Oscillation and Existence of Unique Positive Solutions for Nonlinear n-th Order Equations
 with Forcing Term

Athanassios G. Kartsatos
(Received February 17, 1975)

1. Introduction

The main purpose of this paper is twofold: it is shown first that under certain assumptions every bounded solution of the equation

$$
\begin{equation*}
\left(a_{n-1}(t)\left(\cdots\left(a_{2}(t)\left(a_{1}(t) x^{\prime}\right)^{\prime} \cdots\right)^{\prime}\right)^{\prime}+P(t) H(x(g(t)))=Q(t)\right. \tag{I}
\end{equation*}
$$

is either oscillatory, or tends to a finite limit as $t \rightarrow+\infty$. The proof of this result is much simpler than the one given by Singh and Dahiya [4, Theorem 1], who considered the case $n=2$ under stronger assumptions. Secondly, a result is given according to which an equation of the form

$$
\begin{equation*}
x^{(n)}+G(t, x)=Q(t) \tag{II}
\end{equation*}
$$

can have at most one positive solution. This result extends to the general case a result of Atkinson [1]. Atkinson considers second order equations and makes use of Sturm's comparison theorem. This theorem does not hold in its full generality for n-th order equations. Here a result is employed from Kartsatos [3, Theorem 2].

A function $f(t), t \in\left[t_{0},+\infty\right), t_{0} \geq 0$ is said to be "oscillatory" if it has an unbounded set of zeros on $\left[t_{0},+\infty\right.$). By a solution of (I) (or (II)) we mean a function $x(t)$ which satisfies (I) (or (II)) for every t in an infinite interval [$t_{0},+\infty$), $t_{0} \geq \alpha$. In what follows, $R=(-\infty,+\infty), R_{+}=[0,+\infty), J=[\alpha,+\infty)$, where α is a fixed number.

2. Oscillation and nonoscillation of (I)

Theorem 1. Assume that equation (I) satisfies the following:
(i) $a_{k}: J \rightarrow R_{+} \backslash\{0\}$ is continuous, and such that

$$
\int_{\alpha}^{\infty} \frac{d t}{a_{k}(t)}<+\infty, \quad k=1,2, \ldots, n-1
$$

(ii) $P(t) \equiv P_{1}(t)+P_{2}(t)$, where $P_{1}: J \rightarrow R_{+} \backslash\{0\}, P_{2}: J \rightarrow R$ are continuous, and such that

$$
\int_{\alpha}^{\infty}\left|P_{2}(t)\right| d t<+\infty ;
$$

(iii) $H: R \rightarrow R$ is continuous, and $x H(x)>0$ for every $x \neq 0$;
(iv) $g: J \rightarrow R_{+} \backslash\{0\}$ is continuous, and $\lim _{t \rightarrow \infty} g(t)=+\infty$;
(v) $Q: J \rightarrow R$ is continuous, and

$$
\left|\int_{\alpha}^{\infty} Q(t) d t\right|<+\infty
$$

Then every bounded nonoscillatory solution of (I) has a finite limit as t $\rightarrow+\infty$.

Proof. Let $x(t)$ be a bounded nonoscillatory solution of (I), and assume that $x(t)>0, t \in\left[\alpha_{1},+\infty\right), \alpha_{1} \geq \alpha$ (a corresponding argument holds in case $x(t)$ is assumed to be eventually negative). Then there exists $\alpha_{2} \geq \alpha_{1}$ such that $g(t)$ $\geq \alpha_{1}$ for $t \geq \alpha_{2}$. Thus, $x(g(t))>0$ for $t \geq \alpha_{2}$. Now integrating (I) from α_{2} to $t \geq \alpha_{2}$ we obtain

$$
\begin{align*}
G_{n-1}(t)= & G_{n-1}\left(\alpha_{2}\right)-\int_{\alpha_{2}}^{t} P_{1}(s) H(x(g(s))) d s \tag{1}\\
& -\int_{\alpha_{2}}^{t} P_{2}(s) H(x(g(s))) d s+\int_{\alpha_{2}}^{t} Q(s) d s,
\end{align*}
$$

where $G_{k}(t) \equiv a_{k}(t) G_{k-1}(t), G_{0}(t) \equiv x(t), k=1,2, \ldots, n-1$.
Now we consider the two possible cases:
Case 1.

$$
\int_{\alpha_{2}}^{\infty} P_{1}(s) H(x(g(s))) d s=+\infty
$$

Case 2.

$$
\int_{\alpha_{2}}^{\infty} P_{1}(s) H(x(g(s))) d s<+\infty .
$$

In Case 1, using the fact that the last two integrals in (1) converge, we ob$\operatorname{tain} \lim _{t \rightarrow+\infty} G_{n-1}(t)=-\infty$. Since $G_{n-1}(t) \equiv a_{n-1}(t) G_{n-2}^{\prime}(t)$ and $a_{n-1}(t)>0$, it follows that ${ }_{n-2}^{t \rightarrow+\infty}(t)$ and $G_{n-2}(t)$ are eventually of constant sign. Continuing the same way we obtain that $x^{\prime}(t)$ is of constant sign for all large t. Thus $x(t)$ tends monotonically to a finite limit as $t \rightarrow+\infty$.

In Case 2, we obtain that $\lim _{t \rightarrow \infty} G_{n-1}(t)=\lambda$ exists and is finite. If this limit is positive or negative, then $G_{n-1}^{t \rightarrow \infty}(t)$ is respectively positive or negative for all large t. Either case implies immediately that all the functions $G_{k}(t), k=1,2, \ldots$,
$n-2$ are eventually of constant sign, which yields the monotonicity of $x(t)$. Now let

$$
\begin{equation*}
\lim _{t \rightarrow \infty} G_{n-1}(t)=0 \tag{2}
\end{equation*}
$$

Then given $\varepsilon>0$ there exists $\mu(\varepsilon)>0$ such that

$$
\begin{equation*}
\left|a_{n-1}\left(t^{\prime}\right) G_{n-2}^{\prime}\left(t^{\prime}\right)\right|<\varepsilon,\left|\int_{t^{\prime}}^{t^{\prime \prime}} \frac{d s}{a_{n-}(s)}\right|<1 \tag{3}
\end{equation*}
$$

for every $t^{\prime}, t^{\prime \prime} \geq \mu(\varepsilon)$. Consequently, dividing the first of (3) by $a_{n-1}\left(t^{\prime}\right)$ and integrating from t^{\prime} to $t^{\prime \prime}$ we obtain

$$
\begin{equation*}
\left|G_{n-2}\left(t^{\prime}\right)-G_{n-2}\left(t^{\prime \prime}\right)\right|<\varepsilon, \quad t^{\prime}, t^{\prime \prime}>\mu(\varepsilon) . \tag{4}
\end{equation*}
$$

This is the Cauchy criterion for functions. It implies that $\lim _{t \rightarrow \infty} G_{n-2}(t)$ exists and is finite. If this limit is positive or negative, then $x(t)$ is eventually monotonic. If it is zero, we continue the same way. Thus, we either have $x(t)$ monotonic for all large t, or

$$
\begin{equation*}
\lim _{t \rightarrow \infty} a_{1}(t) x^{\prime}(t)=0 \tag{5}
\end{equation*}
$$

which implies, as above, the existence of the limit $\lim _{t \rightarrow \infty} x(t)$. This completes the proof.

Singh and Dahiya [4, Theorem 1] showed the above theorem in the case $n=2, g(t)=t-\lambda(t), H(x)=x$ and under the additional assumptions: (i)-(v), $a_{1}(t) \geq p>0, \quad \int_{\alpha_{1}}^{\infty} P_{1}(t) d t=+\infty, \quad \int_{\alpha_{1}}^{\infty}|Q(t)| d t<+\infty$.

Theorem 2. In addition to (i)-(v) of Theorem 1, let $\lim _{|x| \rightarrow \infty} \inf H(x) \neq 0$, $\int_{\alpha}^{\infty} P_{1}(t) d t=+\infty, P_{2}(t) \equiv 0, t \in J$. Then every nonoscillatory $\begin{aligned} & |x| \rightarrow \infty \\ & \text { solution of }(\mathbf{I})\end{aligned}$ is bounded and tends to a finite limit as $t \rightarrow+\infty$.

Proof. Assume that $x(t)$ is a nonoscillatory solution of (I) with $x(t)>0$, $x(g(t))>0, t \geq \alpha_{1} \geq \alpha$. Consider the two cases of the proof of Theorem 1. In Case 1 the solution $x(t)$ and all the functions $G_{k}(t), k=1,2, \ldots, n-2$ are eventually monotonic. If all the G_{k} are eventually nonpositive, then $x(t)$ is decreasing, thus bounded. If this does not happen, let $G_{i}(t), 0 \leq i \leq n-2$ be the last of the $G_{k}(t)$ with the property $G_{i}(t) \geq 0$ for all large t. Then $G_{i}^{\prime}(t) \leq 0$ for all large t, which implies the existence of a constant $M>0$ such that $\left|G_{i}(t)\right| \leq M, t \geq \alpha_{2} \geq \alpha_{1}$. Consequently,

$$
\begin{equation*}
-M \int_{\alpha_{2}}^{t} \frac{d s}{a_{i}(s)} \leq G_{i-1}(t)-G_{i-1}\left(\alpha_{2}\right) \leq M \int_{\alpha_{2}}^{t} \frac{d s}{a_{i}(s)} \tag{6}
\end{equation*}
$$

which proves the boundedness of $G_{i-1}(t)$. Similarly we can show the boundedness of $G_{k}(t)$ for every $k=0,1,2, \ldots, i-2$. This proves the theorem in Case 1. Case 2 can only happen (because of the assumption $\lim _{|x| \rightarrow \infty} \inf H(x) \neq 0$) if $\liminf _{t \rightarrow \infty} x(t)$ $=0$. Since $\lim _{t \rightarrow \infty} G_{n-1}(t)=\lambda$ exists and is finite, $x(t)$ will be eventually monotonic if $\lambda \gtrless 0$, and since $\liminf _{t \rightarrow \infty} x(t)=0$, we must have $\lim _{t \rightarrow \infty} x(t)=0$. If $\lambda=0$, then we obtain from (4) that $\lim _{t \rightarrow \infty} G_{n-2}(t)=\mu$ exists and is finite. Arguing in the same way as above we deduce that $x(t)$ is eventually monotonic and tends to zero for $\mu \gtrless 0$ otherwise $\lim _{t \rightarrow \infty} G_{n-3}(t)=\mu_{1}$ exists and is finite. Continuing the same way we get that $\lim _{t \rightarrow \infty}\left\{G_{0}(t) \equiv x(t)\right\}$ exists and is finite. This completes the proof.

The above theorem extends to the general case Theorem 2 in [4].
Theorem 3. Let the assumptions of Theorem 2 be satisfied except the integrability of $Q(t)$ and let $Q(t) \equiv G_{n-1}^{0 \prime}(t)$ with $G_{k}^{0}(t) \equiv a_{k}(t) \cdot G_{k-1}^{0 \prime}(t), G_{0}^{0}(t) \equiv M(t)$, where $M(t)$ satisfies

$$
\limsup _{t \rightarrow \infty} M(t)=+\infty, \quad \liminf _{t \rightarrow \infty} M(t)=-\infty
$$

Then every solution of (I) is oscillatory.
Proof. Let $x(t)$ be a solution of (I) with $x(t)>0, x(g(t))>0, t \geq \alpha_{1} \geq \alpha$. Let $x(t)-M(t) \equiv u(t), t \geq \alpha_{1}$. Then $M(t)+u(t), M(g(t))+u(g(t))$ are positive for $t \geq \alpha_{1}$ and $u(t)$ is a solution of the equation

$$
\begin{equation*}
G_{n-1}^{* \prime}(t)+P(t) H(u(g(t))+M(g(t)))=0, \tag{7}
\end{equation*}
$$

where $G_{k}^{*}(t) \equiv a_{k}(t) G_{k-1}^{* \prime}(t), k=1,2, \ldots, n-1, G_{0}^{*}(t) \equiv u(t)$. Now we distinguish three cases:

Case 1. $u(t)$ is positive for all large t;
Case 2. $u(t)$ is negative for all large t;
CASE 3. $u(t)$ is oscillatory.
In Case 1 , it follows, as in the proofs of Theorems 1, 2, that $u(t)$ is bounded. This implies the oscillation of $x(t)$, a contradiction. In Case $2, x(t)<M(t)$ for all large t, a contradiction to the positivity of $x(t)$. In the third case

$$
\begin{equation*}
\int^{\infty} P_{1}(t) H(u(g(t))+M(g(t))) d t<+\infty \tag{8}
\end{equation*}
$$

otherwise $G_{n-1}^{*}(t) \rightarrow-\infty$, which implies the monotonicity of $u(t)$, a contradiction to its oscillatory character. Inequality (8) implies now that $\lim _{t \rightarrow \infty} G_{n-1}^{*}(t)$ exists and equals zero, otherwise $u(t)$ would be monotonic, a contradiction as above.

Thus, as in Theorem 2, every $G_{k}^{*}(t)$ is bounded, and in particular $G_{0}^{*}(t) \equiv u(t)$ is bounded, which implies the oscillation of $x(t)$ as in Case 1 above. This completes the proof.

3. Equations possessing at most one positive solution

The following theorem extends to the general case Theorem 6 in Atkinson's paper [1].

Theorem 4. Assume that the equation

$$
\begin{equation*}
x^{(n)}+H(t, x)=0, \quad(n: \text { even }) \tag{9}
\end{equation*}
$$

has no eventually positive solutions. Moreover, assume that:
(i) P is defined, positive and n times continuously differentiable on $[0, \infty)$ with $P^{(n)}(t) \equiv Q(t), t \in[0, \infty)$. Moreover, $\liminf _{t \rightarrow \infty} P(t)=0$;
(ii) $H(t, u)$ is defined and continuous on $[0, \infty) \times R$, and is continuously differentiable there w.r.t. u, and $H_{2}(t, u) \equiv(\partial / \partial u) H(t, u)$ is nonnegative and increasing w.r.t. u. Moreover, $u H(t, u)>0$ for $u>0$ and

$$
\int_{0}^{\infty} t^{n-1} H_{2}(t, P(t)) d t<\infty
$$

Then the equation

$$
\begin{equation*}
x^{(n)}+H(t, x)=Q(t) \tag{10}
\end{equation*}
$$

can have at most one eventually positive solution.
Proof. Assume that U, V are two solutions of (10) such that $U(t)>0$, $V(t)>0, t \in\left[t_{0}, \infty\right), t_{0} \geq 0$. Then it follows from Theorem 3.1 in [2] that

$$
\begin{align*}
& 0<U(t)<P(t), \quad 0<V(t)<P(t), \quad t \geq(\text { some }) t_{1} \geq t_{0} \tag{11}\\
& \lim _{t \rightarrow \infty}[U(t)-V(t)]=0
\end{align*}
$$

Now we show that $W(t) \equiv U(t)-V(t)$ is oscillatory. In fact, assume that there is $t_{2} \geq t_{1}$ such that $W(t)>0$ for $t \geq t_{2}$. Then from (16) we obtain

$$
\begin{equation*}
W^{(n)}(t)=-[H(t, U(t))-H(t, V(t))] \leq 0 \tag{12}
\end{equation*}
$$

for every $t \geq t_{2}$ because H is increasing w.r.t. the second variable. This implies that all the derivatives $W^{(i)}(t), i=1,2, \ldots, n-1$ are of constant sign for all large t, and that no two consecutive derivatives can be of the same sign for all large t because of the boundedness of $W(t)$. Consequently $W^{\prime}(t)>0$ for all large t, a
contradiction to the fact that $W(t)$ is positive for all large t and $\lim _{t \rightarrow \infty} W(t)=0$.*) Thus, $W(t)$ oscillates. Now, by the mean value theorem, we have

$$
\begin{equation*}
H(t, U(t))-H(t, V(t))=H_{2}(t, \lambda(t)) W(t), \quad t \geq t_{1} \tag{13}
\end{equation*}
$$

where $\lambda(t)$ is a continuous function lying between $U(t)$ and $V(t)$. Thus, $\lambda(t)$ $<P(t), t \geq t_{1}$.

Consequently, $W(t), t \geq t_{1}$ is an oscillatory solution of the equation

$$
\begin{equation*}
W^{(n)}+H_{2}(t, \lambda(t)) W=0 \tag{14}
\end{equation*}
$$

Since, however, $H_{2}(t, \lambda(t)) \leq H_{2}(t, P(t))$, we have

$$
\begin{equation*}
\int_{t_{1}}^{\infty} t^{n-1} H_{2}(t, \lambda(t)) d t<\infty . \tag{15}
\end{equation*}
$$

An application of Theorem 2 in Kartsatos [3] shows that $W(t) \equiv 0$ for all large t, and this proves our assertion.

As an example, consider the equation

$$
\begin{equation*}
x^{(6)}+\left(1 / t^{5}\right) x^{3}=720 t^{-7}, \quad t \geq 1 \tag{16}
\end{equation*}
$$

Here we have $P(t)=t^{-1}$, and $H_{2}(t, P(t))=\left(3 / t^{5}\right) P^{2}(t)=3 / t^{7}$. Moreover the unperturbed equation oscillates (cf., for example, Kartsatos [8, Example]).

References

[1] F.V. Atkinson, On second-order differential inequalities, Proc. Royal Soc. Edinburgh, 72 (1972/73), 109-127.
[2] A. G. Kartsatos, On n-th order differential inequalities, J. Math. Anal. Appl., 47 (1975), 1-9.
[3] A.G. Kartsatos, Maintenance of oscillations under the effect of a periodic forcing term, Proc. Amer. Math. Soc., 33 (1972), 377-383.
[4] B. Singh, R.S. Dahiya, On oscillation of second-order retarded equations, J. Math. Anal. Appl., 47 (1974), 504-512.

Department of Mathematics, University of South Florida, Tampa, Florida

[^0]
[^0]: *) An analogous situation appears if we assume $W(t)<0, t \geq t_{2}$.

