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§ 1. Introduction, notations and the results

Consider a system of the same kind of a large number of (say, N) rough
elastic spherical molecules with the mass m, the radius a, and the moment of
inertia I=ma2κ (0<κ<2/3). Such a molecule possesses energy of rotation which
is interconvertible with energy of translation. This model was treated by F. B.
Pidduck [5] (see also [3]). The motion of a molecule can be specified by a pair
(ξ, α), where ξeR3 is the velocity of its center and aeR3 is its angular velocity.
The dynamics of a collision is given in the following way: Let (£, α) and (η9 β)
be the velocity pairs after collision of two molecules (£', α') and (η\ β'). Then,

' *>-* , κV+(η-ξ,£)A
ς ~~ ς i ~ κ+1

κV+(η-ξ,£)£

* = η ^ + Ί
(1.1)

R> R , £ X V

where A denotes the unit vector in the direction of the line from the center of the
molecule (ξ, α) to that of the molecule (η, β) at collision and Fthe relative velocity,
after impact, of the points of the spheres which come into contact, that is,

(In (1.1) and (1.2), ( , ) and x denote the inner and the outer product respec-
tively.) Note that this dynamics preserves the linear momentum and the total
energy, i.e.,

(1.3)
" K', α'] 2 + fo\ β'Y = K, α] 2 + [ij,
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where [ξ, α]= γ - - y - | ξ | 2 + - y - | α | 2 , and leaves the volume element invariant;

(1.4) dξ'da'dη'dβ' = dξdocdηdβ.

Let Nu(t, ξ, oήdξda be the number of molecules with linear and angular

velocities in the ranges dξ, da respectively at time t. Then the spatially homo-

geneous Boltzmann equation in the absence of exterior forces takes the form

du(ί, ξ, α) ( , κ . . .
Λ7 = \ (*7~ξ> #)

S 2 χ Λ Ί χ R 3

(1.5)
•{«(/, £', «')«(/, i/', /*')-«(*> & Φ ( ί , ̂  β)}d£dηdβ,

where (77 — £, ^) + = max {(η — ξ, £\ 0}, d£ denotes the uniform probability measure

on the unit surface S2 in R3 (cf. S. Chapman and T. G. Cowling [3]) and the mul-

tiplication AN a2 of the right hand part of (1.5) is neglected.

For non-rotating models the initial value problem of the Boltzmann equation

was solved by T. Carleman [2] for the molecules with elastic spheres, and by A.

Ya. Povzner [6] and L. Arkeryd [1] for the molecules with differential collision

cross-section satisfying certain boundedness conditions.

In this paper we prove the existence and the uniqueness of the solutions of

the equation (1.5). The method is similar to those of the non-rotating case due

to A. Ya. Povzner [6] and H. Tanaka [7]. The entropy argument such as in

L. Arkeryd [1] would work if we consider only those solutions that are even in

α; however, we do not employ this argument since it cannot be expected that there

are many even solutions.

The kernel (η — ξ, £)+ is not invariant under changing £ to —£, so it is conven-

ient to introduce the following notations

-ξ,£)£

(1.6)

„ _ £xV-
" ~ P a(κ+l) '

(1.7) V. =η-ξ-a£x(a+β)9

and write x = (ξ, α), y = (η, β), x' = «\ α'), / = fo', j8'), * ! = (£-, «D, y'- =

(η'-9β-), [x] = K, α], [y] = [̂ , βJi, and so on. Note that the relations similar to

l-ξ,W

£xV_
α _ = α —
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(1.3) also hold;

( ξL + ηL = ξ + η,
(1.3)'

Then, making use of (1.4) and (1.3)' we can easily transfer the equation (1.5) to
the equations for measures

(1.8) ^γD-= \ (η-ξ,ty{δ(xL,n-δ(X,Γ)}d£u(t,dx)u(t,dy),

or equivalently,

(1.9)

where u(t, Γ)=\ u(t, x)dx for Γ e &{R6). For the solution u of the equation

(1.8) ( = (1.9)) with the given initial probability distribution /, we use the terminolo-
gy "u preserves the mass, the linear momentum, the total energy", when

\ φ(x)u(t, dx) = [ ψ(x)f(dx)
JR6 JR6

for ψ(x)=l, ξ, [x]2 respectively.
Now we can state the results.

THEOREM 1. Assume that σ2 = \ [x]2f(dx) < oo for the probability
JR6

distribution f on R6. Then there exists a solution u of the equation (1.8) with
the initial distribution f such that u preserves the mass and the linear momentum.

THEOREM 2. Assume that μ^ = \ \_x~]pf(dx) < oo for the probability
JR6

distribution f on R6 for some p>3. Then there exists a solution u of the equa-
tion (1.8) with the initial distribution f such that

(1.10) μ(p\t)= \ [_x~]pu(t, dx) is a locally bounded function oft,
JR6

(1.11) u preserves the mass, the linear momentum, and the total energy.

THEOREM 3. If the assumption for f in Theorem 2 is valid with p = 4, then
the solution u of the equation (1.8) with the initial distribution f satisfying (1.10)
and (1.11) is unique, and has a density whenever f does. Moreover, if we put



194 Hiroshi MURATA

( M 2 )

ί/ien ΰ is the unique solution of the following equation (1.13) wίί/i the initial

distribution J:

, dy) ,

(U3) ^ ^

(1.14)

Π(x, y,Γ) =
H

, ) ' , dz),

)s2

(
2

~, n

In § 2 we prove the existence of solutions of the equation (1.8) with the replace-

ment of (η — ξ, £)+ by (η — ξ9 £)+ A N, and prove the local boundedness of the

corresponding moments μip)(t) of this u. In § 3 we demonstrate the above theo-

rems. Finally, in § 4 we mention some remarks on steady state solutions which

are even in α.

The author thanks to Professor H. Tanaka for valuable advices.

§ 2. Preliminary lemmas

In this section, we consider the following equation.

du(t, Γ)

) i
C

2 6

If the initial distribution is /, the equation is easily written in the integral form:
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(2.2) u(t,Γ) = e-N f(n + N['e-^'-^ [ ΠN(x, y, Γ)u(s, dx)u(s, dy)ds,

using the probability measure ΠN(x, y, ) defined by

(2.3) ΠN(x, y, Γ) = g (

\δ{xL9 Γ) + δ(yL, Γ) δ(x, Γ) + δ(y, Γ)\d£

LEMMA 1. For any probability distribution f on R6, there exists a unique

probability solution u of the equation (2.2) with initial distribution f.

PROOF. Define un(t9 Γ), π = 0, 1,2,..., ί > 0 , Γ e @(R6) successively as

follows:

< 2 4 ) , ( • ,
Jo

ΠN(x, y, Γ)u"(s, dx)W(s, dy)ds, n = 0, 1, 2
R6xR6

Then we can easily prove that un(t, •) increases, as n->oo, to a solution w(ί, •)

of the equation (2.2). The proof that u(t, ) is a unique probability solution of

the equation (2.2) is also routine.

Next we estimate the moment of the solutions of the equation (2.2). For

this purpose we first consider the moment of the approximate solution un(t, •).

We put

JR6 ' " JR6

and assume that μ(p)< oo for some p>3. Since

by (1.3)', we have

ί [z] 2 [ ΠN(x,y,dz)u"(s,dx)u"(s,dy)<μi2\s).

Using (2.4), we have
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μ(

nl\(t) < e~N<σ2 + N[ e~^^ μ^2\s)ds, n = 0, 1, 2,...,
Jo

and μ(

0

2\t) = e-Ntσ2. Therefore μ{2\i)<σ2 for all n. Next we deal with μ{p\t)

for general p>3. By (2.4) we have

(2.5) μ\S1(t) = e-

+

•ttM(s, dx)un(s, dy)ds .

LEMMA 2. 77/ere exists α constant Cp such that

PROOF. The following elementary inequality holds

0 < (

for p>2, a, b>0. Thus we have

Y2- + Cp([xγ-2lyγ + M

- ( M 2 + [y]2)^" + cp(ixγ-2[_yγ

in deriving the last equality we have used (1.3)'.

Applying this lemma to (2.5), we have

(2.6) μ(/+\(/) < e ~ N t μ ^ + N Γ e"iV<ί-^{μ(

M

p)(
Jo p

LEMMA 3. μ(

n

p\t) is a locally bounded function of t, that is, for any Te

(0, oo) there exists a constant K depending only on σ, μ(p\ T, N and p such that

(2.7) μ<?\t) <K, 0<t<T.

PROOF. Let us prove this by induction on p. In the case \<p — 2 < 2 ,

we have μ(

n

p~2)(s)<σp~2 by Holder's inequality. Combining this with (2.6), we

have
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[
o

and hence by induction in n we obtain

Especially μ (

w

4 ) (0<μ ( 4 ) + C 4σ 4Nί, and so in the case 2<p-2<4, using Holder's

inequality for μ(/~2)(s) in (2.6), we have

μ(/ΛW < e-

From this we have μ^n

p)(t)<const(1 -\-N2t2)9 n = 0, 1, 2,.... This method is suc-

cessively applicable to the case 2/c<p-2<2/c + 2, /c>l; the result is μ(

n

p)(t)<

const(1+Nktk)9 n = 0, 1, 2,.... Thus the lemma is proved.

LEMMA 4. Let u be the solution of the equation (2.1) with initial probability

distribution f satisfying μip)<co for some p>3,and put μ(p\t)=\ [x]pu(t, dx).
JR6

Then for any Te(0, oo) there exists a constant K depending only on σ, μ (p), p

and T such that

μ{p\t) < K, 0<t<T.

PROOF. Integrating the equation (2.1), we have

u(t, Γ)=/(Γ) + J'o J gN(χ,y,£)

Jδ(xL,Γ) + δ(yL,Π δ(x,Γ) + δ(y,n\
1 2 2 I

d6u{s, dx)u(s, dy)ds.

Since μ ( p ) (0 satisfies the same estimate as in (2.7), using Lemma 2 we have

qN{x,y,e)

)u(s, dy)ds

(2.8) :
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t d x ) u ( s > d y ) d s

(s, dx)u(s, dy)ds.

For the case p = 3, this inequality (2.8) implies that

In the case p > 3, using Holder's inequality we have

μ(P-V(s) < (μ(p){s)yf < l+μθ»(s), fc = 1, 2,

and then by (2.8)

exp(c3

Now an application of GronwalΓs inequality completes the proof of the lemma.

§ 3. Proof of the theorems

Let uN(t, -) be the unique solution of the equation (2.2) constructed in Lemma

1. If the initial distribution / has the finite second moment σ2, then the follow-

ing (3.1)-(3.3) hold.

(3.1) uN(t, •) is a probability measure on R6.

(3.2) ( lxyuN(t,dx) = σ2, [ ζuN(t,dx)=[ ξ f(dx).
JR6 JR6 JR6

(3.3) There exists a constant K, independent of N, such that

If φ(x)uN(t,dx)-[ φ(x)uN(s,dx) <K \\φ\\'\t-s\

for any bounded continuous function φ on R6.

Thus the proof of Theorem 1 is now evident by the relative compactness of

{uN(t, )}N=I,2,... a n <3 the equicontinuity (3.3), that is, there exists a subsequence

{Nk}k=ίi2>... such that {uNk(t, •)} converges to a probability measure u(t9 •) as
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k-^co for all rational t>0, and hence for all ί > 0 by (3.3). Moreover u(t, •)

satisfies (1.8).

This construction of the solution u(t, ) of (1.8) is also useful for the proof of

Theorem 2, because the local boundedness of the moment of u(t, ) is already

proved in Lemma 4.

PROOF OF THEOREM 3. The existence part is contained in Theorem 2, so

we prove the uniqueness and the existence of density solutions. Let Π(x, y, Γ)

and ft(x, y, Γ) be as in (1.14). Then by

JR6

77(x, y, Γ) is also a probability measure in Γ e &(Rβ) for each x, yeRβ. On

the other hand, for a solution u of the equation (1.8) we have

6xR6

) + δ(ΣLdz}δ(x dz) + H j ^ )u(ίί d y )

\
R6xR6

\
xR

•{Π(x,y, dz)-δ^>d^ + δ(y>dz^u(t, dx)»(t, dy)

= \
6

= (1 + σ 2 ) 2 \ (l + M 2){/7(x, y, Γ)-δ(x9 Γ)}u(t, dx)u(t, dy)9

where ύ(t, dx) is defined in (1.12). Hence ύ is a solution of (1.13). ϋ(t, •) is

still a probability measure on R6, so we obtain
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Therefore we can write

(3.4) u(t,Γ)= { e-twftdx)

+ Γ f u(s, dx)u(s, dy)q(x){ e-^z^-^Π(x, y, dz)ds,

where <?(x)

On the other hand we can easily construct the minimum solution wo(ί, •)

of the equation (3.4) by iteration. If we take

v(t9Γ) = u(t,Γ)-u0(t9Γ)9 Γe.

then v(t. Γ)>Oand

dv^R6^ = μ(t)v(t9 R6)9 μ(t) = [ q(x)uo(t9 dx)9
Ul J R6

v(09 R6) = 0.

However μ(t)<\ q(x)u(t, dx) < const (1 + μ ( 4 ) ( 0 ) is locally bounded in ί, so v(t9 •)
JR6

vanishes identically. Therefore the uniqueness of the solutions of (1.8) is proved.

Finally assume that / and hence / have densities with respect to the Lebesgue

measure in R6. Then the usual method of iteration for solving the equation

(3.4) shows that the solution ύo(t, -) = u(t9 •) has a density for each ί > 0 .

§4. Remarks on the steady state

Let u(t9 ξ9 α) be a (density) solution of the equation (1.5), and put

H(t)= J u(t9 ξ9 φogu(t9 ζ9 φξdoc.

Then we have (at least formally)

4tm= \ ^(y-α){logt/(/,^α) + l}^Jα

= —j-fa-ξ, iY log u{t9 ξ\ a')u(t9 η\ β')

-(η-ξ, tyiog u(t9 ξ9 a)u(t9 η9 β)}

-{u(t9 ξ\ oi')u(t9 η'9β')-u(t9 ξ, <x)u(t9 η9 β)}dβdξdotdηdβ

-ξ, β)+{u{t9 ξ'9 α > ( ί , η'9 β')-u(t9 ξ9 α)u(ί, η, β)}d£dξd<xdηdβ.
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In general, the non-increasing property of H(t) does not follow from this formula.

But if we assume that u(t, ξ9 α) is even in α, then by considering the collision of

two molecules (ξ'9 — α') and (η\ — βr) with the unit vector — £ which produces

(ξ, — α) and (η, — β), we obtain the following inequality (see also [3, 1st ed.]).

J-H(t)= — - { ( n ζ l ) l o c

-{u(t, ξ\ a')u(t, η\ β')-ύ(t, ξ, «)«(/, η, β)}d£dξdadηdβ

< 0 .

We next consider a probability density function f=f(ξ9 α) in the steady state:

(η-ξ, £)+{f(ξ\ *')f(η'9 β')-M, α)/(ιj, β)}dβdηdβ = 0.

We only consider those functions f(ξ9 α) which are even in α. Assuming that

K, α] 2 /(^ «)log/(ξ, α)eLH^ 6), we have

4

•{/Or, α')/fa\ £')"/(£, a)/fa, β)}d£dξdadηdβ = 0,

and hence we have

(4.1) f(ξ\ α W > βf) = f(ξ, oc)f(η, β) for almost all ξ, a, η, βeR\ £ eS2 .

The purpose of this section is to show that an even / satisfying the relation

(4.1) is Maxwellian (Theorem 4). This fact is found in [3, 1st ed.]; the proof we

give here is a probabilistic one based upon the function e of [4].

THEOREM 4. Let f=f(ξ, α) be a probability density function on R6, even

in α, and satisfy the relation (4.1). Then there exist a constant vector beR3

and a positive constant c such that

f(ξ, α) = constexp{(f>, ξ)-c[_ξ, α] 2}.

The proof is divided into some steps. Before stating these lemmas let us

introduce the change of α-scale:

ξ \ ί ξ

i^J K a / \ a

Then the dynamics of a collision is transformed to the following form:
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(4.2)

(4.3)

and the total energy of a molecule (ξ, a) is changed to-y( |ξ | 2 + |α | 2 ) . For each

fixed £=(£ι, £2, £3)eS2, the relation (4.2) is written in short by

(4.4)
a!

n'
J'

= u

ξ

OC

n
β

The invariance of the total energy then implies that U is an orthogonal matrix.

By elementary calculations, we obtain the following

LEMMA 5.

(4.5) U =

I-M

-N

M

-N

N

M

-N

-(I-M)

M

N

I-M

N

N

-{I-M)

-N

M

where

(4.6)

Moreover,

λ/f —
IVJ. —

K

V
K

K j

+ 1

K

1

0

PJ PJ
1 2

0

Pλ

7 0 0

\ 0.. 0..
2 Λ~/ 2 *~* 3

0
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M2 = —

(4.7)

-M,

MN =NM=
κ+1

-N.

The following lemma is a key part in the proof of Theorem 4.

LEMMA 6. If a probability density function f in R6 satisfies the assumption

of Theorem 4, then there exist a constant vector b e R3 and symmetric 3 x 3 -

matrices Qί and Q2 such that

(4.8) M, α) = constexp{(6, ξ)-{Q& ζ )-(Q 2 α, α)}.

PROOF. The function /(£, oc)=f(ξ, α)exp{ — | ζ | 2 —|α|2} satisfies the relation

(4.1) and (1 + |ξ | 2 + | α | 2 ) / e Z , 1 ^ 6 ) . To prove the representation (4.8) for /, it

is sufficient to prove it for/(so normalized that\ f(ξ, ot)dξd(x=l), and therefore

we may assume from the first that / itself has finite second moment. In general,

suppose we are given an Kd-valued random variable X with finite second moment.

As in [4], taking a suitable probability space (Ω, J5*, P) we put

where the infimum is taken over all pairs of .Rd-valued random variables X and Y

defined on (Ω, J5", P) such that the distribution of X is the same as that of X and

?is a Gaussian random variable with the same mean vector and covariance matrix

as those of X. H. Murata and H. Tanaka [4] proved the following statement.

(4.9)

If Xι and X2 are independent random variables with finite second mo-

ments, then we have

unless both Xv and X2 are Gaussian.

We now think of Rί2 as a probability space with probability measure

dξdocdηdβ. Then both the random variables

X =

ξ, oc)f(η, β)

ξ

a

n
_β

, X1 =

ξ'

α'

η'

JΊ
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on this probability space have the same probability density f(ξ, oΐ)f(η, β) by the
relation (4.1). We put

/ I-M N \
A=l

\ -N M )

H

,B =

( M

V -ΛΓ

β / \ α' /'

ί M N \

\ N -d-M) )'

-N ) . D J
-d-M) ) \

I-M

) •

-N

M

Since Xί and X2 are independent, an application of (4.9) for X'ί=AXί+BX2

and X'2 = CX1+ DX2 yields

(4.10) e[Z'J < t[AX

Taking pairs (Xί9 YJ and (Z2, ?2) which attain the infimums in the definition of
i] and e[Z2] respectively, we have by (4.10)

(4.Π)

here the last equality is derived from the orthogonality of U. On the other hand
since X1 and Jf2 (resp., X\ and X2)are independent, we have from the definition
of e,

(4.12) e[X'] = e[X'J + e[X2], e[X] = e[XJ + e[X2],

and also e[Jί'] = e[Jί] since X and Xf are identically distributed. Therefore the
inequality sign in (4.11) must be the equality one. This can happen only when
both Xί and X2 are Gaussian random variables by (4.9). Finally noting that the
density/is an even function in α, we obtain the representation (4.8) of/.

To finish the proof of Theorem 4, it is sufficient to prove the following

LEMMA 7. Let Qx and Q2 be the symmetric matrices obtained in Lemma 6.
Then there exists a positive constant c such that Qι = Q2 = cI, that is, (βiί, ζ)

PROOF. The relation (4.1) and Lemma 6 imply the following invariance:
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(4.13) (&{', ξ')+(Q2*', aOHQii', nΊHQiβ', Π

= (Qiξ, ί ) + ( β 2 « , «)+(βiiί, «ί)+(β2A β)

Inserting the relation (4.4) and using Lemma 5, we have five equations for matrices

Ql9 Q2, M and TV:

(4.14) 2(NQίM-MQ2N) + Q2N-NQ1 = 0,

(4.15) MQ1(I-M) + NQ2N = 0,

(4.16) MQ2(I-M) + NQ1N = 0,

(4.17) MQ1M-NQ2N-(Q1M + MQ1)I2 = 0,

(4.18) MQ2M-NQ1N-(Q2M + MQ2)I2 = 0.

Adding (4.17) to (4.15) (and also (4.18) to (4.16)), we have

(4.19) QίM = MQu Q2M = MQ2.

The relations (4.7) and (4.19) therefore imply NQ1 = Q2N by (4.14); here we have

used κΦ\. By the way, it is easy to prove that any matrix Q which commutes

with M for almost all £> e S2 is a constant multiple of the identity matrix. There-

fore Qι = c1I and Q2 = c2L Finally, cί = c2 follows from the relation NQX = Q2N.
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