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Let R be a commutative ring containing an identity. Then a derivation on
R is an abelian group homomorphism D: R— R such that for all a, b in R,

D(ab) = aD(b)+ bD(a).

A higher derivation of rank m on R is a sequence of abelian group homomor-
phisms d;: R—»R, i=0, 1,..., m such that

(1) &, is the identity mapping,

(2) forallx,yin Randiz=|,

5i(xy) = 3 3,(030).

We shall let Der(R) denote the collection of all derivations on R and let H,(R)
denote the collection of all higher derivations of rank m on R. If m is infinite,
we shall call this sequence merely a higher derivation. Let a be an ideal of
R and let T, G be subsets of Der(R), H,(R) respectively. We shall say that
a is a T-ideal if D(a)<a for all De T. Similarly, we shall say that a is a G-ideal
if for all 6={6,} € G, é(a)<a for all i=0, 1,..., m. Let x be an element of R.
We shall denote by [x] the smallest G-ideal that contains the element x. This
is well defined since the intersection of any number of G-ideals is again a G-
ideal.
On the primary decomposition of differential ideals, the following is known:

THEOREM A (Theorem 1, [1]). Let R be a Noetherian ring and let a
be an ideal of R with associated prime ideals py, p,,..., P,. Let 6=1{0;} be
a higher derivation such that a is a 6-ideal. Then p,, p,,..., P are also -
ideals and a can be written as an irredundant intersection q, N --- N q; of primary
o-ideals q;.

In this short paper, we wish to generalize Theorem A to the case of a set
of higher derivations of rank m. Since in [1] they use essentially the fact that
the rank is infinite, the method can not be used for the case of finite rank. So,
we shall take up new techniques. We shall begin with the definition of G-primary
G-ideals.

DEFINITION 1.  Let q be a G-ideal of R. q is called a G-primary G-ideal
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if the conditions q> ab, q P a for G-ideals a, b of R always imply q>b" for some
integer n.

From Definition 1, it is immediate that primary G-ideals are G-primary.
But the converse is not necessarily true. Here we shall give an example.

ExaMPLE 1. Let R=k[X,, X,,...] be a polynomial ring in infinitely
many variables X; (i=1, 2,...) over a field k of positive characteristic p. Let
D be a k-derivation of R such that D(X;)=X; for every i. Let a be a D-ideal
generated by the set {X?%?, Xi{, X4X?,i=2,3,...}. Then ais not a D-primary
D-ideal but a primary D-ideal. For, since Ja=(X;, i=1,2,3,..), Ja is a
maximal ideal and hence a is primary. On the other hand, let b=(X%), c=(X%,
X?,i=2,3,...). Then b, ¢* (for any integer n) are D-ideals not contained in a.
But bcca. Therefore a is not a D-primary D-ideal.

DEFINITION 2. Let q be a G-ideal of R. q is called a G-irreducible G-
ideal if q can not be represented as an intersection of two G-ideals strictly
containing q.

LeEMMA 1. If a, b are G-ideals of R, then a+b, ab and (a: b) are G-ideals.

Proor. It is straightforward that a+b, ab are G-ideals. Let xe(a:Db).
We shall prove by the induction on i that for any §=1{0;} € G, 6(x)e(a: b), i=0,
1,...,m. The case i=1 is immediate from aed,(xb)=x3,(b)+5,(x)b for any
beb. By the definition, we have

5(xb) = 5,(x)b+ 3 6,()6:-4(b).

By the induction assumption and J;_,(b) eb, we obtain d(x)bea for any beb.
Therefore §,(x) € (a: b) and (a: b) is a G-ideal. Q.E.D.

LEMMA 2. Let q be a G-ideal of a Noetherian ring R and let x be an
element of R such that x ¢ \/q. Then for some integer k, (q: x*)=(q: x%) for
all iZk and (q: x*) is a G-ideal.

Proor. Let gq= f\q, be an irredundant primary decomposition. We
may suppose that x¢\/q, (i=1,2,.,1, xe/q;(j=t+1,..,m). Then (q:
xk)= /\ q; for some k and this is the first part of this assertion. Next, let y

e(q: x") We shall prove by the induction on i that for any d={9,} € G, d(»)
€(q: x*) (i=0, 1,..., m). The case i=1 follows from J,(x*y)=38,(x*)y+J,(y)x*
and (q: x¥)=(q: x*) for i=k. The equation

B) = 30+ T, 5,006 ()



On the Primary Decomposition of Differential Ideals 57

implies §,(y)x** € q by the induction assumption. Therefore we have §(y)e(q:
xk2)=(q: x*) and this completes the proof. Q.E.D.

LeEMMA 3. Let q be a G-primary G-ideal of a Noetherian ring R. Then
q is a primary G-ideal.

ProoF. Let xyeq and x ¢ \/q for x, y in R. Then by Lemma 2, (q: x*)
for some integer k is a G-ideal. Thus [y]<=(q: x¥) and hence x*¥e(q: [y]). By
Lemma 1, we have [x*]<=(q:[y]) and [x*][y]=q. Since q is G-primary and
x ¢./q, we obtain y €q and q is primary. Q.E.D.

LEMMA 4. Let q be a G-irreducible G-ideal of a Noetherian ring R.
Then q is G-primary.

Proor. Let a, b be G-ideals of R such that abcq and a" ¢ q for any integer
n. Let q= N q; be an irredundant primary decomposition. From ak/aq,
we may sup;i)i)lse that ag\/q; (1Si<t) and ac\/q; (t+1<j<n). If t=n, we
have (q: a)= ;\ q;,=q and bsq. Suppose t#n. Then since R is Noetherian,
there is an intl:gler M such that aM cq; (t+1=j<n). Therefore,

t n
qs(q:aM) n (q+aM)g(,ﬂ qi>ﬂ<,f\ q)=q
i=1 j=t+1

and hence q=(q: a®)n(q+aM). On the other hand, we have (q: aM)2(q+Db).
So, we have q=(q+b)=(q+aM). From Lemma 1, (4+b) and (q+aM) are G-
ideals. Since q is G-irreducible and a™ &g, we must have (q+b)=q and hence
bcq. Thus q is G-primary. Q.E.D.

THEOREM. Let R be a Noetherian ring. Then every G-ideal can be
represented as the intersection of a finite number of primary G-ideals of R.

Proor. The routine technique shows that every G-ideal can be represented
as the intersection of a finite number of G-irreducible G-ideals. Then this theorem
follows from Lemma 3 and 4. Q.E.D.

COROLLARY |. Let R be a Noetherian ring. Then every T-ideal can be
represented as the intersection of a finite number of primary T-ideals of R.

Let q be a T-ideal (G-ideal). Then the radical \/q is not necessarily a T-
ideal (G-ideal). But we shall show that if R is a ring of characteristic 0, a certain
T-ideal has this property and furthermore we shall show that for a family G
of higher derivations the radical of a G-ideal is a G-ideal.

LEMMA 5. Let R be a ring of characteristic 0 and a be a T-ideal of R.
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If x" € a for an integer n, then we have
(n!/(n—DYx"'D(x)?*"1ea 0<£i<n)
for any derivation D in T. In particular, n!D(x)?"~! ea.

Proor. We shall prove the Lemma by the induction on i. The case i=1
is immediate. Now assume the Lemma for the case i=k. Since a is a T-ideal,

we have

(n!/(n—=K))D(x""*kD(x)** ) ea
for any derivation D in T. Hence, .

(n!)(n—k—DHx"k=1D(x)2*+(n!)(n—k)") Rk — 1)x""¥D(x)?*~2D?(x) e a.

Therefore multiplying D(x) on the left hand side, we have (n!/(n—k—1)!)x"k~1
D(x)?**! ea. This completes the proof. Q.E.D.

ProrosiTION 1. Let R be a ring of characteristic O and let q be a primary
T-ideal of R not containing non zero integers. Then \/E is a prime T-ideal.

Proor. Let x € ./q. Then there is an integer n such that x"eq. By
Lemma 5, we have n! D(x)?"~!eq. Since q does not contain non zero integers
and q is primary, we have D(x)2"~! eq and \/q is a T-ideal. Q.E.D.

REMARK 1. Theorem 1 in [4] is an immediate consequence of Corollary 1
and Proposition 1.

DEFINITION 3. A T-ideal (G-ideal) p is called a T-prime T-ideal (G-
prime G-ideal) if the relation ab=p for T-ideals (G-ideals) a, b of R implies
either acp or b p.

Let r(q) be a T-ideal (G-ideal) generated by the T-ideals (G-ideals) a such

that a"<q for some integer n. From Definition it follows that for a primary
T-ideal (G-ideal) q, r(q) is a T-prime T-ideal (G-prime G-ideal).

PROPOSITION 2. Let R be a Noetherian ring and let G be a family of
higher derivations of R. Then a G-prime G-ideals p is a prime ideal.

REMARK. Let p be the characteristic of R. (1) the case p>0. It is
sufficient to prove p=\/5_. Let x™e p for an integer m and let ¢t be an integer
such that p*=m. For any 6 € G, we have

pe 5ip(xp‘) = §(x)** for every .

Therefore \/5 is a G-ideal. Since R is Noetherian, we have p¥<p for some
integer N. By the assumption, we have p=,/p. (2) the case p=0. Let S be
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the set of non zero integers. Then J is uniquely extended to a higher derivation
0 of Rg. Furthermore pRg is a 5-prime d-ideal. Since Rg contains the rational
number field, there is a bijection from a set of higher derivations to a set of in-
finite sequences of derivations ([2]). Therefore pRy is a T-prime T-ideal for some
set T of derivations. Hence by Proposition 1 pRg is a prime ideal and also
p=pRsNR is a prime ideal. Q.E.D.

REMARK 2. Theorem 1 in [1] is an immediate consequence Theorem and
Proposition 2.

ProOPOSITION 3. Let R be a Noetherian ring such that (0) is the only one
H,(R)-ideal in R for m<oo. Then if the characteristic p of R is positive, R
is either a field or a primary ring in which every element is nilpotent. If the
characteristic of R is 0, R is an integral domain.

Proor. The case p#0. Suppose R is not a field. It follows that (0)
is primary by Theorem and the assumption. Let x be a non-unit of R. Then
(x?") is a H,(R)-ideal for some integer n and so we must have x?"=0. Thus
the set of non-unit elements is an ideal and hence R is a local ring. Since any
non-unit element is hilpotent, R is primary. The case p=0. Since (0) is the
only one H,(R)-ideal, R contains the rational number field. In this case H,(R)-
ideals are Der (R)-ideals and vice versa ([2]). Therefore, by Corollary of Theorem
1 in [4], R is an integral domain. Q.E.D.

References

[1] W.C.Brown and W. E. Kuan: Ideals and higher derivations in commutative rings,
Canad. J. Math. 24 (1972), 400-415.

[2] N. Heerema: Derivations and embeddings of a field in its power series ring, Proc.
Amer. Math. Soc. 11 (1960), 188-194.

13] I Kaplansky: An introduction to differential algebra, Herman, 1957.

[4] A. Seidenberg: Differential ideals in rings of finitely generated type, Amer. J. Math.
89 (1967), 22-42.

Department of Mathematics,
Faculty of Engineering,
oita University, dita








