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Introduction

The Lorentz space I, ,{E} is the space of zero sequences {x;} with values in
a Banach space E such that

o0 1/

(.Z i"“’"llX.-ll*") ! for 1<p<o, 1<g<om,
"{xi}”p,q= i=1

sup /P x| * for 1<p<ow, g=o

is finite, where {|x;|*} is the non-increasing rearrangement of {|x;||}. In par-
ticular, I, ,{E} coincides with [, {E} (cf. [10]). Recently, the space [, {E} has
been used to introduce and investigate several classes of operators, e.g., (p, q)-
nuclear, (p, q; r)-absolutely summing and (r; p, q)-strongly summing operators
([61, [9], [10]). However, concerning [, {E} itself very little is known, although
the Lorentz space L, (E) has been considerably investigated ([1], [5], [12]).
Thus it seems to be significant to clarify fundamental and intrinsic properties of
I, AE}. The purpose of this paper is to establish a sequence of important proper-
ties of the space I, ,{E} and especially to characterize the dual space of I, {E}.

We shall show that I, {E}" and [, ,{E'} are isometrically isomorphic (resp.
isomorphic) for p<q (resp. p>q) where 1/p+1/p'=1/q+1/q'=1. 1t should
be noted that for p>gq 1, ,{E’} is not a normed space but a quasi-normed space.
In this case, we shall introduce the space [D. ,.{E’} as the Banach space of all E'-
valued sequences {x;} such that for each {x;} !, {E} the series > <x; x;>
converges, where the norm is given by |[{x{} [ , =sup {|2 &, <x;, x;>[; I{x;} 5.4
<1}, and show that [, {E}’ is isometrically isomorphic to I9. ,.{E'} and I, ,{E'}
is isomorphic to I9. ,{E'}. As an application we shall refine the main result in
[6], that is, we shall characterize the conjugates of (p, q; r)-absolutely summing
operators ([9]) as (#'; p’, q')-strongly summing operators where 1/p+1/p'=1/q
+1/q'=1/r+1/r'=1.

The author would like to thank Professor S. Togd and Professor M. Itano
for their many valuable comments in preparing this paper.
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§1. The spacel, {E}

Throughout the paper E and F will denote Banach spaces and E’ and F’
their continuous dual spaces. Let K be the real or complex field and I be the set

of positive integers.

DEFINITION 1. For 1<p<o0, I<g<o or 1<p<w, g=c0 [, {E} is the
space of all E-valued O-sequences {x;} such that

i=

0 1/
J(z i wlt) " for 1<pse, 1<q<o,
{x}Hlp,y = !
1 sup i'/P|x 4l for 1<p<o, g=o0
is finite, where {||x4u|} is the non-increasing rearrangement of {|x;|}. In
particular, if E=K, |, {K} is denoted by 1, , (cf. [10]).
In case of p=q [, ,{E} coincides with [ ,{E} and || - ||, ,= 1l - [l .

REMARK. In the case where 1<p<g<oo, ||,, is not a norm. Indeed,
if 1 <p<gq< oo, we can take two positive numbers o and f such that
o - _
1 < 7{ < (24/? 1)1/(q 1,

By the mean value theorem of differential calculus there exist two positive num-
bers y, and y, such that

(258Y g} /3= _ gy,

for— (2EBYY /2B e

and

ﬁ<y1<‘“2"ﬁ<y2<a.

Then we have

- A o - G
<)

< 2‘[/!’—1,
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whence
a2 < (S4B e (1B,
Consequently, if we put
u=(xp,0,0,0,.),
v=(f0000,..),
we have
leellpy+ 0l = 2t +24/P71 gt/
< {(a+ B+ 297 1+ By}
= |u+v],,

which implies that |- ||, , is not a norm. If 1<p<g=o0, we can take two posi-
tive numbers a and B such that 1<a/f<2'/?, and show that | -|,, does not
satisfy the triangular inequality for w and v, which implies that |||, ., is not a
norm.

We now recall the following inequality (Hardy, Littlewood and Pdlya [3])
which is one of the most useful tools in our subsequent discussions.

Let {c}} and {*c;} be the non-increasing and non-decreasing rearrangements
of a finite sequence {c;} of positive numbers. Then for two sequences {a;} <i<n
and {b;} <i<n of positive numbers,

(1) Sar*h, < Yab, < Tatbt.

i

LEmMMA 1. Let {x;} and {y;} be O-sequences in E. Let {|x4ul}, {Iyyul}
and {||xX,@+Yowll} be the non-increasing rearrangements of {lx|}, {lly:l}
and {||x;+y;l} respectively. Then for any positive integer k

"xw(2k)+yw(2k)” < ”xw(Zk—l)+yw(2k—1)” < Hx¢(k)ll+H.Vw(k)“ .
Proof. The first inequality is clear. Since
{iel: ||x;+yill > lxpall + 1 yyaoll}
< {iel: xll > lIxpml} U {iel: Iyl > lyswl},
comparing the cardinal numbers of these sets we have

card {iel: |x;+ yill > X400l + 1Yyl
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<card{iel: ||x;| > | X gyl } +card {iel: ||yl > llyywl}
< 2(k-1),

which implies the second inequality.

ProrosiTiON 1. If 1<q<p<co, 1, {E} is a normed space. If 1<p
<q< o, 1, {E} is not a normed space but a quasi-normed space; for any {x;},

{yl} € lp,q{E}
” {xi+yi} ”p,q S 21/p(” {xi} ”p,q+ ” {yl} ”p,q) .
Proor. Let {x;}, {y}e lp,q{E}' Let {"qu(i)”}, {”J’./,(i)”} and {”xa)(i)+
Yoyll} be the non-increasing rearrangements of {|x;[}, {l[y:ll} and {[x;+y;}

respectively. We assume p#q. In the case where 1 <g<p< oo, {i??~1} is non-
increasing and hence by (1) we have

S caip—1 1/4
"{xi+yi}”p,q= le/p ”xw(i)+yw(i)”q>

© . 1/4
<{E @ g+ e

(
{

< (£ 1 v 1)+ (£, 1 uol?)
(

@ ot /p—1 1/4 @ —1 1/4
< Ell/” ”x¢(i)“q> +<i§llq/” "J/w(i)"q)

= ” {xi} ”p,q+ ” {yl} ”p,q'
Thus [, {E} is a normed space in this case. In Remark after Definition 1 we
have shown that for 1<p<g<oo [, {E} is not a normed space. Let 1<p<gq
<oo. Then, by Lemma 1 we have
gliqh’_l Xw@iy + Voo l*

= ?:':1 {Qi—1)4r-1 ”xm(Zi—- 1)“‘)"«:(2;‘—1)”‘1‘|‘(2i)q/r1 “xw(Zi)+yw(2i)”q} 14

< 29/p '21 1P (g iy | 4+ 11y DY
=
Therefore,

o _ N _ 1/9
1+ 93} g < 208 @1 g 4812409 g )7}
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0 1/9 0 1/9
<2 f(8 ey lt) "+ (E ety nlt)
i=1 i=1
= 217(|{x}H p.g + 1{¥:} 1 5.0) -
For 1 <p<q=o00 we can show in a similar way
"{xi+yi}”p,oo < 21/p(”{xi} ”p,co+ ”{yl}“p,w) .

Thus I, {E} is a quasi-normed space if 1 <p<g< .

LeEmMMA 2. Let 1<p,q<co. Let{x;}el, {E}. Then for everyiel
q 1/‘1'_ .
@) ol <(4) TR, i 1<p<g<o,

3) lxpmll < i-l/p”{xi}”p,q if 1<gq<p<co.

Proor. If {x;}el, {E}, for every iel

@ Il {x:} IIL’,q > kg.l kPt ”x¢(k)”q

i
> ||x¢(i)“qk21 kamp-1,

In case of p=gq (2) follows immediately from (4). If 1<p<qg<oo, for each kel
%kq/p—1 > kalp — (k—1)4/,

whence (2) follows from (4). In case of 1<g<p<oo, {i?/?~1} is non-increasing
and therefore (3) is immediately from (4).

ProPOSITION 2. (i) Let 1<p<oo, 1<g<q,<c0. Then
I, {E} = 1, . {E}
and for every {x;} €, {E}
) e < (D) 1. ¥ p<a
© I{xi}H pay < 1{x:} 5,0 if p=q.
(ii) Let either 1<p<p,;<0, 1<g<o0 or 1<p<p,<o0, g=0o0. Then

IP,Q{E} < Im,q{.E}
and for every {x;} €l, {E}
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{xi}lpyq < IH{xiHlpar

Proor. Let {x;}el, {E}. Let 1<p<g<g;<c. Then by using (2)
we have

Q0
H{x:3l2z,, = Zl P x g 17 x gyl

9:-9 _4:1—-4

<3 jap-1(9d\ 4 ;P 4,-4q q
<Xi P l I {x:} ”p,q ”x¢(i)”

I e e

whence we obtain (5) and [, {E}<l,,  {E}. If 1<p<g<gq,=c0, (5) follows
immediately from (2). In case of p>gq, in a similar way we can deduce (6) from

(3).

= (" g E i gl
(

The proof of (ii) is easy and omitted.

CoROLLARY. Let 1<p,<p<q<q,< 0 and let p, q be not both equal to
. Then:

(6)) L {E} = 1, {E} = I, {E}
and for every {x;} el, {E}
(E) " 1 s < 1 g < 1G5
(ii) I, {E} = 1, {E} = I, {E}
and for every {x;} el, {E}

H{xitlgy < H{xitlgp < {xi}lp,-

We shall now show in the following lemma a generalized form of Holder’s
inequality which is stated in a more generalized form without proof in [10].

LEMMA 3. Let1<p,q<oo and 1/p+1/p'=1/q+1/q'=1. Let{x;}el, {E}
and {x;}€ly ,AE'}. Then, {<x;, x;>}el, and

{<xi xi> g < H{x ol {xi} ] g

Proor. From (1) and the usual Holder’s inequality we have
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00 00
2 I<x, x§>l <X il/p_”q”x.p(i)”'l”p ~1/a ”x:p(i)”
i=1

i=1

oo./_l qllqoo‘,/'_l , A\1/4a’
S(le‘”’ I|x¢(i)”) (21 e ”x.//(i)“q>

i=

= [{x}Hlpal {xi} g

In the rest of the paper, we denote by & (E) the space of E-valued finite
sequences.

ProprosITION 3. For 1<p<c0, 1<q<o0, #(E) is dense in 1, {E}.

Proor. Let {x;}el, {E}. When 1<p<g<oo, let

7 0, =3 (05 0, Xps 0, 0,0,...).

i=1

Then u, € #(E) and

0 " 1/q
1663 —unlpg = (£, 197 x40+

< < i iq/p_lnx.p(i)”q)l/q
iZnt1
-0 (n > ).
When 1<g<p< o, let
I, = {ieI: Ix > %}

and

(8) v,= 3 ,..,0,x,0,0,0,..).

iel,

Since I, is finite, we put k,=cardI,. Then for any j, eI we have

0 ' 1/q
1653 =l = (£, 197 Ixp,0001)

<(;

~
=

a1 1/q
197~ x4 i)l q)

1

o 1 1/q
+ Z lq/p ”x¢(k,.+i)”q)
=Jjo

J 1/
(z_";l,q/p—1> +( 3 - Illx,f,(.)II“)

<L
- n i=Jjo+1
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Hence
_ o] - 1/q
T | {63 = Oullpg < (5 197 gl
n—>c i=jo+1
Therefore, letting j,— o0, we have
li 31— =
lim |} =0yl = 0
LEMMA 4. Let {x{"};, be an E-valued double sequence such that lim,_,,x{*’
=0 for each vel and let {x;} be an E-valued sequence such that lim,_, ,x{" =x;
(uniformly in i). Then, lim;,,x;=0 and for each iel

9 “x¢(i)” < Ei_)%”xfﬁv‘.)(i)“’
where {||x)ll} and {lef;v)(i)ll},- are the non-increasing rearrangements of {||x;||}

and {||x{*||}; respectively.

ProoF. It can be easily shown that lim;_,,,x{*’ =0 (uniformly in v). There-
fore we have immediately lim;.,x;=0. Let i be an arbitrary positive integer
and fixed. If there exists a positive number ¢; such that

Ixpill > ¢; > %1__%10 XG5

then the inequality
Xyl > ¢; > “xfpv\,)(i)“

is valid for infinitely many vel. Since |[Xypll>c; and lm,_ el X301l = x40l
for 1<k<i, there exists a voel such that [|x{))ll>¢; for v>v, and 1<k<i.
Therefore, if we take a positive integer v, such that v,>v, and ¢;>||x$'2,

we have

IxG > e > IxG 0wl

for 1<k<i, which is a contradiction since the number of k such that [|x{"| >
|{x¢v1(,)[l is i—1. Thus (9) holds for every i e 1.

THEOREM 1. For 1<p, g< oo, I, {E} is complete.
Proor. Let {x{*'};el, {E} (vel)and

(10) lim [[{x{* —x{*)}[,,, = 0.

n,v—00

In the case where g < o0, for any £> 0 there exists a v, € I such that
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2 calp— 1 ) W e
an (e 1o -wl?) <e forany my>v,
&

where {||x{) ;) —x$) oI} denotes the non-increasing rearrangement of
{JIx{" —x{"||};.  Then for any g, v>v,, from Proposition 2 we have

sup [|x{* —x{||
1

= Slilpil/p”xf#"»)wm“xf/f“u),vu)”

1/q :
{<%>HUW—ﬂWMA it p<q,
<

{"xgu)_x(iv)}“p,q if p = q
)" it
- p<gq,
g { (7
€ if p>gq.

Therefore there exist x; € E(i€l) such that

(12) ;= lim x{» (uniformly in i).
v—00

Since lim;_,,x{*’ =0 for each ve I, we have by Lemma 4

(13) lim x, = 0.

i—©

Hence we can take the non-increasing rearrangement {|x, ., —x3") |} of
{lIx;—x{"|};. Let v be an arbitrary positive integer with v>v, and fixed. If
we put

y(i") = xgu)_x(i”’
yi = x—x{V,
then

lim y{® =0  for each pel.
lim y{*) = y; (uniformly in i).
”—mo

Therefore by Lemma 4 we have

”y¢(i)” < %”J’Sﬁ"}m” for eachi e I

that is,



82 Mikio KATO
(14) 1%y =Xl < }};jf}illeﬁ)w(i)“xfpv:w(i)|| for each i € I.

Consequently, by (11) and (14) we have for any v>v,
) S jalp-1 (") Ha
H{xi= X"} p,q = Ell Xy, =%yl
S o1 Tim () 1a
< <Z:ll‘1 P=1]im nx,,m(i)—x;“,v(i)ll‘ﬁ
i= p—>o

) ® 1/q
< tim (& 191 2 =50 o )
p—oo \i=1

<s,

and hence {x;}={x;—x{"9}+{x{*9}el, {E}, which completes the proof in

case q < .
In the case where g= o0, by (10) for any ¢>0 there exists a v, € I such that

i1/p [ x(® (v)
(15) sup i Pllxys) y=xy) il <&  forany pu,v> v,

Hence we can take in a similar way a sequence {x;} which satisfies (12) and (13).
Then by (14) and (15) we have for any v>v,

IH{x; —x{3

poo = SUP P [xy iy — X3
1
< supil/Plim || x4 5 —=xP ol
= SUPE I 10 v () T X ()

< %ﬂ; sup Py o =x9) ol

<e

and hence {x;}={x;—x{"9}+{x{*0> }el, {E}, which completes the proof.

§2. The space 19, .. {E'}

In this section we assume that 1<g<p<oo, 1/p+1/p'=1/qg+1/qg'=1. We
now introduce the space 12, ,.{E’} which will play an important role in the next
section.

DEeFINITION 2. 19, ,{E'} is the space of E'-valued sequences {x;} such
that for every {x;}el, {E} the series 32,<x; x;> converges. The norm
|19 4 on 19 o {E'} is given by

00
[{x}9,¢ = su S o<x;, x> |
lI{x1}llp,a<1 'i=1
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It should be noted that [[{x}||9. , <oo for all {xj}eld ,{E'} and |2 .
is really a norm. Indeed, if {x} el ,{E'}, then {xj} can be considered as
the linear form f on [, {E} defined by f({x})=X2,<x; x;>. Define a
sequence {f,} of linear forms on [, {E} by f({x;})=X1-y<x;, x;>. It is
easy to see that each f, is continuous. Furthermore {f,} converges to f at
each point of I, {E}. Since I, {E} is a Banach space by Proposition 1 and
Theorem 1 (p>gq), from the Banach-Steinhaus Theorem it follows that f is con-
tinuous and [|{xi}|l),,=lfll<co. Hence || |2, is a norm.

The norm | - ||2. - is also given by the following form

[2e)
up X |<x; xi>|,

16 xHO = s
(16) 1{x3 5, q . S

as can be easily seen.

LEMMA 5. Let {xj}el). ,{E'}. Let x} ;=x} for 1<i<v and x| ;=0 for
i>v. Then

. 0 —
vlirg ”{x;,i}”p',q' = “{x:}"gq

PrOOF. By (16), for any &> 0 there exists an {x;} €I, ,{E} such that [{x;}],,
<1 and

© , &
{xi}p, e < Z I <xipxi>|+7.
Then there exists a v, €I such that for any v>v,
S ! a ! 8
Zl | <x; xi>] < -21|<x"’ x;>| +5.
i= i=
Therefore we have for any v>v,
{3, i3illp, o < I{xHIP o

A4
<Y |<x;, xi>|+e
i=1

©

< sup Z l<xia x,y_i>l+8
[Hxi}lp, g1 i=1

= "{x:‘,i}i"g’,q’_*'ea

which shows that |[{x] ;};[|% , converges to [[{x}||9. ., as v—o0.

LEMMA 6. Let {x ;}, {x3,;}€ld AE}. If x\; or x, ; is equal to O for
each ie€l, then
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{5+ X5, 19% = I, P40 + 1H{x2, 3194,

Proor. We may suppose 0<|[[{x ;};[9 ;<o (k=1,2). For any >0
there exist {x,;};€l, {E} (k=1, 2) such that

“{xk l} ”pq = ”{xk l} ”011 !

and

@ , e
igl [ <Xpi Xie,i> 1 > [ {xk, i} 197, -5~

Furthermore we may assume that x, ;=0 if x; ;=0. Then we have

00
17) <Xy i+ X0 X i+ X5,>]

i=1

l|<xl i xl ,>+<X2,, X2 x>|

T.Ms

l<x1 nxl 1>I+Z |<x2v xZ i>|

Ms

> ”{xl t}”p ,q’ +”{x2 t}”p ,q’

On the other hand, denoting by {llx; ¢}, {IX2,ymll} and {lx1 e +*2,00}
respectively the non-increasing rearrangements of {|lxy;l}, {llx,;lI} and {llx,;
+x,,/|} we have

0
Il{xn,:+x2,i}ll,‘5,q = Z= e lllxl.w(i)+x2,w(i)||q

= 2 EPTHIXy o1+ P X 00 1

@

Z j9P=1]x, ¢(,)[I“+Z 1P x5 yaill?

= [{x1,i} 13,0+ {x2,}1I7,4
= {7,135 + 1{x2,:} 8%

since p>gq. Here 3’ (resp. 2.”) denotes summation on those i for which x; ,,; =0
(resp. Xy,0i=0). Hence

(18) {1+ X2, g < UH{xY, 1% + 1{x5,: 3194 11
Consequently, from (16), (17) and (18) we have

||{x'1.i}"° +"{x2 t}”p ,q’
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< (I, 195 + I, HIRA ) VX i+ x5, 1905
from which follows
'y, 3 125 + 14X, 1% < I+ x5, 3197
PrOPOSITION 4. F(E') is dense in 1D, ,{E'}.

Proor. Let {x;}€l) ,{E'}\#(E’). Then for any ¢>0 there exists an {x;}
€l, {E} such that ||{x;}|,,<1 and

pq—

(19) 2 I <xi xi> [HxIp?at > IHxidply —e.

Since [[{x}, 1312, = {x{}[2".¢ (¥ c0) by Lemma 5, we have

(20) gll <xy Xy, > | 1H{x3,:3:ll 905

00
- -21 | <xi xi> [[{x3} 34" (v—0).
=

By (19) and (20), for a sufficiently large v
H{xi} 9%y —e? < .Z=:1 [ <oy x0,0> {2

< x5, 3l g
This, combined with Lemma 6, implies
i} = Ex0, 9% < I IPAe — xS, 3 197
< &?,
that is,
IH{xi} = {x3, 13,4 <&

PROPOSITION 5. The dual space of 1, {E} is isometrically isomorphic to
19. AE'}, where a sequence {x;} in ID. {E'} is identified with the linear form
f defined by

21) f{xH = f‘, <X X;> for each {x;}el, {E}.
i=1
Proor. Let {xi}el? ,{E'}. Then the linear form f defined by (21) is

continuous and | f||=/{xi}[I%, -, which we have already shown in the para-
graph after Definition 2. Conversely, let fel, {E}’. If for each iel we define
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x; e E' by
<x, ;> = f((0,..., 0, x, 0,...))  for each x e,

then we have for any {x;} e, {E}
(22) 3 1<x0 xi>1 = £ 17(0..... 0, %;,0,..)
= lim 2" aif((o"'~’ 0’ ;:’ Os))
n—o i=1

= lim f((0t; X 1005 %uXy 0,...))
n—o
. L 1/q
< £ tim (£ 197~ %)
n—ooo\i=1

< Iftim (2 o= xge)
= U1

where «; (i € I) are the complex numbers such that |o;| =1 and | f((0,..., 0, x;, 0,...))|
=, f((0,..., 0, x;, 0,...)) for each iel, and where {[x;[*};<i<n {llX4ull} are the
non-increasing rearrangements of {||x;|l};<i<w {|X:ll}1<i<o respectively. There-
fore we have {x;} €l ,{E'} and [{x;}|| »<Ifll. On the other hand, if for
any {x;} el, {E} we put v, as in (8), then

v,-{x} (n—> o) in [, {E}
by Proposition 3. Hence we have
fx}) = f(lim v,)
= lim f(v,)

=1lim X f(O,..., 0, }lf,o,...))

n—o iel,

= lim Y <x;, x;>

n—o iel,

M

<x; X;>,

i=1

where the last inequality follows from the fact that the series > 2, <x;, x;>
converges unconditionally by (22). This completes the proof.

CoROLLARY. 1) {E'} is a Banach space.
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§3. The dual space of [, ,{E}

THEOREM 2. Let 1<p<, 1<gq<oo and l/p+1/p'=1/q+1/q'=1. The
dual space of 1, {E} is isometrically isomorphic (resp. isomorphic) to 1, .{E'}
if p<q (resp. p>q). In both cases, a sequence {x;} in 1, ,{E'} is identified with
the linear form f defined by

@1 Jixp) = £ <xuxi>  for each {x}el,,(E}.

In the latter case, there exists a certain positive number M, , such that M, ,>1
and

(23) ”f” < n {xé}”p’,q‘ < Mp,q“f“ for every {X:} € lp’,q’{E,} .

Proor. In case of p=g, the statement is well known and proved in [2].

(i) Let I<p<g<oo. Let {xi}el, {E}. Then the linear form f defined
by (21) is continuous and | f|| <|[{xi}ll . Indeed, from Lemma 3 we have for
any {x;} € L, {E}

(el < 3 1< xi>]
< Gl G

whence we have fel, {E} and | f|| <[{xi}|, . simultaneously with convergence
of the series in (21).
Conversely, let fel, {E}'. If we define xje E’' (iel) by

<x, x> = f((0,...,0, x,0,..))  for each x€eE,

then for any {x;}el, {E} the series > {2, <x; x;> converges unconditionally
by (22). Hence, if for any {x;} €, {E} we put u, as in (7), then by Proposition
3 we have

Sxi}) = f(lim w,)

lim f(u,)

n
= llm 21<X¢(i), x:t(i)>

n—+ow j=

1l
M8

<X; X;>,
1
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where ¢ is the permutation such that {||x, |} is the non-increasing rearrangement
of {||lx;I}. Since fel,{E}’ from Corollary to Proposition 2 and I,{E} =1,{E'},
{xj} el {E'}. Therefore, lim;,,x;=0 and we can take the non-increasing re-
arrangement {[xj [} of {[xill}. Let n be an arbitrary positive integer.
Then for any &> 0 there exist x; € E, 1 <i<n, such that ||x;|=1 and

<Xy Xyiy> 2 [1xyll—&»
where

8”x|’[/(i)”

B a1 N1/a "
(i§11q Ip ”xnlz(i)”q >

g =

Put
74’ a=1/p)| 5/ '
tn =_leq P4 p”xlp(i)”q ‘1(0,...,0, Xis 0:--')~
=

Since the non-increasing rearrangement of l'q'/p'q— 1r|\x!,; /4 i is invariant
g g v(i) 1<i<n
because of q,/p'q—— 1/p=q’/p’ —1 <0, we have

(24) [fE) < 1 f1 1124l

5o —1+q’'/p'— ’ A\ 1/4
= [|f[[ lZ"Ilq/p q’'/p q/pnx'p(i)“q>

= llfll(ilz;li‘I'/p’—l”x;b(i)”q,y/q-

On the other hand,
(25) [f(t,)] = Zn PP R xy 1919 < x;, Xl >
i=1
= Z_.liq'/p'_l”x:p(i)uql/q(”x:p(i)”"ﬁi)
=3 47 /p" =1 5! q S al e =1 ! q 1/,
= ,-Zz:ll Xy ll4 —e gll Xyl
By (24) and (25) we have
n o '/ -1 ’ , 1/‘1’
(Z i =tixyele)"™ <isi+e
Since & and n are arbitrary, this shows that {x} € l,{E'} and | {x} ra ZIfl-

We have thus proved the theorem for 1<p<g<oo.
(i) Let 1<g<p<oo and suppose that E is reflexive. Since [, {E}" is
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isometrically isomorphic to 9. ,.{E’} by Proposition 5, we have only to prove
that 1, {E'} and [ ,{E’} are isomorphic. Here one should note that the
former is a quasi-normed space and the latter is a normed space. Let {x}} e
lyAE'}. Then, by Lemma 3 for any {x;} el, {E}

3 1<x x> < 1l xiHper < o0,

from which it follows that {x;}eld {E} and [{xi}[2 . <I{xi}, ¢
Thus we have

(26) lp’,q'{E’} < lg':‘l'{E,}a ” : [[3',:1' S ” ) ”p',q"

Let i be the canonical injection of I, .{E’} into I9. ,.{E'}; i({x;})={x;} for each
{xi}el, ,AE’}. Then the image of i is dense in [J. ,{E'}, since F(E')c
lyAEY <) AE'} and ZF(E') is dense in I ,{E'} by Proposition 4.
Therefore ti: 10, {E'} -1, {E’}, the transpose of i, is also a continuous
injection.  Since 19, ,{E'} =1, {E}" by Proposition 5 and since [, ,{E'}’
=1, {E"}=1, {E} by (i) and our assumption, we can regard ‘i as an injection of
l, {E}" into I, {E}. Furthermore, 'i maps [, {E} onto I, {E} identically by the
definition of *i. Consequently, I, {E}"=1, {E} and ’i must be an isometric
isomorphism. Hence

t(tl-): lp”q,{Er}// - lg’,q'{E,}”

is also an isometric isomorphism, from which it follows that the quasi-norm
Il and the norm | -2 .. are equivalent on [, {E’} by Banach’s homo-
morphism theorem (cf. [4], p. 294). Therefore I, ,.{E’} is complete for the norm
Il -19,, since it is complete for its own quasi-norm by Theorem 1. This,
combined with the fact that [, {E'} is dense in 0. ,.{E'}, shows that I, {E'}
=12 AE'}. Thus I, {E'} and 1. ,-{E'} are isomorphic.

(iii) Let 1<gq<p<oo and suppose that E is an arbitrary Banach space.
Let {xi}eld ,{E'}. Put ei=x/|x;|l (resp. e;=0) if x;#0 (resp. x;=0) and
o;=|xjll. Then, x;=a;e; for each iel. For any >0, if e}#0, there exists an
e;€ E such that |¢|=1 and <e;, ej> > 1—¢. If €;=0, we put ¢;=0. Then,
for any {{;} €l,, with [[{{;}],,<1 we have

3

SRS

0
& Z | <Cie;, aiei> |
F =1

sup Z | <x; x7>|
€ [ (xi}llp, o<1 i=1

- ”'T~ *<~

5 H{xi}p a0
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Letting e—0, we have X2, || < [{xi}] 2/, which implies
el and {32, < IS, 4
Since [9. .+ is isomorphic to [, , by (i), {«}el,,. Let M,, be a positive
number such that M, ,>1 and
B o < 1B} e < Myl (B3I, forevery (B} el .
Then we have
X g = ey < My {1
< M, {31 g
whence {xi} €, ,{E’}. Thus we have
@7) 19 AEY S Ly {ED 1l < Myl 1940

It follows from (26) and (27) that [, ,{E’} is isomorphic to 2. ,{E’}, which is
isometrically isomorphic to [, ,{E}" and (23) holds for this M, ,. This completes
the proof of the theorem.

CoROLLARY. Let I<p<q<oo. [, {E} is a Banach space with the follow-
ing norm |- |19 , which is equivalent to || - |, ,:

w
IH{xi}lp, = sup Z <X X;> for each {x;}el, {E}.
e llpr, gt ST

Proor. Since [, {E}" and [, {E"} are isomorphic by Theorem 2, it is easily
seen that [[-[|2, is a norm on [, {E} which is equivalent to the quasi-norm
[

As a consequence of Theorem 2 we have the following

THEOREM 3. Let 1<p<o0, l<q<oo. If E is reflexive, then 1, {E} is
reflexive.

The assertion for p<g means /, ,{E} is reflexive as a topological vector
space (cf. [7]). However, it is also reflexive as the Banach space defined in the

preceding corollary.

§4. Conjugates of (p, q; r)-absolutely summing operators

In this section, as an application of the result obtained in the preceding sec-
tion, we shall characterize the conjugates of (p, q; r)-absolutely summing opera-

tors ([6], [9]).
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We first recall the definitions of the space of weakly p-summable sequences
I(E) and the space of strongly p-summable sequences [,(E) ([2]).

For 1<p< oo [(E) is the normed space consisting of all E-valued sequences
{xi} such that for any x’ € E’ the sequence {<x;, x'>} belongs to I,, where the
norm is given by

00 1/p .
sup (Z |<x;, x'>|P> if 1<p<oo,
Ixf|I<1\i=1

Bp({xi}) = { .
sup (B if p=oo0.

For 1<p< o [KE) is the normed space consisting of all E-valued sequences
{x;} such that for each {x;} e, (E’) the series 3.2, <x;, x;> converges, where
the norm is given by

o0
o,({x;}) = sup 2 <X Xp>|.
ep ((xip<1 Ni=1

We now recall the following

DeriNiTION 3. For 1<p, q,r<oco an operator T:E—F is called (p,

q; r)-absolutely summing ([9]) provided there exists a constant ¢>0 such
that

(28) 1{Tx;} lpe < ce({x;}) for every {x;} € #(E)

and (r; p, q)-strongly summing ([6]) provided there exists a constant ¢>0 such
that

(29) o({Tx;}) < cl{xi}ll,,  Sfor every {x;}eF(E).

The smallest number c for which (28) (resp. (29)) holds is denoted by I, ,.(T)
(resp. D,,, (T)).

n,,., (resp. D,,,,) is a norm for p>q and a quasi-norm for p<gq on the
space of (p, q; r)-absolutely summing (resp. (r; p, ¢)-strongly summing) operators.

(p, p; r)-absolutely summing operators are exactly (p, r)-absolutely summing
operators (B. Mitjagin and A. Pelczyfiski [8]), (p, p; p)-absolutely summing
operators coincide with absolutely p-summing operators (A. Pietsch [11]) and

(p; p, p)-strongly summing operators coincide with strongly p-summing operators
(J. S. Cohen [2]).

THEOREM 4. Let 1<p<oo, I<qg<oo, 1<r<o. An operator T: E-F is
(p, q; r)-absolutely summing if and only if its conjugate operator T': F'—E'
is (r'; p’, q')-strongly summing. In this case,
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D,y (T') < 220701, ,.(T) < 22/°M, D, AT")  for p<g,
Dr’;p’,q'(T’) S Hp,q;r(T) S Mp,qu’;p',q’(T,) fOI' pZ q’
where M, , is as in Theorem 2.

Proor. By Proposition 1 we can improve the estimate in Theorem 2 of
[6] as follows: For every (p, q; r)-absolutely summing operator T, its conjugate
operator T’ is (r'; p', q')-strongly summing and we have

D, AT <2201, (T) for p<aq,
Dr';p',q'(T,) < Hp,q;r(T) for D = q.

On the other hand, since [, {E}" and [, ,{E'} are isomorphic by Theorem 2, we
have by Remark 1 in [6] that if T’ is (+'; p’, q')-strongly summing, then T is
(p, q; r)-absolutely summing and I1,,,(T)<D,.,, ,(T").

Similarly, by Theorem 4 and Remark 2 in [6], combined with Theorem 2,
we have the following characterization of an operator whose conjugate is (p, q;
r)-absolutely summing.

THEOREM 5. Let l<p<oo, I<g<oo,1<r<o. Foranoperator T: E-F,
the conjugate operator T': F'—E’ is (p, q; r)-absolutely summing if and only
if Tis(r'; p’, q')-strongly summing. In this case,

Dr’;p’,q’(T) = Hp.q;r(Tl) =M p',q’Dr’;p’,q’(T)

for a certain number M, . >1.
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