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1. Introduction and statement of the main result

Recently, C. Fefferman[2] proved the following result: Let l1<p<n
¢
and let u be a C!-functionon R* =R x R*~1 (n=2)such that ) | grad u|? dx < co.
Rn
Then there is a constant ¢ such that lim,, ., ,u(x;,x")=c for almost all x’€ R*"1.

In the present note, we shall give an improvement of this result by using
the capacity Cy p:

C(E) = inf||f[§  for EcR",

\{z.vhere the infimum is taken over all non-negative functions / in LP(R*) such that
}lx —y\!=#f(y)dy=for all x6 E. This capacity is a special case of the capacity
Cyu;p introduced by N. G. Meyers [4]. We shall show

THEOREM 1. Let 1<p<n and let u be a p-precise function on R® =R x
R"=t.  Then there are a constant ¢ and a Borel set E' in R"~* with C; ({0} x
E"Y=0 such that

lim u(x,, x)=c¢  forall x'eR*"'—E'
x,-»oo
For p-precise functions, see [6; Chap. IV] (also cf. [3; Chap. III, §2], in
which they are called Beppo Levi functions of order p). Note that for a p-

;
precise function u on R", gradu is defined almost everywhere and)\ |grad u|Pdx
RH

<oo. Also note that if C; ({0} x E’)=0, then the (n— 1)-dimensional Lebesgue
measure of E’ is zero (see [3; Theorem A], [1; Theorem 1 in §IV] and our
Lemma 2).

The proof of this theorem is based on the following proposition, which is
a special case of Theorem 1 on account of [6; Theorem 9.6] (also cf. [5; Theorem

5.1]).

PROPOSITION 1. Let 1<p<n and let fe LP(R*). Then there is a Borel
set E'< R" ' with C, ({0} x E") =0 such that
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lim SR Ix=y|'""f()d= 0  for all x eR"'—FE,
X100 n

where x = (x4, x").

We shall see that Proposition 1 is the best possible as to the size of the ex-
ceptional set (Remark 2).

2. Proof of Proposition 1

We may assume that f=0. Let r be a positive number and a positive integer.
If |x| > 2r, then we have by Holder's inequality

0 U eyl dy 4500 empleamiy
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where 1/p+1/p’=1 and M is a constant independent of ». On the other hand,
from the definition of C, , it follows that

|x=y]|

. -n 1 1
@ gl wvmdgh) s el sy,

If r is sufficiently large, say r=r;, then the right-hand sides of (1) and (2) are
smaller than (2j)"'and 2~ J/respectively. Set

1
o= {xi x| > 2\ Ix=y1t OMy> 1]t
Then
- 1 —
Cra@)s Coy({x:{  1x=yl=rrGady > 5} )< 200

Set E,=\USw; and E=NL,E¥, where E¥is the projection of E; to the hyper-
plane R%={(0, x'); x'e R*~1}. Tt is easy to see that limxl_,wJ(g{xl—yl)z +|x’
—y'|2}=m12f(y)ds 0 if (0, x")does not belong to  E. If we show that C; (E¥)
=C,,(Ey) for each fc, then we have C, ,(E)=0, and hence the proposition. Thus
it remains to show

LEMMA 1 (¢f. [6; Theorem 8.1]). Let 1<p<oo. For any set EcR" de-
note by E* the projection of E to R}. Then we have

Cy ) (E*) = Cy (E).
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3. Proof of Lemma 1

To prove Lemma 1, we consider the symmetrization of functions with res-
pect to R%. First, let ¢: R'—>R! be a non-negative measurable function. The
symmetrization @* of ¢ is defined by

@*(1) =inflr 2 0;{ ass 2|t|}.
(

o(s)2r
For a non-negative measurable function / on R", we define its symmetrization
/* (with respect to R3) by f*(xy, x') = @¥(x1), where @x(x1)=f(xy, x), for
x'e R*~1guch that ¢, is measurable. We see that f* is a non-negative measur-
able function defined a.e. on R" and has the following properties:

@ L Irrd=" e
R" JR"
®) Job s 2§ fgtadx
n R n

for any non-negative measurable function g on R”".

Now, let f be a non-negative function in LP(R") such thatjk \x = y|t="f(y)dy

=1 for all xeE. Let x=(x;, x")e Eand put x*=(0, x’). Since the sym-
metrization of the function \x —y|!~" as a function in y is \x* —y|1~*, we have
by property (b)

[ Jxe=simre oy 2 {Jx=yir=rdy 2 1

Hence, in view of (a), we obtain Lemma 1.

4. Proof of Theorem 1

First, we remark the following lemma (cf. [4; Theorem 3]):

LEMMA 2. Let 1<p<nand EcR". Then C,,(E)=0 ifand only if there
is a non-negative function f in LP(R™) such that >R [x—y| =" f(y)dy= 00 for
every xeE.

In view of this lemma, [6; Theorem 9.11 and its remark, Theorem 9.3] or
[5; Theorems 4.1 and 3.2] implies that a p-precise function ¥ on R" has the
following integral representation :
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e B ( Xi—y; Ou
u(x)—cli=lS,x_y|,. gy, My tea

except for x in a Borel set E; with C,; ,(E,)=0,where ¢; and c, are constants.
Let E¥ be the projection of E; to RE. By Proposition 1, there is a Borel set E,
<R} such that C; ,(E,)=0 and

limlglx—yll'"]grad uldy =10

X4 =00
for all (0, x")eRg—E,, where x=(x;,x"). Obviously, C; (E¥U E,)=0 (cf.

[4; Theorem 1]) and lim,, ., u(x,, x")=c, if (0, x')&Ef U E,. Thus Theorem
1 is proved.

5. Remarks

REMARK 1. If we combine our theorem with a result of B. Fuglede [3;
Theorem A] and the above Lemma 2, we have

THEOREM 2. Let u be a p-precise function on R* (1<p<n). Then there
is a constant ¢ such that lim, . u(xx")=c if (0, x")¢ E, where E is a Borel
set in Ry such that C,(Ey=0 ifp<2 and C,_(E)=0 for any ¢ with 0<e<p
ifp>2.

REMARK 2. Proposition 1 is the best possible as to the size of the exceptional
set: Given a set EcRjwith C, (E) =0, we set E={x+(j,0); xeE andj is an
integer}. Then C,'p(E)ZO. By Lemma 2 there is a non-negative function /

in LP(R")such that (|x —y\!7"f(y)dy coforevery x e E.  We see that lim sup, .,
J
Slx—yl 1=nf(y)dy =0 if (0, x') € E, where x=(x,,x’).

REMARK 3. In connection with Proposition 1, we may be concerned with
functions of the following form:

u(x) = | =yl o)y,

where w is a positive continuous function on R* and fe LP(R"). The next two
propositions show that it is of little value to consider a weight function w.

PROPOSITION 2. Let l<p<oo. If o(y)=w(y,y' )=+ as |y,|- o,
then there exists a non-negative function fe LP(R") such that

. '
lim sup J\R" lx =yt "f(N(y)dyF + ©

X1
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Sfor every x' € R*™1, where x = (x4, X').

PROOF. Let ¢ be a positive number and set g(y)=1 if [y| <1 and = |y|~"/P~¢
if [yl|21. Then ge LP(R"). Set a,=inf{w(y1,y’); ly1|>%} for r>0 and
set g, (»)=a;2g(y~re,), where e;=(1, ‘0,..., 0)eR". We héve a sequence
{r;}, ri>2, such that X%a;'/2<o0 Let x*=(0, x)eR" and xW=x*+

‘
rie;. Setting f=X%,g,, and u(x)=\J|x—)’|1-nf(y)w(Y)dy, we note
u(x) = ng D=, =ng, ((y)dy

2 o}/ |x* — 2|1 ="g(2)dz —> o0
’ |x*—z|<1

as j— oo, which implies that f is the required function.

ProrosiTION 3. Let l<p<n and suppose w(yy, y')—0as |y,|—> 0.
r
Then, Proposition 1 and Remark2 remain valid for the functt’on\m \x —y|i=n
FO)w(y)dy.

P
PROOF. This is seen from the fact that k x —y|1=* f(M)w(y)ds oo if
‘) n

and only if g \x — y|t="f(y)dy= oo for a non-negative function fe LP(R").
R"
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