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1. Introduction and statement of the main result

Recently, C. Fefferman [2] proved the following result: Let \<p<n

and let u be a (^-function on Rn = RxRn~ί (n^.2) such that \ |gradu|pdx<oo.
JRn

Then there is a constant c such that lim^^^x^ x') = c for almost all xΈRn~l.
In the present note, we shall give an improvement of this result by using

the capacity C1>p:

C1>p(£) = inf 11/112 for E c Λ",

where the infimum is taken over all non-negative functions / in Lp(Rn) such that

\ I* — y\ i~nf(y)dy^l for all x 6 E. This capacity is a special case of the capacity

Ck;μ.p introduced by N. G. Meyers [4]. We shall show

THEOREM 1. Let l<p<n and let u be a p-precise function on Rn = Rx
Rn~l. Then there are a constant c and a Borel set E' in R"'1 with Cljp({0} x
£') = 0 such that

lim w(x l 5 x') = c for all xΈRn-l-E'.
Xj-ίOO

For p-precise functions, see [6; Chap. IV] (also cf. [3; Chap. Ill, §2], in
which they are called Beppo Levi functions of order p). Note that for a p-

precise function u on Rn, gradw is defined almost everywhere and \ |gradw|pdx
jRn

<oo. Also note that if C1>p({0} xE/)==0, then the (n — l)-dimensional Lebesgue
measure of E' is zero (see [3; Theorem A], [1; Theorem 1 in §IV] and our
Lemma 2).

The proof of this theorem is based on the following proposition, which is
a special case of Theorem 1 on account of [6; Theorem 9.6] (also cf. [5; Theorem
5.1]).

PROPOSITION 1. Let l<ρ<n and let /eί/(R"). Then there is a Borel
set FcK"-1 w/ί/i C1>ί,({0}x£/) = 0 such that
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liml i m j \x-y\l-"f(y)dy = Q for all x'eR"-1-^,
d-»oojΛM

where x = (xi9 x').

We shall see that Proposition 1 is the best possible as to the size of the ex-
ceptional set (Remark 2).

2. Proof of Proposition 1

We may assume that/^ 0. Let r be a positive number and j a positive integer.
If |x|>2r, then we have by Holder's inequality

(i) ( \χ-y\l~nf(y)dy£ \\f\\P\\ \χ-y\^^-^
J\y\£r UM^Γ

where l/p + l/p' = l and M is a constant independent of r. On the other hand,
from the definition of C1>p it follows that

(2) Citp({x; \ \x-y\ l~*f{y)dy> ^rV) ^ (2j)'( f(yYdy.
M ^ |y |>r Λ7 )/ J | y | > r

If r is sufficiently large, say r^r,-, then the right-hand sides of (1) and (2) are
smaller than (2j)~ l and 2~J respectively. Set

ω, Γ 1|x| > 2rp yx-y^ nf(y)dy > ί/j>.

Then

Cltp(a>j) ^ Cj

Set £fc = WjLfcCo,- and E = ΛJ°=ι£*, where £f is the projection of £fc to the hyper-

plane JRg={(0, x'); x'eR"-1}. It is easy to see that lim^^Uίx!--};!)2*\xf

-y'\2}(i-n)/2f(y>>dy = Q jf (Q, x') does not belong to E. If we show that Cltp(£f)

^Cljp(£fc) for each fc, then we have Clfp(E)=0, and hence the proposition. Thus
it remains to show

LEMMA 1 (cf. [6; Theorem 8.1]). Let !</?<oo. For any set E<=:Rn de-
note by E* the projection of E to R%. Then we have
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3. Proof of Lemma 1

To prove Lemma 1, we consider the symmetrization of functions with res-
pect to R%. First, let φ: Rί-+Rί be a non-negative measurable function. The
symmetrization φ* of φ is defined by

φ*(t) = inf jr ̂  0; ( ds £2\t\\.
( Jφ(s)*r )

For a non-negative measurable function / on Rn, we define its symmetrization

/* (with respect to #g) by f*(xi9 x') = <Pί'(*ι)> where φ^(x^ =/(xlf *')> for
x' eR"'1 such that φx> is measurable. We see that /* is a non-negative measur-
able function defined a.e. on Rn and has the following properties:

(a) f*(xYdx = f(x}>dxi
JRn JRn

(b) ( f*(x)g*(x)dx*( f(x)g(x)dx
JRn JKn

for any non-negative measurable function g on Rn.

Now, let /be a non-negative function in Lp(Rn) such that \ \x — y\i"nf(y)dy
JRn

^1 for all xeE. Let x = (xi9x')EE and put x* = (0, x')- Since the sym-
metrization of the function \x — y\l~n as a function in y is \x* — y\*~n

9 we have
by property (b)

JR" JRn

Hence, in view of (a), we obtain Lemma 1.

4. Proof of Theorem 1

First, we remark the following lemma (cf. [4; Theorem 3]):

LEMMA 2. Let l<p<n and E<=:Rn. Then Cljp(E) = 0 if and only if there

is a non-negative function f in Lp(Rn) such that \ |x — y\l~nf(y)dy = 00 for
JRn

every xeE.

In view of this lemma, [6; Theorem 9.11 and its remark, Theorem 9.3] or
[5; Theorems 4.1 and 3.2] implies that a p-precise function u on Rn has the
following integral representation :



356 Yoshihiro MIZUTA

except for x in a Borel set E^ with Cltp(Eί)=09 where c1 and c2 are constants.
Let £? be the projection of £x to βg. By Proposition 1, there is a Borel set E2

cKg such that C1}p(jB2) = 0 and

lim \|x-v| 1"κ |eradu|dv = 0lim \ |x —^""
Cι~»OθJ

for all (0, x')eR%-E2, where x = (xi9 x'). Obviously, C1)P(E* U £2)=0 (cf.
[4; Theorem 1]) and lim^^tφc!, x') = c2 if (0, *')<££? U E2. Thus Theorem
1 is proved.

5. Remarks

REMARK 1. If we combine our theorem with a result of B. Fuglede [3;
Theorem A] and the above Lemma 2, we have

THEOREM 2. Let u be a p-precise function on Rn (l<p<n). Then there
is a constant c such that \iτs\Xl^^u(x^ x') = c if (0, x')£E, where E is a Borel
set in Rno such that Cp(E) = Q if p<>2 and Cp_ε(E) = 0 for any ε with 0<ε<p
ifp>2.

REMARK 2. Proposition 1 is the best possible as to the size of the exceptional
set: Given a set EdR'fr with C1>p(£) = 0, we set E={x + (j, 0); xeE and j is an
integer}. Then Clip(£) = 0. By Lemma 2 there is a non-negative function /

in Lp(Rn) such that \ |x — y\ l~nf(y)dy = oo for every x e E. We see that lim supΛl _» ̂

= oo if (0, x')e£, where x=(xί9 x').

REMARK 3. In connection with Proposition 1, we may be concerned with
functions of the following form:

where ω is a positive continuous function on Rn and /e Lp(Rn). The next two
propositions show that it is of little value to consider a weight function ω.

PROPOSITION 2. Let l<p<ao. If o)(y) = ω(yί9 y')-+ + co as |jι|-> oo,
then there exists a non-negative function feLp(Rn) such that

limim sup \ \x-y\l~nf(y)ω(y)dy = + oo
*j->oo JRn
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for every x' ERn~l, where x = (xί, x').

PROOF. Let ε be a positive number and set g(y) = 1 if |.y| < 1 and = \y\~n/p~ε

if Lv l^ l . Then g e !/(#"). Set αr = inf lω(y^ /); |^ιl>y| for r>0 and

set gr(y) = a~1/2g(y — re1), where el=(l, 0,...,0)eRn. We have a sequence

{r,}, rj>29 such that ΣjS=ι«Γ// 2<oo Let x* = (0, x')e£w and

Γjβ^ Setting f=Σ<?=ι9rj and w(x)=\|x~y|1-M/(.y)ω(j)ί/j, we note

<;>- -

oo^ a r

j / 2 i ^-zμ-^zyz
7 J|x*-z|<l

as7*->oo, which implies that /is the required function.

PROPOSITIONS. Let l<p<n and suppose o}(yί,y
f)-^Q as |>Ί|->OO.

Then, Proposition! and Remark2 remain valid for the functίon\ \x — y\l~n

JRn

PROOF. This is seen from the fact that \ |x — y\1~nf(y)ω(y)dy = co if
JRn

and only if \ \x — y\1~nf(y)dy = co for a non-negative function feLp(Rn}.
JR"

References

[ 1 ] L. Carleson, Selected problems on exceptional sets, Van Nostrand, Princeton, 1967.
[ 2 ] C. Fefferman, Convergence on almost every line for functions with gradient in

L»(Rn)9 Ann. Inst. Fourier 24 (1974), 159-164.
[3] B. Fuglede, Extremal length and functional completion, Acta Math. 98(1957),

171-219.
[ 4 ] N. G. Meyers, A theory of capacities for potentials of functions in Lebesgue classes,

Math. Scand. 26 (1970), 255-292.
[ 5 ] Y. Mizuta, Integral representations of Beppo Levi functions of higher order, Hiro-

shima Math. J. 4 (1974), 375-396.
[ 6 ] M. Ohtsuka, Extremal length and precise functions in 3-space, Lecture notes,

Hiroshima Univ., 1973.

Department of Mathematics,
Faculty of Science,

Hiroshima University






