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Introduction

Network problems are discussed usually on a finite graph. Duffin [5]

investigated the extremal length of a network on a finite graph and suggested a

relation between potential theory and network theory. Derrick [4] and Ohtsuka

[6] generalized Dufϊin's results to the continuous case without using network

theory.

We shall study in this paper the extremal length of a network on an infinite

graph which has a countably infinite number of nodes and arcs. We use some

techniques which are standard in potential theory (for instance [1], [2] and [3])

and go along Dufiin's arguments.

Some definitions and notations related to network theory are given in § 1.

The extremal length of a network is studied in § 4 with the aid of the functional

spaces defined in §2 and the fact in §3 that max-potential equals min-work.

The duality relation between the max-flow problem and the min-cut problem,

which is investigated in § 6, does not hold in general for infinite linear program-

ming problems. We shall treat three kinds of the extremal widths of a network

in § 7 by using some results in § 5 and § 6. The reciprocal relation between the

extremal length and one of the extremal widths is also studied in § 7. We shall

be concerned with Duίfin's path-cut inequality in § 8.

§ 1. Notations and network definitions

A graph is intuitively a geometric figure consisting of points (which we shall

call nodes) and line segments (which we shall call arcs) connecting a node to

another. To each arc we assign a direction. Denote by X the set of nodes and

by Y the set of arcs. Since we always consider the case where X and Y consist

of a countably infinite number of elements, we put for simplicity

X = {0,1,2,...,*,...},

Define the node-arc incidence matrix K = (Kvj) by Kvj=l if arc j is directed toward

node v, Kvj = — 1 if arc j is directed away from node v and Kvj = 0 if arc j and node
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v do not meet.
In the formal terminology, we define an infinite graph as follows.

DEFINITION 1. An infinite graph G is the triple <X, 7, K> which satisfies
the following conditions:

(1.1) {j e 7 KvJ Φ 0} is a finite set for each v e X.

(1.2) {v eX;Kvj Φ 0} consists of two nodes for each j e 7.

Let L(X) and L(Y) be the sets of all real-valued functions on X and Y re-
spectively. For u E L(X) and w e L(Y), we put

uv = u(v) and Wj = w(j).

A path P from node α to node β is the triple (CX(P), Cy(P), p) of a finite
ordered set Cx(P) = {v0,vl9...,vn} of nodes, a finite ordered set Cγ(P) = {juj2τ- >
jn} of arcs and a function p = p(P) on 7 called the index of P such that

v0 = α , vrt = β, v, φ vk (ί Φ k),

Pj = 0 if jφCγ(P),

Pj=-Kvj with v = v£_i if 7 = Λ .

Intuitively a path from node α to node β is a finite set of nodes and arcs which
forms a simple curve. Denote by Paβ the set of all paths from node α to node β.
For simplicity, we set Pαα = {α}. Let A and B be mutually disjoint nonempty
subsets of X. A path P from A to 5 is a path from some node α e 4̂ to some node
β e B such that

Q(P) n A = {α} and C^P) Γ\ B = {β}.

Denote by PAB the set of all paths from A to B.

DEFINITION 2. We say that the pair (G, r) of an infinite graph G=<X,
Y,K> and a function reL(Y) is an infinite network if the following conditions
are fulfilled:

(1.3) G is connected, i.e., Paβ Φ φ for any α, β e X.

(1.4) r y > 0 for all jeY.

The infinite network (G, r) is denoted by <X, 7, X, r> or < Z , 7, r> or <X9

Y> if there is no confusion from the context. In this paper we always consider
extremum problems on an infinite network <X, Y,K,r>.
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DEFINITION 3. We say that a subset F of X is connected if for any α, β e F

there is PePaβ such that CX(P)<=F.

We say that <X\ Y\ K, r'> = <X\ Y'> is a finite subnetwork of <X9

Y,K,r> if X' and Y' are finite subsets of X and 7 respectively, if conditions

(1.2) and (1.3) are fulfilled replacing X and 7by X' and Y' respectively and r} = r7-

for each j e Y'.

DEFINITION 4. We say that a sequence {< Jf(n), 7 ( / l )>} of finite subnetworks

of <X, 7 > is an exhaustion of <X, Y> if

(1.5) X = U * ("> and Y= U y<»>,
n= 1 «= 1

(1.6) { j e F ; i ( v ^ 0 } c y ( » + 1 ) for each veX<">.

We have by definition

A sequence {<X(W), Y(rt>>} of finite subnetworks of <X, Y> is said to be

the elementary exhaustion of <X, Y> starting from a finite connected subset

A of X if

(1.7) γ(D = {jeY;KvjΦ 0 for some veΛ},

(1.8) XW = {veX\KvjΦ 0 for some j e Y^} (n = 1,2,...),

(1.9) y(») = { j e y ; X v ^ 0 for some v e l ^ 1 ) } (n = 2,3,...).

Let A and B be mutually disjoint nonempty subsets of X. We say that a

subset β of Y is a cut between A and 2? if there exist mutually disjoint subsets

Q(A) and Q(B) of X such that AcQ(A\ BaQ(B\ X = Q(A) U Q(B) and the set

Q(A)ΘQ(B) = {jeY;KvjKμj = - 1 for some veβ(i4) and μ

is equal to Q. The pair of Q(A) and Q(β) is called a dissection of X. Denote

by QAB the set of all cuts between A and B and put

QΏ = {β e <?^5; 6 is a finite set} .

A circuit is a finite set of nodes and arcs forming a simple closed curve. To

each circuit we assign a direction. Let Ckj be the circuit-arc incidence matrix.

Namely Ckj= 1 if arc j lies on circuit Ck in the same direction, Ckj= — 1 if arc j

lies on circuit Ck in the opposite direction, and Ckj = 0 if arc j does not lie on cir-

cuit Ck.
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For any u e L{X) and w e L(7), let us put

Su = {ieX;u,Φ0}, Sw = {ye Y; w, # 0},

(1-10) D(u)= Σ θ ' ( Σ W -
7=1 v=0

(1.11) H(w)= Σ^jwj.

The Laplacian Δue L{X) of u e L(X) is defined by

(1-12) (/Iw); = - Σ rγKi}{ Σ KVJ «V).
j=ί v = 0

We shall use the following classes of functions on X and Y.

L0(X) = {u e L(X); Su is a finite set},

L0(Y) = {WEL(Y); SW is a finite set},

L+(Y) = {weL(Y); Wj ̂  0 for all jeY},

Π L+(7),

(w)< oo},

n + ( )

L2(Y; r) is a Hubert space with the norm [H(w)] 1 / 2 and the inner product

<w,w'> defined by

(1.13) <w,w'> = Σ VjWjW'j.

If H(w — w(n))->0 as n->oo, then wŷ -̂ vv,- as n->oo for each 7.

Let 4̂ and B be mutually disjoint nonempty finite subsets of X. We say that

w e L(Y) is a flow from 4̂ to B of strength /(w) if

(1.14) I(w) = - Σ Σ Kv W; = Σ Σ Kvjwj,
veA j=ί veB j=ί

(1.15) ΣKvjWj = 0 (vφAϋB).

Denote by F(A9 B) the set of all flows from A to B and by F0(A, B) the closure of

F(A, B) n L0(Y) in L 2 ( 7 r). Thus for any w e F0(A, B), there exists a sequence

{w<w>}c=F(y4,5)0^(7) such that H(w-w^)^0 as n->oo. It follows that

F0(A,B)czF(A9B) and /(w^))^/(w) as n->oo.
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We often use the following well-known theorem to assure the existence of
an optimal (or extremal) solution of an extremum problem.

THEOREM A. Let Z be a Hilbert space with the norm \\z\\ and the inner
product (z, z') and C be a nonempty closed convex set in Z. Then there exists
a unique £ e C such that

(1.16) | |z1|=min{| |z | |;zeC}.

The element zeC is characterized by the relation

(1.17) \\z\\2^(z,z)

for all zeC. Ifz±zeC9 then

(1.18) (z,z) = 0.

§2. Functional spaces D and D o

Beurling and Deny constructed a Dirichlet space on a finite set of points and
arcs which can be interpreted as a finite network ([1], p. 223). Analogously to
their method, we shall introduce a functional space on an infinite network <X9

Y,r>. Let A be a nonempty subset of X and put

B0(X) = B&X) = {ue L0(X); u = 0 on A},

D = DA = {ueL(X); D{ύ) < oo and u = 0 on 4},

where D(u) is defined by (1.10). It is easily seen that D is a real linear space and
contains B0(X). For u, veD, we define ||u|| and (w, v) by

( , ) ± 7 ( t v j v ) ( ± v j v )
j=ί v=0 v=O

Then we have

||u + t>||^| |iι | | + IMI and ||tu|| = \t\ \\u\\

for any u, veD and any real number ί.
First we shall prove

LEMMA 1. There exists a constant Mn such that

Σ N^MJIiill
i=O
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for all ueD.

PROOF. Let oceA,\et{<X(n\ 7(">>}be the elementary exhaustion of <X,
Y> starting from {α} and let ueD. From the relation

for all v 6 X< ' > and jeY(1> such that Kvj φ 0, we derive

H ^ α j u l l with β l = max {r)i2;je

for all ve^ί ( 1 ). We have by induction

( Σ * ) l l l l with
k=l

for all veX(n\ Given {0,l,...,n}cI, we can find m such that {0,1,..., n}c
χ(w). Then we have

n m

Σ Kl ύ Mtt\\u\\ with Mn = « Σ « .
v = 0 Jt= 1

It is clear by our construction that Mn is independent of u.

COROLLARY 1. // || u \\ = 0, ί/zen w = 0.

COROLLARY 2. Assume that u(k\ ueD and \\u — w(fc)||->0 as fc-»oo.
->Mf as k-+co for each ίeX.

From these facts we obtain

THEOREM 1. D is a Hilbert space with the norm \\u\\ and the inner product

DEFINITION 5. We call a function T on the real line R into itself a normal
contraction of R is 7Ό = 0 and

Γxsl ^ \xί-x2\

for any x l 5 x2 e R. Define Tw e L(X) for w e L(Z) by

(Hi), = 71^.

We have

LEMMA 2. L ί̂ T be a normal contraction of R and ueD. Then TueD
and\\Tu\\^\\u\\.

PROOF. For veA, we have (7V)v = Twv=7Ό = 0. If {veZ;X v J^0} =
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{a, b}, then

KvjTuv\ = \Tua-Tub\ rg \ua-ub\ = I Σ Kvjuv\9
0 v=0

so that

= Σ o 1 (Σ κvjτuvy ^ ΣnHΣ κvjuvy = Ml2.
j=l v = 0 J = l v=0 J

COROLLARY 1. Let ueD and c be a non-negative real number and define
min(w, c)eL(X) by (min(M, c))j[ = min(w/, c). Then min(u,c)eD and ||min(w,

COROLLARY 2. IfueD, then w+ = max(w50) and M"=max(-ι/,0) belong

DEFINITION 6. Denote by D0=D$ the closure of BoOO i n &A a n d s e t

H=HA = {ueDΛ',(Au)i = 0 for iφA}.

We have

LEMMA 3. LetueD and feB0(X). Then

PROOF. Since Sf is a finite set,

ΣjHΣ^WvXΣ
v =0 i=0

= Σ fi Σ rj'K,/ Σ κVJ uv)) = - £ ftAu),.
i=0 j=l v=0 i=0

COROLLARY 1. Lei weD and veD0. If {ieX;(Au)i Φ 0} is a finite set,
then

(u,v)= -ΣWft
ί = 0

PROOF. There exists a sequence {/(Λ)} in B0(X) such that \\υ— / ( n ) | |-^ 0 as
n-KXD. We have by Lemma 3 and Corollary 2 of Lemma 1

(II, ϋ) = lim (M,/<»>) = - l i m Σ (
i=O

COROLLARY 2. H is the orthogonal complement of Do in D, i.e.,
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H= {heD;(h,v) = 0forall veDo}.

COROLLARY 3. Every ueD can be decomposed uniquely in the form

u = v + h, where veD0 and heH.

PROOF. Since Do is a closed linear subspace of a Hubert space D and H

is the orthogonal complement of Do in D, our assertion follows from the orthogo-

nal decomposition theorem (cf. [7], p. 82, Theorem 1).

THEOREM 2. (Dirichlet principle) Let ueD and let B be a subset of X such

that AnB = φ. Then SB = {veD;v = u on B} is a closed subset of D and there

exists a unique ύB eSB such that

\\UB\\=mm{\\v\\;veSB}.

It is valid that

(2.1) (AύB)i = 0 if iφΛ and iφB,

(2.2) \\ύB\\2 = (ύB,v) for all veSB.

The function ύB is characterized by (2.2).

PROOF. It is clear that SB is a nonempty closed convex set. Then the

existence of ύB follows from Theorems 1 and A. For any feB0(X) such that

fi = 0 for ieB, we have ύB±feSB, so that (ύB,f) = O by (1.18) of Theorem A.

Thus (2.1) follows from Lemma 3. If v e SB, then

UB±(UB-v)eSB

and (ύB,ύB-v) = 0 by (1.18). This shows (2.2). If UeSB satisfies \\ΰ\\2 = (ΰ,v)

for all v e SB, then

| | ΰ | | 2 = ( ΰ , t ; ) ^ | | ΰ | | | M |

and hence ||w||g||ι;||. Thus ΰ = ύB.

§ 3. Max-potential equals min-work

We shall generalize a Duffin's theorem which assures that max-potential

equals min-work.

Let ceL+(Y) and A and B be mutually disjoint nonempty subsets of X.

We shall be concerned with the following two extremum problems on an infinite

network <X9 Y>.

(3.1) (Min-work problem) Find
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N(A9B;c) = inf {Σcj;PePΛB}9

where Tc. is an abbreviation of Σ c/
P Cγ(P)

(3.2) (Max-potential problem) Find

Λί*04, 5; c) = sup {inf {wv; v e B} - sup {wv; v e A} w e S*},

where

; | Σ Kvjuv\ ^ Cj on 7} .
v = 0

We have

THEOREM 3. N(A, B; c) = N*(A9 B; c) holds and there exists an optimal
solution u of (3.2) such that w = 0 on A.

PROOF. Let us put

where PAB = U {Paβ oceA, βeB}. Then PAB c P^β and N(i4, B • c) = iV(^,

β c), since every PePAB contains some P' ePAB and C/^0. Let us show that

#(4, B c) = JV*(i4, £ c). Let PeP a β with α e i and βeB and put CX(P) =
{vo,^,...,^} and CY(P) = {;,,...Jn}. If ueS*9 then

Σ o = .?/;*= Σ K-Wv,-!! ^^-wα

^ inf {wv; v e β} — sup {MV; v e ̂ 4}.

Therefore N(A, B;c)^N*(A,B;c). On the other hand, let us define ύeL(X)
by ύv = 0 if veA and

Σ ^ ; ^ { v } } if

We show that ύ e S*, i.e.,

(3.3) IΣ^vAl^c f c
v = 0

for each ke Y. Let ke Yand {veI;K v k ^0} = {α,i?}. In case ί i e i and
we have ύa = ύb = O. Then (3.3) is clear. In case aeA and bφA, let us consider

the path PePab<=:PA{b} defined by
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Cx(P)={a,b}, Cy(P) = {k},

Pj(P) = 0(j* k) and pk(P) =-Kak.

Then we have

and hence \ύa — ύb\ = ΰb^ck, which shows (3.3). In case aφA and be A, we have
(3.3) similarly. Finally we consider the case where a φ A and b φ A. For any

PePAla}, let us define PePΛm by CX(P) = CX(P) U {b}, CY(P)=CY(P) U {k},
Pj(P)=Pj(P) HjΦk and pk(P)= -Kak. Then

so that ύb^ύa + ck. Interchanging the roles of node a and node b in the above
discussion, we obtain ύa^ύb + ck, and hence \ύa-ύb\^ck. Therefore ύeS* and

N*(A, B\ c) ^ inf{ύv;veB} -sup {ύv;ve A}

= inf{Uv;veB} =N(A,B;c).

Thus N(A, B;c) = N*(A, B c) and ύ is an optimal solution of max-potential
problem.

There is no optimal solution of min-work problem in general. This is shown
by

EXAMPLE 1. Let us consider an infinite graph such as shown in Fig. 1, where
we number nodes and arcs. To each arc of the graph a direction is assigned.

1

1

3

2

4

6

5
> 1

2/2+1

3/7 + 3

3/2 4-1

0 2 2/ί

Fig. 1. An infinite graph.

Denote this infinite graph by G=<X9 Y,K>. If reL(Y) is defined by r,
on 7, then (G, r) is an infinite network.

Let Λ = {0} and £={1} and define ceL+(Y) by
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cx = l, c 3 n + 1 = 4 - » (nΦO), c3n + 2 = c3/J + 3 = 4 - - 1 ( n ^ O ) .

Then we have N(A,B;c) = 2/3 and Σcj>2β for any PePAB. Namely there is

no optimal solution of min-work problem.

§ 4. The extremal length of a network

Let A and B be mutually disjoint nonempty subsets of X and define the ex-
tremal length EL — EL(A, B) of an infinite network <X,Y,r> relative to two sets
A and B as the value of the following extremum problem.

(4.1) Find ELr1 = inf {H(W);Wε EAB} ,

where

EAB = {WeLi(Y;r); ψjWj^l for all PePAB}.

We use the convention in this paper that the infimum of a real-valued function
on the empty set φ is equal to oo. If EABφφ, then there is a unique WeEAB

such that EL~λ=H(W) by Theorem A, since EAB is a nonempty closed convex
subset of L2(Y; r). Note that inf {Σθ^/5 P ePΛB} = 1.

In connection with (4.1), we consider the following extremum problem.

(4.2) Find

d = inf{D(v); v e L(X), v = 0 on A and υ = 1 on B}.

We have

THEOREM 4. ELr * = d.

PROOF. First we shall prove ELr^-^d. We may suppose that d is finite,
i.e., there is q eDA such that q = ί on B. There exists cj = qB eS% such that d =
D(ή)=\\q\\2 by Theorem 2. Define WeL+(Y) by

v = 0

Let PePAB and C x(P) = {v0, v l9..., v j with vo = <xeA and vn = J?e5. Then

and

H(W) = D(q) = d < oo.



234 Maretsugu YAMASAKI

Therefore WeEAB and EL~ι^H{W) = d. Next we shall show d^ELr1. We

may suppose that EL~ί < oo, i.e., EABΦφ. Then there is We EAB such that EL"ι

= H(ft). Define ceL+(Y) by C/ = r,W}. Then N(A,B;c)=l. By means of

Theorem 3, we have the existence of ueL(X) such that w = 0 on A, w ^ l on B

and

v = 0 J

Observing that

D(u) = f n1 ( f Kviuv)
2 ^ H(W) = EL-1 < oo,

j=l v = 0

we have by Corollary 1 of Lemma 2

v = min (u, l)eD and D(t ) ^ D(w).

Since t?=0 on A and t ;=l on B, we have d^D^^EL'1. Therefore ELrι=d.

It is easily seen that d< oo if either 4̂ or £ is a finite set.

§ 5. A fundamental equality for a double series

First we have

LEMMA 4. { Σ |w/| I Σ ^v/Mvl}2 ^ H(w)D(u)
j=ί v=0

for every u e L(X) and w e L(Y).

PROOF. We have

{Σχ

^ ( Σ rjwjχ ΣnHΣ KVJuvy) = tf(w)D(M).
j=l j=l v=0

THEOREM 5. If A and B are finite sets, then

(5.1) Σ w,.( Σ KvJuv) = Σ «v( Σ ^v W,.)
j = l J

 v = 0 v = 0 j = l

/or every weF0(A,B) and ueL(X) such that D(u) <oo.

PROOF. Let weF0(A, B) and weL(Z) such that D(u)< oo. There exists a

sequence {w(w)} in L 0 (y) such that win)eF(A9B) and #(w —w(π))-»0 as n->oo.

We have
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0 0 . . 0 0 0 0 0 0 , .

Σ wγ\ Σ κvjuv) = Σ «v( Σ κvjWy
ί = l J

 v = 0 v = 0 1=1

= Σ «,(Σ κvjWy)+ Σ «v( Σ κvjW<f)
veA 7 = 1 veJB 7 = 1

Σ «v( Σ κvjWj) + Σ "v( Σ κv
veA j = l vεB j = l

Σ ( Σ= Σ «v( Σ κyJwj)
v=0 7=1

as n->oo, since w^-^Wj as n->oo for eachj and A andβ are finite sets. On the
other hand, we have

{ Σ K l I Σ Kvjuv\}2 ^ H(w)D(u) < oo ,
7 = 1 v = 0

7 = 1 v = 0

by Lemma 4. It follows that

. Σ w / Σ o V v ) = Jm | ^ ( v Σ o ^ v 7 Wv)

Σuv(Σ
v = 0 7 = 1

This completes the proof.

REMARK 1. We also have (5.1) if any one of the following conditions is
fulfilled:

( i ) W6LO(Y) or UEL0(X).

00

(ii) Σ |vvy|<oo and {MV} is bounded.

00

(iii) ueD0 and weL2(Y;r) such that {veX; Σ ^v/^i^O} is a finite set.

Let Q e QAB and Q = Q(A)ΘQ(B), where the pair of Q(A) and Q(5) is a dissec-
tion of X such that A c β(yl) and B c β(β). We define the characteristic function
u = u(Q) e L(X) of Q and the index s = s(Q) e L(Y) by

uv = 0 if veQ(A) and MV = 1 if veQ(J5),
(5.2)

5,= Σ/v7"v.
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We have s,. = 0 if jφQ and |s y | = l if jeQ. I f y e β and {veX; Kvj=£O} = {a, b}

with a e Q(A) and b e Q(B), then

(5.3) Sj = Kbj= -Kaj.

We have

COROLLARY 1. Let A andB be finite sets, weF0(A, B), QeQ(/^ and s = s(Q)

be the index of Q. Then

ΣJJ ()

PROOF. Since Q is a finite set, u = u(Q)eD. It follows from Theorem 5

that

oo oo oo oo

ΣSJWJ = Σ W/ Σ Kvy«v) = Σ «v( Σ KvjWj)
Q j=l v = 0 v = 0 j=ί

= Σ ΣKvjWj^iiw).
veBj=ί

COROLLARY 2. If A and B are finite sets and weF0(A,B)9 then

ΣK| ^ /(w)

Theorem 5 and its corollaries do not hold in general if we replace F0(A, B)

by F(A, B). This is shown by

EXAMPLE 2. Let us consider an infinite graph such as shown in Fig. 2, where

we number nodes and arcs. Denote this infinite graph by G= <X, Y,K>.

2n 4 2 1 3 2n+\

-<-m—<r— — • — e - —c >— —<— —<r-*—<-•—< <
2/ι 4 2 0 1 3 2/i+1

Fig. 2. An infinite graph.

Define reL(Y) by ry = l on Y. Then (G, r) is an infinite network. Let 4̂ = {0}

and B = {1} and define u e L(X) and weL(Y) by

uv = 1 if v = 2n + l and uv = 0 if v = 2n

for ft = O, 1, 2,... and

Wj = 1 on y.

It is clear that weF(A,B) and u is the characteristic function of Q =
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We have

co oo

Σ W ( Ύ j ^ ii Λ — w — 1

7=1 v=0

oo oo on

Σ «v( Σ KvjWj) =
v = 0 / = 1

§ 6. Max-flows and min-cuts

Let A and B be mutually disjoint nonempty finite subsets of X and We

L+(Y). We consider the following extremum problems on an infinite network

<X,Y9r>.

(6.1) (Max-flow problem) Find

M(W;F0(A9B)) = sup{/(w); weF0(A9B) and \wj\ ^ Wj on 7 } .

(6.2) (Min-cut problem) Find

We can define M*(W; QAB) similarly. Let us put

G(A,B) = F0(A,B) n L0(Y) = F(A,B) Π L0(Y)

and consider one more extremum problem.

(6.3) (Weak max-flow problem) Find

M(W;G(A9B)) = sup{/(w); we G(A, B) and |w,.| ^ Wj on 7} .

We have

LEMMA 5. M(W G(^4,5)) ^ M(P^; F0(v4, β)) ^ {β

PROOF. Since G(y4,B)c=Fo(^, B), we have M(Pf; G ( A , B ) ) ^ M ( ^ ; F0(A9

B)). Let Q e Q{β and w e F0(i4, B) such that |vvy| ^ Wj on 7. Then we have by

Corollary 2 of Theorem 5

which leads to the desired inequality

LEMMA 6. // WeL\(Y\ r), then there exists weF0(A, B) such that |w,| ^
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on Yand M(W; F0(A, £)) = /(#), i.e., n> is an optimal solution o/(6.1).

PROOF. There exists a sequence {w(M)} in F0(A, B) such that |w(yw)| ̂  Wj on 7

and I(w^) converges to M(W;F0(A,B)). Since {weF0(A,B);\Wj\^Wj on 7}
is weakly compact in L2(Y; r), we may assume that {w(n)} converges weakly to

tieF0(A,B) with \wj\^Wj on 7. Then w(jn)-*Wj as n-»oo for each 7. Since

{j eY; KvjΦϋ} is a finite set for each v, we have

= Σ Σ Kvί»j = lim Σ Σ KVJtfj*>
veB j=l n->ooveB./=l

= lim
«->oo

This completes the proof.

Problem (6.3) has no optimal solution in general. This is shown by Example

5 below. But by the same method as in the above proof, we can prove

LEMMA 7. // WeL+

2(Y r), then there exists weF0(A, B) such that \wj\ <L Wj

on Y and M(W; G(A9 B)) = I(w). This w is called a weak optimal solution of

(6.3).

Let w e F0(A, B) with \wj\ <; Wj on Y. Define a subset Q(A w) of X as follows.

Node v belongs to Q(A w) if and only if either v e A or there exist P e PA{χ) a n d a

positive number t such that

W + ί ̂  Wj if /?;= 1,
(6.4)

w y - ί ^ -Pf,. if pj= -1,

where p is the index of P. Let Q(B w) = X - Q(A w).

We have

LEMMA 8. Let w be a weak optimal solution of (6.3) and set Q(A) = Q(A; w)

and 6(B) = 6(B;*) . Then () = &(A)OQ(B)eQAB. We say that & is the cut

determined by w.

PROOF. It suffices to show that Bcz Q(B). If we suppose the contrary, there

is β G B such that β e Q,(A). We can find P e PA{β} and a positive number t which

satisfy (6.4). There exists a sequence {w^} in G(A, B) such that |w(/}| ^ Wj on 7

and wy1*-*^ as n->oo for eachj. For any ε with 0<ε<ί/2, there is n 0 such that

Iw(/} - fy| < ε for all j e CΎ{P)

and

| / ( ( > ) / ( ) | < ε
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whenever n^.n0. Taking w' = w("o), we have

w'j + t/2^ Wj if pj= 1,

w}-f/2£ -Wj if pj= - 1 .

Thus w' + (ί/2)]?e G(A, B) and |vv}-h (ί/2)^! ̂  Wj on 7, so that

M(W; G(A,B)) ^ J(w' + (ί/2)p) = J(w') + (ί/2)/(p)

= /(w') + ί/2 > /(n>) - ε + ί/2 > J(Λ).

This is a contradiction. Therefore BaQ(B).

REMARK 2. If w is an optimal solution of (6.1), then we have Q(Λ; w ) θ

LEMMA 9. Lei H> foe a weak optimal solution of (63), Q be the cut determin-

ed by w and S = s(β) be the index of Q. Then §jWj=Wjfor eachjeQ.

PROOF. Let keQ and {veX;Kvk^0} = {a,b} with a e Q(A) and b e
Suppose that §kwkφWk. In the case where s f e = - K α f c = l , we have wfe<Wfc If

aeA, then there exist P e P ^ } and a positive number ί such that wk + t^Wk,

pk(P)=l and p.(P) = 0 if j#fe. In fact, we may take ί = Wfe-wΛ, C x(P) = {α, 6},

Cγ(P) = {k} and p k ( P ) = l . This implies beQ,(A), which is a contradiction. If

a 6 Q(A) — A, then there exist P e P ^ j and a positive number ί which satisfy (6.4).

Let ίo = min(ί, Wk — wk) and P be the path from A to {fo} which is generated by P

and {/c}, i.e.,

= cx(P) u {fo}, c y (P) = cγ(P) u {/c},

= Pj if j # / c ,

Then we have

Wj + to^Wj if p / P ) = l ,

^ - ί o έ -Wj if p / P ) = - 1 .

This implies beQ(A)9 which is a contradiction. In the case where Sk= — 1, we

can arrive at a contradiction similarly. Therefore §kwk=Wk.

COROLLARY 1. IfjeQ and {veX;KvjΦ0} = {a, b} with aeQ(A) and
b e Q,(B), then
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COROLLARY2. IfQeQtfJ, then M(W;G(A,B)) = M(W;F0(A,B)) =

PROOF. In view of Lemma 5, it suffices to show that M*(W;

G(A, B)). Since (5 ε Q(/^ by our assumption, we have by Corollary 1 of Theorem

5 and Lemma 9

M(W; G(A, B)) = /(*) = Σ« A = Σ ̂  M * (

COROLLARY 3. // WeL^Y), then M(W;G(A,B)) = M(W; F0(A,B)) =

PROOF. Since We L^(Y)<=.L\(Y' r), there exists a weak optimal solution w

of (6.3) by Lemma 7. We have Wj = 0 whenever Wj = 0. It follows from (6.4)

that Q(A) is a finite set, so that QSQ^IB- Our assertion is now an immediate

consequence of the above corollary.

COROLLARY 4. // WeL+

2{Y\r) and QAB=Q{/1 then M(W;G(A,B)) =

M(W; F0(A, B)) = M*(W; <?(/β>).

We shall prove

LEMMA 10. There exists QeQAB such that M*(W;QAB)= Σ ^ .

PROOF. There exists a sequence {Qn} in QAB such that

ΣWj-l/n<M*(W;QAB).
Qn

Denote by u{n) the characteristic function of Qn. Since u[n) = 0 or 1, we may assume

that {u(

v

n)} converges to uv for each v, by using the diagonal method. Then wv = 0

or 1. Let us put

Q(A) = {veX;uv = 0} and Q(B) = {veX; uv = 1} .

Then the pair of Q(Ά) and Q(B) is a dissection of X. Since w(M) = 0 on A and u ( n )

= 1 on 5 for all n, we have A c β(,4) and 5 cz 2(5). Thus Q = βC4)θβ(£) e ρ A Λ

and

Σ \ £M*(W; QAB) ^ ljm Σ ^ = Urn Σ Wj \ £ ^ " (

v

n

n + o o Q w > o o j = l v = 0v = 0

Σ I Σ^ Σ WS I Σ KvJuv\ = ΣWj^ M*(W;QAB).
j=ί v=0 Q

Namely we have M*(W; QAB)= Σ Wά.
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THEOREM 6. M(W; G(A, B)) = M*(W\ QAB).

PROOF. We have (5.1) for any weG(A, B) with \Wj\ ^ Wj on Yand any char-

acteristic function u(Q) of QeQAB by Remark 1 (i). It follows that M(W; G(A,

B))^M*(W\QAB) (cf. the proof of Lemma 5). On the other hand, let {<X^n\

Y(">>} be an exhaustion of <X, Y> such that A uBcXWfoτ all n. Define

W<jn) = Wj if j e y<»> and W(/ι) = 0 if jeY- y(»).

We have by Corollary 3 of Lemma 9

(6.5) M(W G(A, B)) ^ M ( ^ n > ; G(A, B))

By Lemma 10, we can find QneQAB such that

(6.6) QAB) Σ ^

Let w(n) be the characteristic function of Qn. We may assume that {u[n)} conver-

ges to uv for each v by using the diagonal method. There exists QeQAB such

that u is the characteristic function of Q (cf. the proof of Lemma 10). We

have by (6.5) and (6.6)

M{W\ G(A,B)) ^ lim Σ W]n) = lim Σ W^\ f Kvju\n)\
n^>oo Qn n-*ooj=ί v = 0

ZΣWj\l Kvjuγ\ = ΣWj> M*(W;QAB).
j=ί v=0 Q

This completes the proof.

COROLLARY. M*(W\ QAB) ^ M(W;F0(A9 B)) ^ M*(W\ <?(/B

}).

We have

THEOREM 7. Let WeL\{Y\r) and {<Z ( n ) , Y<M>>} be an exhaustion of

, 7 > , and put Zn=Y^-Y(n-^ (Y^ = φ) and μ^Σn1 (n = l,2,...) //
2

n = l

PROOF. Let us put for simplicity

)) and fc =

In view of Lemma 5, it suffices to show that a ̂  b. There is a weak optimal solu-

tion w of (6.3) by Lemma 7. Let β be the cut determined by w. If QeQ(/^9
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then a = b by Corollary 2 of Lemma 9. We consider the case where
There exist Qn e Q(/^ such that

(6.7) Q n r - ^ c β . c y<«>

for large n. In fact, let Q(A) and (5(£) be as in Lemma 8. For large n such that
1), set

*<»-*>) u (x-xo- 1 ) ) .

Then ρ π = βM(^)ΘQ r t(β) satisfies (6.7). We have ΣWj^b. Let sθ> = s(ρπ) be

the index of Qn. Then s(jn) = Sj if j belongs to (5 Π Y^" 1 ), and hence Wj = s(jn)Wj

for j e β n Y(n~1) = Qn Π Y^" 1) by Lemma 9. On the other hand,

a =

by Corollary 1 of Theorem 5. Hence

0^ b-a S ΣWj-Σs(jn)

Qn Qn

= Σ (Wj-s<j*%)£Σ(j\j\)£Σ
Zn

nQn Zn Zn

It follows that

( b - a ) 2 ^ 4 ( Σ Wj)2 g MΣ.jXΣjj) μn(Σ
zn zn zn zn

so that for any m ̂  0

(fc-fl)2"?^*1 ^4 £ Σ ^ ) = 4 W < °°
k=n k=ί Zk

00

Since Σ Aίn1==0°5 w e conclude fc = α. This completes the proof.
Λ = l

COROLLARY, // WeL^(Y;r) and if there exists an exhaustion {<X(n\

of <X,Y> such that Σμ~ί = oo9 then M*(W;QAB) = M(W;F0(A,

REMARK 3. If μ = Σ r l ι < °°5 then Σ tfiί = °° f°Γ a n y exhaustion { < X("\
j=1 n=1

of <X, y > . In fact, μ - ^ μ - ^ O .
We show by examples that there is a duality gap between the max-flow
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problem and the min-cut problem in general. First we show that Theorem 7

does not always hold if Wφ L\{Y\ r).

EXAMPLE 3. Let us consider the infinite network (G, r) defined in Example

1 and let Λ = {0} and J5 = {1}. Define WeL+(Y) by

(6.8) W3n+1 = 0 and W3n+2 = W3n+3 = 1 (n * 0 ) .

Then we have Wφ L+

2{Y\ r) and

(6.9) M(W; F0(A, B)) = M*(W; QAB) = O<1 = M*(W;Q^).

In fact, w e F0(A9 B) satisfies \wj\ ^ Wj on Yif and only if w = 0, so that M( W F0(A,

£)) = 0. Since ρ = {3n + l; n^O} eQAB, we obtain M*(W;QAB)=0. If Q G

(?5uί, then β must contain either arc 3n + 2 or arc 3n + 3 for some n. Hence

M*( W <?<$) = 1. Note that

Σ Λ 1 =oo

for the elementary exhaustion of (G, r) starting from A,
oo

Next we show that the condition Σ μ~ι = oo can not be omitted in Theorem

7.

EXAMPLE 4. Consider the infinite graph G defined in Example 1 and define

reL(Y) by

r3»+2 = r 3 w + 3 = 2 " π (n ̂  0 ) .

Consider WeL(Y) defined by (6.8). Then WeL+

2{Y\r) and (6.9) holds with

A = {0} and β = {1}. We remark that Σ μ~ι < oo for any exhaustion of (G, r).
w = l

Finally we show that each of problems (6.2) and (6.3) has no optimal solution

in general.

EXAMPLE 5. Let(G, r)be the infinite network defined in Example 1 and let

A = {0} and B = {1}. Define WeL+(Y) by

^ 3 π + 1 = 4 - and W3n+2 = W3n+3 = 2-» (nZO).

Then M(W;G(A,B)) = M*(W;QA

fjj)=4l3. It is easily seen that J(w)<4/3 <

j for any w e G(^, B) such that |w,| ^ Wj on y and any Q e <?(/β

}.

§7. The extremal widths of a network

Let A and B be mutually disjoint nonempty finite subsets of X and define the
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extremal widths EW=EW(Λ, B\ EWf = EWf(A,B) and EW*f = EW%A, B) of an

infinite network <X,Y9r> relative to two sets A and B as the values of the

following extremum problems.

(7.1) Find EW~λ = inf {H(W); WeE*B},

where

E*B = {WeL+

2(Y;r);ΣWj^l for all QeQAB}.

(7.2) Find EW71 = inf {H(W); We EfB

f)} ,

where

^l for all QeQtfi).) ; Σ

(7.3) Find EW}~1 = inf {H(W); We G%B},

where G^β denotes the closure of the intersection of E%B

f) and L0(Y) in L2(Y; r).

It is clear that EW^EWf and EW*fSEWf. Since £3(/> and G%B are non-

empty closed convex subsets of L2(Y; r), each of problems (7.2) and (7.3) has a

unique optimal solution by Theorem A.

In connection with the above problems, we consider the following two ex-

tremum problems.

(7.4) Find

d% = inf {H(w); weF0(A, B) and /(w) = 1}.

(7.5) Find

d* = inf {H(w); weF(A, B) and /(w) = 1} .

It is clear that d*^d%. Since the sets {weF0(A,B);I(w) = ί} and {we

F(A, B) H(w)< 00 and /(w) = l} are nonempty, convex and closed in L2(Y;r),

each of problems (7.4) and (7.5) has a unique optimal solution by Theorem A.

We shall prove

THEOREM 8. d% = EW}~ί.

PROOF. Let w be the optimal solution of problem (7.4), i.e., weF0(A,B)9

/(\v) = 1 and d% = H(w). There exists a sequence {w^} in F(A, B) such that w^ e

L0(Y) and H(w- w(π))->0 as n^> 00. We note that /(w(/I>)->J(w) as n-» 00. Hence

we may assume that /(w ( l l ))>0. Define FFand W^n) by

jfy = |fy| and
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Then W^eLt(Y) and W^eEfB

f) by Corollary 2 of Theorem 5. Since

H{W- W^) S 2H(w- W<">) + 2(1 - l//(w(">))2H(w<B>) -> 0

as n->oo, we derive that We G%B and

On the other hand, let PFbe the optimal solution of problem (7.3), i.e., WeG%B

and EW*f-
ι=H(W). There exists a sequence {FF<»>} in £jy> such that Pp(">e

LS(Y) and H(W- ΪF(n))->0 as n-*oo. We have by Corollary 3 of Lemma 9

M(ΐf<»>; F0(A, 5)) = M*(ΪF<«>; <?&>) ^ 1.

There exists vv ( n )eF 0G4,#) such that \w(

j

n)\^WiJn) on Y and /(w(w)) =

F0(A9 B)) by Lemma 6. Then

d% S H(w(n)//(vv(w)))

Therefore we have

d% g lim /ί(ΪF ( n )) = H(W) =

and hence d% = f
For the relation among EW}, EWf and EW, we have first of all

THEOREM 9. EW=EW}.

PROOF. First we shall prove EfB^ n LQ(Y)aE\B. Let Pf be an element of

E*(Bf) Π L0(Y). Consider a finite subnetwork <Xr, Yf> of <X,Y> such that

y4 U BcZ' and SWcz Y'. Let ρ e QAB and Q = ρ(^) θ Q(B). In case β e /

we have Σ ^ y ^ l by our assumption that py re£5 (/ ). In case QΦQ^/B,

n xr) u (x-x r ) .
Then ρ ' = ρ'(A) θ ρ'(B) e Q^ and β n y = β ' n Γ . We have

Σ

Therefore Pfe£^ β . Now we shall show that EWJ^EW, Let PFbe the optimal

solution of (7.3). There exists a sequence {W(n)} in E%B

f) Π L0(Y) such that

H(W— W(w))-*0 as n->oo. Then Pf ( f l )e£^B ^y the above observation, so that

). Thus

-1 ^ lim H(Pf ( n )) = H(W) =
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On the other hand, let WeE%B. There exists weF0(A,B) such that \Wj\^Wj

on Y and I(w) = M(W; F0(A, B)) by Lemma 6. Since M(W; F0(A, B))^M*(W;

QAB)=1 by the Corollary of Theorem 6 and our assumption that WeE%Bi we

have

EW}~1 = d% ̂  H{wjl(w)) ^ #(w) ^ H(W)

by Theorem 8. By the arbitrariness of WeE^B, we obtain EWJ'^EW'1.

This completes the proof.

THEOREM 10. Let W be the optimal solution of (7.2), i.e., \VeE%B

f) and

EWγ=H(W). IfM(W;F0(A,B)) = M*(W;Q(/B

)), then EW} = EW=EWf.

PROOF. By Theorem 8, d% = EW}~ί^EW}1. On the other hand there

exists w e F0(A9 B) such that \wj\ g if} on Yand /(w) = M(ί^; Fo04, B)) by Lemma

6. Since M(W; F0(A, B)) = M*(\V; Q(/^)=l by our assumption, we have /(w)= 1

and

Therefore d% = EW~fK Thus EWJ = EW=EWf by Theorem 9.

By the Corollary of Theorem 7 and Theorem 10, we have

COROLLARY 1. If there exists an exhaustion { < ^ ( π ) , Y ( w ) >} of <X, Y>

such that

Σ

then EW} = EW=EWf.
By Corollary 4 of Lemma 9 and Theorem 10, we have

COROLLARY 2. If QAB-=Q{I^ then EWJ = EW=EWf.

Next we shall investigate relations among d, d% and d*.

LEMMA 11. Let H> be the optimal solution of problem (7.4) or (7.5).

ίv is a passive flow, i.e.,

(7.6) f > Λ C * , = O

/<?r Λny circuit Ck, where Ckj is the circuit-arc incidence matrix defined in § 1 .

PROOF. Let Ck be a circuit and define w(k)eL0(Y) by w{p = Ckj. Then

\v±w α ) belong to ^(^4, B) or F(A, £) and I(w±wu))= 1, so that <w, w α ) > = 0

by Theorem A. This leads to (7.6).



Extremum Problems on an Infinite Network 247

Let H> be the optimal solution of problem (7.4). For cteA, we define t; ( α )e

L(Z) by

(7.7) ι4«) = 0 and v[a) = JJ rjPj(P)wj (v * α)

for some PePav9 where p(P) is the index of P. It follows from Lemma 11 that

via) is uniquely determined by w and independent of the choice of P e P α v . De-

fine ϋeL(X) by

(7.8) fiv = inf{K->| ;αe^} .

We have

LEMMA 12. Let w fee ίAie optimal solution of problem (7.4) and v be the

function defined by (7.7) and (7.8). Then ϋ = 0 on A, ϋ = dξ on B and

(7.9) IΣKvAI^ K l
v = 0

for each jeY.

PROOF. It is clear that v = 0 on A, since v{

a

a) = 0 for any OLEA. Let as A,

βeB and PePaβ. Then p(P)eFo04, B) and /(p(P)) = 1. We have by Theorem

A and (7.7)

(7.10) d% = H(w) = < w 9 p ( P ) > = Σ ^ j j j f

and hence tβ — d%. Therefore ϋ — d% on B. Next we show (7.9). Let keY,

Kαk= — 1 and Kbk=ί. In case αeA and be>4, we have δβ = β6 = 0, and hence

|0β — fi6|=0^rk|ΛΛ|. In case αeA and ί>^^4, we consider PePαb defined by

CX(P) = {α,b}9 CY(P) = {k}, pj(P) = 0 if jΦ k and pk(P) = 1. Then we have vb

α) =

rfcwk, and hence Q<*ϋb<Lrk\wk\. Thus |fiβ —fifc|=fift^rfc|^ft|. In case αφA and

i e i , we have (7.9) similarly. Finally we consider the case where αφA and

bφA. There exists oceA such that vα = \v(

α

Λ)\, since A is a finite set. Consider

P G P α α and let P be the path from node α to node b which is generated by P and

{fe} (cf. the proof of Lemma 9). Then

b Σ^JPJWJ ti

so that

Interchanging the roles of node α and node ί? in the above discussion, we obtain
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ϋa^ϋb+rk\ftk\. Therefore \va — vb\ ̂ rk\wk\. This completes the proof.

We shall prove

THEOREM 11. d d j = l.

PROOF. First we show 1 ̂  d d%. For any veDA such that v = 1 on B and any

weF0(A, B) such that /(w) = l, we have by Theorem 5 and Lemma 4

(7.11) 1 = /(w) = £ vv( Σ Kvjwj) = f w/ Σ ^v^v) ^ X>(»)H(w),
v = 0 j = l j = l v = 0

which leads to the desired inequality. Next we show dd% ̂  1. Let w be the op-

timal solution of problem (7.4) and ϋ be the function defined by (7.7) and (7.8).

Then we have by (7.9)

(7.12) D(ϋ) = Σ OH Σ Kvjϋv)
2 ^ f rfij = H(w) = d%.

; = 1 J

 v = o J j=ί J

Writing ύ = v/d$9 we have β = 0 on A and ύ = l on β by Lemma 12, so that

rf ^ D(U) =

by (7.12). Hence d d% g 1. This completes the proof.

On account of Theorems 4, 8, 9 and 11, we have

THEOREM 12. (EL)(EW) = 1.

For the relation between d* and dg, we have

THEOREM 13. IfDA=D$, then d* = d%.

PROOF. In view of the inequality d*i^d% and Theorem 11, it suffices to prove

that d d* ^ 1. For any υ e DA such that v = 1 o n ΰ and any w e i 7 ^ , B) such that

J(w)=l and //(w)<oo, we have (7.11) by Lemma 4 and Remark 1 (in), since

DA =D$ and >4 and B are finite sets.

It is not always valid that d* = d$. This is shown by

EXAMPLE 6. Let us consider the infinite graph G defined in Example 2. Let

^ = {0} and £ = {1} and define reL(Y) by

rx = 1 and r2n = r 2 / l + 1 = 4"" (n ^ 1).

We see easily that w e F o ^ * B) and /(w)= 1 if and only if wx = 1 and vv^

Therefore dj = l. On the other hand, consider weL(Y) defined by

wx = 0 and w2π = w 2 w + 1 = 1 (n ^ 1).

Then w e F ( ^ , β), /(vv) = 1 and
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d* S H(w) = 2 Σ 4"w = 2/3.
n=\

§ 8. The path-cut inequality

Duffin showed a path-cut inequality on a finite network by using his theorem

which states that the extremal length and the extremal width are reciprocals to

each other. We are concerned with the inequality on an infinite network in this

section.

Let A and B be mutually disjoint nonempty finite subsets of X, WeL+(Y)

and VeL+(Y).
We have

THEOREM 14. Assume that WeL+2(Y\ r) and Σ r~jιVj<co. Then

(8.1) Σ WJVJ ^ N(A, B; V)M*(W; QAB)9

or equivaiently,

PROOF. There exists u e L(X) such that

u = 0 on X, I Σ Kvjuv\ ^ F, on 7 and
v = O

N(A, B; V) = N*(A, B; V) = inf{«„; v e δ }

by Theorem 3. Let v = min(u, N(A,B;V)). Then υ = 0 on A, υ=N(A, B; V)

on B and

I Σ KVJvv\ ^ I Σ Kvjuv\ ί Vj on 7.
v=0 v=O

Note that
00 00 00

j=0 v=0 j=1

There exists w e f o ^ B ) such that \WJ\£WJ on 7 and M(ίf ;FO(/1, B))=I(w)

by Lemma 6. We have by Theorem 5 and the Corollary of Theorem 6

(8.2) N(A, B; V)M*{W; QΛB) < N(A,B; V)M{W; F0(A, B))

= Σ t>v( Σ κvjWj)
veB j=l
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This completes the proof.

By using Remark 1 (ii) instead of Theorem 5 in the proof of (8.2), we have

THEOREM 15. // Σ Wj<co, then (8.1) holds.

Similarly we can prove

THEOREM 16. // We U ( Y), then

(8.3) ±t WJVJ ̂  N(Λ9 B; V)M*(W; <?&>).

THEOREM 17. Assume that WeLi(Y;r) and ΣrjιV2j<oo. If M(W;

F0(A, B)) = M*(W; <?&>), then (8.3) holds.
We remark that (8.3) does not hold in general. In fact, we give

EXAMPLE 7. Consider the infinite network (G, r) defined in Example 1 and
let A = {0} and B={1}. Define Wand Kby

Then we have

~ JVJ = 0 < 1 = N(A, B; V)M*(W;QM).
= 1

Note that M(W; F0(A, B)) = 0<l=M*(W;<#β) (cf. Example 3).
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