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1. Introduction

In this paper we are concerned with the oscillatory and asymptotic behavior
of the n-th order (n>1) nonlinear differential equation with deviating arguments
of the form

@ xO0+{ I el R [0 <70 >, [X] <00

2A—-1
ey [x(n_l)]2<1n—1(t)>) 1—[1 Sgn x[TOj(t)] = 0’ t é tO’
Jj=

where A is a positive integer so that 24— 1<m, and:

(VJ = 1, 2,“-’ mO)pJ ; 0’

(1) = (1:1(8), Ti2(D)5- ., Tim (D)
h<o(t)> = (h[o()], h[o,(0)]...., h[o,(D]), 0 = (04, 64..., 6,,).
In the particular case, where
Vi, )yt = 1

the above differential equation () becomes an ordinary differential equation.
For the real valued functions 7;; (j=1, 2,...,m; i=0,1,...,n—1) and F
we suppose that:
(i) The functions t;; are continuous on the half-line [¢,, o) and

lim Tij(t) = 00.
t—0

mo
(ii) Fisnon-negative on [t,, o0) X E,and (H ygfj”) F(t;y0, ¥15--es Yn—1) i
j=1

continuous on the same set, where Ey=[0, o0)™° x [0, c0)™t x --- X [0, c0)™=-1,

(+) This paper is a part of the author’s Doctoral Thesis submitted to the Department of
Mathematics of the University of Ioannina.
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Our results generalize and extend recent ones due to C.V. Coffman and
J.S. W. Wong [1], T.Kusano and H. Onose [3], Z. Nehari [5], H. Onose
[6], V.M. Sevelo and N.V. Vareh [13] and Y. G. Sficas and V. A. Staikos
[7].

In order to obtain sufficient conditions for the oscillation of solutions of
the differential equation () we make use of the comparison principle introduced
by V. A. Staikos and Y. G. Sficasin [8], [10] and [11]. We exploit this principle
by considering the simple differential equation

mo 2i—1
) y@0+90] TT bz 0lw) T senslro @] = 0. 1216,

j= j=
the oscillatory and asymptotic behavior of which is studied here. We suppose
that g is a continuous and non-negative function on the half-line [t,, o) and «;

are such that:

(=1, 2,..., moyx; 2 0,

mo
Saj=a>0.
Jj=1

The differential equation (xx) is obviously a generalization of the well-known

Emden-Fowler differential equation.

In the particular case my=1, the study of the oscillatory and asymptotic
behavior of equation (*) is faced by introducing the concepts of sublinear and
superlinear differential equations (cf. [1], [5] and [6]). Here we extend these
concepts, at first, for the differential equation (x#) and then for differential equation

()
DerFINITION 1. The differential equation (xx) is called:
(a) 1o-distorted sublinear, if

mo
Sai=asl,
ji=1

(b) 1,-distorted strongly sublinear, if
mo
j=1

(¢) to-distorted superlinear, if

mo
So=a=1.
i=1

(d) to-distorted strongly superlinear, if
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mo
o =a>1.
Jj=1

DEFINITION 2. The differential equation () is called:
(a) rto-distorted sublinear, if for any t =ty the function F(t; ¥, ¥15-+.> ¥n—1)

is non-increasing with respect to (Yo, ¥1.--» ¥u—1) € E=(0, c0)™0 x (0, c0)™1 X ---
x (0, co)mn-1, i.e. for any t=t, we have

(Vl=0, 19“" n_l)yi § z; =>F(t§y0, yla-"a yn—l) z F(t; By Byseees zn—l)a

b) 1,-distorted strongly sublinear, if there exist non-negative numbers
)

mo
€15 £25e005 €y SO that Y &;>0and for any t=t, the function &(t; yo, ¥15..., Yn-1)
=

—<1‘[ yBﬂ)F(t;yo, ¥1s--s ¥n—1) IS non-increasing with respect to (yo, ¥1,---
Jj=1
Y¥u-1) €E, i.e. for any t=t, we have

(Vi=0, 1,...,n—1)y; <

z; - ¢(t;ym yl""’yn—l) g ¢(t; Zgs Byseees zn—l)v
(¢) rto-distorted superlinear, if for any t=t, thefunction F(t; ¥, ¥1,---,
¥n—1) is non-decreasing with respect to (¥o, ¥15---» ¥n—1) € Eo i.e. for any t=t,
we have

Vi=0, 1,...,n—1)y; <

3, = F(t; Y0, Y150 ¥n-1) = F(; 30, 31525 Bp—1) 5
d) t,-distorted strongly superlinear, if there exist non-negative numbers
0

Jj=1

m
€1, €35...5 &y, SO that f g;>0and for any t =t, the function O(t; yo, Y1seee> Yn-1)
(ﬁ y551>F(t; ¥Yo0» ¥1>--» ¥u—1) IS non-decreasing with respect to (¥o, ¥1s---»
j=1

¥Yn-1) € Eq, i.e. for any t=t, we have

(Vi=0, 1,...,n—1)y; =

2 =Pt 50, Y1oeo0s Y1) = P(t; Bos Brseens Bpoq) -

ReMARK. The order in the euclidean space R™ is considered in the usual
sense, i.e.

y Sz (Vi=0, 1,..., m)y; < z,.

Also the vectors (1, 1,..., 1) and (0, O,..., 0) of the space R™ are denoted briefly
by 1 and 0 respectively, i.e.

1=(1,1,.,1) and 0=(0,0,..,0).

In what follows we consider only such solutions of the equation (*) which
are defined for all large t.

The oscillatory character is considered in the usual
sense, i.e. a solution x of the differential equation (x) is called oscillatory if it
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has no last zero, otherwise it is called nonoscillatory.
To obtain our results we make use of the following three lemmas, which are
adaptations of the lemmas in [8], [2] and [11] respectively.

LeEmMMA 1 (Comparison principle). Consider the differential equations
with deviating arguments

(E) XMW+ F(t; x<to(t)>, X' <1,()>,..., x"" V<1, _()>)=0
and
(E)  y"(O+9(0OG(t; y<ao(t)>, y'<o(t)>,..., y" D<o, 1()>) =0,

where g belongs to a certain function class ¢, and let g, denoted the function
defined by

Fit;z<t,®)>,z/<1,(8)>,..., z0"V<1,_,()>)
G(t;z<00()>, z'<0,(t)>,..., z"" V<a,_,(t)>)

g.(t)=

If P is a propositional function with domain a function class & and
& = {xeé&: x is a solution of (E)}

&, ={xeé&: x is a solution of (E,)}

then
(Vg e &)Yy e L)P(y)
and
(Vxe&) ~ P(x) = g,€¥
imply

(Vx e #)P(x).

LEMMA 2. Let u be an n-times differentiable function on the interval
[a, o) with u® (k=0, 1,..., n—1) absolutely continuous on [a, ). If u((t)
is not identically zero for all large t and

u(t) # 0, u(u"X(t) <0 for every te[a, ),
then there exists an integer | with 0Z1<n, n+1 odd, such that
u(®u®(@) =0  for every tela, 0)(k=0,1,...,1]),

(=D 1u(u®() =20 for every te[a, o) (k=1+1, 1+2,...,n), and
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> (t a)n llu(n l)zn - lt)l

D12 G =2y 1)

for every te[a, ).

LemMMA 3. If u is as in Lemma 2 and for some k=0, 1,..., n—2,

limu®(t) = c, ceR,

t—=o0

then

lim u(+D(f) = 0.

t~*o0

2. Oscillatory and asymptotic behavior of bounded solutions

In this section we study the oscillatory and asymptotic behavior of the
bounded solutions of the differential equation (*) in the case where it is 7,-distorted
sublinear (Theorems 1 and 3) or t,-distorted superlinear (Theorems 2 and 4).

THEOREM 1. Consider the differential equation (%) subject to the condi-
tions (i) and (ii). If the equation (x) is t4-distorted sublinear and for any
Ris o With |ug|>|p,]

(€) [“mrres w31 w31 w3 e =

then for n even all bounded solutions of the equation (x) are oscillatory, while
for n odd all bounded solutions of the equation () are either oscillatory or
tending monotonically to zero as t— oo together with their first n—1 derivatives.

ProoOF. Let x be a bounded non-oscillatory solution of the equation ()
with lim x()#0. Since both x and — x are solutions of the differential equation

t— o0

(%), we can assume, without loss of generality, that x(t)>0 for every t>t,. More-
over, since limy(f)=00 (j=1, 2,..., m), there exists a t, 21, so that
t—o0

(1) To,(D) 2 1o forevery t=1t, (j=1,2,..,mg).
Thus, from equation (x), by (1) and condition (ii), it follows that
2) xmM@) <0 for every t = t,.

We prove now that x(")(z) is not identically zero for all large z. To do this
we suppose the opposite and remark that in this case the solution x(f) coincides
with a polynomial for all large t. Thus, since x is bounded, it must be constant,
i.e. x(t)=uy>0 for all large ¢ (by hypothesis tlim x(1)#0). Hence

G)  —x(f) = {1’"‘1 (x[%,-(t)])ﬂf}F(r; (1% <to()>, [X 1P <)),
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o x=D]2 <7, _((0)>)
= uoF(t; p3-1,0,...,0) for all large ¢,
and therefore

—xM(t) = poF(t; p3-1,0,...,0)

on

I I
> p0F<t; pi1, B, B8 1) for all large 7.

2
Since, by (C,), F<t; ud-1, lf{’ .1,..., ﬂf-l)is not identically zero for all large ¢,
the same holds for the function x(*)(¢), which contradicts our assumption.

Now, by Lemma 2, we conclude that there exists an integer [ with 0<I<n,

n+1 odd, so that for every t=>1t,
x®H =20 (k=0,1,.,1)
and
(=Drtk-1x®() =20 (k=1+1,142,...,n).

We shall show that I=0 or I=1. Indeed, if I>1, then by Taylor’s formula we
have

x (T) ~1(T)

(l S (-Dr

for every t=T, where T is chosen so that x(~1)(T)>0. (A such choice of T is

possible, since as we have proved x(")(#) is not identically zero for all large t.)

This inequality is obviously a contradiction to our assumption that x is bounded.
Since n+1 is odd, for n even we have /=1 and

x@®)z2x(T)+ @=T)+-+2 ) ¢—T)-1

x'® =0 forall t2=1t,,
while for n odd we have /=0 and
xX@® =0 forall t>1¢,.

If we put c—hm x(¢) in the case where x is non-decreasing (i.e. n is even)
and c= 211m x(t) 1n case where x is non-increasing (i.e. n is odd), then we can
easily derlve that for a ¢, =t, and for every t=t,

@ 5 Exlto,®lse  (j=1,2,....,mo).

Since lim x(¢) exists in R, by Lemma 3, we conclude that

t— 0
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lj_r&x‘“(t) =0 k=1,2,.,n-1)
and consequently there exists a t; =1, so that for every t>t,
(5) |x®[7;@)]] g% (k=1,2,..,n=1;j=1,2,...,m;;i =0,1,...,n—1).
Now, consider the differential equation () and
6 ym(1)+g(0)y*(t) = 0,

where o= —"f— >1and u, v are odd integers, in the place of the equations (E) and

(E,) of Lemma 1 respectively.
Let & be the class of all continuous and bounded functions w, which are
defined on an interval of the form [t,, o0) and P the propositional function:

P(w): wis oscillatory or limw(f) = 0
t— oo

Furthermore, let ¢ be the class of all non-negative functions g defined on an
interval of the form [¢,, o), which satisfy the condition

@) Swt”“g(t)dt = o

It is well-known (cf. [4]) that, under condition (7), all solutions of the differential
equation (6) are oscillatory or tending to zero as t—oc0. That is

(Vge9)(Vye LH)P(y).

We remark that for any bounded solution x of the equation (*) for which
~ P(x) is satisfied, i.e. x is non-oscillatory and lim x(f)#0, the function g, as-
1=

sociated to x belongs to the function class ¢. In fact, using the sublinearity of
the differential equation () and taking into account (4) and (5), we obtain

® 0.0 = xO{ [T CLro, D} Ft: [ <o), VI <5, 0>

v X2 <1, (1)>)
c? c?
gF(t;cz-l,T-l,..., —4—-1> for every t=t¢,
and consequently, by (C,),

[“r19.0dt = o,

i.e.
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(Vxe &) ~ P(x) =>g,€%.
Next, applying Lemma 1, we have
(Vx € #)P(x)

i.e. every bounded solution x of the differential equation (x) is oscillatory or llm x(t)

=0. By Lemma 2, if x is a bounded non-oscillatory solution of the equatlon (%)
with lim x(f)=0, then x’' <0 and, therefore, n is an odd integer. Moreover, by

t— oo
Lemma 3, in this case we also have

lim x®(t) = 0 (k=1,2,...,n—1).
t—= o0
THEOREM 2. Consider the differential equation () subject to the con-
ditions (i) and (ii). If the equation (x) is ty-distorted superlinear and for any
u#0

(C>) Swt”‘lF(t; 421,0,..., 0)dt =

then for n even all bounded solutions of the equation () are oscillatory, while
for n odd all bounded solutions of the equation (%) are either oscillatory or tend-
ing monotonically to zero as t— o0 together with their first n—1 derivatives.

Proor. Let x be a bounded non-oscillatory solution of the differential
equation (x) with limx(#)#0. As in the proof of Theorem 1, we can assume,
t—o0

without loss of generality, that x(f)>0 for every t=t, and by choosing ¢, =¢,
as in (1) we derive (2). Then, we prove (3), which implies that x(")(¢) is not
identically zero for all large ¢, since, by (C,), this holds for F(¢t; p3-1, 0,...,0).

Finally we remark that the proof of the theorem follows exactly the same
way as that of the theorem 1, by using in place of (8) the inequality

0:(0) = x~*(Of T (oo, 0D} FE: 1607 < 7o) >, [ <710 >

o xR <1, _y(0)>)

Cl—u

> B2 .1,0,...,0
&= 2 <t’T 9 Useeey )‘

TueOREM 3. Consider the differential equation (x) subject to the con-
ditions (i), (ii) and

@M ;1) St for every t=2ty (j=1,2,....,m;i=0,1,.,n=1). If the
equation () is to-distorted sublinear and there exists u#0 so that




Oscillatory and Asymptotic Behavior of Differential Equations 39

(Cy) Swt"‘lF(t;uZ-l, 0,...,0)dt < 0,

then for n even the differential equation (*) has a bounded non-oscillatory solu-
tion, while for n odd the differential equation () has a bounded non-oscillatory
solution x with

lim x(t) # 0.
t—00

Proor. It is enough to show that there exists a solution x of the equation
(*) with lim x(¢)=c,, where ¢, #0 is chosen properly.
t—o0

The proof of this is based on the arguments developed by V. A. Staikos
and Y. G. Sficas [9] and needs the application of following fixed point theorem,
which is a special case of Tychonoff’s fixed point theorem (See [12]):

FIXED POINT THEOREM. Let Y be a Fréchet space and X a convex and
closed subset of Y. If S is a continuous mapping of X into itself and the
closure SX is a compact subset of X, then there exists at least one fixed point
x€X of S (i.e. a point x € X so that x=Sx).

Without loss of generality we suppose that y in the condition (C,) is positive
and choose a ¢, withO<u<c,. Put d=cy— p and, by (C;), consider a T = max {t,,
0} so that for every k=0, 1,..., n—1

© (eo—p (= Ty=14F(s; #2-1,0,..., 0)ds = 6

For To—mm(mmr,j(t)) let Y be the vector space of all continuous real

valued functlons’ Wthh are constant on the interval [T, T] and n—1 times con-
tinuously differentiable on the interval [T, oo).
Consider now in the space Y the sequence of seminorms (p,):

n—2
p(y) = sup D@+ 3 [y (v=12,.)
te[T,T+v] k=0

and introduce by it a total paranorm, defined by the formula (See [14])

- 1 p(® bt -
p(x)= Z > Thp. () (Fréchet’s combination).

The space Y endowed with the topology introduced by p becomes a Fréchet space.
Let X be the set of all xe Y with:

(A) [x(8)—co| = 9, if 12T,
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and
(B) [x®(@1)] < 6, if t=2Tk=1,2,.,n-1).
Obviously, X is nonempty and it is easy to see that X is also a convex set.

Moreover, X is closed. To prove this, we consider a sequence (y,) in X with
p-limy,=x. Then for any non-negative integer u we have

(10) V(D—col <6, if 12T,
and
an yPml <, if t2Tk=12,...,n-1).

We remark now that, by the definition of p, the sequence (y("~!) converges
uniformly to the function x*~U on any interval [T, T+v]. Since, moreover,
each sequence (y(¥(T)) converges to x*)(T) (k=0, 1,..., n—~2), it is easy to
see that the sequence (y(¥) converges uniformly to the function x(*) on the interval
[T, T+v] for every k=0, 1,..., n—1. But, since v is an arbitrary natural number,
this implies the pointwise convergence

lim y¥(1) = x¥)(7)

for every t=T. By (10) and (11), we obviously have that for the limit function
x the conditions (A) and (B) are both satisfied, i.e. x€ X.

Now, since, by (A) and the choice of §, the elements of X are positive func-
tions, we can define the mapping S: X— Y by the following formula:

- n—1 (oo mo
cot LD s~ f el D7)

“F(s; [x]% <to(8)>,..., [x"~ V]2 <%, _ (s)>)ds

if t=T,
(12 ¥ =Ex)() =

— 1)1 (o _ mo A p
ot Gty o= J Gtto1r

<F(s; [x]? <%o(s)>,..., [x" V]2 <%,_(s)>)ds

if To,=5t<T,
where
T = (Tit> Tizs o> Timy)
and
7,(D), if 1,(0=T

<>

(D = .
T, if ,;00<T (=12,..,m;i=01,.,n-1).
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Since for every t=T

13 I GLo DR [ <t)> o [0 <2, (0>)

é (Co+5)F(t; (60—5)2 ° 1, 0,..., 0)
= (2¢co—wWF(t; n*-1,0,...,0)

by (9), it follows that the mapping S is defined on the whole set X, i.e. S: X Y.
Moreover, the mapping S has the properties as it is required in the fixed point
theorem:

(a) SXcX.
In fact, for y=_Sx with x € X and for every t=T, by (9) and (13), we have
2@ =eol S gty s =0m {0, D2 s [0 <100) >

L [x(=DY2 <2, (s)>)ds

ll/\

200 m=-DT S (s—0)"1F(s; p2-1,0,..., 0)ds

II/\

E’-nco 1),S (s—T)"\F(s; u2-1,0,..., 0)ds < &

and

@) 5 C=DEEO=0 (%6 o 1 (el 0D}

CF(s; [x]2<24(8)>,..., [x(""D]2<2,_,(s)>)ds

é_—(n"-_cg k),S (s—T)"1=*F(s; u2.1, 0,..., 0)ds

é(n_z-cf‘—k)-vg (s = T)"1=kF(s; p2.1,0,..., 0)ds <.

(b) SX is a compact subset of X.

Let yeSX and ¢,, t; in [T, c0). Consider an x € X with y=Sx. Then we have
ta mo
ly(=D(t) =y D(t,)] £ ’S, {1‘11 (x[fo,-(S)])”f}F(S; [x]2 <%o(s)>,...
1j=

» [XTU]2 < £, y(s) >)ds
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< (2co—u)|§:’ F(s; 21, 0,..., 0) ds

and consequently the (n— 1)-th derivatives of the function ye SX are equicon-
tinuous at each point of the interval [T, c0). Since, moreover, by (B), the (n—1)-
th derivatives of the functions of X are uniformly bounded, by Ascoli’s theorem,
for any sequence (y,) in SX there exists a subsequence (z,) of (y,) so that the
sequence (z{"~1)) converges uniformly on every compact subinterval of [T, o0).
Also, by (A) and (B), the sequences (z{¥(T)) (k=0, 1,..., n—2) are bounded
and hence there exists a subsequence (w,) of (z,) so that each sequence (w{¥(T))
(k=0, 1,..., n—2) is convergent. Thus, we easily conclude that the sequence
(w,) is p-fundamental and then, since the space Y (as Fréchet space) is com-
plete, there exists a u € Y so that

p—limw, = u.

Hence, we have proved that each sequence in SX has a subsequence which is
convergent in SX and then from this fact we easily conclude that the set SX has
the property of Bolzano-Weierstrass.

(c) The mapping S is continuous.
Let x e X and (u,) be an arbitrary sequence in X with

p—limu, = x.

If we put y=Sx and v,=Su,, then for every t=T

y@ = %{—;-Sf"(s-m—l{ﬁ (Lo, (NP} FGs: [x]2 <20 (5) >
e [x(DJ2 <2, (5)>)ds
and
o) =G5 —0m B Lo, 00D Fiss 012 <200 >.
e [ul D12 <, (5)>)ds.
For the function u, (v=1, 2,...), by (13), we have

(=0 { T 0 oD} 53 0,12 <2o(5)> o [0 V12 <, 1(9)>)

< Qeo—p)(s—H"1F(s; u2-1,0,...,0).

Hence, by (9), we remark that
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@
t

(2c0—u)S (s—t)" 1F(s; u2-1,0,..., 0)ds
< @eo—| (s~ Ty F(s; 421, 0,..., 0)ds
t

< (2c0—u)gw(s—T)"‘1F(s; 12-1,0,..., 0)ds < & < oo.
T
We can now apply the Lebesgue dominated convergence theorem to obtain

tim{ (s =) { T, [20,(0])7] F(s3 [,17 < 20(5) > .

e [ulrm D)2 <2, (s)>)ds

=%}Sf(s-t)n-l{ﬁ (L0, (D} Fls; [x]2 <2o(s) > ...

, x D12 <2, (1) >)ds .
Thus, for every t= T we have the pointwise convergence
limo () = y(¢).

To complete this proof, consider an arbitrary subsequence (z,),ep of (v,). Since
the set SX is compact, there exist a subsequence (w;);., and ¥ € SX so that

p—lim w, = !p.
ied

But, as we have shown in (b), the p-convergence implies the pointwise conver-
gence and, hence, it is easy to see that

;// =
Therefore
p—limw;, =y
Aed
and consequently
p—limov, = y.

Now, we can apply the fixed point theorem to conclude that there exists
an xe X with x=Sx, which is the desired solution of the differential equation
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(), since, by (13) and (9),
120 —col = {6 =0 T (xTto, 0D FsiLx]2 <20(0)>,.
L [x-D]2 <2, (s)>)ds
sahnﬁ(p-yﬂﬂguszmmmpmau~m.
THEOREM 4. Consider the differential equation (x) subject to the con-

ditions (i), (i) and (1). If the equation (%) is t,-distorted superlinear and
there exist p,#0, 1, #0 so that

(C4) Swtn_lF(t; ﬂ%19 H%l,, #%'l)dt< 0

then for n even the differential equation (x) has a bounded non-oscillatory
solution, while for n odd the differential equation (x) has a bounded non-oscil-
latory solution x with

limx(f) # 0.

t— 00
Proor. The proof of this theorem is similar to the proof of Theorem 3.
Without loss of generality, we suppose that y,, u, in the condition (C,) are positive
and we choose a ¢, with max{ 5 K1~ u2}§c0<u1. We put d=pu, — ¢, and,
by (C,), choose a T=max {t,, 0} so that

(14) i TG = Ty kR 13, 431, 13 s S0

Furthermore, as in the proof of Theorem 3, we consider the corresponding
space Y and its nonempty and convex subset X. It is easy to see that the elements
of X are positive functions and therefore we can define the mapping S by formula
(12).

By t,-distorted superlinearity of the differential equation (¥) and by (C,),
we obtain that for every t=Tand xe X

{TT L0 0DP P 1317 < 200> o [0 02 <y (0)>)

j=1

=< (co+0)F(t; (co+06)%-1, 6%-1,...,6%-1)
SwF(; pi-1, p3-1,.., 031,
because d=p; —co=p;—(U; —H)=pn,. Using this inequality instead of (13),
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and applying step by step the proof of Theorem 3, we conclude the existence of
a solution x of the differential equation (%) with

limx(f) = ¢y # 0.

t—= 0

Consider the particular case of function F when

F(t;yO’ .')'1,---,3’;,—1) Ef(t;yo)(P(yo, yls---ayn—l)

where, in addition to (i) and (I), we suppose that following conditions are satis-
fied:

(I1,) f is non-negative on [#,, c0) % [0, co)™ and (T’o‘[ ygfj/2> flt;yo) is
j=1
continuous on the same set. !
(I1,) The function ¢ is positive and continuous on the set E,.
In this case the differential equation (*) has the following form

mo

(15)  x0@+{ T Wlro @1} 15 1317 <o) >)o(x12 <o) > ..

Jj=1
. 22-1
v XD <1,y (0)>) JI;I1 sgnx[7o(]1 =0, 21

Under the above assumptions from Theorems 1-4 we obtain the following.

CoROLLARY. If equation (15) is either t4-distorted sublinear or t,4-
distorted superlinear, then the condition

(Cy) gwt"‘lf(t; ut-dt=o0  forevery p#0

is a necessary and sufficient condition in order that:

(«) for n even all bounded solutions of (15) are oscillatory,

(B) for n odd all bounded solutions of (15) are oscillatory or tending mono-
tonically to zero as t— oo together with their first n—1 derivatives.

3. Oscillatory and asymptotic behavor of all solutions

In this section we study the oscillatory and asymptotic behavior of all solu-
tions of the differential equation (), when it is 7,-distorted strongly sublinear
(Theorem 5) or 7,-distorted strongly superlinear (Theorem 6). The proof of
these theorems are based on the comparison principle, which is applied for the
differential equations (*) and (*x). For this we apply the fundamental con-
clusions for the more simple differential equation (#x) and namely the following
Propositions 1 and 2.
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ProrosITION 1. Consider the differential equation (*x) subject to the

conditions (i) and
dID) ()<t for every t=t, (j=1, 2,..., my).
If the equation (xx) is ty-distorted strongly sublinear and

(o) U oo n gt =

then for n even all solutions of the equation (xx) are oscillatory, while for n odd
all solutions of the equation (%) are either oscillatory or tending monotonically
to zero as t— oo together with their first n—1 derivatives.

Proofr. Let y be a non-oscillatory solution of the differential equation
(*x) with lim y(#)#0. Since both y and —y are solutions of the equation (#x),
t— o0

we can assume, without loss of generality, that y(f) >0 for every t=t,. Moreover,
since ,]1.12 Toj()=00 (j=1, 2,..., my), there exists a 1, 21, so that for every t=¢,
(16) T;() = max {t,, 0} (J=1,2,..,my).
From the equation (*x), by (16), it follows that
y®@® £0 forevery t=t,
and consequently, by Lemma 2,
yo~U@®) =20  forevery t=t,.
Now, we shall show that there exist ¢>0 and t,=1¢; so that
17 Y(t) Z c[ro(t)]* 1y~ 1(1) forevery t2t,(j=1,2,..,mg).

For this we consider the integer I, as it is defined by Lemma 2, for solution y
and remark that for every t=1,=2""1"!t, the inequality

2(l—n+ 1)(n—1)

(18) y(2’-n+lt); (n—l)(n——Z)---(n—]) (t_tl)n~1y(n—1)(t)

holds.
If y is non-decreasing, then for every t=t,

y(@) 2 ¥y 2 efro (0] y (D) (=1, 2., mg),

where

_ 2(l—n+1)(n—1)
CE=Dm=D-(m=10)
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If y is non-increasing, we remark that

i yo
%ng y (2 Ty 1

and it is easy to see that

: y(@®
nf — ey >0

Consequently, by (18), for every t=1t, we obtain

YO = Sy ¥ @) Z a0 2 e[ro, 0]y

(j = 1, 2,..., mo)
where

2(l—n+1)(n—l) lnf y(t)

CT D=2 (=1 e, YT

The equation (#x), in view of (17), for every t=t, yields
(19) YO0 +eg(0) [y DOT [ [ro 0] < 0.
j=

Dividing (19) by [y~ 1(#)]* and integrating from ¢, to t, we obtain

mo

ta (n) t
co Ty({Tf{S))]a—ds+c“§“g<s>{Jg 70,1V} ds < 0.

Hence, since a <1, we obtain

S' {ﬁ [TOJ(S)]‘"_"“’}g(s)dsé : SIZTZ&)(Lds

02 =i c* y=(s)]®

1 (2" D@2 gy
ca

yomv@ay 2%

<0

< 1 (v 0 dg
= caz 0 z%

which contradicts (Cg).

The conclusion of the proposition follows now immediately from Lemmas
2 and 3.

ProrosITION 2. Consider the differential equation (xx) subject to the
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conditions (i) and (III). If the equation (xx) is ty-distorted strongly super-

linear and
3 [70,0]"

(Cy) Sw =t g(t)dt =
IT [7o,®]¢ 1)
j=1

then for n even all solutions of the equation (*x) are oscillatory, while for n odd
all solutions of the equation (xx) are oscillatory or tending monotonically to
zero as t— o0 together with their first n—1 derivatives.

Proor. The proof follows immediately as an application of the theorem
in [7] in the case, where

mo 2i—1
(V1> V2reeos Ymo) = H1 [y;1% H1 sgny;
Jj= i=

and
p(y) = |y|*~'sgn y.

THEOREM 5. Consider the differential equation () subject to the con-
ditions (i), (i) and (I). If the equation (%) is ty-distorted strongly sublinear and
Jor any u#0

€0 [ IT Crof010m e Fas w2 23000, 12 3020, 02Dt =
j=1

where
T2(n 1- ')(t) = (TZ(n 1- ‘)(t) TZ(n 1- ‘)(t),.._, TiZ”(‘:l—l—i)(t))
(i=0,1,.,n-1),
then for n even all solutions of the equation (%) are oscillatory, while for n odd

all solutions of the equation (%) are either oscillatory or tending monotonically
to zero as t— oo together with their first n—1 derivatives.

Proor. Let x be a non-oscillatory solution of the differential equation
(*) with hm x(t)#0. As in the proof of Theorem 1, without loss of generality,

we assume that x(t)>0 for every t=t, and by choosing t, =1, as in (1) we derive
(2). By Lemma 2, for every t=t; we obtain

x(r=1)(f) = 0

for any I. Hence, by Taylor’s formula, for every t=¢, we have
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(k+1) I3 (n—1) .
x®(1) < xO(,) + X 1!( ) (t—t1)+"'+(§_1_(;€1))! (t—1,)m1-F
XU (1)
tn-l"k

where 0<k<I. Thus, for any k, 0<k<!, the function is eventually

bounded and consequently there exist constants y, (k=0, 1,..., /) so that

1) x®r (0] = wlrOI'* (G=12..,m;i=0,1,..,n-1)
for every t=t,, where t, is chosen so that

7() 2 5.

Moreover, since the functions [x®)| for k=I1+1, [+2,..., n—1 are all bounded,
obviously there exist ;>0 (k=1+1, I4+2,..., n—1) such that

(22) [x® L1 (0] = pylz (]~ * (k=1+1,1+42,....,n—1)

for every t=t;, where t3=1, is chosen properly. For u=maxyu, and for every
k

t=t,=max {t,, t;} from inequalities (21) and (22) we obtain
(23) Ix®Lr;(O]] = plr;(OI" 1% (k=0,1,...,n-1).

Consider now the exponents ¢; (j=1, 2,..., m,), which correspond to func-
tion F, by the definition of 7,-distorted strongly sublinearity, and moreover
arbitrary numbers #; (j=1, 2,..., my) with

0=n;=¢.

Then for any (t; ¥o, ¥1sees ¥n=1)s (t; Bo» B15..., By—q) With t2t, and 0=Sy=<z
we obtain

(24) (1_[1 y'(’)Jj>F(t’ .7’0: yl""’ yn—l) g( _1_[1 zr(’)’,>F(t, zO’ zla'“a zn—l) .
Jj= Jj=
In fact, we first remark that
mo mo
[Ty 2 I 24720
=1 =1
and then, by sublinearity of the equation (x), we have
mo / mo
<l—IIY3§>F(t§yo,y1,---,yn—1) é r_[lz(%ﬂ)F(t; %0, zls"w zn—l)go
J= J=

and consequently multiplying these inequalities we get (24).
Therefore we choose the 5; (j=1, 2,..., m;) so that

0<m<p;  (j=1,2,..,my).
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Hence, if we put
aJ:pJ—nJ (j=],2,‘.., mo)

then we have «;>0 and

mo

mo nmo mo
a= Y o;=3 p;j— X< ¥ p;i=1
=1 j=1 =1

Jj=1

i.e. the differential equation (##) is 7,-distorted strongly sublinear.

Consider now the equations (x) and (*#) in the place of the equations (E)
and (E,) of Lemma 1 respectively.

Let & be the class of all continuous functions x, which are defined on an
interval of the form [t,, co) and P the propositional function:

P(x): xis oscillatory or limx(t) =0
t—o0
Furthermore, let ¢ be the class of all continuous and non-negative functions g
defined on an interval of the form [t,, 00), which satisfy the condition (Cs). By

Proposition 1, under the condition (Cy), all solutions of the equation () are oscil-
latory or tending to zero as t— o0, i.e.

(Vge@)(VyeZL)P(y).

We remark that for any solution x of equation () for which ~ P(x) is satisfied,
i.e. x is non-oscillatory and lim x(#)#0, the function g, associated to x belongs
t—00

to the function class ¢. In fact, using the strongly sublinearity of the equation
(*) and taking into account (23) and (24), we conclude that

{,ﬁl [Toj(t)]<n—l)uj}gx(1) ={jﬁl [Toj(t)](n—l)aj},

{,ﬁ, (Lo, D [¥12 < 200) >,
11 GeLvo, 0

[x1?<t,0)>,..., [x*D]?2<z,_,()>) >

2 {11 trof1 05 H B oo/ 019} (s 1307 <200, [XD <50
o [X D2 <1, ()>)

2 {1 Lo {ur T Leay(00DWIFGs 2 2307000, w2 220200,
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ORNTERS )]

= w11 [eo 010 D0} F(ts 1223000, 12 23072000 2 )

where n= mZO 1;, and consequently, by (Cy),
Jj=1

[T trostonees g, =
ie.
(Vxe&) ~ P(x) =>g,€%.
Now, applying Lemma 1, we obtain
(Vx e #)P(x).
This proves the theorem.

THEOREM 6. Consider the differential equation (%) subject to the con-
ditions (1), (ii), (I) and
(V) The functions vy; (j=1, 2,..., my) are differentiable on [t,, 00) and

To,() 20 for every t = t,.

If equation (%) is to-distorted strongly superlinear and for each u+#0

(Cy) F(t; n2-1,0,...,0)dt =

9 3 L2001
1""1 [0, (1)1~ D=

Jj=1

where o;=p;+e; (j= . Mg), o= Z o; and &;(j=1,2,...,mq) are the

exponents which correspond to the functton F, by the deﬁmtron of to-distorted
strongly superlinearity, then for n even all solutions of the equation (*) are
oscillatory, while for n odd all solutions of the equation () are either oscillatory
or tending monotonically to zero as t— o0 together with their first n—1 deriva-
tives.

Proor. Let x be a non-oscillatory solution of the equation (%) with
11m x(t);éO As in the proof of Theorem 1, without loss of generality, we suppose

that x(t)> 0 for every t = t, and by choosing a t; =, as in (1) we derive (2). Hence,
by Lemma 2, all derivatives of arbitrary order are of constant sign on the interval
[t,, ©). Therefore, the function x is monotonous and consequently there
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exists py>0 so that
IX(Ol 2 po ~ for every t=1t,.

Moreover, since limty(t)=c0 (j=1, 2,..., m,), there exists a t,=t, so that
t—o0

for every t=t,
T2t (=1,2,..., mgy)
and consequently
(25) [x[t0(0)] = 1o forevery t>1t, (j=1,2,...,mg).

Consider now in the place of the equations (E) and (E,) of Lemma 1 respec-

mo

tively the equations (*) and (**), where a;=p;+¢; (j=1,2,...,mp) and ¥ «;
j=1

mo
=a>1, since 3 ¢;>0.

We therefé)ré define the class & and the propositional function P exactly as
in the proof of Theorem 5, while as ¢ we define the class of all continuous and
non-negative functions g defined on an interval of the form [¢,, 00), which satisfy
the condition (C;). By Proposition 2, under the condition (C,), all solutions
of the equation (xx) are oscillatory or tending to zero as t— o0, i.e.

(Vge¥g)(VyeZ,)P(y).

If x is a solution of the equation (*) for which ~ P(x) is satisfied, i.e. x is non-
oscillatory and lim x(¢) #0, then the function g, associated to x belongs to the
t—> o0

function class . In fact, since equation (*) is t,-distorted strongly superlinear,
by (25) and Lemma 3, it follows that for every t>1,
mo
{1 Gleo, 0D @32 <20 @) >, [0 D12 <7, ,(0)>)
gx(t) = =1 mo
[T (x[70,1)*

i=1

= T GLro0D Rt 02 <0 oo [x0012 <1, 1))
= p'meF(t; p*-1,0,...,0)
and consequently, by (C,),
5 oo,
j=1

S - g,(®)dt = oo
[T e, @01
J= .
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(Vxe &) ~ P(x) = g,€%.

Applying Lemma 1, we obtain

(Vx e #)P(x)

which proves the theorem.
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