Remarks on Extendible Vector Bundles over Lens Spaces and Real Projective Spaces

Teiichi Kobayashi, Haruo Maki and Toshio Yoshida

(Received May 19, 1975)

§ 1. Introduction

Let K be a $C W$-complex and L be its subcomplex. A real (resp. complex) vector bundle ζ over L is said to be extendible to K if ζ is equivalent to the restriction of a real (resp. complex) vector bundle over K.
R. L. E. Schwarzenberger ([2], [6]) studied the extendibility of vector bundles over $C P^{n}\left(\right.$ resp. $\left.R P^{n}\right)$ to $C P^{m}\left(\right.$ resp. $\left.R P^{m}\right), m>n$, where $C P^{n}\left(\right.$ resp. $\left.R P^{n}\right)$ is the complex (resp. real) projective n-space.

The purpose of this paper is to establish some results concerning the extendible real vector bundles over the standard lens space $L^{n}(p)=S^{2 n+1} / Z_{p}$ and the real projective space by the somewhat different methods. Our main results are as follows.

Theorem 1.1. Let p be an odd prime and ζ be a real t-plane bundle over $L^{n}(p)$. Assume that there is a positive integer l satisfying the following properties:
(i) ζ is stably equivalent to a sum of $[t / 2]+l$ non-trivial real 2-plane bundles.
(ii) $p^{[n /(p-1)]}>[t / 2]+l$.

Then $n<2[t / 2]+2 l$ and ζ is not extendible to $L^{m}(p)$ for each $m \geqq 2[t / 2]$ $+2 l$.

Theorem 1.2. Let p be any integer >1. The tangent bundle $\tau\left(L^{n}(p)\right)$ of $L^{n}(p)$ is extendible to $L^{n+1}(p)$ if and only if $n=0,1$ or 3 .

We also obtain the results (Theorems 6.2 and 6.6) for $R P^{n}$ corresponding to the above theorems.

In $\S 2$, we recall the structure of K-ring of $L^{n}(p)$ according to T. Kambe [3], which is useful in $\S 3$ for the proof of Theorem 1.1. In $\S 4$, we have sufficient conditions for the existence of the extension of a real vector bundle over $L^{n}(p)$ (Theorems 4.2 and 4.3) and give an example of a real t-plane bundle over $L^{n}(p)$ which is extendible to $L^{m-1}(p)$ but not to $L^{m}(p)(m=2[t / 2]+2 l)$. The proof of Theorem 1.2 is carried out in $\S 5$. Also, we give an example of an extendible vector bundle over $L^{n}(p)$ which shows that the condition (ii) of Theorem 1.1 cannot
be removed. In §6, we obtain the corresponding results for $R P^{n}$ and give another proof of Corollary to Theorem 3 in [6].

§2. The structure of $\tilde{\mathbf{K}}\left(\mathbf{L}^{n}(\mathbf{p})\right)$

Let $L^{n}(p)=S^{2 n+1} / Z_{p}$ be the $(2 n+1)$-dimensional standard lens space $\bmod p$, where $S^{2 n+1}$ is the unit $(2 n+1)$-sphere in the complex space C^{n+1} and Z_{p} is the cyclic group of order p. Let $\left[z_{0}, \ldots, z_{n}\right] \in L^{n}(p)$ denote the class of $\left(z_{0}, \ldots, z_{n}\right)$ $\in S^{2 n+1}$. The space $L^{n}(p)$ is naturally embedded in $L^{n+1}(p)$ by identifying [z_{0}, \ldots, $\left.z_{n}\right]$ with $\left[z_{0}, \ldots, z_{n}, 0\right]$. Consider the subspace

$$
L_{0}^{k}(p)=\left\{\left[z_{0}, \ldots, z_{k}\right] \in L^{k}(p) \mid z_{k} \text { is a non-negative real number }\right\} .
$$

Then, it is well known that $L^{n}(p)$ has a structure of a $C W$-complex in which $L^{k}(p)$ $-L_{0}^{k}(p)$ and $L_{0}^{k}(p)-L^{k-1}(p)$ are $(2 k+1)$ - and $2 k$-cells for $k \leqq n$.

Let η_{n} be the canonical complex line bundle over the lens space $L^{n}(p)$, and set $\sigma_{n}=\eta_{n}-1$. For a prime p, the structure of the reduced K-ring $\widetilde{K}\left(L^{n}(p)\right)$ of $L^{n}(p)$ is determined by T. Kambe [3, Theorem 1] as follows.
(2.1) Let p be a prime and let $n=s(p-1)+r(0 \leqq r<p-1)$. Then

$$
\tilde{K}\left(L^{n}(p)\right)=\left(Z_{p^{s+1}}\right)^{r}+\left(Z_{p^{s}}\right)^{p-r-1}
$$

and $\sigma_{n}^{1}, \ldots, \sigma_{n}^{r}$ generate additively the first r factors and $\sigma_{n}^{r+1}, \ldots, \sigma_{n}^{p-1}$ the last $p-r-1$ factors. Moreover, the ring structure of $\widetilde{K}\left(L^{n}(p)\right)$ is given by

$$
\sigma_{n}^{p}=-\sum_{i=1}^{p-1}\binom{p}{i} \sigma_{n}^{i}, \quad \sigma_{n}^{n+1}=0
$$

(Here, G^{k} denotes the direct sum of k-copies of an abelian group G).
Let $r: K(X) \rightarrow K O(X)$ and $c: K O(X) \rightarrow K(X)$ be the real restriction and the complexification respectively. Then, as is well known,

$$
\begin{equation*}
r c \alpha=2 \alpha \quad \text { and } \quad c r \alpha=\alpha+(\text { the conjugation of } \alpha) \tag{2.2}
\end{equation*}
$$

These operators are natural with respect to maps, and c is a ring homomorphism.
For the $2 n$-skeleton $L_{0}^{n}(p)$ of $L^{n}(p)$, we have (cf. [3, (2.5) and (3.5)]

$$
\begin{align*}
& \tilde{K}\left(L^{n}(p)\right)=\tilde{K}\left(L_{0}^{n}(p)\right) \tag{2.3}\\
& r \tilde{K}\left(L_{0}^{n}(p)\right)=\widetilde{K O}\left(L_{0}^{n}(p)\right), \quad \text { if } \quad p \text { is odd }
\end{align*}
$$

§3. Proof of Theorem 1.1

First, we prepare a lemma.

Lemma 3.1. Let p be an odd prime and ζ be a real t-plane bundle over $L^{n}(p)$. If l is a positive integer with $2[t / 2]+2 l \leqq n$, then ζ is not stably equivalent to a sum of $[t / 2]+l$ non-trivial real 2 -plane bundles.

Proof. We know that a real plane bundle over $L^{n}(p)$ is orientable for $n>0$, that an orientable real 2-plane bundle is a real restriction of a complex line bundle, and that the complex line bundles are classified by the first Chern classes. Therefore a non-trivial real 2-plane bundle over $L^{n}(p)$ is expressed as $r \eta_{n}^{i}$ for some i with $0<i<p$, since $\eta_{n}^{p}=1$.

Suppose that ζ is stably equivalent to a sum of $[t / 2]+l$ non-trivial real 2-plane bundles. Then there exist non-negative integers $c_{i}(0<i<p)$ such that

$$
\zeta-t=\sum_{i=1}^{p-1} c_{i}\left(r \eta_{n}^{i}-2\right), \quad \sum_{i=1}^{p-1} c_{i}=[t / 2]+l .
$$

The total Pontrjagin class $p(\zeta)$ of ζ is determined by the equalities (cf. [4, Lemma 2.3]):

$$
p(\zeta)=\prod_{i=1}^{p-1}\left(1+i^{2} x^{2}\right)^{c_{i}}
$$

where x is the generator of $H^{2}\left(L^{n}(p) ; Z\right)$. Thus

$$
p_{[t / 2]+l}(\zeta)=\prod_{i=1}^{p-1} i^{2 C_{i}} x^{2[t / 2]+2 l} .
$$

Since $n \geqq 2[t / 2]+2 l$, we have $x^{2[t / 2]+2 l} \neq 0$, and so $p_{[t / 2]+l}(\zeta) \neq 0$.
On the other hand, the vector bundle ζ is t-dimensional and hence we have $p_{[t / 2]+l}(\zeta)=0$ for $l>0$. This is a contradiction.
q.e.d.

Proof of Theorem 1.1. It follows from Lemma 3.1 and the assumption (i) that $n<2[t / 2]+2 l$.

To prove the second part, suppose that ζ is extendible to $L^{m}(p)(m>n)$. Then there exists a real t-plane bundle α over $L^{m}(p)$ such that $i^{\prime} \alpha \cong \zeta$, where $i^{\prime} \alpha$ denotes the induced bundle of α by the inclusion map $i: L^{n}(p) \rightarrow L^{m}(p)$. Let $j: L_{0}^{m}(p) \rightarrow L^{m}(p)$ and $k: L^{n}(p) \rightarrow L_{0}^{m}(p)$ be the inclusions. Then $i=j k$. According to (2.3), $j^{\prime}(\alpha-t) \in \widetilde{K O}\left(L_{0}^{m}(p)\right)=r \widetilde{K}\left(L^{m}(p)\right)$. Thus, by (2.1), we have

$$
j^{\prime}(\alpha-t)=r \sum_{i=1}^{p-1} a_{i} \sigma_{m}^{i}=r \sum_{i=1}^{p-1} b_{i}\left(\eta_{m}^{i}-1\right),
$$

where a_{i} and b_{i} are some integers. We can take these integers sufficiently large. Now

$$
i^{\prime}(\alpha-t)=k^{\prime} j^{\prime}(\alpha-t)=r \sum_{i=1}^{p-1} b_{i}\left(k^{\prime} \eta_{m}^{i}-1\right)=r \sum_{i=1}^{p-1} b_{i}\left(\eta_{n}^{i}-1\right) .
$$

As in the proof of Lemma 3.1, the assumption (i) implies that there exist non-negative integers $c_{i}(0<i<p)$ such that

$$
\begin{equation*}
\zeta-t=\sum_{i=1}^{p-1} c_{i}\left(r \eta_{n}^{i}-2\right), \quad \sum_{i=1}^{p-1} c_{i}=[t / 2]+l . \tag{1}
\end{equation*}
$$

Thus we have

$$
\sum_{i=1}^{p-1} b_{i} r\left(\eta_{n}^{i}-1\right)=i^{\prime}(\alpha-t)=\sum_{i=1}^{p-1} c_{i} r\left(\eta_{n}^{i}-1\right) .
$$

It follows from (2.2) that $c r \eta_{n}^{i}=\eta_{n}^{i}+\eta_{n}^{p-i}$, and hence

$$
\begin{equation*}
\sum_{i=1}^{p-1}\left(b_{i}+b_{p-i}-c_{l}-c_{p-i}\right)\left(\eta_{n}^{i}-1\right)=0 . \tag{2}
\end{equation*}
$$

The identities $\eta_{n}^{i}-1=\sum_{j=1}^{i}\binom{i}{j} \sigma_{n}^{j}(0<i<p)$ show that the above equality (2) becomes as follows.

$$
\sum_{i=1}^{p-1}\left\{\sum_{s=i}^{p-1}\binom{s}{i}\left(b_{s}+b_{p-s}-c_{s}-c_{p-s}\right)\right\} \sigma_{n}^{i}=0 .
$$

Noting that $n \geqq p-1$ by (ii) and that $\sigma_{n}^{1}, \ldots, \sigma_{n}^{p-1}$ are generators of $\tilde{K}\left(L^{n}(p)\right)$ (cf. (2.1)), it holds that

$$
\sum_{s=i}^{p-1}\binom{s}{i}\left(b_{s}+b_{p-s}-c_{s}-c_{p-s}\right) \equiv 0 \quad \bmod p^{1+[(n-i) /(p-1)]}
$$

for $0<i<p$. Hence, by induction on $p-i$, we obtain

$$
b_{i}+b_{p-i}-c_{i}-c_{p-i} \equiv 0 \quad \bmod p^{[n /(p-1)]} \quad(0<i<p)
$$

So there are positive integers $k_{i}(0<i<p)$ such that

$$
\begin{equation*}
b_{i}+b_{p-i}=k_{i} p^{[n /(p-1)]}+c_{i}+c_{p-i} \tag{3}
\end{equation*}
$$

Since the t-plane bundle $j^{\prime} \alpha$ is stably equivalent to $\sum_{i=1}^{p-1} b_{i} r \eta_{m}^{i}$, the total Pontrjagin class $p\left(j^{\prime} \alpha\right)$ of $j^{\prime} \alpha$ is determined by

$$
\left.p\left(j^{\prime} \alpha\right)=\prod_{i=1}^{p-1}\left(1+i^{2} x^{2}\right)^{b_{i}}=\prod_{i=1}^{(p-1}\right) / 2\left(1+i^{2} x^{2}\right)^{b_{i}+b_{p-i}},
$$

where x is the generator of $H^{2}\left(L_{0}^{m}(p) ; Z\right)$. Thus

$$
p_{[t / 2]+l}\left(j^{1} \alpha\right)=\sum_{j_{1}+\cdots+j_{(p-1) / 2}=[t / 2]+l} \prod_{i=1}^{(p-1) / 2}\binom{b_{i}+b_{p-i}}{j_{i}} i^{2 j_{i}} x^{2[t / 2]+2 l} .
$$

By the assumptions (ii) and (1), we have $c_{i}+c_{p-i} \leq[t / 2]+l<p^{[n /(p-1)]}$. Therefore, by (3), for $1 \leqq i \leqq(p-1) / 2$,

$$
\binom{b_{i}+b_{p-i}}{j} \equiv\left\{\begin{array}{lll}
0 & \bmod p & \text { if } \quad c_{i}+c_{p-i}<j<p^{[n /(p-1)]} \\
1 & \bmod p & \text { if } j=c_{i}+c_{p-i}
\end{array}\right.
$$

Thus we obtain

$$
p_{[t / 2]+l}\left(j^{\prime} \alpha\right)=\prod_{i=1}^{(p-1) / 2} i^{2\left(c_{i}+c_{p-i}\right)} x^{2[t / 2]+2 l} .
$$

Since $m \geqq 2[t / 2]+2 l$, we have $x^{2[t / 2]+2 l} \neq 0$, and consequently, $p_{[t / 2]+l}\left(j^{\prime} \alpha\right) \neq 0$.
On the other hand, the vector bundle $j^{\prime} \alpha$ is t-dimensional and so we see $p_{[t / 2]+l}\left(j^{1} \alpha\right)=0$ for $l>0$. This is a contradiction. q.e.d.

§4. Extendible vector bundles over $L^{\boldsymbol{n}}(\mathbf{p})$

Lemma 4.1. Let p be any integer >1. Suppose $t>2 n+1$ and $l>0$. Let ζ be a real t-plane bundle over $L^{n}(p)$ which is stably equivalent to $r \eta_{n}^{a_{1}} \oplus \cdots$ $\oplus r \eta_{n}^{a[t / 2]+l}$, where $0<a_{i}<p$ for $0<i \leqq[t / 2]+l$. If there is an integer m ($>n$) such that

$$
\operatorname{Span}\left(r \eta_{m}^{a_{1}} \oplus \cdots \oplus r \eta_{m}^{a[t / 2]+l} \oplus k\right) \geqq 2[t / 2]+2 l-t+k
$$

for some $k \geqq 0$, then ζ is extendible to $L^{m}(p)$. (Here Span α denotes the maximal number of linearly independent cross-sections of a vector bundle α).

Proof. By the assumptions, we have

$$
\zeta \oplus(2[t / 2]+2 l-t) \cong r \eta_{n}^{a_{1}} \oplus \cdots \oplus r \eta_{n}^{a}[t / 2]+1
$$

and

$$
r \eta_{m}^{a_{1}} \oplus \cdots \oplus r \eta_{m}^{a}[t / 2]+\iota \oplus k=(2[t / 2]+2 l-t+k) \oplus \gamma
$$

for some real t-plane bundle γ over $L^{m}(p)$. Let $i: L^{n}(p) \rightarrow L^{m}(p)$ be the inclusion. As $i^{\prime} \eta_{m}=\eta_{n}$, we get $\zeta \oplus(2[t / 2]+2 l-t+k)=i^{\prime} \gamma \oplus(2[t / 2]+2 l-t+k)$. Thus $\zeta \cong i^{1} \gamma$, since $t>2 n+1$.
q.e.d.

Theorem 4.2. Let p be an odd integer >1 and ζ be a real t-plane bundle over $L^{n}(p)$, where $t>2 n+1$. Assume that there are positive integers l and m $(>n)$ satisfying the following properties:
(i) ζ is stably equivalent to a sum of $[t / 2]+l$ non-trivial real 2-plane bundles.
(ii) $t \geqq 2[m / 2]+1$.

Then ζ is extendible to $L^{m}(p)$.
Proof. Put

$$
\beta_{n}=r \eta_{n}^{a_{1}} \oplus \cdots \oplus r \eta_{n}^{a[t / 2]+1},
$$

where $a_{i}(0<i \leqq[t / 2]+l)$ are positive integers with $a_{i}<p$. Consider the extension β_{m} of β_{n} to $L^{m}(p)$. Let $\pi_{m}: S^{2 m+1} \rightarrow L^{m}(p)$ be the natural projection. Then $\pi_{m}^{1} r \eta_{m}^{a_{i}}$ is trivial and hence $\beta_{m}-(2[t / 2]+2 l) \in \widetilde{K O}\left(L^{n}(p)\right) \cap \operatorname{Ker} \pi_{m}^{1}$. Thus it follows from [7, Theorem A] that

$$
g \cdot \operatorname{dim}\left(\beta_{m}-(2[t / 2]+2 l)\right) \leqq 2[m / 2]+1
$$

where $g \cdot \operatorname{dim} \alpha$ denotes the geometrical dimension of a stable vector bundle α. (Note that Theorem A of [7] is true for any odd integer >1.) Using (ii) we have
$\operatorname{Span}\left(\beta_{m} \oplus k\right) \geqq 2[t / 2]+2 l-t+k \quad$ for $\quad k \geqq 2(m+1-[t / 2]-l)$.
Therefore the result follows from Lemma 4.1.
q. e. d.

Theorem 4.3. Let p be an odd integer >1 and ζ be a real t-plane bundle over $L^{n}(p)$, where $t=2 s-1>2 n+2$. Assume that there is a positive integer l satisfying the following properties:
(i) ζ is stably equivalent to $([t / 2]+l) r \eta_{n}$.
(ii) $q>2 l-1$ for any prime divisor q of p.
(iii) $\binom{s+l-1}{i} \equiv 0 \bmod p$ for any i with $s \leqq i<s+l-1$.

Then ζ is extendible to $L^{2[t / 2]+2 l-1}(p)$.
Proof. We apply Lemma 4.1 to the case where $a_{1}=\cdots=a_{[t / 2]+l}=1$ and $m=2[t / 2]+2 l-1$. Let $f: L^{m}(p) \rightarrow B S O(2[t / 2]+2 l+k)$ be the classifying map of the vector bundle $([t / 2]+l) r \eta_{m} \oplus k=\alpha$, where $B S O(N)$ denotes the classifying space of oriented real N-plane bundles. Consider the lifting problem indicated in the diagram below:

Put $k=2 r+1(r \geqq 0)$. According to [8, Theorem (1.7)], if $q>2 l-1$ for any prime divisor q of p and $p_{i}(\alpha)=0$ for $s \leqq i \leqq[t / 2]+l+r$, the lifting $F: L^{m}(p)$ $\rightarrow B S O(t)$ of f exists, and so

$$
\operatorname{Span} \alpha \geqq 2[t / 2]+2 l-t+k
$$

Then the conclusion follows from Lemma 4.1. But

$$
p_{i}(\alpha)=\binom{[t / 2]+l}{i} x^{2 i}=\binom{s-1+l}{i} x^{2 i},
$$

where x is the generator of $H^{2}\left(L^{m}(p) ; Z\right)$, and $x^{m+1}=x^{2 s+2 l-2}=0$. Thus the condition (iii) implies $p_{i}(\alpha)=0$ for $s \leqq i \leqq[t / 2]+l+r$, as desired. q.e.d.

Remark 4.4. Combining Theorem 4.2 or 4.3 with Theorem 1.1, we have an example of a real t-plane bundle over $L^{n}(p)$ which is extendible to $L^{2[t / 2]+2 l-1}(p)$ but not extendible to $L^{2[t / 2]+2 l}(p)$. For example, we can take $n=2 p-2$ (p odd prime), $t=2 n+3, l=1$ and a bundle ζ such that $(n+2) r \eta_{n}=\zeta \oplus 1$.

§5. Proof of Theorem 1.2

The "only if" part of Theorem 1.2 is a consequence of the following
Theorem 5.1. Let p be any integer >1. If $n \neq 0,1$ and 3 , the tangent bundle $\tau\left(L^{n}(p)\right)$ of $L^{n}(p)$ is not extendible to $L_{0}^{n+1}(p)$.

Proof. Suppose that $\tau\left(L^{n}(p)\right)$ is extendible to $L_{0}^{n+1}(p)$. Then there exists a real $(2 n+1)$-plane bundle α over $L_{0}^{n+1}(p)$ such that $i^{\prime} \alpha \cong \tau\left(L^{n}(p)\right.$), where i : $L^{n}(p) \rightarrow L_{0}^{n+1}(p)$ is the natural inclusion. Let $\pi_{m}: S^{2 m+1} \rightarrow L^{m}(p)$ be the natural projection. Since $S^{2 n+2}$ consists of elements $\left(z_{0}, \ldots, z_{n}, z_{n+1}\right)$ of $S^{2 n+3}$ such that z_{n+1} is a real number, the image of the restriction π of π_{n+1} to $S^{2 n+2}$ is contained in $L_{0}^{n+1}(p)$. Now the following diagram is commutative:

where j denotes the natural inclusion. Thus we see that $i \pi_{n}(=\pi j)$ is homotopically trivial. Therefore, $\tau\left(S^{2 n+1}\right)=\pi^{1}\left(\tau\left(L^{n}(p)\right) \cong \pi_{n}^{1} i^{\prime} \alpha=\right.$ trivial, and so $2 n+1=1,3$ or 7 , as desired.
q.e.d.

Lemma 5.2. Let K^{n} be the n-skeleton of a $C W$-complex K. If $n \geqq 3$, an oriented real 2-plane bundle over K^{n} is extendible to K^{m} for any $m>n$.

Proof. The equivalence class of an oriented real 2-plane bundle is determined by the homotopy class of a map $f: K^{n} \rightarrow B S O(2)$. Let m be any integer with $m>n$. The obstructions for extending f to K^{m} are contained in the groups

$$
H^{r+1}=H^{r+1}\left(K^{m}, K^{n} ; \pi_{r}(B S O(2))\right) .
$$

But $\pi_{r}(B S O(2))=\pi_{r-1}(S O(2))=0$ for $r>2$. Thus we have $H^{r+1}=0$ for all r, if $n \geqq 3$.
q.e.d.

The "if" part of Theorem 1.2 is a special case of the following more general result.

Theorem 5.3. Let p be an integer >1. If $n=0,1$ or $3, \tau\left(L^{n}(p)\right)$ is extendible to $L^{m}(p)$ for all $m>n .{ }^{1)}$

1) We notice that Theorem 5 in [5] is not true for $n \leqq 3$. One of the authors should take this opportunity of correcting the following errata in [5, p. 399]: Add $t \geqq 3$ to the assumption in line 3 , replace $s>[t / 2]$ in line 5 by $3^{[n / 2]}>s>[t / 2]$, and add $n>3$ to the assumption of Theorem 5 in line 9.

Proof. Since $L^{n}(p)$ is parallelizable for $n=0$ or 1 , obviously $\tau\left(L^{n}(p)\right)$ ($n=0$ or 1) is extendible to $L^{m}(p)$ for any $m>n$. According to [9], $L^{3}(p)$ has a tangent 5 -field. Namely, there is a real 2-plane bundle β such that $\tau\left(L^{3}(p)\right)$ $=\beta \oplus 5$. By Lemma 5.2, β is extendible to $L^{m}(p)$ for any $m>3$, and so is $\tau\left(L^{3}(p)\right)$.

> q.e.d.

Remark 5.4. Setting $n=3, p=3, l=1$ and $\zeta=\tau\left(L^{3}(3)\right)$, we have an example which shows that the condition (ii) in Theorem 1.1 is necessary.

§6. Extendible vector bundles over $\mathbf{R P}^{\boldsymbol{n}}$

In this section we discuss the extendibility of real vector bundles over the real projective n-space $R P^{n}$ to $R P^{m}$. The following lemma corresponds to Lemma 3.1.

Lemma 6.1. Let ζ be a real t-plane bundle over $R P^{n}$. If l is a positive integer with $t+l \leqq n$, then ζ is not stably equivalent to $(t+l) \xi_{n}$, where ξ_{n} is the canonical line bundle over $R P^{n}$.

Proof. Suppose that ζ is stably equivalent to $(t+l) \xi_{n}$. Then the total Stiefel-Whitney class $w(\zeta)$ of ζ is given by $w(\zeta)=(1+y)^{t+l}$, where y is the generator of $H^{1}\left(R P^{n} ; Z_{2}\right)$. Thus $w_{t+l}(\zeta)=y^{t+l} \neq 0$, as $t+l \leqq n$.

But, since ζ is t-dimensional, we have $w_{t+l}(\zeta)=0$ for $l>0$. This is a contradiction.

> q.e.d.

Considering the structure of $K O$-ring of $R P^{n}$ (cf. J. F. Adams [1, Theorem 7.4]), we may prove the following result corresponding to Theorem 1.1 in § 1.

Theorem 6.2. Let ζ be a real t-plane bundle over RPn. Assume that there is a positive integer l satisfying the following properties:
(i) ζ is stably equivalent to $(t+l) \xi_{n}$.
(ii) $2^{\phi(n)}>t+l$, where $\phi(n)$ is the number of integers s such that $0<s \leqq n$ and $s \equiv 0,1,2$ or $4 \bmod 8$.

Then $n<t+l$ and ζ is not extendible to $R P^{m}$ for each $m \geqq t+l$.
Proof. The fact that $n<t+l$ follows from Lemma 6.1 and the assumption (i).

To prove the second part, suppose that ζ is extendible to $R P^{m}(m>n)$. Then there exists a real t-plane bundle α over $R P^{m}$ such that $i^{\prime} \alpha \cong \zeta$, where $i: R P^{n}$ $\rightarrow R P^{m}$ is the inclusion. According to [1],

$$
\alpha-t=a\left(\xi_{m}-1\right) \in \widetilde{K O}\left(R P^{m}\right)
$$

for some integer a. We may take a sufficiently large. Thus we have $\alpha \oplus(a-t)$
$\cong a \xi_{m}$. Therefore the Stiefel-Whitney class $w(\alpha)$ of α is given by $w(\alpha)=(1+y)^{a}$, where y is the generator of $H^{1}\left(R P^{m} ; Z_{2}\right)$.

Now $\zeta-t=i^{1} \alpha-t=a\left(i^{\prime} \xi_{m}-1\right)=a\left(\xi_{n}-1\right)$. On the other hand, by the assumption (i), it holds that $\zeta-t=(t+l) \xi_{n}-(t+l)$. Hence $(a-t-l)\left(\xi_{n}-1\right)=0$. Thus, by [1],

$$
a-t-l \equiv 0 \quad \bmod 2^{\phi(n)}
$$

and so there is a positive integer k such that $a=k 2^{\phi(n)}+t+l$. Therefore $\binom{a}{t+l}$ $\equiv 1 \bmod 2$ by the assumption (ii).

If $m \geqq t+l, y^{t+l} \neq 0$ and $w_{t+l}(\alpha)=\binom{a}{t+l} y^{t+l} \neq 0$. While $w_{t+l}(\alpha)=0$ for $l>0$, since α is t-dimensional. This is a contradiction.
q.e.d.

Lemma 6.3. Suppose $t>n$ and $l \geqq 0$. Let ζ be a real t-plane bundle over $R P^{n}$ which is stably equivalent to $(t+l) \xi_{n}$. If there is an integer $m(>n)$ such that

$$
\operatorname{Span}\left((t+l) \xi_{m} \oplus k\right) \geqq l+k
$$

for some $k \geqq 0$, then ζ is extendible to $R P^{m}$.
Proof. By the assumptions, we have $\zeta \oplus l \cong(t+l) \xi_{n}$ and $(t+l) \xi_{m} \oplus k=(l+k)$ $\oplus \gamma$ for some real t-plane bundle γ over $R P^{m}$. Let $i: R P^{n} \rightarrow R P^{m}$ be the inclusion. Since $i^{\prime} \xi_{m}=\xi_{n}$, we get $i^{\prime} \gamma \cong \zeta$, as desired.
q.e.d.

Theorem 6.4. In addition to the assumptions of Theorem 6.2, assume that $t>n$ and that $\operatorname{Span} \tau\left(R P^{t+l-1}\right) \geqq l-1$. Then ζ is extendible to $R P^{t+l-1}$ but not extendible to $R P^{t+l}$.

Proof. Set $m=t+l-1$. Then it follows from Lemma 6.3 that ζ is extendible to $R P^{t+l-1}$, for

$$
\operatorname{Span}(t+l) \xi_{t+l-1}=\operatorname{Span}\left(\tau\left(R P^{t+l-1}\right) \oplus 1\right) \geqq l
$$

by our assumption. The latter part is a consequence of Theorem 6.2. q.e.d.
Write $t+l=(2 a+1) 2^{b}$ and $b=c+4 d$, where a, b, c and d are integers and $0 \leqq c \leqq 3$. Then

$$
\operatorname{Span} \tau\left(R P^{t+l-1}\right)=\operatorname{Span} \tau\left(S^{t+l-1}\right)=2^{c}+8 d-1
$$

(cf. [1, Theorem 1.1]). Therefore we have many pairs (l, t) of l and t for which Span $\tau\left(R P^{t+l-1}\right) \geqq l-1$. For example: $l=1, t$ any; $l=2, t \equiv 0 \bmod 2 ; l=3, t \equiv 1$ $\bmod 4 ;$ etc.

Theorem 6.5. Let ζ be a real t-plane bundle over $R^{n}{ }^{n}$ which is extendible to $R P^{N}$, where $N=2^{\phi(n)}-1$. Then ζ is stably equivalent to a sum of t real line bundles.

Proof. There is an integer l such that

$$
\zeta-t=(t+l)\left(\xi_{n}-1\right) \in \widetilde{K O}\left(R P^{n}\right)
$$

Since $\xi_{n}-1$ is of order $2^{\phi(n)}$, we have $0 \leqq t+l<2^{\phi(n)}$. If $l>0$, ζ is not extendible to $R P^{m}$ for any $m \geqq t+l$ by Theorem 6.2. This contradicts our assumption. Therefore $l \leqq 0$, as desired.
q. e.d.
R. L. E. Schwarzenberger has proved in [6, Corollary to Theorem 3] that a real t-plane bundle over $R P^{n}$, which is extendible to $R P^{m}$ for arbitrarily large m, is stably equivalent to a sum of t real line bundles. We obtain another proof of the result by Theorem 6.5.

The following result which corresponds to Theorem 1.2 may be well known.
Theorem 6.6. The tangent bundle $\tau\left(R P^{n}\right)$ of $R P^{n}$ is extendible to $R P^{n+1}$ if and only if $n=1,3$ or 7 .

Proof. If $n=1,3$ or $7, R P^{n}$ is parallelizable, and hence $\tau\left(R P^{n}\right)$ is extendible to $R P^{m}$ for all $m>n$. The 'only if" part is an immediate consequence of Theorem 6.2 , or is proved directly in the way similar to the proof of Theorem 5.1.
q.e.d.

We see from this result that the condition (ii) of Theorem 6.2 cannot be removed.

References

[1] J. F. Adams, Vector fields on spheres, Ann. of Math. 75 (1962), 603-632.
[2] F. Hirzebruch, Topological Methods in Algebraic Geometry, 3rd ed., Appendix by R. L. E. Schwarzenberger, Berlin, New York, Springer-Verlag, 1966.
[3] T. Kambe, The structure of K_{\wedge}-rings of the lens space and their applications, J. Math. Soc. Japan, 18 (1966), 135-146.
[4] T. Kobayashi, Note on γ-operations in KO-theory, Hiroshima Math. J. 4 (1974), 425434.
[5] H. Maki, Extendible vector bundles over lens spaces mod 3, Osaka J. Math. 7 (1970), 397-407.
[6] R. L. E. Schwarzenberger, Extendible vector bundles over real projective space, Quart. J. Math. Oxford (2), 17 (1966), 19-21.
[7] D. Sjerve, Geometric dimension of vector bundles over lens spaces, Trans. Amer. Math. Soc. 134 (1968), 545-557.
[8] D. Sjerve, Vector bundles over orbit manifolds, Trans. Amer. Math. Soc. 138 (1969), 97-106.
[9] T. Yoshida, A remark on vector fields on lens spaces, J. Sci. Hiroshima Univ. Ser. A-I, 31 (1967), 13-15.

> Department of Mathematics, Faculty of Science, Hiroshima University,
> Department of Mathematics, Fukuoka University of Education, and
> The Faculty of Integrated Arts and Sciences, Hiroshima University

