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§ 1. Introduction

Recently, F. Uchida [5] has determined smooth SU(3) actions on homotopy
complex projective spaces hP3(C).

The purpose of this note is to study smooth S3 ( = SL/(2)) actions on coho-
mology complex projective planes by the analogous methods.

Let C and H be the complex and quaternion fields. Regard the complex
projective plane as

P2(C) = P(H x C)

by the right complex multiplication. Then the smooth S3 (czH) action on P2(C)
is given by

(1.1) q [p, a] = [qp, a] (qeS3, peH,aeC).

Also, regard H as the right complex vector space, set

where p®q~q®p (p, qeH), and consider the smooth S3 action on P2(Q given
by

(1.2) r[p®q] = [rp® rq] (reS3,p,qeH).

Now consider a 4 dimensional orientable closed smooth manifold

M = CHP2(C),

having the same cohomology ring as P2(C), and assume that M admits a non-
trivial smooth S3 action.

Then, we obtain the following main theorem.

THEOREM 1.3. IfM satisfies the above conditions, then M is S3 equivariantly
diffeomorphic to the complex projective plane P2{C) with the S3 action given by
(1.1) or (1.2). In each case, the principal isotropy subgroup is the unit group
{1} or the cyclic group Z4 of order 4, and the fixed point set F(S3, M) consists of
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a single point or is empty.

We recall in §2 the basic facts about the smooth actions. After preparing

in §3 some known results on closed subgroups and real representations of S 3 ,

we prove Theorem 1.3 in §4 by showing several propositions concerning the

latter half of Theorem 1.3.

§ 2. Smooth actions

Let G be a Lie group and M be a smooth manifold. A smooth G action α

on M is a smooth map

α C x M • M, cc(g, x) = gx,

satisfying the conditions

= 0i(02*)> ex = x, (0i ,0 2 eG,xeM),

where e is the identity of G.

Assume that a smooth G action on M is given. For any xeM, denote by

Gx= {geG;gx = x}

the isotropy subgroup of G at x, which is a closed subgroup of G, and by

the orbit of x, which is a G invariant submanifold of M. Then the following

basic facts hold.

(2.1) Let x e M , and v be the normal bundle of the orbit Gx = G/Gx in M.

Then the given G action on M induces naturally the G action on v as bundle maps,

and we obtain the orthogonal action of the isotropy subgroup Gx on the fibre

vx over x. It is called the normal representation of Gx and denoted by px.

(2.2) (The dίfferentίable slice theorem) Assume that G is a compact Lie

group. Then the normal bundle v of (2.1) is G equivalent to the G bundle

GxG χv x-» G/Gx, where Gx acts on vx via ρx, and also the orbit Gx = G/Gx has

an open tubular neighborhood in M, which is G equivariantly diffeomorphic to

G X G Λ . (Cf. [3,(3.1)].)

(2.3) If G is a compact Lie group and M is connected, then there exists the

conjugate class

(H) = {conjugate subgroups of H in G}

of a closed subgroup H c G such that the set
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is a dense open submanifold of M. The conjugate class (H) is called the type of

principal isotropy subgroups, and H' e (H) is called a principal isotropy subgroup.

(Cf. [l,IV,Th.3.1].)

By (2.2) and (2.3), we see easily the following fact.

(2.4) If M is connected, the normal representation ρx of Gx at x is trivial if

and only if Gx is a principal isotropy subgroup.

§ 3. Closed subgroups and real representations of S 3 .

In this section, we prepare some results on the Lie group S3 = SU(2).

LEMMA 3.1. Any closed connected proper subgroup HΦ{\} ofS3 is conjugate

to a maximal torus S1 of S3.

PROOF. The Lie algebra su(2) of the Lie group S3 = SU(2) is given by

su(2) = {X e GL(2, C); t race* = 0, <X + X = 0}

ix a

-a -ix

Let ί) be a Lie subalgebra of S(7(2), which is the Lie algebra of H. It is clear that

H = {\} or S3 if dimί) = 0 or 3. If dimί)=l, then \) is commutative and so H is

conjugate to 5 1 .

Assume that dim ϊ) = 2, and consider the bracket

r = [p, q]

for a base {p, q) of ί). Then the element t = xιp + yiq with r =

) = 1 satisfies [r, ί] = r. Set

ΪX α \ / iy ft \
, ί = , (x,.yeK,α,fteC).

~ α —/x/ \ —6 — iy)

Then the equality r = [r, t] = rt — tr implies

ix = —ab~ + ba and a = 2/(xft — j α ) .

By adding ά x (the second equality) to its conjugate, and using the first equality,

we see that 2aά= — 2x2, and so α = x = 0, i.e., r = 0. Therefore ί) is commutative,

and its Lie group H is a 2 dimensional torus. But this is a contradiction since

HczS3, and so dimf)7*2. ί?.e. d.
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COROLLARY 3.2. If H is a closed proper subgroup of S3 and dim H ^ l ,

then H is conjugate to a maximal torus S 1 or its normalizer NS1 in S3.

Now, we consider the representations of S3 = 5(7(2).

Let C^n~1)[X1,X2] be the n dimensional complex vector space of all com-

plex polynomials on Xί9 X2 of degree n — 1, and define the n dimensional complex

representation pn (n^2) of S3 as follows:

(3.3)

b
for p = [

d

Then, it is well known that any irreducible complex representation of S3

is equivalent to ρn for some n^2, and so any 4 dimensional complex representation

of S3 is equivalent to

(3.4) p 4 , I 0 p 3 , p2®p2 or l φ p 2 ,

where 1 means the trivial representation.

LEMMA 3.5. p4 is not the complexification of a real representation of S3.

PROOF. Assume that p4 is a complexification. Then the S 3 module C ( 3 ) p f l 5

X2~\ has an S3 invariant non-degenerate symmetric form β, where the action of S 3

is given by ρ4 (cf. [2, Th. 11.4, p. 191]). Thus, by (3.3), we have

0 1\ / 0 1\

YxίlpA VxD)
- i oy \-i 0/

which shows β(X\,Xl) = 0. By operating p 4 ί ? ~J (αα = l), we have in the

same way

β(X3

u X\X{) = β(a3X3

u aWX{X{) = a3+i~Jβ{X3

u X\X{) (i+j = 3),

and so β(X3

l9X\Xj

2) = 0 for l ^ ΐ ^ 3 by taking a3+i~J'= - 1 . These show that β

is degenerate, which contradicts the condition of β. q.e.d.

LEMMA 3.6. l φ p 2

 ί S n o t α ' s α the complexification of a real representation

ofS3.

PROOF. Assume that l θ p 2 is a complexification. Then C ( 3 ) [ X l 5 X2~\ =

C(1)[Yl9Y2]®C(ί)[Zί9Z2] has an 5 3 invariant non-degenerate symmetric form

β, where the action of S 3 is given by l φ p 2 , and we see β(Zi9 Z2)=β(Zi9 Z x ) = 0,
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by the same way as in the above proof. Also,

/ - I 0 \
β(zi9 Yd =β(p2[ k z j , γt) = -β(zu yf),

\ o - 1 /

i.e., β(Zί9 Yi) = 0 (i = l, 2), and we have a contradiction. q.e.d.

PROPOSITION 3.7. Consider the real representations

η,:S3 = Sί/(2) —> SO(4) (i = 1,2),

defined by using the quaternion field H as follows:

1i(p)q = pq, η2(p)q = Pqp"l (peS3 a H9qeH).

Then, any non-trivial representation η: S3-»O(4) is equivalent to ηι or η2.

PROOF. Since the complexification η of η is equivalent to l®p 3 or p2@Pi

of (3.4) by Lemmas 3.5 and 3.6. On the other hand, we see easily that the traces

of l φ p 3 and ρ2®Pi a r e equal to those of η2 and ηί9 respectively, and so we have

the desired results. q.e.d.

Finally, we notice real representations of the normalizer NS1 of S1 in S3.

PROPOSITION 3.8. If y: NS1-+0(2) is a representation such that ylS1 is

is non-trivial, then y is equivalent to

yn: NS1 • 0(2) for some even n > 0,

which is defined by

yn(a)b = anb, yn(j)b = - 5 ( α e S 1 c CJeNSί-Sί

9beC).

PROOF. By the assumption, we can take γ up to equivalence so that

y(a)b = anb (aeS\beC)

for some integer n>0. Set y(j) = (xkι)e0(2). Then, we see immediately by the

relation ja = άj that

Therefore, it is easy to see that y is equivalent to γ' given by

y'(a)b = a»b, y'(j)b = - 5 ,

where n must be even since j 2 = — 1. q.e.d.
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§4. Smooth S 3 actions on CHP2(C).

In the rest of this note, assume that a 4 dimensional orientable closed smooth

manifold

M = CHP2(C)

has the same cohomology ring as the complex projective plane P2(C) and that M

admits a non-trivial smooth S3 action. It is clear that this action preserves the

orientation on M.

Consider a fixed maximal torus S 1 of S3, and the fixed point set

F(Sι,M) = {xeM ax = x for all aeS1}

of the restricted S1 action of the given S3 action. Then, by the result of J. C. Su

[4, Th. 7.2] (cf. also [1; IV, Prop. 1.2, Th. 2.1]),

(4.1) F(S1,M) = F1[)-[)Fι

is the disjoint union of connected orientable 2A:f dimensional submanifolds Ft

of M, where Ft has the same cohomology ring as the complex projective ki space

Pki(Cl and

PROPOSITION 4.2. In our case, 1 = 3 in (4.1), that is, FiS1,]^) consists of

three points:

PROOF. If / = ! , then F(Sι,M) = M, i.e., the restricted action of a maximal

torus S 1 of S3 is trivial, and so the action of S 3 is also trivial, which contradicts

the assumption.

Assume 1 = 2. Then by (4.1)

F(S\ M) = F1 U F 2 , F± is a point, dimF 2 = 2.

Therefore dimM —maxdimF ί = 2. Also the maximum of the dimensions of

proper subgroups of S3 is equal to 1 by Corollary 3.2. Therefore, by the result

of F. Uchida [6, Th. 2], we see that άimFί is also 2, which contradicts dimi^ =0.

q.e.d.

Now, we consider the isotropy subgroups S3 (x e M) and the type of principal

isotropy subgroups (H) of (2.3) for a given S3 action on M.
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LEMMA 4.3. (i) If dim S*^l, then xeS3'F(S\ M).

(ii) dim H = 0,andS3e (H) if dim S3 = 0.

PROOF, (i) is clear by Corollary 3.2.

(ii) We notice that there is a point xeM such that dimS 3 = 0 by(i).

If dim S3 = 0, then the orbit S3 -x = S3fS3 is an orientable 3 dimensional mani-

fold. Therefore the normal bundle v of S3-x in M is orientable, and so the line

bundle v is trivial. Then the normal representation px is trivial by (2.2), that is,

S3 6 (if) by (2.4). g.e.d.

PROPOSITION 4.4. We have only the following two cases (I) and (II), for the

isotropy subgroups S3. of xieF(Sί

9M) and the fixed point set

F(S3,M) = {xeM px = x for all peS3}:

( I ) S3

xι = S 3 , SI = S 1 (i = 2, 3), F(S 3 , M) = { x j ,

(II) S 3

t = JVS1, S3

£ = S 1 (ί = 2, 3), F(S 3 , M) = φ .

PROOF. Assume that jeNS1— S1 acts trivially onF(S ί

9 M) = {xί9 x2, x3}.

Then it is clear that the orbits 5 3 xf ( ΐ= 1,2, 3) are disjoint. Choose disjoint closed

S 3 invariant tubular neighborhoods Vt of S3-Xι (ί= 1,2, 3). Then, S 3 acts on the

submanifold M ' = M— U 3

= ί Int Fi9 and the orbit space M'/S3 is a compact 1

dimensional manifold, by the above lemma. Since each component ΘVi of dM'

is S3 invariant, d(M'/S3) consists of three points and we have a contradiction.

Therefore, j acts non-trivially on {xί9x2,x3}, and so

jxί = xί9 jx2 = X3, jx$ = X2

Then S^czNS1 and S3

έ = S 1 (i = 2, 3). The desired result follows from Corollary

3.2. q.e.d.

PROPOSITION 4.5. Let (H) be the type of principal isotropy subgroups for

a given S3 action on M, and px be the normal representation of (2.1). Then,

according to the case (I) or (II) of the above proposition, we have

( I ) {l}e(H), and pXί: S3->0(4) is equivalent to r\γ of Proposition 3.7,

and pXi: S1-^O(2) (i = 2, 3) is so to δv

(II) Z4e(H), and ρXί: iVS1->0(2) is equivalent to y2 of Proposition 3.8,

and ρx.\ S1^O(2) (i = 2, 3) is 50 to <54.

Here, δn: S1-^O(2) is given by

δn(a)-b = an b (a e S1 c C, b e C).

PROOF. We notice that p .̂. is non-trivial by (2.4).
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(I) pXι is equivalent to ηί or η2 by Proposition 3.7. By the definition of ηh

it is easy to see that {1} or S 1 is a principal isotropy subgroup of the S3 action on

R4 via ηx or η2. Also, by (2.2), xx has a tubular neighborhood in M, which is

S 3 equivariantly diίFeomorphic to R4 with S 3 action via px. Therefore we see

# = {1} by Lemma 4.3 (ii).

It is clear that px. (i = 2, 3) is equivalent to δn for some n > 0 , and the principal

isotropy subgroup for S1 action on R2 via δn is Zn. Therefore we have n = l by

the above result.

(II) If pXi\Sι is non-trivial, then pXι is equivalent to yn for some positive even

integer n, by Proposition 3.8. Therefore we can see that the principal isotropy

subgroup for the NS1 action on R2 via pXι is S 1 or

Qn = <j,Q\p(2πi/ή)> (even n > 0),

the subgroup of S 3 generated by j and exp(2π//n). Also, the principal isotropy

subgroup for the S1 action on JR2 via pX2 is Zm for some m.

By (2.2), choose a tubular neighborhood

of the orbit 5 3 xf. Then the principal isotropy subgroup for the S 3 action on l^

coincides with that for the St action on JR2 via ρXi, since SlPtVl = p(Si)vp~ί for [p, υ]

eUi. Therefore, the principal isotropy subgroup is Qn = Zm by the above

consideration, which implies m = 4 and n = 2. q.e.d.

Now, consider the smooth S 3 action on the complex projective plane P2(C) =

P(HxC) given by (1.1). Let

{aeC;\a\^t}> D* = {peH; \p\ = 1}

be the unit disks. Then, we have easily the S 3 equivariant embeddings

D 4 = Z)4 x 1 > P(H x C), S 3 x s i D
2 ( l) > P(H x C)

by sending (p9a)eHxC to Q?, α] e P(if x C), and so the S 3 equivariant decom-

position

(4.6) P2(C) = P(H xC) = S3xsiD
2 U Z)4, (Z)2 = D 2 ( l )) .

Next, consider the smooth S3 action on P2{C) = P(H®CH/~) given by (1.2).

Then we have the S3 equivariant embeddings

S3 xNSiD
2(r) > P(H®CHI~),

S3χsιD
2(s) >P(H®cH/~)
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(0<s = ( l - 2 r ) / ( l + 2 r ) < l ) , by sending Q>, α ] e S 3 xNS*D2(r) or S 3 x S iZ) 2 (s) to

[(p ®p)a + (p ® pj) + (pj ® pj)ά] or [p ®p + (p ® p)δ] ,

respectively, where NS1 acts on D2(r) via y2

 a n d S1 acts on D2(s) via <54 (cf. Propo-

sition 4.5 (II)). Then, we have easily the S 3 equivariant decomposition

(4.7) P2(C) = S3 x N S 1 D2(r) U S 3 x s , £ 2 ( s ) .

PROOF OF THEOREM 1.3. The case (I) of Proposition 4.4. By (2.2), we can

choose a closed tubular neighborhood U = S3 x sιD
2 of the orbit S3mx2

:=S3'X3

and a closed S 3 invariant neighborhood V=D4 of x l 9 such that U Π F = 0 and S 1

acts on D2 via <5X and S3 acts on D 4 via ηx.

Then, S 3 acts on N — M — Int (7 —Int Fand the orbit space N/5 3 is a compact

1 dimensional manifold by Lemma 4.3. Therefore N/S3 is diffeomorphic to a

closed interval [0,1], and hence N is equivariantly diffeomorphic to S3 x [0, 1],

where S3 acts on the first factor. These show that M has an equivariant decom-

position

M = U U N U V^ S3xsιD
2 U D 4 .

Thus, M is equivariantly diffeomorphic to P 2 ( Q of (4.6), as desired.

The case (II) of Proposition 4.4. We can prove this by the same way as above.

We choose closed tubular neighborhoods U = S3 xSιD
2 of S3-X2 = ̂ 3 ' ^3 and

F = S 3 xNSίD
2 of S3-x1 so that U Π F = 0 , where S 1 and NS1 act on D2 by <54

and y2 respectively, by Proposition 4.5 (II). Then, we see that N/S3^[0,1]

(N = M — Int 17 —Int K) by the same way as above, and so N is equivariantly

diffeomorphic to (S 3 /Z 4 )x [0,1]. These show that M has an equivariant de-

composition

M = U [} N [) Vς* S3xsίD
2 U S3xNS1D

2.

Thus, M is equivariantly diffeomorphic to P2(C) of (4.7), as desired. q. e. d.
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