii) C,* =R"*1, where R denotes the Jacobson
radical of C*.

Proor. Suppose that C is coreflexive. Then (i) is clear by Proposition 6.4
of [6]. We show (ii) by induction. If n=1, then by Proposition 9.0.0b) of [4]

Cit = (R A Rt = (RIRHLL = (R2)LL = R2,
Assuming (ii) for n—1 we get
Cit = (R A Cp )t = (RHC,o ) = (RTR)LE
— o = F

Conversely, we assume the conditions (i) and (ii). We prove the coreflexivity
of C. First we show that ¥ is an isomorphism. The composite

C* _cano. C*/_g—{_n+_1 = C*/CnJ. cano. | C:',‘

coincides with (¥, and so by the universality of inductive systems and by a com-
mutative diagram

C’,',‘O iso. (C*/W)O s> C*0
1 / v
lig C%° —ge. lim (C*/R"F1)°

the composite lim C#°— lim (C*/R*F1)°—»C*° and ¥ coincide with each other.
By assumption A, is an isomorphism, and so A is also an isomorphism. Thus
we see that A. is an isomorphism, i.e., C is coreflexive. q.e.d.

LeEMMA 7. Let C be a cocommutative coalgebra satisfying the minimum
condition on subcoalgebras. Then every ideal of C* is linearly closed and C*
is a Noetherian algebra.

Proor. For c*eC* we denote by c} the right translation by c*. Then
c¥: C*—C¥* is a continuous linear map with respect to the linear topology. Since
C* is linearly compact ([2], § 10, 10), this implies that the ideal generated by c*
is linearly closed. Hence it is sufficient for us to show the last part.

Let a be an ideal of C*. Then {b: b is a finitely generated ideal contained
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in a} is a non-empty family consisting of linearly closed ideals, and so it has a
maximal element a’ S a by assumption. Then a’=a. In fact, if a’#a, then for
any c*ea—a’, a’+(c*) is a finitely generated ideal contained in a and contains
o’ properly. Thus we see that C* is Noetherian. This completes the proof.

THEOREM 8. Let C be a cocommutative coalgebra satisfying the minimum
condition on subcoalgebras. Then C is coreflexive and C* is R-adically com-
plete, where R is the Jacobson radical of C*.

Proor. By Lemma 7, (R**1)LL=R"*1  and so C,t=(Rr1)LL=Rr1=
Rr+1, By assumption R is finite-dimensional, and so R is cofinite and all R"
are cofinite ideals. This implies that each C, is finite-dimensional and therefore
it is coreflexive. By Theorem 6, this implies that C is coreflexive.

Further since all R" are cofinite, C*/R" are finite-dimensional and so they
are reflexive algebras. Hence @ in Lemma 3 is an isomorphism. Therefore 7:
C*—1lim C*/R" is also an isomorphism since so is A¢« ([6], Proposition 6.1). This
completes the proof.

COROLLARY 9. (i) Let C be a cocommutative coconnected coalgebra. Then
C is coreflexive if and only if the space of primitive elements P(C) of C is finite-
dimensional.

(ii) Let C, i=1,2,..., n, be cocommutative coconnected coalgebras. Then
Ci®C,®---®C, is coreflexive if and only if every C; is coreflexive.

Proor. (i) By Heyneman’s Theorem [5], if P(C) is finite-dimensional C
satisfies the minimum condition on subcoalgebras. Hence C is coreflexive. The
converse has been shown by Taft ([6], p. 1127).

(ii) By Corollary 11.0.7 of [4], P(C;®--®C,)=P(C,)®---®P(C,), and so
this follows from (i). q.e.d.
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